Identification of *CDH11* as an ASD risk gene by matched-gene co-expression analysis and mouse behavioral studies

Nan Wu¹, Yue Wang², Yi-Hsuan Pan¹*, Xiao-Bing Yuan¹,³*

¹Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, People's Republic of China

²Hussman Institute for Autism, Baltimore, MD 21201, USA

³Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

*Correspondence and requests for materials should be addressed to Dr. Xiao-Bing Yuan (email: xbyuan@brain.ecnu.edu.cn) or Dr. Yi-Hsuan Pan (email: yihsuanp@gmail.com)
Abstract

Genetic variants of a large group of susceptibility genes have been associated with similar clinical manifestations of autism spectrum disorders (ASD), suggesting convergent function of these genes during brain development. Gene co-expression analysis has emerged as an important tool to identify convergent molecular pathways shared by ASD risk genes. In this study, four gene features, including gene size, mRNA length, mRNA abundance, and guanine-cytosine content, were found to profoundly affect gene co-expression. A new method termed "matched-gene co-expression analysis" (MGCA) was developed to screen for biologically meaningful gene co-expression relationships, taking into the consideration of the effect of these features on gene co-expression. With this method, significant convergence of the expression of high-confidence ASD risk genes (hcASDs) in the brain was demonstrated, and an improved efficacy in the prediction of convergent molecular pathways was achieved. This method also allowed the identification of "homophilic cell adhesion" as one of the convergent pathways of ASD-relevant genes. Analyses of \textit{CDH11} and \textit{CDH9}, two specific genes coding for homophilic cell adhesion molecules, revealed that \textit{CDH11}, but not \textit{CDH9}, was significantly co-expressed with hcASDs. In addition, \textit{Cdh11}-null mice, but not \textit{Cdh9}-null mice, were found to exhibit multiple autistic-like behavioral alterations. These results suggest that \textit{CDH11} is an important ASD risk gene. Results of this study also highlight the importance of considering matched gene features in the analysis of gene co-expression.

\textbf{Keywords:} ASD, gene co-expression analysis, GCA, matched-gene co-expression analysis, MGCA, \textit{CDH11}, \textit{CDH9}
Introduction

Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental diseases with a complex genetic basis. A large number of susceptibility genes whose mutations or copy number variations (CNV) may be associated with ASD have been identified by genetic linkage analyses, genome-wide association studies (GWAS), whole-exome sequencing (WES), or whole-genome sequencing (WGS). However, the functions of most of these genes remain unknown, and a causal relationship between their variations and autism traits has not been established. In order to prioritize investigation of genes and signaling pathways of high relevance to ASD, a method for efficient prediction of the functional importance of a large group of risk genes is vital.

The highly diverse risk genes of ASD are believed to converge in several common molecular pathways closely relevant to autism biology, such as the Wnt signaling pathway, the mammalian target of rapamycin (mTOR) pathway, and dendrite development and synaptic remodeling pathways. Consistent with the hypothesis of functional convergence of risk genes, results of several studies have indicated the convergence of expression profiles of a large group of risk genes. It is generally believed that genes with similar expression profiles are co-regulated or have related functions. Although the co-expression of individual genes may be a coincident event, the co-expression of a group of functionally related genes is unlikely to be a random occurrence. Co-expression of genes within a biological pathway is an indication of their shared functions. Based on this concept, computational analyses of various brain transcriptomes have been conducted to identify potential co-expression networks of ASD risk genes and to discover brain circuits that may be affected by risk genes. In these studies, the correlation coefficient (CC) of a pair of genes is calculated as a measure of their co-expression level based on their expression levels in different brain regions and/or in different developmental stages.
Conventionally, genome-wide gene co-expression networks are constructed after setting an empirically determined threshold of CC6. A major limitation in most of these studies is lack of consideration of effects of confounding factors such as the size, expression level (mRNA abundance), and guanine-cytosine (GC) content of genes on the result of gene co-expression analysis (GCA) 11. Most hcASDs are large genes with a higher expression level in the brain than in other tissues 12. It is unclear whether the size or expression level of genes affect the result of GCA. It is also unknown whether convergent expression is specific to ASD risk genes or a common property of genes with similar features, such as large gene size and high mRNA abundance11.

Some hcASDs code for adhesion molecules, such as members of neurexin and neuroligin families, which mediate pre- and post-synaptic adhesion, respectively, in ASD-related brain circuits13,14. Genetic variants of several other adhesion molecules, including classical and non-classical cadherin family members, are also frequently found to be associated with ASD by GWAS15 and WES studies$^{16-19}$. Cadherin family members play important roles in multiple developmental processes, including cell proliferation, polarization, neuronal migration, axon projection, dendrite arborization, and synapse assembly, by mediating homophilic and heterophilic cell-cell interactions$^{20-24}$. It is unclear as to which cadherin family members are functionally important in ASD and which ASD-relevant brain areas are affected by cadherin mutations.

In this study, we discovered that four gene features, including mRNA abundance, genomic DNA (gDNA) size, mRNA size, and GC content of the coding region of a gene, profoundly affect gene co-expression profiles in the brain. We developed a novel method called “matched-gene co-expression analysis” (MGCA) to examine whether a gene exhibits significant co-expression with hcASDs. This was accomplished by statistically comparing its co-expression level with the hcASD gene set to its co-expression with many permuted gene sets, each containing a set of randomly
selected genes with matched gene features corresponding to each gene in the hcASD gene set (see method). Results of this unbiased analysis demonstrated a significant convergence in the expression profiles of hcASDs. This method also identified convergent molecular pathways of risk genes at a higher accuracy than the [delete the word “conventional” here since it is not conventional] method without considering matched gene features. In addition, this study revealed the functional importance of CDH11, not CDH9, in ASD, and this finding was supported by mouse behavioral studies.

Materials and Methods

Ethics statement

Animal care and handling were performed according to the guidelines for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments were approved by the Animal Care and Use Committees of Hussman Institute for Autism (06012015D), University of Maryland School of Medicine (0515017), and East China Normal University (m20190236).

