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A Core lemma 20

S1 Overview of this document1

This document provides details for the theory presented at a high level in the main text, as2

well as details of the methods used for data analysis. In Section S2, we begin by describing our3

model of movement generation, including our model of M1 dynamics and that of the two-link4

arm. In Section S3, we present our formalization of optimal preparatory control and how it5

relates to the “optimal subspace hypothesis” of Shenoy et al. (2013). In Section S4, we then6

apply optimal feedback control theory to this problem, and present the steps taken to build a7

circuit implementation taking into account relevant neural constraints. In Section S5, we give8

an in-depth description of the methods used for analyzing the monkey data.9

The parameters used in our simulations are all listed in Table S1.10

S2 A model for movement generation by cortical dynamics11

S2.1 Network dynamics12

We model M1 as a network with two separate populations of NE = 160 excitatory (E) neurons13

and NI = 40 inhibitory (I) neurons, operating in the inhibition-stabilized regime (Tsodyks14

et al., 1997; Ozeki et al., 2009; Hennequin et al., 2014). We constructed its synaptic architecture15

exactly as we have shown previously in Hennequin et al. (2014). We describe the dynamics of16

these N = NE + NI neurons by a standard nonlinear rate equation. Specifically, the vector17

x(t) =
(
xE(t)T ,xI(t)

T
)T

of internal neuronal “activations” obeys:18

τ
dx

dt
= −x(t) + Wφ [x(t)] + h + h(t) + u(t) (S1)

where τ is the single-neuron time constant, W is the synaptic connectivity matrix, and φ(x) =19

max(x, 0) is a static, rectified-linear nonlinearity – applied elementwise to x – that converts20

internal activation into momentary firing rates. The input consist of three terms: an input21

h = xsp −Wφ [xsp] held constant throughout all phases of the task to instate a heterogeneous22

set of spontaneous firing rates xsp (elements drawn i.i.d. from N (20, 9)); a transient, movement-23

condition-independent and spatially uniform α-shaped input bump24

h(t) = (1, . . . , 1)T ×

{
if t > tmove : A

[
exp

(
− t−tmove

τdecay

)
− exp

(
− t−tmove

τrise

)]
otherwise: 0

(S2)

kicking in at movement onset (Kaufman et al., 2016); and a preparatory control input u(t)25

(further specified below) whose role is to drive the circuit into a preparatory state appropriate26

for each movement.27

We assume that the uncontrolled dynamics (u = 0) of this network directly drives movement.28

A two-dimensional linear readout of the excitatory neurons,29

m(t) = Cφ [xE(t)] (S3)

with C ∈ R2×NE , is used as a set of torques to actuate the two-link arm model described in30

the next section. Although our simulations show that the muscle readouts m(t) are very small31

during preparation, they do cause drift in the hand prior to movement onset (and therefore32

wrong movements afterwards) as their are effectively integrated twice by the dynamics of the33

arm (see below). For this reason, we artificially set m to zero during movement preparation.34
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S2.2 Arm model35

To simulate reaching movements, we used the planar two-link arm model previously described36

in Li and Todorov (2004), with parameters listed in Table S1. The upper arm and the lower arm37

are connected at the elbow (Figure S1). The two links have lengths L1 and L2, masses M1 and38

M2, and moments of inertia I1 and I2 respectively. The lower arm’s center of mass is located a39

distance D2 from the elbow. By considering the geometry of the upper and lower limb, we can40

write down the position of the hand as a vector y(t) given by41

y =

(
L1 cos θ1 + L2 cos(θ1 + θ2)
L1 sin θ1 + L2 sin(θ1 + θ2)

)
(S4)

where the angles θ1 and θ2 are defined in Figure S1A. The joint angles θ = (θ1; θ2)
T evolve42

dynamically according to the differential equation43

m(t) =M(θ)θ̈ + X (θ, θ̇) + Bθ̇, (S5)

where m(t) is the momentary torque vector (the output of the neural network, c.f. Equation S3),44

M is the matrix of inertia, X accounts for the centripetal and Coriolis forces, and B is a damping45

matrix representing joint friction. These parameters are given by46

M(θ) =

(
a1 + 2a2 cos θ2 a3 + a2 cos θ2
a3 + a2 cos θ2 a3

)
(S6)

47

X (θ, θ̇) = a2 sin θ2

(
−θ̇2(2θ̇1 + θ̇2)

θ̇1
2

)
B =

(
0.05 0.025
0.025 0.05

)
(S7)

with a1 = I1 + I2 +M2L
2
1, a2 = M2L1D2, and a3 = I2.48

S2.3 Target hand trajectories49

We generated a set of eight target hand trajectories, namely straight reaches of size d = 20 cm50

going from the origin into eight different directions, with a common bell-shaped scalar speed51

profile52

v(t) = v0

(
t

τreach

)2

exp

[
−1

2

(
t

τreach

)2
]
, (S8)

where v0 is chosen such that the hand reaches the target. Given these target hand trajecto-53

ries, we solved for the required timecourse of the torque vector m(t) through optimization, by54

backpropagating through the equations of motion of the arm to minimize the squared difference55

between actual and desired hand trajectories. We forced the initial torques at t = 0 to be zero,56

and also included a roughness penalty in the form of average squared torque gradient.57

Similarly, we then backpropagated through the equations of the recurrent neural network (Equa-58

tions S1 and S3) to optimize a set of eight movement-specific initial conditions {x?k}, k = 1, . . . , 8,59

as well as the readout matrix C, so as to achieve the desired torques in the output. This was60

done by minimizing the squared difference between actual and desired torque trajectories, with61

a penalty on C’s squared Frobenius norm.62

We parameterized the readout matrix C in such a way that its nullspace automatically contains63

both the spontaneous activity vector xsp and the movement-specific initial conditions {x?k},64

k = 1, . . . , 8. This is to ensure that (i) there is no muscle output during spontaneous activity65

and (ii) the network does not unduly generate muscle output at the end of preparation, before66
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Figure S1: (A) Schematics of the arm model (see supplementary text). (B) Reaches produced
by the model, along with associated torques at the two joints, and x-y velocities of the hand (solid
lines). Scale bar: 200 ms. Dashed lines denote target trajectories. (C) Decay of the prospective
motor cost during movement preparation, under optimal feedback control (solid lines, same color
code for the movements as in B), and under a naive policy with temporally constant input that
achieves a movement-specific fixed point (x?k) with zero motor error, asymptotically (dashed
lines).

