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Abstract 

Next-generation sequencing (NGS) has been extensively employed to perform microbiome 

characterization worldwide. As a culture-independent methodology, it has allowed high-level 

profiling of sample microbial composition. However, most studies are limited to information 

regarding relative bacterial abundances, ignoring scenarios in which sample microbe biomass can 

vary widely. Here, we develop an equivolumetric protocol for amplicon library preparation 

capable of generating NGS data responsive to input DNA, recovering proportionality between 

observed read counts and absolute bacterial abundances. Under specified conditions, we argue that 

the estimation of colony-forming units (CFU), the most common unit of bacterial abundance in 

classical microbiology, is challenged mostly by resolution and taxon-to-taxon variation. We 

propose Bayesian cumulative probability models to address such issues. Our results indicate that 

predictive errors vary consistently below one order of magnitude for observed bacteria. We also 

demonstrate our approach has the potential to generalize to previously unseen bacteria, but 

predictive performance is hampered by specific taxa of uncommon profile. Finally, it remains clear 

that NGS data are not inherently restricted to relative information only, and microbiome science 

can indeed meet the working scales of traditional microbiology. 
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Introduction 

 

 The application of next-generation sequencing (NGS) methodologies allows large-scale 

identification of microorganisms, revealing the colonization and dispersion patterns throughout 

studied sites such as hospitals, indoor or outdoor natural environments 1–6. Despite various detailed 

microbiome characterization studies, most efforts address solely relative bacterial abundances, i.e., 

do not account for major variations of total microbial load 7–9. 

Recent studies claim that the total number of reads in NGS-derived samples (library size) 

is an arbitrary sum, without biological relevance, yielding microbiome data as necessarily 

compositional in nature 8,10,11. Nonetheless, a previous study has demonstrated that library sizes 

need not be arbitrary, potentially holding significant correlations with input bacterial cell counts12.  

The possibility of estimating absolute microbial abundance from NGS data has major 

impacts for research, government agencies, and industry, empowering researchers and policy 

makers to address microbiological issues in common scales such as colony-forming units (CFU) 

without giving up the advantages of high-throughput technology. Further, relative information 

alone limits decision-making in scenarios in which sample microbe biomass is known to vary 

widely 13–15. Bacterial percentages within a sample are hardly informative in terms surface 

contamination levels or even risk of microbial environmental dispersion. 

The approach herein described was primarily designed for the analysis of samples from 

indoor environments with varying total biomass (throughout this manuscript we refer to "biomass" 

as the sample bacterial biomass). Our method enables the improvement of hospital microbiome 

surveillance as well as other similar sampling sites. Potentially, it can be adapted to broader 

applications such as clinical evaluations and food safety management. Fixing volumes rather than 

concentrations during library preparation allows the detection of major variations in input DNA. 

Under our method, we show that estimation of absolute abundances remains challenged by 

resolution and taxon-to-taxon variation. We propose Bayesian cumulative probability models to 

address such issues and demonstrate that total microbial load as well as absolute abundances of 

observed bacteria can be reliably estimated in terms of CFU. 
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Results and Discussion 

 

Equivolumetric protocol for amplicon library preparation 

First, we developed a customized laboratory protocol for amplicon library preparation to 

recover microbial absolute abundances after NGS sequencing (Figure 1). Briefly, we adapt 

traditional methods to handle unnormalized inputs of DNA and amplicon. While equimolar 

protocols standardize samples and PCRs to fixed concentrations 3,16–20, we sample equal DNA or 

amplicon volumes into each library preparation to keep major concentration differences intact. The 

PCR steps are also optimized for the same purpose, minimizing amplification cycles and stopping 

before most reactions plateau. Using fewer PCR steps, we decrease error rates and chimera 

formation, as previously reported 18,21. The agarose gel check after library amplifications can still 

be useful for samples with sufficient biomass, though it is often the case that low biomass samples 

show no visible bands, hampering any useful interpretation 12. For this reason, we do not check for 

amplicons in agarose gels. In our protocol, PCR pooling is also performed in an equivolumetric 

fashion, and DNA sequencing follows as in traditional methods. The main justification for our 

proposal is the fact that samples from indoor environments vary widely in terms of total biomass, 

generally characterizing low biomass samples 12–15 and thus rendering relative information less 

useful. 

 

Equivolumetric protocol, input DNA, and absolute bacterial abundances 

To investigate whether our approach is capable of recovering absolute abundance 

information, we first assessed the relationship between NGS generated reads and corresponding 

input DNA. We used a synthetic DNA molecule with known concentrations (Figure 2A) and 

sequenced replicated serial dilutions. A polynomial fit demonstrates the sigmoid trend, which 

indicates NGS-based quantification in absolute terms may still be bounded above by 

methodological constraints under our protocol (e.g., amplification plateau for highly concentrated 

samples). We also estimated the corresponding copy numbers and observed similar behavior 

(Figure 2B). Nonetheless, it is clear from this result that the total number of reads increases with 

input DNA, which agrees with previous results that showed close relationship between NGS reads 

and total bacterial cells 12. 
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To further confirm the association between reads and sample bacterial load, we performed 

NGS sequencing in serially-diluted samples of known bacterial concentrations (in terms of CFU), 

mimicking a surface sample collection from an indoor environment. Our results indicate that the 

equivolumetric protocol does recover proportionality between NGS data and total microbial load, 

in terms of both total sample reads (library sizes) (Figure 2C) and bacteria-specific counts (Figure 

2D). Hence, our results suggest that compositional constraints motivated by supposedly arbitrary 

library sizes are not an inherent feature of microbiome datasets, which can indeed be generated to 

retain absolute abundance information. 