Data filtering and computation of correlation coefficient

The human brain transcriptome dataset from BrainSpan (www.brainspan.org) (RNA-Seq Gencode v10) was used for gene co-expression analyses. This dataset contained 256 transcriptomes of 16 different brain regions. The developmental stages ranged from post-conception week 8 (PCW8) to 40 years old (40Y). Normalized mRNA expression values were represented by RPKM (Reads Per Kilobase Per Million Mapped Reads). The average mRNA expression level of each gene in all
tissues was considered as the mRNA abundance level of a gene. Gene length and mRNA length were determined based on gene annotations provided by the National Center for Biotechnology Information (NCBI). The GC content in the coding region of a gene was obtained from GCevobase (Ensembl_release_88). Based on statistical analyses of genetic data described previously, 64 risk genes that reached a genome-wide significance threshold were used as the hcASD gene set in the present study (high confidence ASD risk gene set, Suppl. Table S1). Genes with an average expression level lower than the lowest expression level of hcASDs were filtered out (Suppl. Table S1). Perl scripts were written to conduct most calculations. Pair-wise Pearson’s correlation coefficient (CC) was used to indicate the tendency of co-expression of a gene pair. Heatmaps were constructed with the software R based on the CC matrix of 1/100 evenly distributed genes. The mean CC was defined as co-expression coefficient (CEC), which indicates the tendency of co-expression of a gene with a specific set of genes (CEC = \(\frac{1}{M} \sum_{i=1}^{M} CC_i \), \(i = 1, 2, ..., M \); where \(M \) indicates the total gene number of a gene set) or the tendency of co-expression of two gene sets (CEC = \(\frac{1}{N \times M} \sum_{k=1}^{N} (\sum_{i=1}^{M} CC_{k,i}) \), \(k = 1, 2, ..., N \); \(i = 1, 2, ..., M \); where \(M \) and \(N \) represent the total gene number of two different gene sets, respectively).

Gene set definition

For each gene in the ranked gene list of whole-genome genes under one of the four gene ranking conditions (gene length, mRNA length, mRNA level, and GC content), randomly selected genes within ± 100 range of the ranked gene list were defined as feature-matched genes. In addition to the hcASD gene set, the following gene sets were also used: mRand, Rand, TetraM-2515, Top-2515, TetraM-2525-specific, and Top-2515-only. Each mRand gene set contained 64 genes with one of the four gene features of each gene matched with that of the corresponding hcASD gene in
the hcASD gene set. Each Rand gene set contained randomly selected 64 genes without considering matched gene features. TetraM-2515 was the gene set containing 2515 genes that exhibited significant co-expression with the hcASD gene set under all four matched conditions (see figure 3). The Top-2515 gene set contained top 2515 genes with the highest CEC values with the hcASD gene set. TetraM-2515-only and Top-2515-only were non-overlapped genes that were present only in the TetraM-2515 group and the Top-2515 group, respectively.

Gene ontology (GO) analysis

GO analysis was performed using DAVID v6.8 (http://david.ncifcrf.gov/tools.jsp), and the human whole-genome genes provided by DAVID were used as the background list. For identification of significantly enriched GO terms, a corrected p-value of 0.05 (Benjamini-Hochberg method) was used for filtering.

Enrichment network of multiple gene sets

Metascape (http://metascape.org) was used to sort genes in each gene set into 130 functional groups (nodes) based on GO and KEGG annotations. Gene enrichment networks were visualized by Cytoscape (https://cytoscape.org/) using ‘force-directed’ layout with edges bundled for clarity. For identifying enrichment of genes in a specific functional group, the significance was set at a p-value below 0.001 and fold enrichment above 10. Each pie in the network graph represented a node (a group of genes belonging to a GO term). The size of a node was proportional to the number of input genes that fall into the corresponding functional group. The weight of edge between a pair of nodes denoted the similarity score between the two nodes. Within each pie, different slices represented different input gene sets, coded by different colors, and the area of each slice was
proportional to the number of genes of a selected gene set that was associated with the GO term of the node.

Animals

Cdh9 KO mice\(^{26}\) were provided by Dr. Joshua R. Sanes at Harvard University. *Cdh11* KO mice\(^{27}\) were obtained from the Jackson Labs (*Cdh11*\(^{tm1Mta}\)/HensJ, https://www.jax.org/strain/023494). All mice were housed in groups of five with free access to food and water and kept on a 12-hour light/dark cycle. All behavioral tests were carried out on mice 2-5 months of age. All tests were conducted during the daytime. The surface of the apparatus for behavioral tests was cleaned with 50% ethanol between tests. At least 5 min between cleaning and the next test was allowed for ethanol evaporation and odor dissipation.

Genotyping

Genotyping of *Cdh9* KO mice was done by PCR as previously described\(^{26}\). The PCR product for the wildtype (WT) *Cdh9* allele was 550 bp amplified with the primer pair *Cdh9*-P1 (CCA CTA CAG GAA ACC TTT GGG TT) and *Cdh9*-P3 (ATG CAA ACC ATC AGG TAT ACC AAC C), and that of the mutant allele was 430 bp amplified with the primer pair *Cdh9*-P1 and *Cdh9*-P2 (CGT GGT ATC GTT ATG CGC CT). The annealing temperature for *Cdh9* PCRs was 63°C. For genotyping of *Cdh11* KO mice, the primer pair *Cdh11*-P1 (CGC CTT CTT GAC GAG TTC) and *Cdh11*-P2 (CAC CAT AAT TTG CCA GCT CA) was used for amplification of the mutant allele, and the primer pair *Cdh11*-P3 (GTT CAG TCG GCA GAA GCA G) and *Cdh11*-P2 was used for the WT allele. The annealing temperatures for PCR were 63.1°C and 56°C for the mutant and WT
alleles, respectively. Sizes of the PCR products for the mutant and WT alleles were 500 bp and 400 bp, respectively.

