
1 
 

FAN-C: A Feature-rich Framework for the Analysis and Visuali-
sation of C data 
Kai Kruse1, Clemens B. Hug1 and Juan M. Vaquerizas1,2,* 
1. Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149 Muenster, Germany. 
2. MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial Col-5 

lege London, Du Cane Road, London W12 0NN, UK.  
* Correspondence to Juan M. Vaquerizas (jmv@mpi-muenster.mpg.de) 

 
Keywords: 
Chromosome conformation capture; Hi-C; Hi-C analysis; topological associating domains (TAD); chro-10 
mosomal compartments; chromatin loops; Hi-C visualisation 

 
 

Chromosome conformation capture data, particularly from high-throughput approaches such as 
Hi-C and its derivatives, are typically very complex to analyse. Existing analysis tools are often 15 
single-purpose, or limited in compatibility to a small number of data formats, frequently making 
Hi-C analyses tedious and time-consuming. Here, we present FAN-C, an easy-to-use command-
line tool and powerful Python API with a broad feature set covering matrix generation, analysis, 
and visualisation for C-like data (https://github.com/vaquerizaslab/fanc). Due to its comprehen-
siveness and compatibility with the most prevalent Hi-C storage formats, FAN-C can be used in 20 
combination with a large number of existing analysis tools, thus greatly simplifying Hi-C matrix 
analysis. 

 
 

INTRODUCTION 
 
The development over the last decade of high-
throughput techniques to study the three-dimen-
sional organisation of the genome (Lieberman-
Aiden et al. 2009; de Wit and de Laat 2012; 
Denker and De Laat 2016) in the nucleus has 
fuelled the characterisation of chromatin confor-
mation in a wide variety of biological systems. 
These range from the organisation of the bacterial 
nucleoid (Le et al. 2013), to the in vitro charac-
terisation of the molecular mechanisms that gov-
ern chromatin organisation in eukaryotes 
(Gassler et al. 2017; Haarhuis et al. 2017; 
Busslinger et al. 2017; Rao et al. 2017; Sanborn 
et al. 2015; Rhodes et al. 2020), reviewed in 
(Stadhouders et al. 2019), how this organisation 
is dynamically regulated during cell cycle 
(Naumova et al. 2013; Gibcus et al. 2018), devel-
opment and differentiation (Hug et al. 2017; 
Flyamer et al. 2017; Du et al. 2017; Ke et al. 
2017; Bonev et al. 2017; Chen et al. 2019), re-
viewed in (Hug and Vaquerizas 2018), and how 
it is affected in disease (Lupiáñez et al. 2015; 
Franke et al. 2016; Díaz et al. 2018), reviewed in 
(Spielmann et al. 2018). 

Given the fundamental role that the correct or-
ganisation of chromatin in the nucleus plays for 
proper cell physiology, there is a growing need to 
integrate chromatin contact data in current stud-

ies examining different aspects of gene and ge-
nome regulation. Different techniques have been 
developed to study chromatin conformation at the 
single cell or population level, in situ Hi-C being 
the primary method of choice for analysing chro-
matin conformation in cell populations (Rao et al. 
2014), reviewed in (Kempfer and Pombo 2019). 

The large amounts of Hi-C data and increas-
ingly specialised research questions have led to 
the development of diverse Hi-C analysis tools. 
Typically, these fall into one, rarely multiple of 
the following categories: Hi-C matrix generation, 
feature analysis, and visualisation (Pal et al. 
2019; Ay and Noble 2015; Ing-Simmons and 
Vaquerizas 2019). Hi-C matrix generation tools 
convert FASTQ data from a Hi-C experiment 
into a normalised matrix of interaction strengths 
between pairs of genomic regions, accounting for 
false-positive interactions in the process. Feature 
analysis tools act on the Hi-C matrix to derive 
measures, models, and statistics that answer spe-
cific biological questions, such as the identifica-
tion of topologically associating domains (Dixon 
et al. 2012; Sexton et al. 2012; Nora et al. 2012) 
and chromatin loops (Varoquaux et al. 2014; Rao 
et al. 2014), the 3D modelling of the chromatin 
fibre (Le Dily et al. 2017; Lin et al. 2019), or the 
identification of differential contacts between 
samples. Visualisation tools then enable the static 
display, and sometimes interactive exploration of 
the Hi-C matrix, and generally also of associated 
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genomic data (Yardimci and Noble 2017; Ing-
Simmons and Vaquerizas 2019). 