The replicates in Figures 2C-D come from four different sequencing runs, demonstrating 

the reproducibility of the method. As we keep total biomass differences, during data analysis we 

only correct for variations in the number of reads made available a priori for sequencing in each 

pool (expected sample coverage, see Methods). Supplementary Material 1 describes data 

normalization in detail to allow the use of data from multiple sequencing runs as well as an 

application using real hospital microbiome samples replicated through 14 sequencing runs. We 

further demonstrate that this approach does not depend on DNA extraction method by testing four 

different methods with equivalent results (Supplementary Figure 1). While more sophisticated 

normalizations may be needed for other situations, when varying biomass by orders of magnitudes 

such step is largely simplified under our protocol. 

In practice, microbiome samples are often highly variable in terms of total microbial load. 

Faecal samples are generally characterized by high biomass, while hospital and indoor samples 

usually present low biomass 13,15,22. Low biomass samples impose more challenges to their 

processing because of contamination and process inefficiencies 12. In fact, in this study we 

removed E. coli sequences from our results since these were frequently detected in our negative 

controls. We were able to track the corresponding sequences to the DNA polymerase reagent. In 

fact, E. coli was already found to be a common molecular biology contaminant from recombinant 

enzymes such as polymerases 23. Low biomass samples should always be processed especially 

carefully, accompanied by negative controls to assess possible contaminations 24–26.  

         

Modeling absolute abundance using NGS data 

 One way to recover absolute bacterial abundance is to associate relative information from 

high-throughput technology with absolute information from other methods. This has been 
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previously done using qPCR or flow cytometry data as absolute abundance methodologies, and 

NGS as provider of bacterial proportions 7,9,27. Here, however, total microbial load gains 

importance as a measure of total contamination for surveillance of indoor environments, as 

opposed to merely a means to project proportions onto absolute terms. In the previous section, we 

presented data showing NGS reads respond monotonically to the increase of microbial load. We 

now turn the axes around to describe the present estimation task: given an observed library size 

(sequenced reads), can total microbial load be predicted reliably? Figure 2E illustrates the problem. 

 Notice each value of microbial load varies only in orders of magnitude but corresponds to 

a relatively wide range of observed library sizes. Again, a polynomial trend is fitted, demonstrating 

the inadequacy of standard linear regression in this case. A similar behavior is observed if we 

analyze the read counts for each bacterium individually, despite significant taxon-to-taxon 

variation (Figure 2F).  Such naive linear models ignore the monotonic, stepwise fashion in which 

total microbial load and absolute bacterial abundances vary conditionally on observed reads. Also, 

there are no prediction bounds: extrapolation towards higher library sizes yields continuously 

higher predicted values. This is likely unrealistic, given the plateaus observed in Figures 2A and 

2B - and the inevitable PCR saturation as total sample biomass increases. 

These characteristics led us to consider a cumulative probability model to robustly estimate 

total microbial load and absolute bacterial abundances using NGS data. In the next subsection, we 

briefly describe the fitted model for total microbial load - see Methods for formal model 

specification. We then extend it onto a hierarchical structure that allows variation across bacteria 

in order to predict taxon-specific absolute abundances. Supplementary Materials 2 and 3 describe 

both modeling strategies in further detail, including extensive prior and posterior predictive checks 

as well as assessment of modeling assumptions. 

 

Cumulative probability model predicts total microbial load 

Colony-forming units are continuous measures. However, in classical microbiology, the 

ability to quantify microbial abundance has limited resolution: values differ mainly in orders of 

magnitude, and it is difficult to state replicable differences within the same magnitude range. 

Nonetheless, decision-making based on such data relies mostly on logarithmic differences, and 

specific orders of magnitude are often the main interest - e.g. diagnosis of urinary tract infection28, 

bacterial characterization from International Space Station surfaces 19, or hospital environments29. 
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In this scenario, we propose a cumulative probability model (CPM) with logit link, also 

known as Proportional Odds (PO) model, to predict total microbial load in terms of colony-forming 

units (CFU) based solely on library size. CPMs are capable of robustly estimating discrete and 

continuous outcomes in a semi-parametric fashion, both within Frequentist and Bayesian 

frameworks 30,31. Another advantage is the wealth of information produced: by modeling the 

cumulative probability function conditional on the data, one can retrieve predictions in terms of 

class of highest probability (the most likely outcome, herein referred to as CHP), expected values, 

tail probabilities, and even quantiles 32. See Methods for the entire (Bayesian) model specification 

and Supplementary Material 2 for the detailed workflow.  