Behavioral tests

Open field test. The standard open field test was performed to evaluate gross locomotor activity, anxiety level, and repetitive behavior. The test mouse was allowed to freely explore the open field arena (50 cm × 50 cm) for 30 min. The motion of the mouse was videoed and tracked by an automated tracking system (EthoVision XT 11.5), which also recorded rearing, hopping, turning, self-grooming, moving time, total moving distance, and time spent in the center of the arena (1/2 of total size).

Elevated plus maze test. The standard elevated plus maze (EPM) apparatus consisted of two open and two closed arms, 12 x 2 inches each, connected by a central platform (2 x 2 inches). The maze was 20 inches off the ground. The test mouse was gently placed on the central platform with its head facing one closed arm and was allowed to freely explore for 10 min. The time that the mouse stayed in the two open arms and the frequency of open arm entry were recorded.

Grip strength test. The test mouse was placed on a metal grid on top of a transparent chamber. The grid was quickly inverted, and the time for the mouse to drop off the grid was determined. Five consecutive trials were carried out, and the average hanging time for each mouse was calculated. The maximum hanging time was set for 1 min. After 1 min of hanging, the trial was stopped, and the hanging time was recorded as 1 min.

Horizontal bar test. The mouse was gently placed on a metal wire, with the two forepaws gripping the wire. The length of time which the mouse hung on the wire was measured. The maximum hanging time was set for 1 min. The average hanging time was calculated from 5 consecutive trials.
Rotarod test. Mice were habituated to the rotarod apparatus (Harvard Apparatus 760770) by leaving them on the low-speed rotating rod (4 rpm) for 5 min each day for 3 days and tested on the fourth day on the accelerating rod. The time and the maximum rotation speed that the test mouse was able to maintain the balance on the rotating rod were measured. Five consecutive trials were done for each mouse.

Social preference test. A modified three-chamber apparatus was used. The apparatus comprised 3 rectangular (10 x 15 inches) chambers made of white Plexiglas with a 5-inch gate connecting the two side chambers to the middle chamber. A 3-sided (5 inches wide for each side) fence made of clear Plexiglas was placed inside each side chamber facing the door of the side chambers, creating a 5-inch x 5-inch square area separated from the side chambers but connected to the middle chamber through the door (Fig 6a). The two side chambers were covered by transparent Plexiglas to minimize the diffusion and mixing of odor between chambers. To conduct the test, the test mouse was placed inside the middle chamber and allowed to freely explore the middle chamber and the square zone in each side chamber for 10 min. Three social partner mice were then placed into the fenced area in one side chamber, and the test mouse was allowed to freely explore for another 10 min. Another 3 social partner mice were then placed in the other side chamber, and the behavior of the test mouse was tracked for 10 min. The time that the test mouse spent in each chamber was measured.

Statistical Analysis

Data are presented as mean ± standard error of the mean (SEM). Upper fence test and Grubbs’ test were performed to evaluate whether a specific CEC value was significantly higher than CEC values from 200 randomly selected sets of feature-matched or non-matched non-hcASD genes.
Grubb’s test was done using the “grubbs.test” script in R. For the permutation test, 1000 mRand or Rand gene sets were used; hcASDs were not excluded from the permuted gene selection. Behavioral analyses were performed blind to genotype. Data were analyzed using one-way ANOVA followed by student’s t-test as post hoc analysis. Statistical analyses were performed with SPSS (IBM, Armonk, USA) or GraphPad Prism (GraphPad Software, La Jolla, CA, USA).

Results

Effects of gene features on gene co-expression profiles

The potential effect of the four gene features, including mRNA abundance, mRNA size, gDNA size, and GC content of the coding region, on gene co-expression profiles was first analyzed. The database used for this analysis contained combined transcriptomes of human (both genders) brain tissues from 16 different brain regions, covering a broad range of ages from PCW8 to 40Y. The co-expression of each gene with every other gene in the data set was calculated to determine the CC of each gene pair. The CC values of all gene pairs were then ranked by each of the four gene features and displayed with a pseudo color-coded matrix (Fig 1a). This CC matrix was found to exhibit uneven brightness of color at different areas. The overall brightness was the highest at areas corresponding to medium mRNA abundance, medium to high gDNA or mRNA length, and low GC content (Fig 1a). This result suggests that these four gene features affect gene co-expression profiles.

Most hcASDs were large genes with medium to high mRNA abundance levels, but with no clear bias in GC content (Suppl. Fig S1). To determine whether each of these four gene features affects the co-expression of a gene with the hcASD gene set as a whole, the co-expression
coefficient (CEC, mean CC) of every gene in the entire genome with the hcASD gene set was calculated (blue dots in Fig 2b). A noise-reduced (by data averaging) CEC distribution curve was then generated by plotting the average CEC of each gene with that of its neighboring 20 (±10), 50 (±25), 100 (±50), or 200 (±100) genes under each gene ranking condition. Results showed a bell-shaped curve when genes were ranked by mRNA abundance under all data averaging (noise reduction) conditions, suggesting that genes with medium expression levels are more likely to co-express with the hcASD gene set (Fig 1b, left panel). There was an overall positive correlation between gDNA size or mRNA size of a gene and its CEC with the hcASD gene set (Fig 1b, middle two panels). The CEC curve peaked at about 40% GC content and gradually decreased at areas of higher GC content (Fig 1b, right panel). When genes were placed in stochastic order, CECs were evenly distributed, and the noise-reduced CEC distribution curves were flat (Fig 1c). These results showed that each of these four gene features affected the genome-wide gene co-expression profiles of the hcASD gene set.

