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Abstract. Circular RNA is a novel class of endogenous non-coding RNAs that have
been largely discovered in eukaryotic transcriptome. The circular structure arises from
a non-canonical splicing process, where the donor site backsplices to an upstream ac-
ceptor site. These circular form of RNAs are conserved across species, and often show
tissue or cell-specific expression. Emerging evidences have suggested its vital roles in
gene regulation, which are further associated with various types of diseases. As the fun-
damental effort to elucidate its function and mechanism, numerous efforts have been
devoted to predicting circular RNA from its primary sequence. However, statistical
learning methods are constrained by the information presented with explicit features,
and the existing deep learning approach falls short on fully exploring the positional
information of the splice sites and their deep interaction.

We present an effective and robust end-to-end framework, JEDI, for circular RNA pre-
diction using only the nucleotide sequence. Our framework first leverages the attention
mechanism to encode each junction site based on deep bidirectional recurrent neural
networks and then presents the novel cross-attention layer to model deep interaction
among these sites for backsplicing. Finally, JEDI is capable of not only addressing the
task of circular RN A prediction but also interpreting the relationships among splice sites
to discover the hotspots for backsplicing within a gene region. Experimental evaluations
demonstrate that JEDI significantly outperforms several state-of-the-art approaches in
circular RNA prediction on both isoform-level and gene-level. Moreover, JEDI also
shows promising results on zero-shot backsplicing discovery, where none of the existing
approaches can achieve.

The implementation of our framework is available at https://github.com/hallogameboy/
JEDT.
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1 Introduction

As a special type of long non-coding RNA (IncRNA), circular RNA (circRNA) has received ris-
ing attention due to its circularity and implications in a myriad of diseases, such as cancer and
Alzheimer’s [9, 39]. It arises during the process of alternative splicing of protein-coding genes, where
the 5" end of an exon is covalently ligated to the 3’ end of the same exon or a downstream exon,
forming a closed continuous loop structure. This mechanism is also known as “backsplicing.” The
circular structure provides several beneficial properties over the linear RNAs. To be more specific,
it can serve as templates for rolling circle amplification of RNAs [5], rearrange the order of genetic
information [30], resistant to exonuclease-mediated degradation [27], and create a constraint on
RNA folding [30]. Although the consensus of biological functions, mechanisms, and biogenesis re-
mains unclear for most circRNAs [4, 50], there are emerging studies suggesting their roles in acting
as sponges for microRNAs [20, 34], RNA-binding protein competition [2], and inducing host gene
transcription [33]. Evidently, as a fundamental step to facilitate the exploration of circRNA, it is
essential to have a high-throughput approach to identify the circRNAs.

Multiple factors can contribute to the formation of circRNAs. These factors include complemen-
tary sequences in flanking introns [25], the presence of inverted repeats [10], number of ALU and
tandem repeats [27], and SNP density [45]. These factors, together with the evolution conservation
and secondary structure of RNA molecules, have been considered as the discriminative features
for circRNA identification. Several research efforts [7, 37, 47] have leveraged these features to
train a conventional statistical learning model to distinguish circRNAs from other IncRNAs. These
statistical learning algorithms include support vector machines (SVM), random forest (RF), and
multi-kernel learning. However, methods along this line often require an extensive domain-specific
feature engineering process. Moreover, the selected features may not provide sufficient coverage to
characterize the backsplicing event.

Recently, the rising of deep learning architectures have been widely adopted as an alternative
learning algorithm that can alleviate the inadequacy of conventional statistical learning methods.
Specifically, these deep learning algorithms provide powerful functionality to process large-scale
data and automatically extract useful features for object tasks [31]. In the domain of circRNA
prediction, the convolution neural network (CNN) is the architecture that has been widely explored
to automatically learn the important features for prediction, either from the primary sequence [6, 48]
or secondary structure [11]. Although CNN is capable of capturing important local patterns on gene
sequences for prediction, positional information and global context of each splice site cannot be
recognized. One of these approaches [6] attempts to address this issue by applying recurrent neural
networks (RNNs) to learn sequential and contextual information; however, the essential knowledge,
such as splice sites and junctions, are still ignored.

Understanding the properties of splice sites and their relationships can be one of the keys
to master RNA splicing and the formation of circular RNAs because the splicing event can be
considered as interaction among those splice sites. To fathom the relations between splice sites,
circDeep [6] explicitly matches the splices sites on the nucleotide level for predicting circular RNAs.
DeepCirCode [48] utilizes CNNs to model the flanking regions around two splice sites to identify if
there is a backsplice. However, all of the existing methods fail in modeling deep interaction among
splice sites for circular RNA prediction. For example, circDeep only measures shallow interaction
among splice sites on the nucleotide level; DeepCirCode can only tackle a single pair of splice sites
for backsplicing prediction without the capacity of modeling more complex relations among splice
sites on multi-isoform genes. Hence, there is still a huge room for improvement on the way to
comprehensively understand splice sites and their interaction about backsplicing and the formation
of circular RNAs.
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In this paper, the framework of Junction Encoder with Deep Interaction (JEDI) is proposed
to address the limitations in circular RNA prediction. More precisely, we focus on predicting the
existence of circular RNAs from either the reference gene/isoform sequences or assembled transcript
sequences by modeling splice sites and their deep interaction with deep learning techniques. First,
the attentive junction encoders are presented to derive continuous embedding vectors for acceptor
and donor splice sites based on their flanking regions around junctions. Based on the acceptor and
donor embeddings, we propose the novel cross-attention layer to model deep interaction between
acceptor and donor sites, thereby inferring cross-attentive embedding vectors. Finally, the attention
mechanism is applied to determine acceptors and donors that are more important than other
ones to predict if there is a circRNA. It is also important to note that the interpretability of
the attention mechanism and the cross-attention layer enables JEDI to automatically discover
backsplicing without training on any annotated backspliced sites.