The complexity of handling Hi-C data, owed 
in part to the vast amounts of data produced, 
prompted the development of several dedicated 
Hi-C storage formats in the form of compressed 
binary (Durand et al. 2016b) or hierarchical 
(Abdennur and Mirny 2019) files, or as text file 
specifications. The combination of specialised 
tools and available Hi-C formats results in a frag-
mentation of Hi-C analysis methods, which in 
turn causes a significant overhead for researchers 
analysing Hi-C data (Table 1). 

Here, we present FAN-C, a Framework for the 
ANalysis of C-like data, an easy-to-use com-
mand-line tool and powerful Python API with a 
broad feature set covering matrix generation, 
analysis, and visualisation (Fig. 1). FAN-C uses 
a custom hierarchical storage format optimised 
for fast matrix access and common Hi-C matrix 
transformations. In addition, it is natively com-
patible and inter-convertible with the widespread 
Cooler (Abdennur and Mirny 2019) and Juicer 
(Durand et al. 2016b) Hi-C file formats, and can 
import a large variety of different text-based ma-
trix inputs, such as those defined by HiC-Pro 
(Servant et al. 2015) and the 4D Nucleome pro-
ject (Dekker et al. 2017). FAN-C includes a 
fully automated FASTQ-to-matrix pipeline, 
which can be adapted to the complexities and in-
dividual requirements of each specific Hi-C anal-
ysis, such as different species or analysis param-
eters. FAN-C also allows running each pipeline 
step individually, each with numerous customisa-
tion options. In addition, due to its broad file for-
mat support, FAN-C has the potential to integrate 
seamlessly with other tools, thereby significantly 
simplifying existing Hi-C analysis pipelines. 

RESULTS 
 
Hi-C matrix generation: from raw sequencing 
output to chromatin contacts 
 
The first component of the FAN-C analysis 
framework consists of tools for matrix generation 
(Fig. 1A). This encompasses the mapping of se-
quencing reads to a reference genome, assign-
ment of mapped reads to restriction fragments 
and the formation of interacting fragment-pairs, 
assembly of a fragment-level Hi-C matrix, and 
binning, as well as normalising that matrix at dif-
ferent resolutions. At each step, false-positive 
contacts need to be carefully filtered out in order 
to prevent matrix artefacts. 

The primary tool for matrix generation in 
FAN-C is a fully automated pipeline, executable 
by a single command: fanc auto. It accepts a 
variety of automatically recognised input for-
mats, including: i) unmapped reads in paired-end, 
optionally gzipped FASTQ files; ii) mapped 
reads from SAM or BAM files; and, iii) pre-pro-
cessed read pairs or genomic contacts from other 
Hi-C pipelines in the form of text files (Fig. 2A-
C). FASTQ files are mapped independently to a 
reference genome using either Bowtie2 or BWA 
- the choice of mapper is detected automatically 
from the genome index specified. To boost map-
ping efficiency, FAN-C can automatically detect 
and split reads at Hi-C ligation junctions, which 
are created by the cutting and re-ligation of re-
striction sites. Further improvements to mapping 
efficiency can be achieved by enabling iterative 
mapping (Imakaev et al. 2012), where unaligned 
reads are truncated by a small number of base 
pairs and then attempted to align again (Fig. 2A). 

Figure 1 Overview of FAN-C functionality. A. Matrix generation features. B. Hi-C matrix analysis features. C. Hi-C 
visualization features. D. Helper tools 
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Mapped reads are then paired and assigned to 
restriction fragments (Fig. 2B). These are com-
puted automatically using the restriction enzyme 
name and genome FASTA files, or can alterna-
tively be supplied via a custom restriction map. 
Read pairs are filtered for common biases, in-
cluding, among others, mapping quality, PCR du-
plicates, different types of ligation errors (Fig. 
2D), and unexpected insert sizes (Fig. 2E). The 
filtering is highly customisable with a large selec-
tion of available filters, as well as the option to 
define custom filters using the Python API (Fig. 
2B). Diagnostic plots with filtering statistics are 
generated automatically and are useful to inform 
the user about potential issues regarding the qual-
ity of Hi-C library or the set of parameters chosen 
for filtering (Fig. 2F). 