Similar genome-wide gene co-expression profiles of the hcASD gene set were observed in transcriptomes of early (8PCW-2Y) and late (4Y-40Y) stages (Suppl. Fig S2a), tissues from both genders, and different brain regions (Suppl. Fig S2b, 2c). These findings suggest that the co-

Figure 1. Effect of gene features on genome-wide gene co-expression profiles

a: Heat map of CCs of genome-wide gene pairs. Genes were ranked according to mRNA abundance, gDNA size, mRNA size, or GC content. b: Genome-wide distribution of CECs of each gene with the hcASD gene set under four different gene ranking conditions. Values on the X-axis represent the rank (order) of each gene on the ranked gene list. Each blue dot represents the CEC value of a gene with the hcASD gene set. Purple, yellow, green, and red dots represent noise-reduced CEC values for the average CEC of ±20, ±50, ±100, and ±200 genes, respectively. Rods at the bottom of each panel show locations of hcASD genes on the ranked gene list. c: Genome-wide distribution of CECs of each gene with the hcASD gene set when genes are in stochastic orders. d: Comparison of distribution curve of noise-reduced CECs of the hcASD gene set with that of the top, median, and bottom gene sets of equal number (64) of genes on the ranked gene list under different gene ranking conditions. Colored rods show the locations of top, median, and bottom gene sets on the ranked gene list.
expression profile of hcASD genes is affected by all four gene features, regardless of developmental stages, gender, and brain areas.

The genome-wide co-expression profile of the hcASD gene set was then compared to those of gene sets with an equal number (64) of genes in the top, middle, or bottom positions of the list of genes (Suppl. Table S2) ranked based on mRNA abundance, mRNA length, gDNA size, or GC content (Fig 1d). When genes were ranked by mRNA abundance, the noise-reduced CEC (mean of ±100 genes) distribution curve of the hcASD gene set largely overlapped with that of the set of genes with median mRNA abundance levels (Middle in Fig 1d); this result is consistent with the observation that most hcASDs are genes of moderate mRNA abundance. The noise-reduced CECs of the highest mRNA abundance gene set (Top in Fig 1d) were positively correlated with mRNA abundance, whereas those of the lowest mRNA abundance gene set (Bottom in Fig 1d) were negatively correlated with mRNA abundance. When genes were ranked by gDNA size or mRNA size, the noise-reduced CEC distribution curve of the hcASD gene set was most similar to, and higher than, that of the gene set of largest gene size (Top in Fig 1d). This result is also consistent with the fact that most hcASDs are large genes. When genes were ranked by GC content, the noise-reduced CEC distribution curve of the hcASD gene set greatly deviated from those of the Top, Middle, and Bottom gene sets (Fig 1d). This result is consistent with the lack of bias in GC content in hcASDs.

Similar co-expression profiles of feature-matched gene sets

The genome-wide gene co-expression profile of the hcASD gene set was then compared to that of 200 non-hcASD gene sets, each comprised of an equal number (64) of randomly selected and feature-matched non-hcASD genes under four different gene ranking conditions (Fig 2a). These
Gene sets were named “matched random” (mRand) gene sets (see methods). In general, the

Figure 2. Convergent expression of hcASD genes revealed by MGCA.

a: Comparison of noise-reduced distribution curve of CECs between the hcASD gene set and
200 matched random gene sets (mRand) under different gene ranking conditions. Values on
the X-axis represent the rank (order) of each gene on the ranked gene list. b: The CEC among
hcASDs (hcASD-hcASD), which is the mean CEC of each hcASD gene with the hcASD gene
set, was compared to the CECs of the following: between the hcASD gene set and each of the
200 mRand gene sets (hcASD-mRand), among mRand genes for each of the 200 mRand gene
sets (mRand-mRand), between the hcASD gene set and each of the 200 Rand gene sets
(hcASD-Rand), and among Rand genes for each of the 200 Rand gene sets (Rand-Rand). Box
plots show ranges of CECs of hcASD-mRand, mRand-mRand, hcASD-Rand, and Rand-Rand
gene set pairs. In each box plot, the central rectangles span the first quartile to the third quartile
of 200 ranked CEC values. The white bar inside the rectangle shows the median CEC value,
and whiskers above and below the box show the maximum and minimum values, respectively.
The dotted line represents the CEC among hcASDs (hcASD-hcASD) in each panel. Three
statistical methods were used to determine whether the CEC of hcASD-hcASD is significantly
higher than that of hcASD-mRand, mRand-mRand, hcASD-Rand, and Rand-Rand. Upper
fences test: red triangles stand for the boundaries of significant difference (1.5 x fence).
Grubbs’ test: * P < 0.05, *** P < 0.001. Permutation test: ### P < 0.001. Student’s t-test was
used to determine whether the CECs of hcASD-mRand and mRand-mRand are significantly
greater than those of hcASD-Rand and Rand-Rand, respectively. @@@ P < 0.001.

gene sets were named “matched random” (mRand) gene sets (see methods). In general, the
genome-wide CEC distribution of hcASDs was similar to that of 200 mRand gene sets under all four gene ranking conditions. These findings further suggest that gene sets with matched gene features have similar genome-wide co-expression profile as the hcASD gene set. However, genes with moderate mRNA abundance had higher noise-reduced CECs with the hcASD gene set than with any of the 200 mRand gene sets. In contrast, both low and high mRNA abundance genes (<1 and >30 RPKM, respectively) had lower noise-reduced CECs with the hcASD gene set than with most mRand gene sets. Moreover, medium to large size genes had higher noise-reduced CECs with the hcASD gene set than with most size-matched mRand gene sets. Most genes, except those with highest levels of GC content, had higher noise-reduced CECs with the hcASD gene set than with most GC content-matched mRand gene sets.

Convergent expression of ASD risk genes

To determine whether hcASDs exhibit a significant tendency of convergent expression, the CEC among 64 hcASDs (hcASD-hcASD) was compared to that of gene sets of equal number of feature-matched genes (mRand-mRand) or randomly selected genes (Rand-Rand) and to the CEC between hcASD and mRand (hcASD-mRand) or Rand (hcASD-Rand). Two hundred each of mRand and Rand gene sets were first analyzed. Results showed that feature-matched gene sets had overall higher CECs than random gene sets under all four matched conditions (@@ in Fig 2b), supporting the notion that genes of similar features tend to co-express with each other. The CEC of hcASD-hcASD (dashed line in Fig 2b), however, was higher than 1.5 times of the interquartile range [Q3 + 1.5 x (Q3-Q1), upper fence] of the CECs of mRand-mRand, Rand-Rand, hcASD-mRand, and hcASD-Rand. This result suggests that hcASDs have a significantly greater co-expression tendency with each other than feature-matched non-hcASD genes or randomly selected
genes. This tendency of co-expression was also greater than that between the hcASD gene set and matched (hcASD-mRand) or non-matched (hcASD-Rand) gene sets. This tendency was confirmed by results of the Grubbs’ test (***) in Fig 2b). To corroborate this finding, permutation test was further conducted with 1,000 permuted sets of genes with matched or non-matched features (see method). The CEC of hcASD-hcASD was still found to be significantly larger (permutation p-value < 0.001) than that of hcASD-mRand, mRand-mRand, hcASD-Rand, or Rand-Rand (### in Fig 2b), supporting a significant convergence in the expression of hcASDs.