We fit the model using the R package brms 33, and Figures 3A-3D show the results. Figure 

3A shows the estimated class probabilities as a function of library size, and Figure 3B shows the 

implied expectations (black solid line, 95% credible intervals in blue) as well as the CHP (red solid 

line). Predictive intervals for the CHP are also shown in light grey. Notice how the red line in 

Figure 3B follows closely the behavior of the class probabilities in Figure 3A. The predictions 

generated by the ordinal model are by construction monotonic. Also note that both expectation and 

CHP are bounded within the observed outcome space, overcoming extrapolation issues related to 

the previous naive model. In Figure 3C, posterior-predictive check indicates the overall structure 

of the observed data is well captured by the posterior draws of the model.  

Finally, Figure 3D shows model-implied tail probabilities, herein defined as the probability 

of observing at least abundance 𝑐", i.e., 𝑃𝑟(𝑌' ≥ 𝑐"|𝑋 = 𝑥') rather than 𝑃𝑟(𝑌' > 𝑐"|𝑋 = 𝑥'). The 

ability of deriving lower/upper bounds with high probabilities is a major advantage of CPM. Under 

this model, even though distinguishing abundance values may be challenging for certain ranges of 

the predictor space, one can still rely on tail probabilities to guide decision-making. For instance, 

should CHP- and expectation-based predictions be shown limited in performance, or the predictive 

interval prohibitively wide, then one can still use the highest class 𝑐" such that the probability of 

having at least𝑐" CFU is no less than a given probability threshold 𝜏, i.e., for each observation 𝑖 

find max
1	5		"	5		6

{𝑐": 𝑃𝑟(𝑌' ≥ 𝑐") ≥ 𝜏} for some large 𝜏 (e.g. 95%).  

In the next subsection, we extend the previous model to handle taxonomic information in 

a hierarchical fashion so that one can make predictions of absolute abundance for each bacterium 

individually. We then validate both models using cross-validation and prediction on held-out 

samples (test sets) in the following section. 
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Hierarchical CPM predicts absolute bacterial abundances 

In order to handle taxonomic information, we formulate a similar model which incorporates 

taxon-specific effects in a hierarchical structure. The major difference is that the linear predictor 

term is parametrized with population-level parameters and group-level counterparts (for both 

intercept and slope), allowing predictions of many bacteria with a single model and taking 

advantage of partial pooling 34.  

While we use seemingly weakly-informative priors (see Methods for full model 

specification), their joint behavior favors outer classes to improve distinguishability when dealing 

with classes of overlapping average number of reads. This is illustrated with prior-predictive check 

and assessment of CPM assumptions in Supplemental Material 3, which also shows detailed 

workflow and visualizations for each observed bacteria. Our prior choice resulted from model 

comparison with approximate leave-one-out cross-validation 35,36. Figure 3E shows the 

corresponding posterior predictive check, suggesting the data is well captured by the model-

implied data generation process for all bacteria. B. cereus, S. aureus, and S. epidermidis may 

represent challenging cases, although this can be an artifact from estimating varying effects with 

only six bacteria (stronger priors led to worse fit during model comparison).  

 

Model validation 

 We validated both models using 10-fold cross-validation (CV) and prediction on held-out 

test sets comprising of 10% of the total number of observations. We assess performance both as 

classification and regression tasks, using CHP- and expectation-based predictions. 

Figure 4A shows the 10-fold CV results for the total microbial load model. For 

visualization, we have split the assessed metrics into bounded between 0 and 1 and unbounded 

metrics. Bounded metrics based on CHP included the observed coverage of 95% predictive 

interval, Somers’ Delta (measure of ordinal association), classification accuracy, and Spearman’s 

rank correlation. The latter was also assessed for expectation-based predictions. In general, these 

metrics varied well above 0.9. Notably, the predictive intervals showed 100% coverage, which is 

likely overconfident. Nonetheless, most intervals spanned two abundance classes as in Figure 3B 

(see also Supplementary Materials 2 and 3), suggesting errors occur mainly within one order of 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.932301doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932301
http://creativecommons.org/licenses/by-nd/4.0/


magnitude from the true values. Ordinal association, as measured by Somers’ Delta, was 

consistently greater than 0.95 for both CV and test set. 

Unbounded metrics relied on modified versions of absolute errors, for both CHP- and 

expectation-based predictions. MALR and MAEr denote Mean Absolute Log-Ratio and Mean 

Absolute Error relative to true value, respectively, defined as follows. 

𝑀𝐴𝐿𝑅	 = 	
1
𝑛	@

|𝑙𝑜𝑔DE(𝑦GH) − 𝑙𝑜𝑔DE(𝑦')|
J

'KD

=
1
𝑛	@L𝑙𝑜𝑔DE M

𝑦GH
𝑦'
NL

J

'KD

 (1) 

𝑀𝐴𝐸𝑟	 = 	
1
𝑛@

|𝑦GH −	𝑦'|
𝑦'

J

'KD

 (2) 

MALR represents deviance in orders of magnitude, which varied during CV below 0.2 for 

both CHP and expectation, a result reproduced in the test set evaluation (Figure 4B). Perhaps more 

intuitive, MAEr tended to be smaller for CHP-based predictions compared to expectations. During 

10-fold CV or test-set validation, we did not observe MAEr values greater than 0.7. 