Our contributions are three-fold. First, to the best of our knowledge, this work is the first study
to model deep interaction among splice sites for circular RNA prediction. The more profound un-
derstandings of the relationships among splice sites can intuitively benefit circular RNA prediction
in implying backsplicing. Second, we propose a robust and effective end-to-end framework JEDI
to deal with both isoform-level and gene-level circular RNA prediction based on the attention
mechanism and the innovative cross-attention layer. More specifically, JEDI is capable of not only
deriving appropriate representations from junction encoders but also routing the importance about
forming circular RNAs on different levels. Third, JEDI creates a new opportunity of transferring
the knowledge from circular RNA prediction to backsplicing discovery based on its extensive usage
of attention mechanisms. Extensive experiments on human circRNAs have demonstrated that JEDI
significantly outperforms eight competitive baseline methods on both isoform-level and gene-level.
The independent study on mouse circRNAs also indicates that JEDI is robust to transfer knowl-
edge for circular RNA prediction from human data to mouse data. In addition, we conduct the
experiments to demonstrate that JEDI can automatically discover backspliced site pairs without
any further annotations. Finally, an in-depth analysis on model hyper-parameters and run-time
presents the robustness and efficiency of JEDI.

2 Related Work

Current works to discover circular RNA can be divided into two categories: one relies on detecting
back-spliced junction reads from RNA-Seq data; the other examines features directly from transcript
sequences.

The first category aims at detecting circRNA from expression data. It is mainly achieved by
searching for chimeric reads that join the 3’-end to the upstream 5-end with respect to a transcript
sequence [4]. Existing algorithms include MapSplice [49], CIRCexplorer [51], KNIFE [44], find-
circ [34], and CIRI [13, 14]. These algorithms can be quite sensitive to the expression abundance,
as circRNAs are often lowly expressed and fail to be captured with low sequencing coverage [4]. In
the comparison conducted by Hansen et al. [21], the findings suggest dramatic differences among
these algorithms in terms of sensitivity and specificity. Other caveats are reflected in long duration,
high RAM usage, and/or complicated pipeline.

The second category focuses on predicting the circRNA based on transcript sequences. Meth-
ods in this category leverage different features and learning algorithms to distinguish circRNA from
other IncRNAs. PredicircRNA [37] and H-ELM (7] develop different strategies to extract dis-
criminative features, and employ conventional statistical learning algorithms, i.e. multiple kernel
learning for PredicircRNA and hierarchical extreme learning machine for H-ELM, to build a clas-
sifier. Statistical learning approaches require explicit feature engineering and selection. However,
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the extracted features are dedicated to specific facets of the sequence properties and present a lim-
ited coverage on the interaction information between the donor and acceptor sites. circDeep [6]
and DeepCirCode [48] are two pioneering methods that employ deep learning architectures to
automatically learn complex patterns from the raw sequence without extensive feature engineering.
circDeep uses convolution neural networks (CNNs) with the bi-directional long short term memory
network (Bi-LSTM) to encode the entire sequence, whereas DeepCirCode uses CNNs with max-
pooling to capture only the flanking sequences of the back-splicing sites. Although circDeep has
claimed to be an end-to-end framework, it requires external resources and strategies to capture the
reverse complement matching (RCM) features at the flanking sequence and the conservation level
of the sequence. In addition, the RCM features only measure the match scores between sites on the
nucleotide-level, and neglect the complicated interaction between two sites. CNNs with max-pooling
aim at preserving important local patterns within the flanking sequences. As a result, DeepCirCode
fails to retain the positional information of nucleotides and their corresponding convoluted results.

Besides sequence information, a few conventional IncRNA prediction methods also present the
potential of discovering circRNA through the secondary structure. nRC [11] extracts features from
the secondary structures of non-conding RNAs and adopts CNNs framework to classify different
types of non-coding RNA. IncFinder [19] integrates both the sequence composition and structural
information as features and employs random forests. The learning process can be further optimized
to predict different types of IncRNA. Nevertheless, none of these methods factor in the information
specific to the formation of circRNAs, particularly the interaction information between splicing
sites.

3 Materials and Methods

In this section, we first formally define the objective of this paper, and then present our proposed
deep learning framework, Junction Encoder with Deep Interaction (JEDI), to predict circRNAs.
3.1 Preliminary and Problem Statement

The vocabulary of four nucleotides is denoted as V = {A,C,G, T}. For a gene sequence S, s[i...j] €
V7~ indicates the subsequence from the i-th to the j-th nucleotide of a sequence S. For a gene
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Fig. 1: The schema of the proposed framework, Junction Encoder with Deep Interaction (JEDI), us-
ing the gene NM_001080433 with six exons as an example, where the second exon forms backsplicing.
A; and Dj represent the i-th and j-th potential acceptors and donors.
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or an RNA isoform with the sequence S, £(S) = {(a;,d;)} represents the given exons in the gene
or the isoform, where a; and d; are the indices of the acceptor and donor junctions of the i-th exon
in S. Using only sequence information, the two goals of this work are listed as follows:

1. Isoform-level Circular RNA Prediction: Given a gene sequence S and the splicing infor-
mation of an isoform £(s), the goal is to identify whether this RNA isoform is a circRNA.