Valid pairs, i.e., those that have passed the fil-
tering steps above, are assembled into a frag-
ment-level Hi-C matrix, which in turn is binned 
at various, customizable resolutions. Each binned 
matrix then undergoes a second round of filtering 
at the matrix level, including filters for low cov-
erage of matrix bins (Fig. 2G), and is finally cor-
rected for experimental and computational biases 
using Knight-Ruiz matrix balancing (Knight and 
Ruiz 2013) or, optionally, iterative correction 
(Imakaev et al. 2012) (Fig. 2C). Importantly, ma-
trix rows and columns whose contact frequencies 

sum up to zero are explicitly ignored (or in some 
cases optionally imputed) by all FAN-C analysis 
methods. This avoids downstream analysis arte-
facts from falsely treating corresponding regions 
as if they had a complete lack of contacts, e.g. re-
gions with poor mappability. 

One of the key features of FAN-C is the abil-
ity to run each pipeline step independently, using 
dedicated commands. This enables the user to 
evaluate various parameter settings, and to per-
form parameter sweeps to test the robustness and 
ensure consistency of their analyses. Importantly, 
parameter changes can be made after the initial 
matrix generation, once bias statistics are availa-
ble and a binned matrix can be investigated, with-
out having to re-run the most time-consuming 
steps of Hi-C matrix assembly. 

In order to maximise inter-compatibility with 
existing pre-processing, analysis, and visualisa-
tion pipelines, FAN-C includes several conver-
sion tools. Valid pairs can be converted to 
Juicer’s Hi-C format using fanc to-juicer. 
Similarly, binned FAN-C matrices can be ex-
ported to multi-resolution Cooler files using 
fanc to-cooler, which are then compatible 
with cooltools (Venev et al. 2019) and HiGlass 
(Kerpedjiev et al. 2018) for visualisation. 
 

Figure 2 FAN-C matrix generation. A-C. Schematic overview of the matrix generation pipeline. A. Mapping fea-
tures. B. Processing and filtering of Hi-C read pairs. C. Assembly, filtering and normalization of the Hi-C matrix from 
valid read pairs. D-F. FAN-C statistics plots using data from HUVEC Hi-C (Rao et al. 2014). D. Ligation error plot as 
in (Jin et al. 2013; Cournac et al. 2012). Dashed line indicates expected values. E. Density plot of the sum of re-
striction site distances (insert size) measured from the mapping location of a read to the nearest restriction site. 
Dashed line indicates median insert size. F. Summary statistics plot showing the read pairs removed by various 
filters. G. Coverage plot of a Hi-C matrix binned at 1kb resolution. Dashed line indicates the chosen coverage cutoff 
at 25% median coverage. 
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Matrix analysis: Chromatin compartments 
 
FAN-C includes implementations of the most es-
tablished analyses and measures for the charac-
terisation of Hi-C matrix properties (Fig. 1B, Fig. 
3A). Contact strength and the preference of con-
tacts between certain genomic regions are partic-
ularly useful measures for gaining a global view 
of chromatin organisation. FAN-C implements 
several tools for this type of analysis: 

i) Contact distance decay plots: the average 
contact strength between loci separated by a cer-
tain distance, also called “expected contacts”, is 
typically shown in a log-log plot of expected con-
tacts vs distance (Fig. 3C). The slope and shape 
of the curve can inform about compaction of 
chromatin at various distance scales (Lieberman-
Aiden et al. 2009); 

ii) Observed/expected (O/E) transformation: a 
central transformation used by many analyses in 
which each pixel represents the (log2-)fold-