movement. More specifically, prior to movement preparation and long enough after movement67

execution, the cortical state is in spontaneous activity xsp. By ensuring that Cxsp = 0, we68

ensure that our model network does not elicit movement “spontaneously”. Similarly, control69

inputs drive the cortical state x towards x?k, which it will eventually reach late in the preparation70

epoch. Therefore, if x?k is not in the null-space of C, it would be difficult—if not impossible—for71

muscle readout to remain small or event silent during preparation.72

S3 Formalization of anticipatory motor control73

Here, we address the problem of controlling the state of the cortical network in anticipation74

of the movement phase, which is to occur in open-loop following the go cue or trigger. That75

is to say, we aim at driving the network into preparatory states from which the uncontrolled76

dynamics would generate the desired muscle output.77

We formalise the notion of anticipatory control by asking: given an intended movement (indexed78

by k), and the current (preparatory) state x(t) of the network, how accurate would the movement79
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be if it were to begin now? We measure this prospective motor error as the squared difference80

Ck(x) between the subsequent timecourse of the target network output torques m?
k(t
′) (t′ > t),81

and that of the torques m(t′) that the network would generate (Equations S1 and S3) if left82

uncontrolled from time t onwards, starting from initial condition x(t):83

Ck(x) ,
∫ ∞
t
‖m(t′)−m?

k(t
′)‖2dt′ with u(t′ ≥ t) = 0 (S9)

(we will often drop the explicit reference to the movement index k to remove clutter, as we did84

in the main text). Thus, any preparatory state x is associated with a prospective motor error85

C(x).86

The prospective error C(x) changes dynamically during movement preparation, as x(t) evolves87

under the action of control inputs. The aim of the control inputs is to rapidly decrease this88

prospective error, until it drops below an acceptably small threshold, or until movement initiation89

is forced. We formalize this as the minimization of the following control cost:90

J [u(t)] ,

〈∫ ∞
0

(C (x(t)) + λR (u(t))) dt

〉
p(x(t=0))

(S10)

where R(u) is a regularizer described below, and the average is over some distribution of states91

we expect the network to be found in at the time the controlled preparatory phase begins (we92

leave this unspecified for now as it turns out not to influence the optimal control strategy –93

see below). Thus, we want control inputs to rapidly steer the cortical network into states of94

low C(x) from which the movement can be readily executed. The infinite-horizon summation95

expresses uncertainty about how long movement preparation will last, and indeed encourages96

the network to be “ready” as soon as possible.97

Mathematically, J [·] is a functional of the spatio-temporal pattern of control input u(t) —98

indeed, x(t) depends on u(t) through Equation S1. The regularizer R(u), or “control effort”,99

is specified further below. Without regularization, the problem is ill-posed, as arbitrarily large100

control inputs could be used to instantaneously force the network into the right preparatory101

state in theory, leading to physically infeasible control solutions in practice. Also note that102

Equation S10 is an “infinite-horizon” cost, i.e. the integral runs from the beginning of movement103

preparation when control inputs kick in, until infinity. This does not mean, however, that the104

preparation phase must be infinitely long. In fact, good control inputs should (and will!) bring105

the integrand close to zero very fast, such that the movement is ready to begin after only a short106

preparatory phase (see e.g. Figure 2A in the main text).107

In order to derive the optimal control law, we further assume that the dynamics of the network108

remain approximately linear during both movement preparation and execution. This holds109

approximately true as long as only few neurons become silent in either phase (the saturation110

at zero firing rate is the only source of nonlinearity in our model, c.f. φ(·) in Equation S1). In111

this case, the prospective motor error C(x) of Equation S9 affords a simpler, interpretable form,112

which we derive now. In the linear regime, Equation S1 becomes113

τ
dx

dt
= Ax(t) + h + h(t) + u(t) (S11)

with an effective state transition matrix A , W − I. The network output at time t, starting114

from state x at time t = 0 and with no control input thereafter, has an analytical form given by115

116

m(t) = C
[
e(t/τ)A(x− xsp) + q(t)

]
(S12)

and similarly for m?(t) with x replaced by x?. The final term q(t) is a contribution from the117

external input: it does not depend on the initial condition, and is therefore the same in both118
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cases. Thus, the prospective motor error (Equation S9) attached to preparatory state x is given119

by120

C(x) =

∫ ∞
0
‖Ce(t/τ)A(x− x?)‖2dt = (x− x?)T

[∫ ∞
0

(
e(t/τ)A

T
CTCe(t/τ)A

)
dt

]
︸ ︷︷ ︸

Q

(x− x?).

(S13)
The matrix integral on the r.h.s. of Equation S13 is known as the “observability Gramian” Q121

of the pair (A,C) (Skogestad and Postlethwaite, 2007; Kao and Hennequin, 2019). It is found122

algebraically as the solution of the Lyapunov equation (Lemma 1 in Appendix A)123

ATQ + QA + τCTC = 0 (S14)

Thus, under linearity assumptions, the prospective motor error is a quadratic function of the124

difference between the momentary preparatory state and the optimal initial state x? known to125

elicit the right muscle outputs in open loop. The Gramian Q, a symmetric, positive-definite126

matrix, determines how preparatory deviations away from x? give rise to subsequent motor127

errors. Deviations along the few eigenmodes of Q associated with large eigenvalues will lead to128

large errors in muscle outputs. The optimal control input u(t) will need to work hard to minimize129

this type of deviations – luckily, there are only few of them (Figure S3, top left; see also Figure 4 in130

the main text). In contrast, errors occurring along eigenmodes of Q with small eigenvalues – the131

vast majority – have almost no motor consequences. This large bottom subspace of Q provides a132

safe buffer in which preparatory activity is allowed to fluctuate without sacrificing control quality.133