2. Gene-level Circular RNA Prediction: Given a gene sequence S and all of its exon-intron
boundaries £(S), this task aims at predicting if any of the junction pairs can backsplice to form
a circRNA.

3.2 Framework Overview

Figure 1 illustrates the general schema of JEDI to predict circRNAs. Each acceptor a; and donor
d; in the gene sequence are first represented by flanking regions A; and D; around exon-intron
junctions. Two attentive junction encoders then derive embedding vectors of acceptors and donors,
respectively. Based on the embedding vectors, we apply the cross-attention mechanism to consider
deep interactions between acceptors and donors, thereby obtaining donor-aware acceptor embed-
dings and acceptor-aware donor embeddings. Finally, the attention mechanism is applied again to
learn the provided acceptor and donor representations so that the prediction can be inferred by a
fully-connected layer based on the representations.

3.3 Attentive Junction Encoders

To represent the properties of acceptors and donors in the gene sequence S, we utilize the flanking
regions around junctions to derive informative embedding vectors. Specifically, as shown in Figure 2,
we propose attentive junction encoders using recurrent neural networks (RNNs) and the attention
mechanism based on acceptor and donor flanking regions.

Flanking Regions as Inputs. For each exon (a;,d;) € £(S), length-L acceptor and donor flanking
regions A; and D; can be computed as:

A = {aif {%J, ya; — Lag,a; + 1, ya; + {g”,

D; = [dz_ \‘L;1J7 adl_17dl7dz+1a 7d2+ \‘gJ]7

where A;[j] and D;[k] denote the j-th and k-th positions on S for the flanking regions of the
acceptor a; and the donor d;; the region length L is a tunable hyper-parameter.
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Fig. 2: The illustration of the attentive encoder for acceptor junctions. Note that the donor junction
encoder shares the same model structure with different model parameters.
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Suppose we are encoding an acceptor a and a donor d with the flanking regions A and D in the
gene sequence S for the simplicity.

k-mer Embedding. To represent different positions in the sequence, we use k-mers as representa-
tions because k-mers are capable of preserving more complicated local contexts [29]. Each unique
k-mer are then mapped to a continuous embedding vector as various deep learning approaches in
bioinformatics [6, 35]. Formally, for each position A[j] and D[k], the corresponding k-mer embedding

vectors w;‘ and wg can be derived as follows:

m;:f(s {A[j]— {%J AL+ g”)
mz:f<s [D[k]— {%J DK+ g”)

where F(:) : VX —» R! is an embedding function mapping a length-K k-mer to a I-dimensional
continuous representation; the embedding dimension ! and the k-mer length K are two model
hyper-parameters. Subsequently, A and D are represented by the corresponding k-mer embedding
sequences, @ = [z%, - ,x%] and ¢ = [z¢,--- , z{].

Bidirectional RNNs. Based on k-mer embedding vectors, we apply bidirectional RNNs (BiRNNs)
to learn the sequential properties in genes. The k-mer embedding sequences are scanned twice in

both directions as forwgd and backward passes. During the forward pass, BIRNNs compute forward
hidden states hj and h? as:

Ré = (B8, W3] and hé = [hd. - Bd]

1 T ),

where h Gﬁ (h§_4 hg = Gﬁ hg 1xd). GRU, and GRU, are gated recurrent units (GRUSs) [8]
with dlﬂ'erent parameters for acceptors and donors, respectively. Note that we adopt GRUs instead
of other RNN cells like long-short term memory (LSTM) [24] because GRUs require fewer parame-
ters [28]. Similarly, the backward pass reads the sequences in the opposite order, thereby calculating

backward hidden states ﬁ and hd as:
—
h® = [h%, - h“] and hd — [h AR

where ﬁ ﬁ] H, hk = md T%-l’ :ck) To model k-mers with context information,
we concatenate forward and backward hidden states as the hidden representations of k-mers in A
and D as:
h® =[h{,--- ,h%] and h = [hY,---  hY],

where he = [h%; ha); hi = (i .

k-mer Attentlon. Since different k-mers can have unequal importance for representing the prop-
erties of splice sites, we introduce the attention mechanism [3] to identify and aggregate the hidden
representations of k-mers that are more important than others. More precisely, the importance
scores of representations h7 and h¢ can be estimated by the k-mer attention vectors t¢ and t¢ as:

a exp(t5TS) dad— exp(tdTtd)
af = and aj = 1d Ty
Zk’ eXp( t )

N SPSSCATT
where t$ = tanh(F{ (h$)); td = tanh(F¢(h)); F2(-) and FY(-) are fully-connected layers. tanh(-)
is the activation function for the convenience of similarity computation. The importance scores
are first measured by the inner-products to the k-mer attention vectors and then normalized by a
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softmax function over the scores of all k-mers. Note that the k-mer attention vectors 2 and t¢ are
learnable and updated during optimization as model parameters. Finally, the acceptor embedding
w® of A and the donor embedding w® of D can be derived by aggregating the hidden representations
of k-mers weighted by their learned importance scores as:

w® = g af - h and w? = E Y
j k

3.4 Cross-attention for Modeling Deep Interaction

Modeling interactions among splice sites is essential for circular RNA prediction because back-
splices occur when the donors prefer the upstream acceptors over the downstream ones. Inspired
by recent successes in natural language processing [22] and computer vision [32], we propose the
cross-attention layer to learn deep interaction between acceptors and donors.