Figure 3 FAN-C analysis features. All analyses performed on GM12878 cells (Rao et al. 2014) on the 10kb reso-
lution matrix, unless otherwise noted. A. Schematic representation of the analysis types available for FAN-C, Cooler, 
and Juicer matrices. B. Hi-C matrix plot of a sample region with 10kb resolution. C. Log-log “Distance decay” plot of 
the expected normalised contact frequency against locus distance. D. Log2-observed/expected (O/E) matrix for the 
same region as in A. E. 500kb resolution correlation matrix / A/B compartment plot of chromosome 1 (top) and its 
first eigenvector (EV) (bottom). F. “Saddle plot” showing preferential interactions of active/active and inactive/inac-
tive regions (top), and bar plot showing the cutoffs used for binning regions by the corresponding EV entry magnitude 
(bottom). Note the outlier on the far right. G. Aggregate TAD plot showing the average log2-O/E in and around 
arrowhead domains (Rao et al. 2014). H. Aggregate loop plot showing the average log2-O/E at peaks called by 
HICCUPS (Rao et al. 2014). I-N. Example region on chromosome 18 highlighting additional analyses available in 
FAN-C and the possibility of “genome browser” style plotting. I. Triangular Hi-C matrix plot. J. Heatmap showing 
insulation scores calculated using different window sizes. K. Insulation score track for a window size of 100kb. L. 
Heatmap showing directionality index results for multiple window sizes. M. Directionality index track for a window 
size of 1Mb. N. Gene plot using data from Gencode (v19) (Harrow et al. 2012). 
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change enrichment over the expected contact in-
tensity for a region at that distance (Fig. 3D). Ex-
pected values are stored by FAN-C inside each 
matrix, allowing a fast, dynamic conversion of 
normalised into O/E contacts for various applica-
tions; 

iii) Correlation matrices: the O/E matrix can 
further be transformed into a correlation matrix, 
in which each pixel i, j is calculated as the Pear-
son correlation coefficient between contacts in 
row i with column j (Fig. 3E, top). This highlights 
similarities and differences in contact profiles be-
tween loci, and reveals the partitioning of regions 
into the so-called A and B compartments in a 
plaid-like pattern (Lieberman-Aiden et al. 2009). 
Computationally, these are assigned using the 
sign of the correlation matrices’ first eigenvector 
(EV) (Fig. 3E, bottom). Due to the nature of EVs, 
positive entries do not necessarily correspond to 
the A, and negative to the B compartment. FAN-
C offers the option to integrate information from 
a genomic FASTA file, which utilises the fact 
that the A compartment typically contains more 
GC-rich regions (Lieberman-Aiden et al. 2009) 
to flip the EV entry signs accordingly. The mag-
nitude of the EV entry corresponding to a region 
is a rough measure for the region’s activity 
(Lieberman-Aiden et al. 2009; Flyamer et al. 
2017); 

iv) Saddle-plots: this helpful analysis allows 
the visualisation of interactions between A/B 
compartments of varying strength (Fig. 3F, top). 
To perform this analysis, regions are ordered and 
binned by their compartmentalisation strength 
(their entry in the correlation matrix EV) (Fig. 3F, 
bottom). The O/E values between regions of var-
ying compartment strength provide a useful illus-
tration of A and B segregation, and can further be 
used to quantify the level of compartmentalisa-
tion in the whole genome  (Flyamer et al. 2017). 
A plot of cutoffs used for binning of regions is 
shown underneath the saddle plot (Fig. 3F, bot-
tom). Unusually high or low EV entries, result-
ing, for example, from noisy or low mappability 
regions, can cause artefacts in the saddle plot, and 
are thus easily identifiable. 

 
Matrix analysis: TADs, chromatin loops, and ag-
gregate analysis 
 
High-resolution analyses of Hi-C matrices have 
revealed conserved matrix features that appear to 
be common across higher eukaryotes. These in-
clude topologically-associating domains (TADs) 
(Dixon et al. 2012; Nora et al. 2012; Sexton et al. 
2012), regions of increased self-interaction that 

are separated by insulating boundaries from 
neighbouring domains and are visible as squares 
in a Hi-C matrix (Fig. 3B), and chromatin loops 
(Rao et al. 2014), enriched discrete contacts be-
tween pairs of regions that show up as local areas 
of increased contact intensity in the matrix (Fig. 
3B). FAN-C contains implementations of the 
most widely used algorithms for TAD and loop 
analysis: 