It comprises both the “readout-null” and “dynamic-null” directions described in the main text134

(Figure 1D). Geometrically, we can therefore think of the optimal preparatory subspace as a135

high-dimensional ellipsoid centered on x?, and whose small and (potentially inifinitely) large axes136

are given by the top and bottom eigenvectors of Q, respectively (small axes, steep directions,137

large eigenvalues; long axes, flat directions, small eigenvalues).138

To quantify these geometric insights, we define a measure of motor potency for a subspace S139

spanned by orthonormal column vectors (d1,d2, · · · ,dK) as140

motor potency(S) =
1

K

K∑
i=1

dTi Qdi. (S15)

This quantifies the amount of prospective motor error induced on average when the state of the141

network deviates from x? in S. This is what we showed in Figure 4.142

Finally, we note that the optimal control input u(t) must keep the infinite-horizon integral in143

Equation S10 finite. This requires x(t) to reach a fixed point equal to x?, which in turn requires144

the control input to eventually settle to a steady-state value equal to145

u? = −Ax? − h (S16)

Thus, defining δu(t) , u(t) − u? and δx(t) , x(t) − x?, a relevant regularizer for our control146

problem is147

R (u(t)) , ‖δu(t)‖2 (S17)

and our control cost functional becomes148

J [u(t)] =

〈∫ ∞
0

[
δx(t)TQδx(t) + λ‖δu(t)‖2

]
dt

〉
p(x(t=0))

. (S18)

In our simulations, we perform a simple scalar normalization of Q so that trace(Q) = N .149

This makes the first term of the cost more easily comparable to the energy penalty λ‖δu‖2,150

which also scales with N . In the next section, we show that the quadratic formulation of151

C(x) in Equation S17 leads to analytically tractable optimization of our cost functional J in152

Equation S10. We will continue to assume linear network dynamics in order to derive optimal153

control laws, but we will always implement these solutions in the fully nonlinear circuit.154
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Figure S2: Four steps to arrive at a biologically plausible implementation of optimal anticipatory
motor control. (A) The classical LQR solution prescribes instantaneous state feedback, with
reentrant control inputs of the form of δu(t) = Kδx(t) and a constant external input u?.
Section S4.2 shows how to obtain the optimal feedback matrix K in this case. (B) It is possible to
constrain feedback to be of the form δu(t) = K [INE

0Ni ] δx(t) = KδxE(t) instead. Section S4.5
shows how to obtain the optimal feedback matrix K in this case. (C) For flexibility, we propose
that feedback be relayed by the motor thalamus, which is under the gating control of the basal
ganglia. In Section S4.6, we show that the optimal feedback gain K obtained in (B) can be
decomposed into sign-constrained matrices implementing E connections from M1 to thalamus
(Kyx), from thalamus to M1-layer 4 (Kzy), and Dale-structured E/I connections from layer
4 back into the main recurrent M1 circuit (Kxz). (D) Finally, first-order dynamics can be
introduced in our model thalamus and M1-layer 4 neurons. We show in Section S4.7 how the
lag introduced by such dynamics can be taken into account, to obtain a set of connections that
achieve optimal anticipatory control of movement under these biological constraints.

S4 Optimal control solutions and associated circuits155

S4.1 Naive solution156

A straightforward solution exists for ensuring that, after enough preparation time, x(t) converges157

exponentially to x? – thus eventually leading to the correct movement. This “naive” solution158

consists in setting u(t) to the constant vector u? in Equation S16 (thus δu(t) = 0 throughout159

preparation). Note that for the full nonlinear model, u? = x? −Wφ [x?] − h. This constant160

input is provided during movement preparation and removed at the desired time of movement161

onset.162

S4.2 Classical LQR solution163

When no specific constraints on u(t) are imposed, the minimization of Equation S18 is given by164

the celebrated linear quadratic regulator (LQR). Specifically, the optimal control input uopt(t) =165

u? + δuopt(t) takes the form of (instantaneous) linear state feedback (Figure S2A):166

δuopt(t) = K δx(t) with K = −λ−1P (S19)

where P is a symmetric, positive definite matrix, obtained as the solution to the following Riccati167

equation:168

ATP + PA− λ−1PP + Q = 0 (S20)

(we will recover this optimal feedback law in Section S4.5 as part of a more general mathematical169

derivation; for now, we refer to standard texts, e.g. Skogestad and Postlethwaite, 2007). Thus,170
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to achieve optimal anticipatory control of fast movements, the best strategy for the preparatory171

phase is to feed back into the circuit a linearly weighted version of the momentary error signal172

δx(t). The optimal feedback matrix K turns out to not depend on the choice of distribution173

p(x(t = 0)). For a linear model, this also implies that K does not depend on the specific174

movement to be performed, i.e. on the specific state x? to be approached during preparation.175

Only the steady-state control input u? (in Equation S16) is movement-specific.176

S4.3 Control geometry of the ISN model of M1 dynamics177

While the optimal LQR strategy described above is difficult to map directly onto a realistic178

circuit architecture (see below), it can be used to expose the challenges associated with con-179

trolling the inhibition-stabilized model of M1 that we use here. Indeed, network activity may180

be more easily controlled (or “steered”) along some directions than along others, and having181

analytical access to the optimal control inputs (Equations S19 and S20) allows us to quantify182

this “control geometry”. Specifically, we quantify control performance as E =
∫∞
0 (δxTQδx)dt,183

i.e. our original cost functional J in Equation S10 without the input energy penalty. We can184

then ask: what is the smallest such cost Emin that can be achieved with a fixed input energy185

budget
∫∞
0 ‖δu‖

2dt? We know that Emin is achieved by the LQR solution δu = λ−1Pλ (we use186

the ·λ subscript to make the dependence of P on λ explicit). It can be shown that the input187

energy induced by this optimal feedback law is a decreasing function of λ. Thus, all we need188

to do is find the λ that gives us the desired value of
∫∞
0 ‖δu‖

2dt, and evaluate Emin for this189

particular λ. Importantly, the result will depend on the state of the cortical network at the190

beginning of the controlled preparatory phase, relative to the target x?.191

A simple derivation based on Lemma 1 (Appendix A) shows that starting the control phase from192

some initial condition x? + δx0 yields a total control cost equal to J = δxT0 Pλδx0. Moreover,193

the corresponding energy cost is given by δxT0 Yδx0 where Y is the solution to194