Cross-attention Layer. For acceptors, the cross-attention layer aims at deriving cross-attentive
acceptor embeddings that not only represent the acceptor sites and their flanking regions but also
preserve the knowledge of relevant donors from donor embeddings. Similarly, the cross-attentive
donor embeddings are simultaneously obtained for donors. To directly model relations between
embeddings, we adopt the dot-product attention mechanism [46] for the cross-attention layer. For
each acceptor embedding wy', the relevance of a donor embedding w]d can be computed by a dot-
product waw;-i so that the attention weights 51‘-3 can be calculated with a softmax function over

all donors. Likewise, the attention weights ,B;{i for each donor embedding w;l can also be measured
by dot-products to the acceptor embeddings. Stated formally, we have:

dT
J

dat,.,d
Zi/ eXP('wj 'w,")
Therefore, the cross-attentive embeddings of acceptors and donors can then be derived by aggre-
gations based on the attention weights as:

a __ a d d __ d a
vy = g Bij - wy and v = g B - wy.
j i

d
o _ exp(w§Twy) and 39 —
1,j Zj’ exp(’ngw;.i,) 7,0

exp(w§ w§)

Note that we do not utilize the multi-head attention mechanism [46] because it requires much more
massive training data to learn multiple projection matrices. As shown in Section 4, the vanilla
dot-product attention is sufficient to obtain satisfactory predictions with significant improvements
over baselines.

3.5 Circular RNA Prediction

To predict circRNAs, we apply the attention mechanism [3] again to aggregate cross-attentive
acceptor and donor embeddings into an acceptor representation and a donor representation as
ultimate features to predict circRNAs.

Acceptor and Donor Attention. Although the cross-attention layer provides information cross-
attentive embeddings for all acceptors and donors, most of the splice sites can be irrelevant to
backsplicing. To tackle this issue, we present the acceptor and donor attention to identify splice
sites that are more important than other ones. Similar to k-mer attention, the importance scores
of cross-attentive embeddings for acceptors and donors can be computed as:

o= exp(cfTed) and A — exp(cd'ed)
S eleten) M T S (el o)
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where ¢ = tanh(F%(v®)); ¢¢ = tanh(F%(v2)); F4(-) and F(-) are fully-connected layers. Subse-
quently, the acceptor and donor representations r, and r4 can be derived based on the attention
weights of cross-attentive embeddings as:

ra:nyf~vfandrd: E 'yf.v?.
i i

Prediction as Binary Classification. Here we treat circular RNA prediction as a binary classi-
fication task. More specifically, we estimate a probabilistic score g to approximate the probability
of existing a circRNA. The ultimate features r for machine learning are provided by concatenating
the acceptor and donor representations as r = [rq;r4]. Finally, the probabilistic score § can be
computed by a sigmoid function with a fully-connected layer as follows:

g = o(Fp(ReLU(F:(r)))),

where F,(-) and F,(-) are fully-connected layers; ReLU(:) is the activation function for the hidden
layer [16]; o(+) is the logistic sigmoid function [18]. The binary prediction can be further generated
by a binary indicator function as 1 (g > 0.5).

3.6 Learning and Optimization

To solve circular RNA prediction as a binary classification problem, JEDI is optimized with a
binary cross-entropy [23]. Formally, the loss function for optimization can be written as follows:

N

1 . .

N > lyilog(i) + (1 — yi) log(1 — 4i)] + |02,
=1

where N is the number of training gene sequences; y; is a binary indicator demonstrating whether
the i-th training sequence exists a circRNA; ¢; is the approximated probabilistic score for the i-th
training gene sequence; A is the L2-regularization weight for the set of model parameters 6.

3.7 Remarks on the Interpretability of JEDI

The usage of attention mechanisms is one of the most essential keys in JEDI, including the donor
and acceptor attention, the cross-attention layer, and the k-mer attention in junction encoders. In
addition to choosing important information to optimize the objective, one of the most significant
benefits of using attention mechanisms is the interpretability.

Application: Zero-shot Backsplicing Discovery. For circRNAs, the attention weights can be-
come interpretable hints for discovering backsplicing without training on the annotated backspliced
sites. For example, when the model is optimized for accurately predicting circRNAs, the weights
of donor attention are reformed to denote the important and relevant donors, which are preferred
for the upstream acceptors to backsplice. In other words, the probabilistic attention weight ’y;l for
each donor d; can be interpreted as the probability of being a backsplice donor site as:

P(dj) =5,

where the softmax function guarantees Zj P(d;) = 1. Similarly, the attention weight 5}-{1- of each
acceptor a; for deriving the cross-attentive embedding of the donor d; can be explained as the
conditional probability of being selected as the backsplice acceptor site from the donor d; as:
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where we also have the probabilistic property Vj: >, Bﬁi =1 from the softmax function. Based on
the above interpretations, for any pair of a donor d; and an acceptor a;, the probability of forming
a backsplice can be approximated by decomposing the joint probability P(d;,a;) as:

P(dj,a;) = P(d;)P(a; | dj) = ~28;.