i) Insulation score and directionality index: 
Genomic regions between TADs, characterised 
by their strong insulating effect on neighbouring 
domains, can be identified using the insulation 
score (Crane et al. 2015) (Fig. 3J and K), or the 
directionality index (Dixon et al. 2012) (Kruse et 
al., 2016) (Fig. 3L and M). The resulting insula-
tion tracks, quantifying the insulating effect of 
each region, can be exported to a range of estab-
lished genomic formats, so they can easily be im-
ported into genome browsers or used in other 
analysis pipelines. 

ii) Chromatin loops: discrete peaks in the Hi-
C matrix correspond to loops between genomic 
regions (Rao et al. 2014). To identify these loops, 
FAN-C includes a CPU implementation of HIC-
CUPS, a local-neighbourhood based loop calling 
algorithm (Rao et al. 2014), which can be paral-
lelised on a computational cluster. 

iii) Aggregate plots: to help with the identifi-
cation of global trends across chromatin contact 
datasets, a genome-wide overview of the confor-
mation around TADs, loops, or other genomic 
features such as promoters, can be obtained with 
aggregate plots, which represent an average con-
formation around all regions of interest (Flyamer 
et al. 2017). FAN-C implements the generation of 
aggregate plots from any list of regions or region 
pairs, with useful presets for TAD (Fig. 3G) and 
loop (Fig. 3H) aggregate plots. The aggregation 
process and the look of the aggregate matrix plot 
are highly customisable, for example by control-
ling size and resolution of the matrix, as well as 
colours and annotations of the final plot. 
 
Matrix comparison: highlighting and identifying 
differential features 
 
A central task in Hi-C matrix analysis is the com-
parison of multiple datasets. A number of tools 
have been developed to identify and quantify dif-
ferences between Hi-C matrices (Heinz et al. 
2010; Stansfield et al. 2018; Lun and Smyth 
2015; Ardakany et al. 2019; Djekidel et al. 2018). 
FAN-C focusses on the representation and visu-
alisation of differences, and can therefore func-
tion as a direct extension to existing approaches. 
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Figure 4 FAN-C Matrix and feature comparisons. A-
E. Comparison of mouse embryonic stem cell (ESC) 
and neural precursor cell (NPC) Hi-C matrices at 10kb 
resolution (Bonev et al. 2017). A. Triangular Hi-C ma-
trix plot of ESC and NPC of a sample region on chro-
mosome 1. B. Difference matrix obtained by pixel-wise 
subtraction of contacts in NPC from contacts in ESC. 
C. Fold-change matrix obtained by pixel-wise division 
of contacts in NPC by contacts in ESC. D. Heatmap of 
insulation score differences between ESC and NPC at 
various window sizes. E. Insulation score difference 
track using a 100kb window. 

Principal component analysis (PCA) can pro-
vide a general overview of the similarity of sev-
eral datasets by performing a pairwise compari-
son of matrix entries (Hug et al. 2017; Díaz et al. 
2018). FAN-C implements methods for PCA 
analysis of Hi-C contacts, such as for Hi-C library 
replicates and samples. Since not all pixels in a 
matrix are equally informative, e.g., regions far 
away from the diagonal or inter-chromosomal 
contacts are often dominated by noise, FAN-C in-
cludes a number of filters, such as distance be-
tween loci, or largest variance between samples, 
to only consider the most informative contacts in 
a matrix.  

Side-by-side comparison of matrices or 
measures derived from these are widely used and 
can be very useful in displaying changes in chro-
matin contacts in a visual manner (Fig. 4A). 
However, features specific to only one matrix can 
often be more effectively highlighted by calculat-
ing matrix differences (Fig. 4B) or fold-changes 

(Fig. 4C). FAN-C implements functions to calcu-
late differences and fold-changes on matrices and 
associated tracks, such as the insulation score 
(Fig. 4D and E) or compartment strength. Users 
can also supply external tracks in a compatible 
genomic format (BED, GFF, BigWig) for com-
parison. The resulting tracks and matrices can be 
used as input to any FAN-C function in the same 
fashion as regular objects, including the follow-
ing visualisations. 
 