AT
clY + YAcl + λ−2PλPλ = 0, (S21)

and195

Acl , A + K = A− λ−1Pλ (S22)

is the effective state matrix governing the dynamics of the closed control loop. For a given196

δx0, we use a simple root-finding method (bisection with initial interval bracketting) to find197

the λ that achieves the set, desired energy cost (our fixed “energy budget”). For this λ, we198

then calculate the associated control cost E = δxT0 (P − λY) δx0. This is plotted in Figure S3,199

for initial deviations of x from x? chosen to be the top 20 eigenvectors of Q, ranked by their200

respective eigenvalues νi (Equation S13).201

Figure S3 (right) shows that there is “no free lunch”: preparatory deviations from x? that induce202

the worst motor errors (the top eigenvectors of Q, with the largest eigenvalues νi) are also those203

that are the most difficult to control, i.e. for which the minimal control cost Emin will be largest204

for a fixed input energy budget.205

From the point of view of dynamical systems, this result is rather intuitive. The optimal initial206

conditions {x?k} (found via optimization to achieve the required torques; Section S2) are posi-207

tioned in state space where the flow induced by the recurrent connectivity is strong – strong208

enough to elicit rich transients that can be decoded into torques patterns that grow transiently209

before decaying. To steer M1 towards (and maintain it at) these states, the input δu(t) (and210

the steady input u?) must work against the strong local flow of the recurrent dynamics. This211

requires large input energy. From a physiological standpoint, this is also intuitive. The optimal212

initial states {x?k} are shown to be states in which the E/I balance is momentarily broken (Hen-213

8



0

40

80

10−4

10−2

100

1 10 20

10−4

10−2

100

0.01 0.1 1 10

ν
i

�xed energy budget
∫
‖u‖2dt

E m
in

eigenvector vi of Q

E m
in

νi

Figure S3: Left: eigenvalues νi (top) and minimum control cost Emin achievable given a fixed
energy budget (see text), for the top 20 eigenvectors of the observability Gramian Q defined in
Equation S13. Note that νi is also the motor error C experienced if the cortical network remains
displaced by vi away from the optimal preparatory state x? when movement is initiated. Right:
same νi and Emin as shown on the left, plotted against each other.

nequin et al., 2014). Much input energy must be spent to sustain an E/I imbalance in a network214

whose connectivity strives to maintain balance.215

S4.4 Optimality under neural constraints216

The linear quadratic regulator presented in Section S4.2 brings the fundamental insight that217

control can (and in fact, should) be achieved via a feedback loop (Figure S2A). Such a loop218

could technically be embedded directly as a modification of the recurrent connectivity within219

M1, as all that matters for the control cost is the effective closed-loop state matrix A + K.220

However, this would make it very difficult to switch the loop ON when movement preparation221

must begin, and OFF again when the movement is triggered. A more flexibly strategy would222

be to have the loop pass through another brain area, and gain-modulate this area (e.g. via223

inhibitory drive) to close or open the loop when appropriate.224

A natural candidate structure for mediating such cortico-cortical feedback is the motor thalamus,225

which has been shown to be causally involved in movement preparation (Guo et al., 2017).226

Importantly, basic anatomy and physiology pose constraints on the type of connectivity and227

dynamics around the control loop, such that we will have to adapt the classical LQR theory to228

derive plausible circuit mechanisms. In particular, the thalamus is not innervated by the local229

inhibitory interneurons of M1, so feedback will have to computed based on the activity of (some230

of) the excitatory cells only, precluding full-state feedback. Moreover, the optimal LQR gain231

matrix K (given by Equations S19 and S20) contains both positive and negative elements with232

no structure; this violates Dale’s law, i.e. that neurons can be either excitatory or inhibitory233

but are never of a mixed type. Finally, the classical LQR solution prescribes instantaneous234

state feedback, whereas thalamic neurons will have to integrate their inputs on finite timescales,235

thereby introducing some “inertia”, or lag, in the feedback loop. In the rest of this section, we236

flesh out these biological constraints in more detail, and show that all of these limitations can237

be addressed mathematically, to eventually yield optimal control via a realistic thalamocortical238

feedback loop (see Figure S2B-D for a graphical overview).239

S4.5 Feedback based on excitatory neurons only240

Here, we incorporate the key biological constraints that feedback from the cortex onto itself via241

the thalamus will have to originate from the excitatory cells only. Thus, instead of δu(t) =242
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Kδx(t), we look for a feedback matrix of the form (Figure S2B)243

K = ZΓ (S23)

where Γ , [INE
0NE×NI

] singles out the activity of the E neurons when computing the control244

input Kδx, and Z is an N × NE matrix of free parameters. To gain generality (which we will245

need later), we also assume that the control input enters the network through a matrix B, i.e.246

the closed-loop state matrix (Equation S22) becomes Acl = A + BZΓ. We now derive algebraic247

conditions of optimality for Z, along with a gradient-based method to find the optimal Z that248

fulfills them.249

First, we use Lemma 1 in Appendix A to rewrite the cost function J in Equation S18 as:250

J (Z) = trace(P) (S24)

where P satisfies251

0 = G(P,Z) , AT
clP + PAcl + Q + λΓTZTZΓ. (S25)

Note that J in Equation S24 is now a function of the feedback matrix K, and therefore of the252

parameter matrix Z. To minimize J w.r.t. Z subject to the constraint in Equation S25, we253

introduce the Lagrangian:254

L(P,Z,S) , trace(P) + trace(G(P,Z) S) (S26)

where S is a symmetric matrix of Lagrange multipliers (the matrix equality in Equation S25 is255

symmetric, thus effectively providing N(N + 1)/2 constraints). After some matrix calculus, we256

obtain the following coupled optimality conditions:257

0 = ∂L/∂P = AclS + SAT
cl + I (S27)