Although not as common as mean absolute errors or mean squared errors, the metrics 

herein assessed do not penalize estimation in varying orders of magnitude, offering advantages in 

interpretation. A MALR value of 1 corresponds to a ratio between predicted and observed values 

of one order of magnitude in the 𝑙𝑜𝑔10 scale. A MAEr of 1 indicates prediction absolute error as 

large as the true value, which would still be largely insignificant given the logarithmic scale. Using 

both CHP- and expectation-based predictions, our results indicate that predictions for the total 

microbial load model were mostly kept within the observed orders of magnitude.  

Figures 4C (10-fold CV) and 4D (test-set) show the analogous measures for the hierarchical 

model with bacteria-specific predictions. Median MAEr varied below 1 for both CHP and 

expectations during CV for most bacteria. In the test set, the highest value observed was 1.5 (L. 

monocytogenes). We observed most median accuracy values as high as 0.85 during CV and 0.8 

for the test set, while ordinal association seems slightly higher in general. The model was least 

performant for predicting S. aureus abundance, as indicated by almost all metrics computed. Still, 

observed MALR varied consistently below 0.5 for all bacteria both in CV and test-set validation. 

Again, the results indicate our predictions are contained within respective orders of magnitude, 

suggesting that NGS reads can indeed be a valuable source of information regarding absolute 

bacterial abundances. 
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Predicting abundance of previously unseen bacteria 

As the hierarchical CPM enables prediction of previously unseen bacteria, we also 

performed leave-one-group-out CV to assess how our model could generalize in high-throughput 

settings, in which one may have dozens of taxa of interest. For each bacterium, we hold out its 

corresponding data points and train a separate model with the remaining data. We then perform 

predictions for the held-out taxon, treating it as “previously unseen” - not used during model 

fitting.   

Figure 5 shows the results. Classification accuracy drops substantially, and the model 

completely fails to classify abundance values for B. cereus. Yet, for other bacteria, ordinal 

association and classification accuracy varied between 0.9 and 0.6. Treated as a classification task, 

the poor predictive performance is likely influenced by high uncertainty associated with the 

estimation of varying intercepts and slopes using data from only five bacteria at each iteration. 

This can also explain the high coverage values: predictive intervals were so wide that potentially 

spanned nearly all outcome space. On the other hand, the taxon associated with the worst out-of-

sample performance (B. cereus) was also the one with the highest random effects in the original 

model, i.e., the greatest deviance from the overall, population-level effects - see Supplementary 

Material 3.  While most bacteria showed MAEr between 0.5 and 3, B. cereus exceeded the value 

of 50 (absolute error as large as 50 times the true value). Nonetheless, MALR still varied below 

the threshold of 1 for all but Bacillus cereus, which almost reached a MALR of 2 (two orders of 

magnitude).  

Thus, it is clear that generalization in high-throughput settings is challenged by specific 

bacteria, such as B. cereus, which deviate greatly from overall profiles. Yet, prediction errors for 

most bacteria were shown to vary below one order of magnitude, suggesting the approach is 

promising. Improvements can also be achieved, for instance, through the inclusion of more 

predictors such as 16S rRNA gene copy number, gram-like classifications, and even taxonomic 

information from higher ranks. The addition of more bacteria species to estimate varying effects 

can also be beneficial. 

Overall, our results indicate the predictive errors for CFU do not exceed one order of 

magnitude (on the 𝑙𝑜𝑔10 scale) for observed bacteria. While total microbial load seems more 

reliably estimated, for both models the absolute errors tend to be no greater than two times the true 

values - in a reality of logarithmic differences. While one might doubt the importance of estimating 
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4 ∗ 103 CFU compared to a true value of 2 ∗ 103 CFU, we acknowledge our models can be 

improved by adding more data points, predictors, and different bacteria. Yet, it remains clear that 

library sizes need not to be arbitrary, and that NGS reads can indeed produce reliable estimations 

of absolute bacterial abundances, at least in the working scales of classical microbiology. 

 

Conclusion 

Here we have shown that assessment of absolute bacterial abundance using NGS data 

becomes possible upon protocol alteration within specified conditions, and the remaining 

challenges lie within the realm of resolution and taxon-to-taxon variation. While library sizes do 

depend on sequencing effort - a partially arbitrary sequencing setup -, equivolumetric protocols 

assure the maintenance of major input DNA variations, at least for certain ranges of colony-

forming units. Under such conditions and assuming the same protocol for a set of samples of 

similar nature, our results indicate that these procedures recover the proportionality between 

library sizes and total microbial load.  

We have also developed Bayesian cumulative probability models to robustly estimate both 

total microbial load and bacterial absolute abundances using NGS data only. Most prediction errors 

lied far below the threshold of one order of magnitude, indicating that the models are sufficiently 

reliable. Still, further research is needed to understand whether such models can generalize to high-

throughput settings, in which data from a small subset of taxa are used to make predictions on 

previously unseen bacteria. Finally, it is clear that the claim that library size is always an arbitrary 

sum, often taken for granted by several previous works, is readily overcome by the methods herein 

proposed. 