Plotting: interactive and publication-ready visu-
alisation of Hi-C and related data 
 
FAN-C includes an implementation of an ad-
vanced yet easy to use plotting library for C-de-
rived datasets (Fig. 1C). A number of diagnostic 
plots are generated as part of the fanc auto 
command, including filtering statistics for read 
pairs, biases in ligation frequency, and chromo-
somal coverage. Specific versions of the plots can 
also be produced individually, to allow for a thor-
ough comparison of parameters used in an analy-
sis. Plots related to Hi-C matrix-derived 
measures, such as correlation matrix, saddle, and 
aggregate plots (Fig. 3E-H) are part of the indi-
vidual analysis functions. Plots for time-consum-
ing analyses, such as aggregating matrices over a 
large number of regions, can easily be tweaked 
and adjusted without having to re-compute the 
entire analysis. 

In addition to static plots, FAN-C also in-
cludes a basic interactive genome browser that al-
lows for the interactive browsing of Hi-C and ad-
ditional genomic datasets. These include various 
different representations of Hi-C matrices: square 
(Fig. 3B); triangular (Fig. 3I); mirrored, in which 
two triangular Hi-C matrices are shown above 
and below a horizontal dividing line; and “split”, 
where the diagonal separates two different matri-
ces in a square plot. A slice of a Hi-C matrix can 
also be visualised as a virtual 4C plot, which 
shows the strength of contacts between a specific 
genomic region and a genomic interval, as a line 
plot. This can be useful, for example, to visualise 
specific pairwise interactions, or even to detect 
genomic rearrangements such as translocations 
(Díaz et al. 2018) or genome insertions (Kruse et 
al. 2019). All of the above matrix plots can also 
be used to display difference (Fig. 4B) and fold-
change (Fig. 4C) maps. 

Several plot types are available for region-
based data in a standard genomic data format, in-
cluding support for BED, GFF, BigWig, and Ta-
bix-indexed files. These can be displayed as 
boxes coloured by strand, optionally grouped into 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.932517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932517
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

layers by a user-defined attribute, or - in case they 
contain scores - as bar or line plots. Insulation 
score and directionality index results, which de-
pend on a chosen window size parameter, have a 
dedicated plot type that visualises scores for mul-
tiple window sizes simultaneously in a heatmap 
(Fig. 3J and K, Figure 4D), similar to the previ-
ously suggested “domainogram” (De Wit et al. 
2008). Finally, genome annotations can be plot-
ted with intron/exon visualisations, as well as de-
picting strand information (Fig. 3N). 

In addition to interactive visualisation, FAN-
C includes a powerful plotting API for generating 
vector-based, publication-ready visualisations. 
Each type of interactive plot outlined above is 
also available through the API, and is individu-
ally customisable. Since it is based on the major 
Python plotting library matplotlib, it is easily ex-
tensible and can easily be integrated in existing 
plotting scripts. As a demonstration, everything 
in Fig. 3 and 4 of this manuscript, apart from an-
notations and schematics, has been generated en-
tirely using the FAN-C plotting API. This makes 
FAN-C not only useful for Hi-C matrix analysis, 
but also for users wanting to produce high-quality 
plots from pre-computed matrices to integrate 
alongside their existing visualisations. 