Significant convergence in the expression of hcASDs was also observed in transcriptomes of brain tissues from both early (8PCW – 2Y) and late (4Y – 40Y) stages (Suppl. Fig S3a-b), both gender (Suppl. Fig S3c-d), and different brain regions (Suppl. Fig S4a-d). These results indicate a highly conserved mechanism for convergent expression of hcASDs. Combined ranking of -log10 p-values of the Grubbs’ test under all four different matched conditions was performed to determine the relative significance level of co-expression of hcASDs with each other in different brain regions (Suppl. Fig S4e). The top five brain regions with the highest significance levels were cerebellum (CB), dorsal frontal cortex (DFC), orbital frontal cortex (OFC), primary sensory cortex (S1C), and striatum (STR); these are brain regions previously implicated in ASD28-34. These results suggest that hcASDs play important roles in the development and function of these ASD-relevant brain regions.

Convergent signaling pathways of hcASDs

A gene whose CEC with a specific gene set was significantly higher than its CECs with permuted sets of feature-matched genes (p < 0.001) was considered as significantly co-expressed with this gene set. Results of this matched-gene co-expression analyses (MGCA) showed that 3931, 3330,
Growth factor signaling via MAPK/ERK-kinase signaling pathway
Negative regulation of transcription from RNA polymerase II promoter
Negative regulation of adipocytokine secretion
Positive regulation of neuron axon guidance
Negative regulation of axon guidance
Chromatin remodeling
Cellular response to stress
Chemical synaptic transmission
Regulation of axon guidance
Negative regulation of axon guidance
Regulation of axonogenesis
Embryo development ending in birth or egg hatching
Regulation of mRNA export from nucleus
NLS-bearing protein import into nucleus
Gene silencing by RNA
Viral process
mRNA export from nucleus
miRNA metabolic process
Brain development
Regulation of cell morphogenesis
Protein polyubiquitination
Mitotic nuclear envelope disassembly
Cell surface receptor signaling pathway
Regulation of axonogenesis
Regulation of axon guidance
Regulation of nervous system development
Brain development
Embryo development ending in birth or egg hatching
miRNA metabolic process
Methylation
Nucleocytoplasmic transport
ncRNA metabolic process
Protein sumoylation
Spliceosome
Ubiquitin mediated proteolysis
Nucleic acid phosphodiester bond hydrolysis
Regulation of cellular response to stress
5629, and 5854 genes matched in mRNA abundance, mRNA size, gDNA size, and GC content, respectively, were significantly co-expressed with hcASDs. Among them, 2515 genes were identified as significantly co-expressed with hcASDs under all four matched conditions; this gene set was named TetraM-2515 (Fig 3a, Suppl. Table S3). It was then compared with 2515 genes that had the highest CECs with the hcASD gene set (referred to as Top-2515 gene set, Suppl. Table S3). TetraM-2515 and Top-2515 gene sets had 1500 genes in common (Overlapped) and each had 1015 non-overlapped genes (TetraM-2515-only and Top-2515-only, respectively) (Fig 3b, Suppl. Table S3). Most Top-2515 genes had a medium mRNA abundance level, a large gene size, and a high CEC value (> 0.4), whereas TetraM-2515 genes had a broad range of mRNA abundance, gene size, and CEC value (Fig 3b). Gene ontology (GO) enrichment analysis of the TetraM-2515 gene set revealed that genes involved in signaling processes closely associated with ASD were significantly over represented, including the following: “covalent chromatin modification”, “protein polyubiquitination”, “homophilic cell adhesion”, “axon guidance”, “negative regulation of dendrite development”, “synapse assembly”, “Wnt signaling pathway”, and “RNA splicing”.

Although the Top-2515 gene set also showed significant enrichment of genes in “covalent chromatin modification”, “protein ubiquitination”, and “Wnt signaling pathway”, several important ASD-relevant pathways, including “homophilic cell adhesion”, “axon guidance”,
“dendrite development”, and “synapse assembly”, were not significantly enriched (Fig 3c, Suppl. Table S4).

To further compare the functional relationship between hcASDs and TetraM-2515 or Top-2515 gene sets, integrated GO enrichment network of multiple gene sets was constructed. Genes of TetraM-2515-only, Top-2515-only, Overlapped, and the hcASD gene sets were divided into 130 nodes based on GO and KEGG annotations. These 130 nodes formed 20 networks. Based on the number of genes from each of the four gene sets in each node, some networks were found to be dominated by TetraM-2515-only genes, some were dominated by Top-2515-only genes or Overlapped genes, and one network was dominated by hcASDs (Fig 3d, Suppl. Table S5). Interestingly, none of hcASDs were in networks dominated by Top-2515-only genes. The hcASD-dominated network connected the networks dominated by TetraM-2515-only genes or Overlapped genes (Fig 3d, Suppl. Table S5). These results indicated that hcASDs have a closer functional relationship with TetraM-2515 genes than with Top-2515 genes. This finding also showed the effectiveness of MGCA in identifying ASD-related genes and pathways.

