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Abstract 

Schizophrenia is a biologically complex disorder with multiple regional deficits in cortical 

brain morphology. In addition, interindividual heterogeneity of cortical morphological 

metrics is larger in patients with schizophrenia when compared to healthy controls. 

Exploiting interindividual differences in severity of cortical morphological deficits in 

patients instead of focusing on group averages may aid in detecting biologically 

informed homogeneous subgroups. The Person-Based Similarity Index (PBSI) of brain 

morphology indexes an individual’s morphometric similarity across numerous cortical 

regions amongst a sample of healthy subjects. We extended the PBSI such that it 

indexes morphometric similarity of an independent individual (e.g., a patient) with 

respect to healthy control subjects. By employing a normative modeling approach on 

longitudinal data, we determined an individual’s degree of morphometric dissimilarity to 

the norm. We calculated the PBSI for sulcal width (PBSI-SW) in patients with 

schizophrenia and healthy control subjects (164 patients, 164 healthy controls; 656 MRI 

scans) and associated it with cognitive performance and cortical sulcation index. A 

subgroup of patients with markedly deviant PBSI-SW showed extreme deficits in 

cognitive performance and cortical sulcation. Progressive reduction of PBSI-SW in the 

schizophrenia group relative to healthy controls was driven by these deviating 

individuals. By explicitly leveraging interindividual differences in severity of PBSI-SW 

deficits, neuroimaging-driven subgrouping of patients is feasible. As such, our results 

pave the way for future applications of morphometric similarity indices for subtyping of 

clinical populations. 
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Introduction 

Neurobiological research and biomarker discovery efforts in the field of 

psychiatry have been substantially hampered by insufficient biological validity of current 

diagnostic categories, stalling the development of precision medicine in psychiatry (1). 

Given the large body of evidence for clinical, etiological and biological heterogeneity 

within psychotic disorders, extensive research is being conducted to identify more 

biologically homogeneous subgroups based on clinical, neuroimaging, 

neurophysiological, molecular, or biochemical variables, which might improve 

knowledge of the underlying pathophysiology, and guide stratified treatments (2–6).  

Schizophrenia is consistently associated with gray and white matter deficits that 

vary in severity and some of these abnormalities are progressive over time (7–9). 

However, the clinical utility of brain imaging for guiding diagnosis and treatment is 

challenged by the large heterogeneity in location and severity of brain deficits among 

patients with schizophrenia (10–12). The degree of interindividual heterogeneity in brain 

deficits is not evenly distributed across the cortex in schizophrenia (11). Large 

interindividual heterogeneity in cortical deficits affecting a particular brain region in 

schizophrenia may be the result of separable neurobiological underpinnings of brain 

anatomy in that region across individuals, thus pointing to different biological subgroups 

within the disorder. In contrast, regional brain deficits with low interindividual variability 

may point to mechanisms shared by a significant proportion of patients with 

schizophrenia, thus supporting their involvement in its general pathophysiology (11–13). 

Collectively, these findings underline the importance of focusing on interindividual 

differences in severity in addition to assessing mean differences (14).  
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Novel morphometric approaches assessing the similarity of cortical morphology 

across regions, instead of focusing on single regions, may thus be well suited for 

assessing the widespread, variable cortical deficits in schizophrenia (15,16). A recent 

cross-sectional study showed that in three independent samples of adults with 

schizophrenia, average global and regional morphometric similarity was reduced, and 

this reduction was associated with schizophrenia-related genes (15). However, it is 

unclear if reductions in morphometric similarity in schizophrenia are progressive over 

time. In addition, reduced morphometric similarity was based on mean differences, 

which, in combination with widespread enlarged dispersion of cortex morphology in 

schizophrenia, suggests that results may not be equally applicable to all patients. The 

recently developed Person-Based Similarity Index (PBSI) combines the concepts of 

morphometric similarity and interindividual heterogeneity by calculating an individual’s 

morphometric similarity to the other individuals in a group across cortical regions (16).  