 

Methods 

 

Samples 

A synthetic DNA fragment with a naturally non-occurring sequence was designed with the 

16S rRNA V3/V4 primers sequences flanking their extremities. This fragment with 544 bp was 

synthesized as gBlocks® Gene Fragments from IDT (IA, USA). This DNA was eluted to a final 

concentration of 10 ng/µL in TE buffer following the manufacturer instructions. Then it was 

serially diluted from 0.56 ng/µL to 0.00000056 ng/µL by a 10X factor dilution. This serial dilution 
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is equivalent to a range of 954,000,000 to 954 copies of the synthetic DNA. Samples were 

processed in experimental triplicates. 

Reference bacterial isolates were acquired from ATCC (American Type Culture 

Collection, VA, USA) ATCC 19111 Listeria monocytogenes, ATCC 14028 Salmonella enterica, 

ATCC 10876 Bacillus cereus, ATCC 12228 Staphylococcus epidermidis, ATCC 29212  

Enterococcus faecalis, ATCC 8739 Escherichia coli, ATCC 25923 Staphylococcus aureus. These 

bacterial isolates were individually grown overnight at 35ºC in Brain Heart Infusion media and 

then adjusted to an optical density (OD600) of 0.5 to be further diluted with a 10X factor for more 

seven consecutive dilutions. The two more diluted concentrations for each bacterium had 100 µL 

plated in PCA (Plate Count Agar) and incubated overnight at 35ºC to check for the CFU (Colony 

Forming Units) concentrations used in the assay described below. The dilutions corresponding to 

2, 20, 200, 2000, 20000 and 200000 CFU for each above bacteria were inoculated in a sterile 

plastic plate, without media, and left to dry in a biological safety cabinet. Then the bacterial cells 

were collected from the dry plate surface using a sterile hydraflock swab (Puritan, ME, USA) 

moistened with sterile physiological solution. After sample collection the swab was broken down 

into a microtube containing 800 µL of stabilization solution - ZSample (BiomeHub, SC, BR). The 

DNA from the above collected samples was extracted using a thermal lysis protocol along with 

AMPure XP magnetic beads purification (Beckman Coulter, CA, USA). Samples were processed 

with fifteen replicates for each bacterial CFU dilution. Additionally, three alternative DNA 

extraction kits were used: QIAamp® DNA Mini and Blood Mini (QIAGEN, Germany), lot: 

154018620, DNAeasy Power Soil (QIAGEN, Germany), lot: 163024722 and DNAeasy Power 

Soil PRO (QIAGEN, Germany), lot: 160048809. 

    

Library preparation and sequencing 

The 16S rRNA amplicon sequencing libraries were prepared using the V3/V4 primers 

(341F CCTACGGGRSGCAGCAG and 806R GGACTACHVGGGTWTCTAAT) 37,38 in a two-

step PCR protocol. The first PCR was performed with V3/V4 universal primers containing a partial 

Illumina adaptor, based on TruSeq structure adapter (Illumina, USA) that allows a second PCR 

with the indexing sequences similar to procedures described previously 17. Here, we add unique 

dual-indexes per sample in the second PCR. Two microliters of individual sample DNA were used 

as input in the first PCR reaction. The PCR reactions were carried out using Platinum Taq 
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(Invitrogen, USA) with the conditions: 95°C for 5 min, 25 cycles of 95°C for 45s, 55°C for 30s 

and 72°C for 45s and a final extension of 72°C for 2 min for PCR 1. For PCR 2, two microliters 

of the first PCR were used and the amplification conditions were 95°C for 5 min, 10 cycles of 

95°C for 45s, 66°C for 30s and 72°C for 45s with a final extension of 72°C for 2 min. All PCR 

reactions were performed in triplicates. The second PCR reactions were cleaned up using 

AMPureXP beads (Beckman Coulter, USA) and an equivalent volume of each sample was added 

in the sequencing library pool. At each batch of PCR, a negative reaction control was included 

(CNR). The final DNA concentration of the library pool was estimated with Quant-iT Picogreen 

dsDNA assays (Invitrogen, USA), and then diluted for accurate qPCR quantification using KAPA 

Library Quantification Kit for Illumina platforms (KAPA Biosystems, MA). The sequencing pool 

was adjusted to a final concentration of 11.5 pM (for V2 kits) or 18 pM (for V3 kits) and sequenced 

in a MiSeq system (Illumina, USA), using the standard Illumina primers provided by the 

manufacturer kit. Single-end 300 cycle runs were performed using V2x300, V2x300 Micro, 

V2x500 or V3x600 sequencing kits (Illumina, USA) with sample coverages specified in 

Supplementary table 1. 

  

Bioinformatics analysis and taxonomic assignment 

The sequenced reads obtained were processed using the bioinformatics pipeline described 

below (BiomeHub, SC, BR – hospital_miccrobiome_rrna16s:v0). First, Illumina reads have the 

amplicon forward primer checked, it should be present at the beginning of the read, and only one 

mismatch is allowed in the primer sequence. The whole read sequence is discarded if this criterion 

is not met. The primers are then trimmed, and the reads accumulated error evaluated. Read quality 

filter (E) is performed converting each nucleotide Q score in error probability (ei), that is summed 

and divided by read length (L). 