Co-expression of cadherin genes with hcASDs

Consistent to previous findings7, MGCA revealed that “homophilic cell adhesion” was one of the most significantly over-represented pathways of TetraM-2515 genes (Fig 3c, d; Suppl. Table S4, S5). Some cell adhesion-related genes, such as $CDH2^{24}$, that exhibited significant co-expression with hcASDs, encode homophilic adhesion molecules of the cadherin family (Suppl. Table S6); these proteins play important roles in brain circuit development. Several cadherin family members with no known roles in the brain were also found to be co-expressed with hcASDs. These genes included multiple members of the protocadherin β gene cluster and Dachsous Cadherin-Related 1
(DCHSI), suggesting that these cadherin family members also participate in the development and function of ASD-relevant brain circuits. Some cadherin genes were not significantly co-expressed with hcASDs under any of the matched conditions; these genes were referred to as tetra-negative genes (TetraN; Suppl. Table S6). Several recent genetic studies have implicated two type II cadherins, CDH11 and CDH9, in ASD and several other psychiatric diseases. Interestingly, CDH11 and CDH9 belonged to TetraM and TetraN gene sets, respectively, suggesting that CDH11, but not CDH9, is closely associated with ASD.

Autistic-like behavioral traits of Cdh11-null mice

To further evaluate the functional relevance of CDH11 and CDH9 to ASD, the behaviors of Cdh11 knockout (KO) and Cdh9 KO mice were investigated. In the open field test (OFT), both male and female Cdh11-null mice spent a longer time exploring the central area of the open field arena than wild type (WT) littermates (Fig 4a, d). Heterozygous littermates showed a similar but less significant pattern. Total locomotion and average moving speed of Cdh11 KO mice were slightly reduced compared to WT littermates (Fig 4b, c). Cdh9-null mice of both gender were largely normal in the OFT (Fig 4e-g).

In the elevated plus maze test, female Cdh11-null mice visited the open arm more frequently and spent a significantly longer time in the open arm. Heterozygous females spent a slightly but not statistically significant more time in the open arm (Fig 4h, i). The increased time and frequency of open arm exploration by female Cdh11-null mice is consistent with results of a previous study using the same mouse line of mixed gender. Male Cdh9-null mice showed longer exploration of the open arm, but female Cdh9-null mice did not, although female heterozygotes showed an increased frequency of open arm entry (Fig 4j, k).
WT Het KO

Open field (Cdh11)

Moving distance (cm)

Moving speed (cm/s)

Center time (s)

Open field (Cdh9)

Moving distance (cm)

Moving speed (cm/s)

Center time (s)

Elevated plus maze (Cdh11)

Time in open arms (s)

Frequency into open arms

Elevated plus maze (Cdh9)

Time in open arms (s)

Frequency into open arms

* CC-BY-NC-ND 4.0 International license author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
Individuals with ASD often have a weaker grip strength than age-matched control individuals41. The gripping strength test and the horizontal bar test showed that both male and female \textit{Cdh11}-null mice exhibited significantly shorter hanging duration than WT littermates (Fig 5a, b), indicating reduced gripping strength and/or impaired motor coordination. The gripping strength of \textit{Cdh9}-null mice was normal (Fig 5c).

The rotarod test was conducted to evaluate motor-related functions of KO mice. Since female and male mutant mice displayed similar behavioral traits in most of the above behavioral tests, only female mice were analyzed in this test. Compared to WT littermates, \textit{Cdh11}-null mice, but not \textit{Cdh9}-null mice, stayed longer on the rotarod and endured a higher rotation speed in the initial trial (Fig 5d-g). In subsequent trials, \textit{Cdh11}-null mice did not display significant improvement in performance (Fig 5d, e), indicating impaired motor learning. The enhanced performance of \textit{Cdh11}-null mice in the initial trial was very similar to the phenotype of several other well-characterized ASD mouse models and suggested increased repetitive motion of these mutant animals42.

Repetitive behaviors were then evaluated by measuring the duration and frequency of self-grooming within a 10-minute period, during which mice were in a novel or a relatively familiar environment. As shown in figure 5h-i, during the first 10 minutes of exploring a novel chamber,
Cdhl11-null mice exhibited a significantly greater frequency of self-grooming than WT littermates, indicating elevated repetitive behavior in a novel environment. Cdhl11-null mice also showed a significantly higher frequency of self-grooming than WT littermates during the second 10-minute period (Fig 5j, k), indicating elevated repetitive behavior even in a relatively familiar environment. No such behavioral alteration was observed in Cdhl9-null mice (Fig 5l, m).

The modified three-chamber social preference test was conducted to evaluate the sociability of mutant mice. One main modification was an enlargement of the area for housing social partner mice in order to reduce their potential stress and anxiety. Another major modification to the protocol was using three mice instead of a single mouse as social partners. This was done to increase the availability of social cues and reduce the variability of test results caused by variability in the sociability of social partners (Fig 6a). In addition, the two side chambers were covered on the top to slow the diffusion and mixing of odorant cues. Results showed that female Cdhl11-null mice exhibited a significant preference to social partner mice than to an object and to novel partners than to familiar ones (Fig 6b, c). However, compared to WT littermates, mutant mice spent a significantly longer time in the middle chamber but a significantly shorter time interacting with
partner mice (Fig 6b, c), indicating reduced sociability. In contrast, Cdh9-null mice did not show any abnormality in this test (Fig 6d, e).