0 = ∂L/∂S = G(P,Z) (S28)

0 = ∂L/∂Z = 2BT (P + λBZΓ) SΓT . (S29)

When the two Lyapunov equations Equations S27 and S28 are satisfied, the second term258

(trace(GS)) in L vanishes, such that ∂L/∂Z of Equation S29 is in fact the gradient of trace(P)259

w.r.t. Z subject to the algebraic constraint of Equation S25. We use this gradient equation,260

together with the L-BFGS optimizer (Byrd et al., 1995) to find the optimal parameter matrix261

Z. We then recover the optimal feedback gain matrix K according to Equation S23. We start262

each optimization by setting Z = KΓT (ΓΓT )−1, where K is the classical LQR solution to the263

same problem, such that ZΓ = K.264

S4.6 Dale’s law265

The previous subsection showed how to obtain a gain matrix K of size N ×NE that implements266

optimal, instantaneous cortico-cortical feedback originating from the excitatory cells. However,267

this optimal matrix typically has a mix of positive and negative elements that are not specifi-268

cally structured. To implement the more realistic feedback architecture shown in Figure S2C,269

implicating the motor thalamus and M1 layer 4 (M1-L4), we seek a decomposition of the form270

K ≈ Kxz︸︷︷︸
(+|−)

Kzy︸︷︷︸
(+)

Kyx︸︷︷︸
(+)

(S30)

where Kyx (M1 to thalamus) is an NE × N matrix of non-negative elements, Kzy (thalamus271

to M1-L4) is an M × NE matrix of non-negative elements, and Kxz (M1-L4 to the recurrent272

M1 network) is an N ×M matrix composed of ME non-negative columns and MI non-positive273
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columns (thus M = ME +MI). Such a sign-structured decomposition will allow optimal control274

to be performed through the more realistic feedback architecture shown in Figure S2C, with275

corresponding dynamics of the form:276

M1 τ
dx

dt
= −x(t) + Wφ [x(t)] + h + h(t) + ũ? + Kxzφ[z(t)] (S31)

M1-layer 4 z(t) = Kzyφ[y(t)]

Thal. y(t) = Kyxφ[x(t)]

where277

ũ? = x? − (W + K)φ(x?)− h (S32)

is a condition-dependent steady input given to the network during movement preparation so as278

to achieve the desired fixed point x?.279

To achieve this decomposition, we note that without loss of generality we can choose Kyx =280

[R 0NE×NI
] – where R is a random, element-wise positive NE × NE matrix – and apply the281

algorithm developed in Section S4.5 now with Γ = Kyx. This will return an optimal N × NE282

matrix Z describing feedback from thalamus back to M1, which – as long as R is invertible –283

will achieve the same minimum cost as if R had been set to INE
(as in Section S4.5). Here, we284

simply draw each element of R from Bernoulli(p), i.e. random sparse projections (the magnitude285

of R does not matter at this stage, as only the product ZΓ does; R will be renormalized later286

below). We now need to decompose this optimal feedback matrix as Z = KxzKzy, with the287

same sign constraints as in Equation S30. We approach this via optimization, by minimizing288

the squared error implied by the decomposition, plus an 2-norm regularizer:289

‖Z−KxzKzy‖2F
‖Z‖2F

+ γ
(
‖Kxz‖2F + ‖Kzy‖2F

)
(S33)

We parameterize each element of Kxz and Kzy as ±z2, where z is a free parameter to be290

optimized, and the ± sign enforces the sign structure written in Equation S30. Minimization291

is achieved using BFGS and typically converges in a few tens of iterations. We note that the292

product KxzKzyKyx is invariant to any set of rescalings of the individual matrices as long as293

they cancel out to 1. Thus, after optimization, we re-balance the three matrices such that they294

have identical Frobenius norms. This is mathematically optional, but ensures that firing rates295

in M1, thalamus and M1-L4 have approximately the same dynamic range.296

Importantly, we find that as long as the number of M1-L4 neurons (M) is chosen sufficiently297

large, the decomposition of Z that we obtain is almost exact, which implies that the dynamics298

of Equation S31 still achieves optimal anticipatory control of movement under the architectural299

constraint of Equation S23.300

S4.7 Taking into account integration dynamics in thalamus and M1-layer 4301

The optimal control solution that we arrived at in Equation S31 still relies on instantaneous
feedback from cortex back onto itself. However, neurons in the thalamus and in M1’s input
layer have their own integration dynamics – this will introduce lag around the loop, which
must be taken into account when designing the optimal feedback. We therefore include these
dynamics:

M1 τ
dx

dt
= −x(t) + Wφ [x(t)] + h + h(t) + ũ? + Kxzφ[z(t)] (S34)

M1-layer 4 τz
dz

dt
= −z + Kzyφ[y(t)]

Thal. τy
dy

dt
= −y + Kyxφ[x(t)]
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where the steady input ũ? is again given by Equation S32, and {τy, τz} are the single-neuron time
constants in the thalamus and the cortical input layer. We then seek the optimal connectivity
matrices {Kxz,Kzy,Kyx} to fulfill the same optimal-control principles as before, namely the
minimization of the cost functional in Equation S18. In order to do that, we note that the
dynamics of x (M1 activity) in the linear regime do not change if the system of differential
equations in Equation S34 is simplified as

M1 τ
dx

dt
= (W − I)x(t) + h + h(t) + ũ? + Kz(t) (S35)

M1-layer 4 τz
dz

dt
= −z + y(t)

Thal. τy
dy

dt
= −y + x(t)

where K = KxzKzyKyx summarizes the three connectivity matrices around the loop into one302

effective feedback gain matrix. This formulation allows us to combine the steps developed in303

Sections S4.5 and S4.6 to find the optimal connectivity matrices.304

Specifically, we apply the algorithm of Section S4.5 to an augmented system with state matrix305