𝐸 = 	
1
𝐿@𝑒'

J	

'KD	

 (3) 

𝑒' = 10ST'/10 (4) 

 

Reads are then analyzed with the Deblur package v.1.1.0 39 to remove possible erroneous 

reads and identical sequences are grouped into oligotypes (clusters with 100% identity). The 

sequence clustering with 100% identity provides a higher resolution for the amplicon sequencing 
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variants (ASVs), also called sub-OTUs (sOTUs) 40 - herein denoted as oligotypes. Next, 

VSEARCH 2.13.6 41 are used to remove chimeric amplicons. We implemented an additional filter 

to remove oligotypes below the frequency cutoff of 0.2% in the final sample counts.  

We also implemented a negative control filter for low biomass samples. If any oligotypes 

are recovered in the negative control results, they are checked against the samples and 

automatically removed from the results only if their abundance (in number of reads) are no greater 

than two times their respective counts in the sample. The remaining oligotypes in the samples are 

used for taxonomic assignment with the BLAST tool 42 against a reference genome database 

(encoderef16s_rev6_190325, BiomeHub, SC, Brazil). This database is constructed with complete 

and draft bacterial genomes, focused on clinically relevant bacteria, obtained from NCBI. It is 

composed of 11,750 sequences including 1,843 different bacterial taxonomies. 

Taxonomy are assigned to each oligotype using a lowest common ancestor (LCA) 

algorithm. If more than one reference can be assigned to the same oligotype with equivalent 

similarity and coverage metrics (e.g. two distinct reference species mapped to oligotype “A” with 

100% identity and 100% coverage), the taxonomic assignment algorithm leads the taxonomy to 

the lowest level of possible unambiguous resolution (genus, family, order, class, phylum or 

kingdom), according to similarity thresholds previously established 43. 

 

Normalization 

The normalization procedure is fully described in Supplementary Material 1. Briefly, let 

𝐾',X	∈ZJ[\] denote the normalized counts for the taxonomy 𝑖sample 𝑗	 ∈ 𝐷, where 𝐷 is the set of 

samples from the 𝑑	aℎ sequencing run. Then the normalization is a simply rescaling of the raw 

counts. 

𝐾',X	∈ZJ[\] 	= 	
𝐾',X∈Z
𝑆',X	∈Z

	 (5)	

The size factor is sequencing-specific and is calculated as follows:  

𝑆',X∈Z = 𝑆d =
𝐴e∗,d

max
dfKD,g,…,]

i𝐴e∗,dfj
	 (6)	

where 𝐴e∗,df is the average number of reads per sample made available a priori in the 

sequencing pool of interest 𝑝⋆ within sequencing 𝑑 (expected sample coverage). The lower the 

relative availability, the smaller the resulting factor and thus greater the normalized values relative 
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to the raw counts. Once normalized, divergences across samples from different sequencing runs, 

but of similar bacterial abundances, are assumed to rise mostly from sequencing efficiency 

differences - yet of negligible order of magnitude. 

 

Statistical Analysis 

 All statistical analyses were performed using R software environment version 3.6.2 44. We 

used the brms R package and Stan (v. 2.11.1 and v. 2.19.1, respectively) to perform all bayesian 

analyses and the tidyverse package suite (v. 1.3.0) for data wrangling and visualization 33,45,46. We 

also used the phyloseq R package (v. 1.30.0) to handle microbiome data 47. Supplementary Table 

2 lists all R packages used along with corresponding versions and references. The entire modeling 

strategy is further detailed in Supplementary Material 2 (total microbial load) and 3 (bacterial 

abundances). All models were fit within the Bayesian framework. 

 

CPM for total microbial load estimation 

 We used a cumulative probability model (CPM) with a logit link, also known as 

Proportional Odds (PO) model, to predict total microbial load based on NGS reads. Let 𝑌' denote 

the total microbial load (in CFU scale) from the 𝑖an sample. Given our serially-diluted samples, 

we only observe 𝐾 = 5 abundance values such that 𝑌' takes values 𝑐" ∈ {𝑐D, 𝑐g, … , 𝑐6} =

{0.84 × 10g,  0.84 × 10t, … ,  0.84 × 10u}. We then define the model: 

𝑌' ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝒑𝒊)	 𝒑𝒊 = (𝑝'D, 𝑝'g, 𝑝't, 𝑝'|, 𝑝'})~	 (7)	

 

Each parameter is calculated as: 

𝑝'" = Pr( 𝑌' = 𝑐" ) = Pr( 𝑌' ≤  𝑐" ) − Pr( 𝑌' ≤  𝑐"SD )	 for	 1 < 𝑘 < 𝐾	 (8)	

𝑝'D = Pr(𝑌' ≤ 𝑐D)	 (9)	

p�� = 1 − Pr(Y� ≤ c�SD)	 (10)	

Finally, we compute the cumulative probabilities using ordinal logistic regression: 

𝑙𝑜𝑔𝑖𝑡[ Pr( Y� ≤  c� ) ] = 𝜓��	 , 	 for	k = 1, 2, … , K − 1 (11) 

𝜓'" = 𝛼" − 𝛽 ⋅ 𝑥' (12) 

where 𝑥' denotes the library size (total number of reads) for the observation 𝑖.  