Figure 6. Modified three-chamber test of female Cdh11 and Cdh9 mutant mice.

a: Schematic diagrams of standard and modified three-chamber tests. b and c: Results of sociability and social novelty preference tests of Cdh11 mutant mice (Cdh11 KO: n=9, Het: n=8; WT: n=9). d and e: Results of sociability and novelty preference tests of Cdh9 mutant mice (Cdh9 KO: n=13, Het: n=5, WT: n=10). Data are Mean ± SEM. Statistical difference was evaluated with one-way ANOVA followed by Student’s t-test. * P < 0.05, ** P < 0.01, *** P < 0.001, compared to the duration spent in the other side chamber. # P < 0.05, compared to WT littermates.
Discussion

Detection of ASD-relevant genes and convergent pathways by MGCA

In this study, we discovered that four gene features, including mRNA abundance, length of mRNA, size of gDNA, and GC content, profoundly affected gene co-expression profiles in the brain. This finding highlights the necessity of considering the influence of these gene features in GCA, although how these gene features affect gene co-expression profiles is unclear. Instead of setting a threshold of CC for determination of gene co-expression as in most other studies, we screened for significant co-expression relationships by comparing the co-expression of a gene with the hcASD gene set to that with permuted gene sets of matched gene features. Only genes that had a CEC with the hcASD gene set significantly higher than its CECs with permuted sets of feature-matched genes were considered to be co-expressed with hcASDs. This MGCA paradigm allowed demonstration of convergent expression of hcASDs and avoided the potential bias caused by experience-based setting of a threshold for CC in GCA. The effectiveness of MGCA was demonstrated by finding more signaling pathways known to be involved in ASD biology than using the method without considering matched gene features (Fig 3c, d). Using MGCA, we successfully predicted the functional importance of the CDH11 gene, which would otherwise be ignored due to a relatively low CC with most hcASDs.

In this study, four different matched conditions were considered, and only the co-expression relationship with a permutation p-value less than 0.001 was considered as significant. Such a high stringent selection greatly increased the accuracy of co-expression detection, although some meaningful co-expression relationships might have been filtered out. Combined with findings from GWAS, WES, and WGS, MGCA can be an efficient way to determine the functional relevance of a large group of candidate genes in ASD. It can also be used to identify high-relevant
risk genes and convergent signaling pathways in other complex brain disorders, and to predict the molecular function and core signaling pathways associated with any risk genes.

Multiple members of the cadherin family as risk factors for ASD

Cadherins have been shown to accumulate in synaptic junctions and regulate dendrite development and synapse maturation\(^{43-46}\). Several cadherin family members have been implicated in ASD\(^{16,47-55}\). For example, some members of the *FAT* subfamily of protocadherins have been found by WES to be associated with ASD\(^{47,16}\). A genetic association study of a large cohort of ASD individuals and matched control has identified genes in the protocadherin \(\alpha\) gene cluster (*PCDHA*) as ASD risk genes\(^{48}\). Mutations in the *PCDH19* gene have been shown to cause early-onset epilepsy, and many affected individuals also display autistic features\(^{49-51}\). The atypical cadherin *CELSR2* was speculated to be responsible for the Joubert syndrome, a disease with a high prevalence of autistic features\(^{56}\). It is uncertain whether other cadherins are also high-risk factors. Using MGCA, we found that a group of cadherin superfamily members exhibited a high co-expression with hcASDs, suggesting shared functions with hcASDs and a role in ASD etiology. Among them, several protocadherins, mainly *PCDHBs*, exhibited significant co-expression with hcASDs (Suppl. Table S6). The functions of these *PCDHBs* in the brain remain to be determined.

MGCA also revealed the importance of examining the function of cadherins in CB, DFC, OFC, S1C, and STR, as these regions exhibited the most significant level of convergence in the expression of hcASDs. *Cdh11*-null mice displayed enhanced repetitive activities. Several brain regions including the cortex, CB, and STR are involved in the control of repetitive behaviors\(^{57}\). It is likely that cadherins, *Cdh11* in particular, may play important roles in mediating synapse
formation during the wiring of circuits in these brain areas. Consistent with this postulation, our recent work showed \textit{Cdh11} expression in ASD-associated sub-regions in the CB of developing mouse brain58.

\textbf{CDH11 as an ASD risk gene}

We discovered that the classical cadherin family member \textit{CDH11} exhibited significant co-expression with hcASDs and demonstrated the functional importance of \textit{CDH11} by behavioral analysis of \textit{Cdh11}-null mice. In human studies, a \textit{de novo} partial deletion of \textit{CDH11} was observed in a sporadic case of non-syndromic ASD, mild intellectual disability, and attention deficit hyperactivity disorder (ADHD)35. A case-control association study revealed a high prevalence of a homozygous single nucleotide variant rs7187376C/C in patients with ASD. Several other coding variants of \textit{CDH11} were also discovered in ASD individuals35. Behavioral changes that we have observed in \textit{Cdh11}-null mice, including hyperactivity, increased repetitive behavior, and reduced sociability, are highly consistent with those of the non-syndromic ASD case with \textit{de novo} partial deletion of \textit{CDH11}35. This observation supports the notion that loss-of-function of the single risk gene \textit{CDH11} is sufficient to cause several major autism traits. Behavioral phenotypes of ASD are known to be highly heterogeneous. Some individuals with ASD are hypoactive with elevated anxiety, and some are co-diagnosed with ADHD and show reduced anxiety59-62. The genetic and neurobiological mechanisms underlying this behavioral heterogeneity have not been fully determined. Further investigation with a larger cohort of patient families is needed to determine whether loss-of-function mutations of \textit{CDH11} are associated with ADHD.

Most genetic variants found in patients with ASD are heterozygous. In some behavioral tests, heterozygous \textit{Cdh11} KO mice showed a similar trend of behavioral alterations as
homozygous KO mice, but not at a statistically significant level. Considering the complex genetic basis of ASD and the impact of environmental factors, it is conceivable that monogenic haplodeficiency of an important risk gene causes a relatively mild behavioral phenotype in mice. However, more severe behavioral deficits may result if the haplodeficiency is combined with other genetic or environmental factors. Nevertheless, our findings suggest that \(\text{CDH11} \) is significantly co-expressed with hcASDs and that its mutations may exert a causal effect in autism traits. \(\text{Cdh11} \) KO mice would be an important animal model for dissecting the circuit mechanisms underlying a subgroup of ASD with hyperactivity and for screening drugs targeting this subgroup of ASD.