Therefore, without any training backsplice site annotation as zero-shot learning [43], we can transfer
the knowledge in the training data for circular RNA prediction to discover potential backsplice sites
by ranking the pairs of acceptors and donors according to P(d;, a;). Particularly, the interpretations
can be also aligned with the process of RNA splicing, bringing more biological insights into JEDI.
In Section 3.4, we further conduct experiments to demonstrate that JEDI is capable of addressing
the task of zero-shot backsplicing discovery.

4 Experiments

In this section, we conduct extensive experiments on benchmark datasets for two tasks and in-depth
analysis to verify the performance and robustness of the proposed framework, JEDI.

4.1 Datasets

Human circRNA on isoform level.. We use the benchmark dataset generated by Chaabane et al.
[6]. The positive data generation follows a similar setting as described in Pan and Xiong [37]. The
human circRNAs are obtained from circRNADDb [17], which contains 32,914 RNA molecules covering
a diverse range of tissues and cell types. circRNAs with sequences shorter than 200 nucleotides are
removed, resulting in 31,939 positive cases. The negative set is composed of other IncRNAs, such
as processed transcripts, anti-sense, sense intronic and sense overlapping. It is constructed based
on the annotation provided by GENCODE v19 [12] with strong evidence. Specifically, only the
experimentally validated or manually annotated transcripts are considered, resulting in 19,683
negative cases. Each dataset is equally divided into five parts to conduct 5-fold cross validation.
The sequences of all positive and negative cases are based on hgl9.

Human circRNA on gene level. To evaluate the capability of JEDI in predicting the presence
of a circRNA and the back-splicing positions in a genomic region, we construct the positive and
negative sets based on gene-level annotation. For the positive set, we use BEDTools [40] to identify
the overlapping genes of each circRNA from circRNADbD. For each gene, we extract the exon
information according to the annotation provided by GENCODE v19. In addition, we also include
the exons of the overlapping circRNAs if not present in GENCODE. For the negative set, we extract
the corresponding gene for each negative isoform in the benchmark dataset. We remove genes that
have been selected in the positive set, and ensure that the negative set covers a wide range of exon
number. The final list contains 7,777 positive and 7,000 negative genes.

Mouse circRNA on isoform level. The mouse circRNAs are obtained through circbase [15]
which contains public circRNA datasets for several species reported in literature. Out of the 1,903
mouse circRNAs, we remove isoforms shorter than 200 nucleotides, resulting in 1,522 positive cases.
Using the annotation provided by GENCODE vM1, we randomly select other lincRNAs longer than
200nt, generating 1,522 negative cases to create a balanced dataset. The sequences of all positive
and negative cases are based on mm9.

4.2 Experimental Settings

Baseline Methods. To evaluate the performance of JEDI, we compare with eight competitive
baseline methods, including circDeep [6], PredcircRNA [37], DeepCirCode [48], nRC [11], Sup-
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Table 1: Evaluation of isoform-level circular RNA prediction based on the 5-fold cross-validation.

We report the mean and standard deviation for each metric.

Method Accuracy Precision Sensitivity Specificity Fl-score MCC

SVM 0.7386 + 0.0162  0.7580 £ 0.0493  0.8610 £+ 0.0727  0.5401 + 0.1542  0.8027 £ 0.0078  0.4362 £ 0.0470
RF 0.7621 + 0.0025 0.7773 £ 0.0017  0.8626 £+ 0.0039  0.5989 + 0.0041  0.8177 £+ 0.0022  0.4833 £ 0.0054
Att-CNN 0.7677 + 0.0041  0.7854 £+ 0.0064 0.8595 + 0.0092 0.6187 + 0.0175  0.8207 £+ 0.0032  0.4968 + 0.0094
Att-RNN 0.7713 + 0.0068 0.7852 + 0.0139 0.8684 £+ 0.0231 0.6136 4 0.0402 0.8244 4+ 0.0061  0.5046 + 0.0155
nRC 0.7446 + 0.0035 0.7807 £ 0.0254  0.8202 £ 0.0499  0.6220 4+ 0.0773  0.7986 4+ 0.0110  0.4537 + 0.0123
PredcircRNA 0.6579 + 0.0098  0.7065 £ 0.0195 0.5997 £ 0.0095 0.7224 4+ 0.0302 0.6485 4+ 0.0040 0.3238 + 0.0230
circDeep 0.8904 + 0.0051  0.9534 £ 0.0133  0.8326 £+ 0.0046  0.9546 + 0.0136  0.8889 + 0.0044  0.7888 £ 0.0119
DeepCirCode  0.9008 £+ 0.0169  0.9039 + 0.0350  0.9418 + 0.0188  0.8344 £+ 0.0710  0.9218 + 0.0110  0.7898 + 0.0354
JEDI 0.9899 + 0.0012 0.9926 + 0.0010 0.9912 + 0.0024 0.9880 + 0.0017 0.9919 + 0.0010 0.9787 + 0.0026