 This generative model for the observed abundances 𝑌' is a case of ordinal logistic 

regression 32,48. We use a logit link over the linear predictor ϕ'" to estimate cumulative 
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probabilities, i.e., 𝑙𝑜𝑔𝑖𝑡[Pr(𝑄' ≤ 𝑐" | 𝑋 = 𝑥')] = ψ'" ⇒ 	Pr(𝑌' ≤ 𝑐" | 𝑋 = 𝑥') =
D

D����� 
. The 

estimated cumulative probabilities originate the categorical parameters, and the resulting 

distribution then generates the observed data. 

 The linear predictor ψ'" has two unknown parameters, the intercepts 𝛼" and the slope β. 

We have placed weakly-informative priors on both, with no prior preference for any class 𝑐":  

𝛼" ∼ 𝒩(0, 5)	 𝑎𝑛𝑑	 𝛽 ∼ 𝒩(0, 5) (13) 

 The intercepts are often called cutpoints as they represent the intersections between 

observable categories on the cumulative logit scale 49. Notice we set the same prior for all 𝐾 − 1 

cutpoints. The negative-valued slope parameter β seen in equation (12) arises naturally from the 

PO model derivation with latent continuous variable motivation. It also guarantees intuitive 

interpretations: positive values indicate a positive effect towards higher categories 50. 

 The ordinal model also allows going beyond conditional (cumulative) class probabilities 

to estimate conditional expectations, quantiles, and tail probabilities 32. This is a major advantage 

of CPMs over other more commonly used methods such as linear and quantile regression 30. We 

fitted the model using brms and Stan 33,45. 

 

Hierarchical CPM for absolute bacterial abundances 

We develop a cumulative logit random effects model to predict bacteria-specific 

abundances based on observed NGS reads, which is basically a multilevel version of the previous 

model (7) 34. Let 𝑌'X denote the absolute abundance (in Colony-forming units) for the observation 

𝑖, taxon 𝑗. Given our serially-diluted samples, we only observe 𝐾 = 4 abundance values such that 

𝑌'X takes values 𝑐" ∈ 	 {𝑐D, 𝑐g, 𝑐t, 𝑐|} 	= {2 × 10g,  2 × 10t,  2 × 10|,  2 × 10}}. We then define the 

model: 

Y�£ ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙i𝒑�£j	 𝒑�£ = ip�£D, p�£g, . . . , p�£�j
¤ (14) 

Except for the taxon subscript 𝑗, the parameters are computed according to equations (8) 

through (10), and the ordinal regression becomes: 

𝑙ogit¨PriY�£ ≤ c�j© = 𝜓�£�	 	 for	k = 1, 2, 3 (15) 

𝜓'X" = α"X − βX ⋅ 𝑥'X (16) 
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where 𝑥'X is the number of reads in observation 𝑖 from bacteria 𝑗. Differently from the 

previous model, here we have only four classes (𝐾 = 4) and hence 𝐾 − 1	 = 	3 cutpoints. We 

allow both intercepts and slopes to vary across bacteria, such that: 

¬	
α"X
βX 	 ∼ 𝒩g ®¯

α"
𝛽 ° , Σ² (17) 

Notice the mean of this two-dimensional Gaussian distribution is the vector of population-

level parameters (α" 𝛽)~. Thus, the variance-covariance matrix Σ governs how the group-level 

parameters vary around the population-level counterparts: 

Σ = 	 ¬
𝜎´  0
0 𝜎µ

 	𝓡 ¬
𝜎´  0
0 𝜎µ

 	= 	 ·
𝜎¸ 
g 𝜎¸ ,µ

𝜎¸ ,µ 𝜎µg
¹ (18) 

𝓡	 = 	 ¬1 𝜌
𝜌 1 (19) 

We set the prior distributions for each unknown parameter: 

α" ∼ 𝒩(0,2.5)	 and	 β ∼ 𝒩(0,2.5) (20) 

σ¸¾ ∼ ℰ𝓍𝓅(1)	 and	 σÂ ∼ ℰ𝓍𝓅(1) (21) 

𝓡 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2) (22) 