A′ ,

 A 0N×NE
0N×NE

(τ/τy)[R 0] −(τ/τy)INE
0NE

0 (τ/τz)INE
−(τ/τz)INE

 , (S36)

input matrix306

B′ ,

 IN
0NE×N
0NE×N

 , (S37)

quadratic cost weighting matrix307

Q′ ,

 Q 0N×NE
0N×NE

0NE×N 0NE×NE
0NE×NE

0NE×N 0NE×NE
0NE×NE

 (S38)

and feedback input parameterized as308

u = Kx with K = ZΓ = Z [0NE×N 0NE×NE
INE

] (S39)

In Equation S36, the matrix R is again a random matrix of sparse positive connections from M1309

to thalamus (cf. Section S4.6 above). The optimal Z (Section S4.5) corresponds to the prod-310

uct KxzKzy, which we can further decompose under sign constraints to recover the individual311

connectivity matrices Kxz and Kzy.312

S4.8 Disinhibitory action of the basal ganglia313

We model the disinhibitory action of the basal ganglia (BG) on thalamic neurons as an on-off314

switch: to trigger movement, BG become active (BG neurons not explicitly modelled here) and315

the thalamic neurons are silenced instantly (i.e. y is set to 0). When this happens, thalamic316

inputs to M1-L4 vanish and M1-L4 neural activity decays to zero on a time-scale τz (see Equa-317

tion S36). As the activity of L4 neurons decays, these neurons continue to exert an influence on318

M1 activity through the connectivity matrix Kzx. This lead to changes in movement-related M1319

dynamics, resulting in small movement errors, which we correct post-hoc by ever-so-slightly re-320

optimizing the desired initial state x? for each movement. From these new desired states, network321

dynamics evolves—with the additional inputs from M1-L4 neurons after movement onset—to322
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produce accurate hand trajectories. Crucially, unlike what we described in Section S2.3, we do323

not re-optimize the readout matrix C here. This is because the observability Gramian Q and324

thus the closed-loop controller K depend on C: changing the readout matrix C at this stage325

would cause the K we found to no longer be optimal with respect to J . However, because the326

closed-loop solution does not depend on the desired fixed points x?, we can re-optimize x? and327

still be guaranteed that the K that we found remains optimal.328

S4.9 Modelling the effect of photoinhibition329

To model photoinhibition in our full circuit (whose dynamics are described by Equation S31),330

we simply add a constant positive input hph to a subset of cortical inhibitory neurons chosen331

randomly (see parameters in Table S1), for a duration Tph = 400 ms. This results in an overall332

decrease in population activity across both excitatory and inhibitory neurons, consistent with333

the well-known paradoxical effects of adding positive inputs to I cells in inhibition-stabilized334

networks (Tsodyks et al., 1997; Ozeki et al., 2009; Sanzeni et al., 2019).335

We closely followed the analyses described in Li et al. (2016) to uncover how activity recovers336

along different state-space directions after perturbation. We focused on two reaches, a 0-degree337

(right) reach and a 180-degree (left) reach. We calculated the coding direction (CD) as the338

difference between the average firing rates of left and right reaches in unperturbed trials in339

a 400 ms time window ending at the end of movement preparation (i.e. 400 ms before the340

control inputs u(t) are removed). Independent of the CD, we identified the persistent mode341

(PM) as the direction that maximally separates average firing rates between perturbed and342

unperturbed trials in the same time window, averaged across the two reach conditions. We343

found that CD and PM are orthogonal to each other even though if we did not constrain them344

to be. We found a third remaining mode (RM), constrained to be orthogonal to CD and PM,345

which captures most of average firing rate activity variance across the two reaches in perturbed346

and unperturbed trials. The three modes (CD, PM and RM) together capture approximately347

98% of the average firing rate variance during that time window. We projected perturbed and348

unperturbed activity onto these three modes and calculated root-mean-square deviation between349

perturbed and unperturbed projections over 300 independent perturbation experiments.350

S4.10 Variability quenching351

We modelled firing rate variability by adding a noisy input term ξ(t) to h(t) in Equation S1,352

where ξ(t) is modelled as an independent Orstein-Uhlenbeck process for each neuron, with a353

time constant τξ = 20 ms and standard deviation σξ = 2 Hz.354

In Figure 6, we considered the effect of artificially increasing the dimensionality of the linear355

readout on the strength of variability quenching. To increase the dimensionality of the readout356

from 2 to 2+L, we constructed an augmented linear readout (CT , C̃T )T , where C̃ has dimensions357

L ×NE. The rows of C̃ are a set of orthogonal vectors that are also orthogonal to the rows of358

C. The norm of the row vectors in C̃ are chosen to be the mean squared singular values of C,359

such that the corresponding outputs would have roughly the same norms.360

To understand the mechanisms underlying variability suppression in the model, we examined361

the eigenvalues of the effective connectivity matrix in closed-loop (preparation) and in open362

loop (spontaneous fluctuations). In closed loop, most eigenvalues are more negative than their363

open-loop counterparts (Figure S4A). Moreover, the eigenvalues that are most shifted to the left364

in closed loop are associated with eigenvectors with high motor potency (compare Figure S4B365

and C). Our previous analysis of a similar type of model in Hennequin et al. (2018) showed that366
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Figure S4: Mechanisms of variability suppression in the model. (A) Eigenvalues of
A = W− I (open loop dynamics of the cortical network, green) and Acl = A + K (LQR closed
loop, black). (B and C) Same as in (A), with each eigenvalue colored by the motor potency
of the corresponding eigenvector/eigenplanes, using the same color scheme as in Figure 4 of the
main text. (D) Motor potency of each principal component of the closed-loop activity covariance
in the stochastic model, as a function of the amount of total variance it captures. (E) Total
closed-loop activity variance along the eigenmodes of Q, plotted as a function of their motor
potencies.

the more negative an eigenvalue, the less variability in the corresponding eigensubspace. Thus,367

variability quenching should be stronger along directions associated with more negative eigen-368

values, and because of the selective shift of “potent” eigenvalues, our model predicts stronger369

variability suppression in directions of high motor potency. Indeed, we found an inverse relation-370

ship between the motor potency of the principal components of the closed-loop fluctuations, and371

the amount of variance they capture (Figure S4D). Similarly, the amount of variance captured372

by the eigenvectors of Q (those used in Figure 4) is inversely related to their motor potency373