port Vector Machines (SVM), Random Forest (RF), attentive-CNN (Att-CNN), and attentive-
RNN (Att-RNN). Specifically, circDeep and PredcircRNA are the state-of-the-art circular RNA
prediction methods. DeepCirCode originally takes individual splice site pairs for backsplicing pre-
diction, which is another research problem, and leads to an enormous number of false alarms in our
problem settings. To conduct fair comparisons, we modify DeepCirCode by extending the inputs
to all sites and aggregating CNN representations for acceptors and donors with two max-pooling
layers before applying its model structure. nRC represents IncRNA classification methods that are
compatible to solve circular RNA prediction as a sequence classification problem. SVM and RF
apply conventional statistical learning frameworks with the compositional k-mer features proposed
by Wang and Wang [47] for backsplicing prediction. Attentive CNN and RNN as popular deep
learning approaches utilize CNNs and RNNs with the attention mechanism [3] for sequence model-
ing, thereby predicting circRNAs based on a fully-connected hidden layer with the ReLLU activation
function [16].

Evaluation Metrics and Protocol. Six conventional binary classification metrics are selected as
the evaluation metrics for both tasks, including the overall accuracy (Acc), precision (Prec), sensi-
tivity (Sens), specificity (Spec), Fl-score, and Matthew correlation coefficient (MCC) on positive
cases. For all metrics, the higher metric scores indicate more satisfactory performance. We conduct
a b-fold cross-validation for evaluation on both isoform-level and gene-level circular RNA predic-
tion. Specifically, for each task, the data are randomly shuffled and evenly partitioned into five
non-overlapping subsets. In the five folds of experiments, each subset has a chance to be considered
as the testing data for assessing the model trained by the remaining four subsets, thereby ensuring
an unbiased and fair evaluation. Finally, we evaluate the methods by aggregating the scores over
the 5-fold experiments for each metric.

Implementation Details. Our approach, JEDI, is implemented in Tensorflow [1] and released
in GitHub as shown in Abstract. The AMSGrad optimizer [41] is adopted to optimize the model
parameters with a learning rate 7 = 1073, exponential decay rates 8; = 0.9 and 35 = 0.999, a batch
size 64, and an L2-regularization weight A = 1073. As the hyper-parameters of JEDI, the k-mer
size K and the number of dimensions [ for k-mer embeddings are set to 3 and 128. We set the length
of flanking regions L to 4. The hidden state size of GRUs for both directions in junction encoders
is 128. The size of all attention vectors is set to 16. The number of units in the fully-connected
hidden layer F,(-) for circular RNA prediction is 128. The model parameters are trained until the
convergence for each fold in cross-validation. For the baseline methods, the experiments for circDeep,
PredcircRNA, and nRC are carried out according to the publicly available implementations released
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Table 2: Evaluation of gene-level circular RNA prediction based on the 5-fold cross-validation. We

report the mean and standard deviation for each metric.

Method Accuracy Precision Sensitivity Specificity Fl-score MCC

SVM 0.7248 + 0.0596  0.7859 £ 0.1163  0.7242 £+ 0.1707  0.7256 + 0.2859  0.7324 + 0.0403  0.4833 £ 0.0898
RF 0.7255 + 0.0088  0.6985 + 0.0056  0.8416 4+ 0.0159  0.5964 + 0.0089  0.7634 + 0.0089  0.4542 £+ 0.0193
Att-CNN 0.7387 + 0.0078  0.7098 + 0.0157  0.8534 + 0.0263 0.6113 + 0.0403  0.7746 + 0.0051  0.4824 + 0.0136
Att-RNN 0.7486 + 0.0158  0.7275 £ 0.0256  0.8580 £ 0.0415 0.6112 4+ 0.0721  0.7869 4+ 0.0246  0.4914 + 0.0217
nRC 0.7293 + 0.0131  0.7440 £ 0.0216  0.7428 £ 0.0465 0.7143 4+ 0.0474  0.7424 4+ 0.0178  0.4587 + 0.0262
PredcircRNA 0.6250 + 0.0125  0.6656 + 0.0206  0.5795 £ 0.0090 0.6754 4+ 0.0355 0.6193 4+ 0.0047  0.2558 + 0.0280
circDeep 0.8493 + 0.0042  0.8888 £ 0.0146  0.8161 £+ 0.0090  0.8861 + 0.0177  0.8507 £ 0.0027  0.7018 £ 0.0104
DeepCirCode  0.8726 4+ 0.0134  0.8696 + 0.0242  0.8934 + 0.0427  0.8496 + 0.0372  0.8805 + 0.0152  0.7463 £ 0.0257
JEDI 0.9646 + 0.0014 0.9703 £+ 0.0049 0.9622 + 0.0056 0.9673 + 0.0057 0.9662 + 0.0014 0.9291 + 0.0027

by the authors of original papers. SVM and RF are implemented in Python with the scikit-learn
library [38]. As for deep learning approaches, DeepCirCode, Attentive-CNN, and Attentive-RNN are
implemented in Tensorflow, which is the same as our proposed JEDI. For all methods, we conduct
parameter fine-tuning for fair comparisons. All of the experiments are also equitably conducted
on a computational server with one NVIDIA Tesla V100 GPU and one 20-core Intel Xeon CPU
E5-2698 v4 @ 2.20GHz.