The LKJ prior on the correlation matrix 𝓡 (which describes the correlation ρ between α" 

and β) drives skepticism regarding extreme values near −1 and 1 51. Jointly, the behavior of the 

prior distributions slightly favors outers categories (𝑘	 ∈ {1, 𝐾}) in order to improve 

distinguishability for cases in which there were overlapping average number of reads. The prior 

choice was driven by model comparison using approximate leave-one-out cross-validation as well 

as prior and posterior predictive checks 35,36. 
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Figure 1. Amplicon library preparation methods for NGS sequencing. Traditional protocol  
is represented as the most common equimolar process. (1) Equimolar DNA inputs are prepared based on fluorimetric 
or spectrophotometric measures, all DNA samples are normalized to equivalent amounts (e.g. 5 ng/µL); (2) PCR 
amplifications are performed with single or two-step protocols with varying amplification cycles (most commonly 35 
cycles); (3) Usually, PCR amplifications are then checked on agarose gel to confirm positive samples and discard 
negative ones; (4) PCR pooling for NGS sequencing is also performed in an equimolar manner through fluorometric 
quantification (e.g. pooling 20 ng from each sample). Equivolumetric protocol stands for equal volumes processed 
for each sample instead of equal concentration. In this protocol, samples retain their original differences in terms of 
concentrations of input DNA. (1) Equal volumes of each sample is used for PCR steps, regardless of its concentration 
(e.g. 2 µL); (2) Amplicon library preparation is carried out in a standardized, two-step PCR for 25 cycles using specific 
marker genes, then additional 10 cycles to add the sequencing adapter and indexes; (3) No agarose gel check is 
performed for these samples since we assume a wide variation in amplicon yield, related to the sample original DNA 
input; (4) PCR pooling for NGS sequencing is performed without specific sample normalizations. Equal volumes are 
used for each amplicon sample to assemble the NGS sequencing pool (e.g. pooling 20 µL from each sample). 
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Figure 2. Equivolumetric protocol recovers proportionality between input DNA and NGS reads. Synthetic DNA 
fragment serially diluted from 0.56 ng/µL to 0.00000056 ng/µL (A) or from 954,000,000 to 954 DNA copies (B) and 
its total number of reads obtained by NGS sequencing using the equivolumetric protocol. Total sample reads (library 
size) from sequencing of serially-diluted samples of mock microbial community using the equivolumetric protocol 
demonstrates that the obtained read counts are proportional to total microbial load (C). Similar relationship is observed 
between taxon-specific counts and abundances (D). The estimation task of CFU based on NGS reads is illustrated 
for both total microbial load (E) and taxon-specific abundances (F). Total microbial load ranged from 0.84*10² to 
0.84*10⁶ CFU, while taxon abundances ranged from 2*10² to 2*10⁵ CFU. A pseudocount of 1 was added to the read 
counts to avoid 𝑙𝑜𝑔DE(0). 
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Figure 3. Cumulative probability models for the estimation of absolute bacterial abundances. Estimation of class 
probabilities for each observed value of total microbial load (in CFU), conditional on observed library size, is retrieved 
from the ordinal logistic regression framework (A).  Conditional expectations are then derived as weighted average 
of microbial load values and respective class probabilities (black line, 95% credible intervals in light blue) (B). The 
class of highest probability (CHP, the most likely outcome given the observed reads) is also shown (red line, 95% 
predictive intervals in grey). Posterior predictive check shows the Bayesian model captures the overall structure of the 
observed data for total microbial load (𝑦\�e: posterior draws, 𝑦: observed data) (C). Tail probabilities, herein defined 
as the probability of observing at least class ck, conditional of observed library size are an alternative for cases in 
which CHP- and expectation-based predictions are prohibitively uncertain (D). Hierarchical CPM accounts for 
differences across bacteria and takes advantage of partial pooling to estimate taxon-specific abundances (E). The 
resulting posterior predictive check indicates no major signs of misfit.   
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Figure 4. Cumulative probability models generate accurate predictions for total microbial load and taxon-
specific absolute abundances. Performance measures from 10-fold cross-validation of total microbial load model 
indicate predictive errors are constrained far below one order of magnitude (A). For visualization, bounded metrics 
vary between 0 and 1, while unbounded metrics vary in the positive real line. Similar results were observed in the 
held-out test set (B). 10-fold cross validation for taxon-specific predictions using hierarchical CPM indicates 
predictive performance varies across bacteria, although still far below one order of magnitude (C). Similar results 
were observed in the held-out test set (D). Predictions based on class of highest probability are indicated with (CHP) 
in the x axis, and expectation-based counterparts are indicated likewise.  MALR: mean absolute log-ratio; MAEr: 
mean absolute error relative to true values; 𝐷ÅÆ: Somers’ Delta measure of ordinal association; Coverage: observed 
coverage of 95% predictive interval. 
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Figure 5. Hierarchical cumulative probability model predicts previously unseen bacteria with varying 
performance. Leave-one-group-out cross-validation was used to estimate predictive performance of hierarchical 
CPM for previously unseen bacteria. The predictive errors are constrained below one order of magnitude for most 
bacteria, except for Bacillus cereus - which reached errors of almost two orders of magnitude (lower panel). The 
dashed grey line indicates a value of 1, representing one order of magnitude in the context of MALR. The model fails 
to classify abundance values of Bacillus cereus (upper panel), although ordinal association (𝐷ÅÆ) remains above 0.6. 
Most absolute errors represent no more than two times the observed abundances in a context of logarithmic differences 
- except for B. cereus and (slightly) E. faecalis using CHP. For visualization, we truncated the y axis of the lower 
panel at the value of 10 and indicated higher values with numeric labels. 
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sequencing run data used in this study. 

 

Supplementary table 2. R packages. 
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Supplementary material 1. Data normalization. 
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