(Figure S4E).374

S5 Data analysis and comparison with model375

S5.1 Task and neural recordings376

We analyzed neural recordings of a monkey J performing a delayed reaching task (data courtesy377

of Mark Churchland, Matt Kaufman and Krishna Shenoy). Both the task and dataset have378

been described in detail previously (Churchland et al., 2010b). Briefly, monkey J performed379

center-out reaches on a fronto-parallel screen. At the beginning of each trial, monkey J fixated380

on the centre of the screen for some time, after which a target appeared on the screen. A variable381

delay period (0–1000 ms) ensued, followed by a go cue instructing the monkey to reach towards382

the target. In this paper, we analyzed only eight movement conditions, corresponding to the383

straight reaches that were most similar to the ones we modelled (Figure S5A). Moreover, we384

restricted our analysis to the trials with delay periods longer than 400 ms, though opening up385

to shorter delays did not substantially affect our results.386

Recordings were made in the dorsal premotor and primary motor areas. We preprocessed spike387

trains of 123 neurons, following the same procedure outlined in Churchland et al. (2012). Briefly,388
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Figure S5: Model and monkey data comparison. (A) Top: model (left) and monkey
(right) hand trajectories for eight straight reaches (color-coded). Black bars denote 10 cm.
Monkey hand trajectories are averaged across trials with delays longer than 400 ms. Bottom:
Overlap between the preparatory end-states for model (left) and monkey (right) activity. Reach
numbers correspond to those indicated near the model hand trajectories (top left). (B) Neural
activity in the model (left) and monkey (right) around movement onset, projected into the top
jPC plane (see text). (C) Timecourse of the 1st, 2nd, 5th and 8th canonical variables in the
model (top) and monkey (bottom), for each condition (color-coded). Black scale bars indicate
200 ms from movement onset (note that “movement onset” in the model is re-defined to account
for the latency between the go cue and actual movement onset in the monkey; see text). (D)
Full spectrum of canonical correlations.

we computed the average firing rates for each movement condition (8 straight reaches), further389

smoothed using a 20 ms Gaussian filter. Firing rates were computed separately for the delay390

and movement periods, time-locked to target and movement onset respectively; this is necessary391

because of variable delay periods and reaction times.392

S5.2 Overlap between preparatory end-states393

We calculated the pairwise overlaps (normalized dot-products) between the preparatory end-394

states in both model and monkey data for all reaches. Preparatory end states are defined as395

the activity states reached at the end of movement preparation (monkey activity aligned to go396

cue). In both model and monkey data, preparatory end-states are similar (Figure S5A, bottom)397

for reaches with similar hand trajectories (hand trajectories Figure S5A, top), but negatively398

related for more distant movements.399

S5.3 jPCA400

We used the method described in Churchland et al. (2012) to identify state-space directions in401

which activity trajectories rotate most strongly. Briefly, we used numerical optimization to fit402

skew-symmetric linear dynamical systems of the form ẋ = Sx that best captured model and403
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monkey data, in a 400 ms window starting 200 ms before movement onset for the monkey data,404

and starting at the go cue (i.e. the moment the thalamic neurons are silenced) in the model. We405

projected model and monkey activity trajectories in this window onto a plane spanned by the406

top two eigenvectors of S (Figure S5B).407

S5.4 Alignment index408

To calculate the alignment index, we closely followed the methods described in Elsayed et al.409

(2016). The alignment index A is defined as the percentage of across-condition variance during410

movement captured by the top K principal components (PCs) of the delay-period activity:411

A = Tr

(
DT

prepCmoveDprep∑K
i=1 σ

2
i,prep

)
. (S40)

where the K columns of Dprep are the top K principal components of prep. activity (“prep-412

PCs”), Cmove is the covariance matrix of move. activity, and σ2i,prep is the prep. activity variance413

captured by the ith prep-PC. We choose K such that Dprep captures 85% of the variabce in414

prep. activity (K = 12 for monkey data and K = 4 for the circuit model). Here, we define415

prep. activity as the delay-period activity during a 300 ms window starting 150 ms after target416

onset; the activity is calculated time-locked to target onset. Similarly, move. activity is defined417

as activity during a 300 ms window starting 100 ms prior to movement onset; the activity is418

calculated using firing rates time-locked to movement onset.419

Methods for calculating the control of the alignment index are described in detail in the Sup-420

plementary Material of Elsayed et al. (2016) and is not reproduced here. The model alignment421

index is calculated in the same way as that of the neural data. However, there is a mismatch422

between the time of movement onset in the model and that in neural data. In the model, move-423

ment starts immediately after the rapid change in neural activity (i.e., when control inputs are424

removed). In the monkey data, however, movement begins roughly 200 ms after activity starts425

rapidly changing. To roughly align the temporal profile of neural activity in the model and426

data, we defined the time of “movement onset” in the model to be 200 ms after the “go cue”,427

attributing the delay in movement to delays in downstream motor processes not considered in428

this model.429

S5.5 Canonical-correlation analysis430

To compare model and monkey activity, we performed canonical-correlation analysis (CCA) on431

activity in a time window starting 400 ms before and ending 400 ms after movement onset (see432

alignment index discussion above, for nuance in defining the time of movement onset in model433

activity). To avoid overfitting to noise in CCA (Sussillo et al., 2015; Raghu et al., 2017), we434

first reduced the dimensionality of the two data sets, by projecting activity onto the top 13435

(monkey) and 8 (model) principal components; the number of principal components are chosen436

to capture 90% of the across-condition activity variance in the two datasets. We then calculated437

the canonical correlations between the two reduced data sets (see Press, 2011, for a numerically438

stable implementation of CCA). We found that monkey and model activity are similar across439

time and reaching movements, with a high average canonical correlation ρ = 0.84 (Figure S5 C440

and D). We obtained similar results when we varied the number of principal components kept441

in the two data sets (which in turn varied the number of canonical variables).442
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S5.6 Trial-by-trial variability443