4.3 Isoform-level Circular RNA Prediction

Table 1 shows the performance of all methods for isoform-level circular RNA prediction. Among the
baseline methods, circDeep as the state-of-the-art approach and DeepCirCode considering junctions
perform the best. It is because circDeep explicitly accounts for the reverse complimentary sequence
matches in flanking regions of the junctions, and DeepCirCode models the flanking regions with deep
learning. Consistent with the previous study [6], PredcircRNA performs worse than circDeep. With
compositional k-mer based features designed for backsplicing prediction, SVM and RF surprisingly
outperform PredicrcRNA by 12.27% and 15.84% in accuracy. It not only shows that the k-mers
are universally beneficial across different tasks but also emphasizes the rationality of using k-mers
for junction encoders in JEDI. As an IncRNC classification method, nRC also shows its potential
for circRNA prediction with a 13.18% improvement over PredcircRNA in accuracy. Although Att-
CNN and Att-RNN utilize the attention mechanism, they can only model the whole sequences and
present limited performance without any knowledge of junctions. As our proposed approach, JEDI
significantly outperforms all of the baseline methods across all evaluation metrics. Particularly, JEDI
achieves 9.89% and 7.60% improvements over DeepCirCode in accuracy and F1-score, respectively.
The experimental results have demonstrated the effectiveness of junction encoders and the cross-
attention layer that models deep interaction among splice sites.

4.4 Gene-level Circular RNA Prediction

We further evaluate all methods on gene-level circular RNA prediction. Note that this task is more
difficult than the isoform-level prediction because each junction can be a backsplice site. Since a full
gene sequence can encode for multiple isoforms, there can be multiple site pairs forming backsplices
for different isoforms. Consequently, models cannot learn from absolute positions for circRNA pre-
diction. As shown in Table 2, all methods deliver worse performance than the results in isoform-level
circRNA prediction. Notably, the evaluation metrics have demonstrated a similar trend as shown
in Table 1. DeepCirCode and circDeep are still the best baseline methods, showing the robustness
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Table 3: Independent study of isoform-level circular RNA prediction for mouse circRNAs based on
the models trained on human circRNAs.

Method Accuracy Precision Sensitivity Specificity F1-score MCC

SVM 0.7332 0.7376 0.8311 0.6011 0.7816 0.4472
RF 0.7223 0.7320 0.8147 0.5975 0.7711 0.4244
Att-CNN 0.7521 0.7675 0.8154 0.6667 0.7907 0.4887
Att-RNN 0.6996 0.6971 0.8436 0.5053 0.7634 0.3748
nRC 0.7008 0.7406 0.7372 0.6516 0.7389 0.3885
circDeep 0.7702 0.8046 0.7441 0.7993 0.7731 0.5428
DeepCirCode 0.8468 0.8600 0.8758 0.8076 0.8678 0.6858
JEDI 0.8868 0.8739 0.9382 0.8174 0.9049 0.7684

of exploiting the knowledge about splice junctions. SVM, RF, and nRC still outperform Predi-
circRNA by at least 13.18% in accuracy. Att-CNN and Att-RNN using the attention mechanism
still fail to obtain extraordinary performance because they are unaware of junction information,
which is essential for backsplicing events. In this more difficult task, JEDI consistently surpasses
all of the baseline methods across all evaluation metrics. For instance, JEDI beats DeepCirCode by
10.54% and 9.73% in accuracy and Fl-score, respectively. The experimental results further reveal
that our proposed JEDI is capable of tackling different scenarios of circular RNA prediction with
consistently satisfactory predictions.

4.5 Independent Study on Mouse circRNAs

To demonstrate the robustness of JEDI, we conduct an independent study on the dataset of mouse
circRNAs. Previous studies have shown that circRNAs are evolutionarily conserved [4, 27], and
thus we evaluate the potential of predicting the circRNAs across different species. More precisely,
we train each method using the human dataset on isoform-level, thereby predicting the circuRNAs
on the mouse dataset. Note that some of the required features for PredcircRNA are missing on
the mouse datasets. In addition to this, PredictcRNA perform the worst in other experiments. For
these reasons, we exclude PredcircRNA from this study. Table 3 presents the experimental results
of the independent study. Compared to the experiments conducted on the same species as shown in
Table 1, most of the deep learning methods have slightly lower performance because they are specif-
ically optimized for human data; SVM and RF have similar performance in the independent study
probably because k-mer features are simpler and more general to different species. Interestingly,
the accuracy of circDeep significantly drops in the study. It is likely due to the fact that circDeep
heavily pre-trains the sequence modeling on human data with the serious over-fitting phenomenon.
As a result, our proposed JEDI still outperforms all of the baseline methods. It demonstrates that
JEDI is robust across the datasets of different species.

4.6 Zero-shot Backsplicing Discovery

As mentioned in Section 3.7, the interpretability of the attention mechanisms and the cross-attention
layer enables JEDI to achieve zero-shot backsplicing discovery. To evaluate the performance of zero-
shot backsplicing, we compute the probabilistic score P(d;, a;) using the attention weights ’y;-l and

;{i, thereby indicating the likelihood of forming a backsplice for each pair of a candidate donor d;
and a candidate acceptor a;. Hence, we can simply evaluate the probabilistic scores with the receiver
operating characteristic (ROC) curve and the area under the ROC curve (AUC). Note that here we
still apply 5-fold cross-validation for experiments based on the gene-level human circRNA dataset.