CONCLUSIONS 
 
Here we introduce FAN-C as an open-source, 
versatile, flexible, and powerful tool for Hi-C 
analysis. FAN-C is bundled with an extensive 
documentation, available at https://vaquer-
izaslab.github.io/fanc, and sample datasets at 
https://github.com/vaquerizaslab/fanc. The docu-
mentation includes detailed examples of how to 
use the command line tools and, for advanced ap-
plications, the versatile Python API. When de-
signing FAN-C functionality, we have specifi-
cally tried to include the most widely-used 
measures and analyses with sensible defaults, 
while offering fine-grained control over analysis 
details. A side-by-side comparison with existing 
Hi-C analysis tools shows the broad spectrum of 
analysis options covered by FAN-C (Table 1). 
Due to its feature set and compatibility with the 
most established Hi-C formats, we envisage 
FAN-C to occupy a central position in many Hi-
C pipelines. 
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Table 1. Feature comparison of different Hi-C analysis tools. Tools included in the comparison are Cooler 
(Abdennur and Mirny 2019) / HiGlass (Kerpedjiev et al. 2018), Juicer (Durand et al. 2016b) / Juicebox (Durand et 
al. 2016a), HOMER (Heinz et al. 2010), HiC-Pro (Servant et al. 2015), HiC-bench (Lazaris et al. 2017), TADbit 
(Serra et al. 2017), HiFive (Sauria et al. 2015), HicDat (Schmid et al. 2015), HiCInspector (Castellano et al. 2015), 
HiCUP , HiCExplorer (Ramírez et al. 2018), HiCeekR (Di Filippo et al. 2019). 1: Only for interactive plotting; 2: 
Support for Juicer multi-resolution files, but no native support; 3: In conjunction with HiGlass; 4: In conjunction with 
Juicebox; 5: Provides instructions for mapping, but no dedicated command; 6: Visualisation through Treeview; 7: 
With export for Fit-Hi-C; 8: Through compatibility with HiCPlotter; 9: Via HiCNorm; 10: Basic interaction enrichment; 
11: Only pre-processing; 12: For interactive visualisation; 13: SAM/BAM visualisation through SeqMonk; 14: Limited 
support for other tracks, such as TAD separation score; 15: Only when previously marked in BAM file. 
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User interfaces                           
Command line x x x x x   x  x x x  
Programmatic access (API) x x x    x x x     
Graphical user interface (GUI) 1 3 4      11 12  1 x 
Supported formats                           
Directly compatible                           
Juicer x  x           
Cooler x x          x  
FAN-C x             
Import                           
Juicer x           x  
Cooler x             
TXT file x x  x x  x x  x  x  
FASTQ x  x 5 x x x  5 x x x  
SAM/BAM x  x x x  x x x   x  
hiclib  x            
Export                           
Juicer x  x x x         
Cooler x x          x  
TXT file x   x  x x   x  x x 
Matrix generation                           
FASTQ mapping                           
Simple mapping x   5  x x  5 x x 5  
Iterative mapping x      x       
Ligation junction split x  x x x  x    x   
Read / region pair filtering                           
Mapping Quality x     x      x  
Multi-mapping reads x    x x x    x   
Contaminant DNA x             
Restriction site distance x   x  x x x  x x x x 
Ligation errors x      x x x  x  x 
Self-ligations x   x x x x x x  x x x 
PCR duplicates x   x x x x x   x  15 
Unusual read density    x   x       
Quality statistics x   x x x x x  x  x  
Hi-C processing                           
Fragment-level Hi-C x x  x x x  x x     
Equi-distant bins x x  x x x x x x x  x x 
Multi-resolution Hi-C 2 x      x    x  
Matrix balancing x x  x x x x x x   x x 
Probabilistic normalisation      9  x x     
Matrix merge x x            
Allele-specific matrices   x  x         
Hi-C filtering                           
Minimum coverage x    x  x x      
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Diagonal x             
Matrix analysis                           
Multi-resolution files 2 x          x  
Comparisons                           
PCA (sample comparison) x             
Matrix fold-change x        x   x  
Matrix difference x           x  
Score/feature comparisons x   x  x x       
Correlations    x  x   x   x  
Domains                           
Insulation score x     x        
Directionality index x     x       x 
Arrowhead   x           
TAD calling   x x  x x     x x 
Loops                           
HICCUPS x  x           
Other    x 7 10      x  
Common Hi-C analyses                           
Expected values x  x x   x x x x  x  
AB compartments x  x x     x   x x 
Aggregate Hi-C matrices x           x  
3D modelling       x       
Other                           
Compaction    x          
Visualization                           
Hi-C matrix x x x 6 8 8 x x x x 13 x x 
Triangular Hi-C matrix x x  6 8 8  x      
Other genomic tracks x x x  8 8 x     14 x 
Genes x x x  8 8        
Virtual 4C x x x           
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