To quantify trial-by-trial fluctuations in the monkey data, we calculated the total spike count444

cimk(t) for neuron i in condition m and trial k in a 150 ms time window centered at time t.445

We focused on the 8 straight-reaching conditions shown in Figure S5A and trials with a delay446

period longer than 400 ms. We calculated the normalized spike count residuals447

c̃imk(t) =
cimk(t)√
µim(t)

−
√
µim(t), (S41)

where µim(t) is the average of cimk across trials. The Fano factor of neuron i in condition m448

is the variance of c̃imk(t) across trials. In Section S5.6B, we reproduced the results previously449

presented in Churchland et al. (2010a): the population- and condition-averaged Fano factor450

drops at target onset.451

To dissect how variability is quenched along different state-space directions, we generalized this452

notion of Fano factors and defined the projected spike count variability along some state space453

direction d to be454

V(d, t) =
〈
(dT c̃•mk(t))

2
〉
mk

, (S42)

where c̃•mk = (c̃1mk, c̃2mk, · · · , c̃Nmk)T .455

Our model predicts that variability should be quenched preferentially in directions that matter456

for movement. To test this prediction in monkey data, we extracted three subspaces from trial-457

averaged data. First, we defined a “coding subspace” (CS) as the subspace spanned by average458

neural activity in movements towards the end of movement preparation. We expect this subspace459

to be a potent movement subspace as it is spanned by directions that could move activity from460

a preparatory state corresponding to one reach into that corresponding to another reach. In461

practice, we considered the trial-averaged firing rates averaged in a 100 ms time window starting462

300 ms after target onset. We removed the mean across condition for each neuron and time and463

constructed a data matrix X ∈ R123×8, where each column contains the population firing rate464

vector for a different movement condition. We only included trials with a delay period longer465

than 400 ms and smoothed the resulting time-averaged activity with a 30 ms Gaussian kernel.466

We then performed PCA and extracted the top K = 4 principal components, which captured467

95% of the variance across conditions. We used these K principal components to define the CS.468

The average projected spike count in the CS at time t is a weighted average of the projected469

spike count variability along the K principal components di:470

1∑K
i=1 σ

2
i

K∑
i=1

σ2i V(di, t), (S43)

where σ2i is the across-condition variance captured by component i. The motivation for this471

weighted sum is the following. Not only are directions that capture more of the across-condition472

variance likely more potent (higher prospective error), they are also more reliably estimated in473

the presence of noise (finite number of trials). Thus, they should be weighed more strongly.474

The second subspace we considered is the “late-change subspace” (LCS), spanned by population475

activity fluctuations experienced towards the end of movement preparation. Since the monkey476

is able to produce an accurate reach after a delay much shorter than 400 ms (Lara et al., 2018),477

late-changes in preparatory activity are likely inconsequential. To estimate this subspace, we478

again considered the trial-and-time averaged firing rates in a 100 ms time window starting 200 ms479

after target onset. We then calculated the eight within-condition differences between the average480

population rate vector in this time window and that collected at the end of preparation (i.e.481

300 ms after target onset). We further removed the mean across conditions for each neuron482
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and time, and assembled a matrix Y ∈ R123×8 as above for the CS. We orthogonalized this483

collection of vectors against the CS, and performed PCA as for the CS, retaining 95% of the484

variance across conditions (K = 7). The projected spike count variance in the LCS is then485

calculated as above for the CS.486

Finally, we considered a third subspace as an independent estimate of likely potent directions.487

This subspace, called the “early-change subspace” (ECS), was defined exactly like the LCS488

except that we considered activity changes early during preparation. Specifically, we substracted489

activity collected at mid-preparation (100 ms window starting 200 ms after target onset) with490

prep. activity in the first 100 ms from target onset. The rest of the procedure is as described491

above for the LCS.492
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symbol value unit description

Parameters of the M1 circuit model

NE 160 - number of E units

NI 40 - number of I units

τ 150 ms time constant of M1 dynamics

τrise 50 ms rise time constant of h(t)

τdecay 500 ms decay time constant of h(t)

A implicit - set so that h(t) has a maximum of 5

Arm mechanics and hand trajectories

`1 30 cm length of upper arm link

`2 33 cm length of lower arm link

M1 1.4 kg mass of upper arm link

M2 1.0 kg mass of lower arm link

D2 16 cm center of mass of lower link, away from elbow

I1 0.025 kg m−2 moment of inertia of upper link

I2 0.045 kg m−2 moment of inertia of lower link

θinit1 10. deg. value of θ1 at rest

θinit2 143.54 deg. value of θ2 at rest

θ
(i)
reach 36× (i− 2) deg. reach angles (i = 1, . . . , 8)

dreach 20 cm reach distance

τreach 120 ms time constant of reach velocity profile

LQR solution

λ 0.1 - input energy penalty in Equation S18

Thalamo-cortical circuit model

λ 0.01 - input energy penalty in Equation S18

p 0.2 - density of random connections from M1 to thal.

ME 100 - number of E units in M1 L4

MI 100 - number of I units in M1 L4

τy 10 ms neuronal time constant in thalamus

τz 10 ms neuronal time constant in M1 L4

Photoinhibition

Nph 100 - number of M1 I units perturbed (60%)

hph 3 - input to perturbed I units during photoinhibition

Tph 400 ms duration of photoinhibition

Table S1: Generic parameters used throughout all simulations
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A Core lemma493

Lemma 1 The matrix integral494

Q ,
∫ ∞
0

etA
T
CTCetA dt (S44)

satisfies the continuous-time Lyapunov equation495

ATQ + QA + CTC = 0 (S45)

This lemma is central to the theory of linear quadratic control, where cost functions are often of496

the form of integrated squared functions of the state, output, or input, under linear dynamics (as497

are the costs used in this paper). It allows one to manipulate these integrals algebraically, and498

compute them numerically by solving a linear matrix equation (e.g. Bartels and Stewart, 1972).499
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