Since none of the existing methods can address the task of zero-shot backsplicing prediction, we
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Fig.3: The ROC curves for zero-shot backsplicing discovery based on the 5-fold cross-validation
and JEDI trained for gene-level circular RNA prediction.

compare with random guessing, which is equivalent to the chance line in ROCs with an AUC score
of 0.5. Figure 3 depicts the ROC curves with AUC scores over five folds of experiments. The results
show that the backspliced site pairs discovered by JEDI are effective with an average AUC score of
0.7992. In addition, JEDI is also robust in this task with a small standard deviation of AUC scores.

4.7 Analysis and Discussions

In this section, we first discuss the impacts of hyper-parameters for JEDI and then conduct the
run-time analysis for all methods to demonstrate verify the model efficiency of JEDI.

Length of Flanking Regions L. The flanking region length L for junction encoders plays an
important role in JEDI to represent splice sites. Figure 4a illustrates the circular RNA prediction
performance of JEDI over different flanking region lengths. For all evaluation metrics, the perfor-
mance slightly improves when L increases to 4. However, the performance significantly drops when
L > 32. It shows that nucleotides nearer to junctions are more important than other ones for predict-
ing backsplicing. This result is also consistent with previous studies on RNA splicing [36]. Moreover,
circRNAs tend to contain fewer nucleotides than other transcripts from the same gene [26], so ex-
cessive and redundant information could only lead to noises and lower the prediction performance.

Size of k-mers K. The derivation of k-mers is crucial for JEDI because JEDI treats k-mers as
the fundamental inputs over gene sequences. Figure 4b shows how the size of k-mers affects the
prediction performance. JEDI performs the best with 2-mers and 3-mers when the performance
gets worse with longer or shorter k-mers. It could be because a small k-mer size makes k-mers
less significant for representations. In addition, the embedding space of long k-mers could be too
enormous for JEDI to learn with limited training data. It is also worthwhile to mention that 1-mers
lead to much higher standard deviations because of their low significance induces high instability
and sensitive embeddings during the learning process. This finding is also consistent with previous
studies [42].

Run-time Analysis. To verify the efficiency of JEDI, we conduct the run-time analysis for all
methods in our experiments based on the task of isoform-level circular RNA prediction. Note that
we only consider the time in training and testing. The run-time of feature extraction and disk
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Fig. 4: The isoform-level circular RNA prediction performance of JEDI with different flanking region
lengths L and k-mer sizes K based on the 5-fold cross validation. We report the mean for each
metric and apply error bars to indicate standard deviations.

I/O are ignored because the features can be pre-processed. Disk I/O can be affected by many
factors that are irrelevant to methods, such as I/O scheduling in operating systems. As shown in
Table 4, JEDI is efficient and averagely needs only less than three minutes because it only focuses
on junctions and flanking regions. Similarly, DeepCirCode, which is also a junction based deep
learning method, has comparable execution time to JEDI. In contrast, Att-CNN and Att-RNN are
relatively inefficient because they scan the whole sequences in every training batch, where Att-
RNN with non-parallelizable recurrent units is slower. Although nRC reads the whole sequences,
it runs faster than some attention-based methods because of its simpler model structure. SVM,
RF, and PredcircRNA are the most efficient because they apply straightforward statistical machine
learning frameworks for training. As a side note, the feature extraction of PredcircRNA is extremely
expensive in execution time and averagely costs more than 28 hours to extract multi-facet features
in our experiments. circDeep is the most inefficient in our experiments because it consists of many
time-consuming components, such as embedding and LSTM pre-training.

5 Conclusions

In this paper, we propose a novel end-to-end deep learning approach for circular RNA prediction by
learning to appropriately model splice sites with flanking regions around junctions and studying the
deep relationships among these sites. The effective attentive junction encoders are first presented
to represent each splice site when the innovative cross-attention layer is proposed to learn deep

Table 4: Run-time analysis on isoform-level circular RNA prediction in seconds (s), minutes (m),
and hours (h), based on the 5-fold cross-validation. We report the mean of the training time (over
five folds).

Method Time Method Time Method  Time
SVM 28.76s| Att-CNN  13.35m| circDeep >24h
RF 21.03s| Att-RNN 51.53m|DeepCirCode 3.80m
nRC  4.07m|PredcircRNA 43.66s JEDI 2.75m
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interaction among the sites. Moreover, JEDI is capable of discovering backspliced site pairs without
training on annotated site pairs. The experimental results demonstrate that JEDI is effective and
robust in circular RNA prediction across different data levels and the datasets of different species.
The backspliced site pairs discovered by JEDI are also promising to form circular RNAs through
backsplicing. The reasons and insights can be concluded as follows: (1) JEDI only models valuable
and essential flanking regions around the junctions of splice sites, thereby discarding irrelevant and
redundant information for circular RNA prediction. (2) the properties of splice sites and essential
information for forming circular RNAs can be well-preserved by junction encoders; (3) the attention
mechanisms and the cross-attention layer provide intuitive and interpretable hints to implicitly
model backsplicing as demonstrated in the experiments.
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