No strong link between \(\text{CDH9} \) and ASD

\(\text{CDH9} \) plays an important role in the establishment of specific synaptic wiring in both the hippocampus and the retina\(^{26,63} \). Its association with ASD was suggested by several GWAS studies\(^{64,65} \). The main evidence linking \(\text{CDH9} \) to ASD is the strong association of the single nucleotide polymorphism rs4307059 located at the intergenic region between \(\text{CDH10} \) and \(\text{CDH9} \) with ASD\(^{64} \). However, this rs4307059 genotype was not correlated with the expression of either \(\text{CDH9} \) or \(\text{CDH10} \) in adult brains\(^{64,66} \), and whether a correlation exists in fetal brains is unknown. Recently, an antisense noncoding RNA of the moesin pseudogene 1 (MSNP1AS) was shown to be transcribed from the locus harboring rs4307059. Alterations in this pseudogene, instead of \(\text{CDH9} \) or \(\text{CDH10} \), were postulated to be responsible for ASD\(^{66-68} \). Whether \(\text{CDH9} \) deficiency is a causal factor for ASD remains undetermined. Our MGCA showed that, unlike \(\text{CDH11} \), \(\text{CDH9} \) was not co-expressed with hcASDs. This is an indication that CDH9 may not play an important role in the wiring of ASD-relevant circuits. Consistent with this notion, behavioral tests showed that \(\text{Cdh9} \)-null mice exhibited a very mild behavioral abnormality only in the elevated plus maze test,
but not in any other tests. Together with recent findings by other researchers, our results suggest that \textit{CDH9} deficiency may not have a major influence on autism traits.

\textbf{Availability of data and materials}

Perl scripts for data analysis are available upon request to the corresponding authors.

\textbf{Authors' contributions}

N.W., Y.W., and Y.P. analyzed data and generated figures. C.W. bred animals and performed genotyping. X.Y. and conducted behavioral tests. Y.P., and X.Y. designed the study. Y.P. and X.Y. wrote the paper.

\textbf{Competing interests}

The authors declare that they have no competing interests.

\textbf{Acknowledgments}

We thank Dr. Chao-Hung Lee and Elizabeth Benevides for editing the manuscript. This work was funded by the National Science Foundation of China (31771116, 31871501) and Hussman Foundation (HIAS15006). X.Y. was supported by the Simon Foundation (296143).

Supplementary figures

Figure S1. The distribution of hcASDs in the matrix under different gene ranking conditions.

Genes in the entire genome were ranked by gDNA size, mRNA size, GC content (horizontal axis), and mRNA abundance level (vertical axis). Each blue dot represents data from one gene in the genome, and each red dot represents data from one hcASD gene. Values of both horizontal and vertical axes are the ranks (orders) of each gene in the entire genome under a designated gene ranking condition, not absolute values.

Figure S2. CEC distribution curves for different developmental stages, different gender, and different brain regions.
a: Noise-reduced CEC distribution curves under different gene ranking conditions for early and late developmental stages. b: Noise-reduced CEC distribution curves under different gene ranking conditions for different gender c: Noise-reduced CEC distribution curves under different gene ranking conditions for different brain regions. Mean CEC of a ±100 gene window was used for noise reduction.

Figure S3. Convergent expression of hcASDs in different stages and different gender.
The CEC among hcASDs (hcASD-hcASD) was compared to the CECs of the following: between the hcASD gene set and each of the 200 mRand gene sets (hcASD-mRand), among mRand genes for each of the 200 mRand gene sets (mRand-mRand), between the hcASD gene set and each of the 200 Rand gene sets (hcASD-Rand), and among Rand genes for each of the 200 Rand gene sets (Rand-Rand). Box plots show ranges of CECs of hcASD-mRand, mRand-mRand, hcASD-Rand, and Rand-Rand. In each box plot, the central rectangles span the first quartile to the third quartile of 200 ranked CEC values. The white bar inside the rectangle shows the median CEC value, and whiskers above and below the box show the maximum and minimum values, respectively. The dotted line represents the CEC of hcASD-hcASD in each panel. Three statistical methods were used to determine whether the CEC of hcASD-hcASD is significantly greater than that of hcASD-mRand, mRand-mRand, hcASD-Rand, or Rand-Rand. a and b show data from early (8PCW-2Y) and late (3Y-40Y) developmental stages, respectively. c and d show data from male and female brain tissues, respectively. Upper fences test: red triangles stand for the boundaries of significant difference (1.5 x fence). Grubbs’ test: * P < 0.05, *** P < 0.001. Permutation test: ### P < 0.001. Student’s t-test was used to determine whether the CECs of hcASD-mRand and mRand-mRand were significantly greater than those of hcASD-Rand and Rand-Rand, respectively. @@@ P < 0.001.
Figure S4. Convergent expression of hcASDs in different brain regions.

a-d: The CEC among hcASDs (hcASD-hcASD) was compared to the CECs between the hcASD gene set and each of the 200 mRand gene sets (hcASD-mRand) under four different gene ranking conditions. Box plots show the range of CECs of hcASD-mRand in different brain regions. The dotted line represents the CEC among hcASDs (hcASD-hcASD) in each tissue. Three statistical methods were used to determine if the CEC of hcASD-hcASD is significantly higher than that of hcASD-mRand in each brain region. Upper fences test: red triangles stand for boundaries of significant difference. Grubbs’ test: * P < 0.05, ** P < 0.01, *** P < 0.001. Permutation test: ## P < 0.01, ### P < 0.001. Histograms show -Log (P-value) of Grubbs’ test in different brain regions.

e: Significance scores of the co-expression of hcASDs in different brain regions. Score = N – R. N: number of brain regions. R: integrated ranking (average of 4 conditions) of -Log (P-value) value in the Grubbs’ test under four different gene ranking conditions.

Supplementary tables

Suppl. Table S1. List of total genes and hcASDs in this study.

Suppl. Table S2. List of Top, Middle, and Bottom genes under each of the four gene ranking conditions.

Suppl. Table S3. List of TetraM-2515, Top-2515, TetraM-2515-only, and Top-2515-only genes.

Suppl. Table S4. GO entries of TetraM-2515 and Top-2515 genes.
Suppl. Table S5. Node and cluster information in integrated GO enrichment networks of hcASDs, TetraM-2515-only, Top-2515-only, and Overlapped genes.

Suppl. Table S6. List of TetraM- and TetraN-cadherins.