To identify patients whose brain morphology is markedly dissimilar to that of a 

normative group, we extended the PBSI for patients such that it indexes the degree of 

similarity between the morphological profile of an individual patient to those of healthy 

control subjects. We chose to use sulcal width as morphological measure, thus 

calculating PBSI for sulcal width (PBSI-SW). Increased sulcal width has been related to 

schizophrenia (17) and to decreases in cortical thickness, and reductions in cortical gray 

and white matter, thus suggesting that changes in sulcal width may reflect the result of a 

combined effect of gray and white matter atrophy (18–20). Sulcal morphology 

assessments are particularly suited for lifespan studies, as they are based on MRI gray 

matter-cerebrospinal fluid contrast.  Measurements based on gray-white matter contrast 
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(e.g. cortical thickness) might be confounded by the age-dependency of this contrast 

when using standard MRI sequences (21). 

We leverage a large longitudinal lifespan sample of participants with 

schizophrenia and healthy participants to investigate whether the lifespan PBSI-SW 

trajectories differ between patients and healthy subjects, and whether such differences 

are driven by individuals with extremely deviating PBSI-SW. In addition, we investigate 

whether extreme PBSI-SW deviance is associated with deficits in cognition and -in line 

with the neurodevelopmental hypothesis of schizophrenia- the sulcation index, a marker 

of perinatal neurodevelopmental perturbations and which is associated with 

schizophrenia (22,23).  
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Methods and Materials 

Sample 

From a large longitudinal sample of patients with schizophrenia and healthy 

participants aged 16-70 years (at baseline) we included individuals who had T1-

weighted magnetic resonance imaging (MRI) scan acquisitions at two time points. 

Detailed information regarding diagnostic criteria and clinical assessments of the 

Utrecht Schizophrenia project and the Genetic Risk and Outcome of Psychosis 

(GROUP) consortium, Utrecht, The Netherlands are described in (22–24). In brief, 

patients with a DSM-IV diagnosis of schizophrenia were recruited in various inpatient 

and outpatient facilities. A sample of healthy controls was recruited in the same 

geographic areas. Participants in the patient and control groups with major medical or 

neurological conditions, or an estimated intelligence quotient (IQ) below 80 were 

excluded. Further details on the specific inclusion and exclusion criteria for each cohort 

can be found in the Supplement. The IRB at the University Medical Center Utrecht 

reviewed the study protocols and provided ethical approval. All participants provided 

written informed consent.   

For purposes of the current study, we  included images of patients who fulfilled 

DSM-IV criteria for schizophrenia both at baseline and follow-up (Figure 1A), had 

sufficient scan quality (QA procedures are described in more detail in the Supplement), 

and matched patient and control groups for sex, resulting in 164 healthy participants 

and 164 patients, contributing a total of 656 scans. Demographic, cognitive, clinical and 

imaging information for the final sample can be found in Table 1. For every participant, 

we recorded age at scan, sex, handedness, and estimated IQ values (based on four 
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subtests of the short forms of the Wechsler Adult Intelligence Scale (WAIS) or the WAIS 

III, see (25) for further details). For the patient group, clinical severity was assessed 

using Positive and Negative Syndrome Scale (PANSS) scores at baseline and at follow-

up (26). Duration of illness was calculated by subtracting age at the onset of illness from 

age at the time of scan. 

Data on antipsychotics usage around time of scan was retrieved: we determined 

the cumulative intake (until around the time of each scan) of antipsychotic medication 

converted into chlorpromazine milligram equivalents (CPZ) per participant. 

 

MRI acquisition and image analysis 

Two scanners (same vendor, field strength and acquisition protocol) were used.  

Participants were scanned twice on either a Philips Intera or Achieva 1.5 T and a T1-

weighted, 3-dimensional, fast-field echo scan with 160-180 1.2 mm contiguous coronal 

slices (echo time [TE], 4.6 ms; repetition time [TR], 30 ms; flip angle, 30°; field of view 

[FOV], 256 mm; in-plane voxel size, 1x1 mm2) was acquired. All included participants 

had their baseline and follow-up scan on the same scanner.  

 

  Image processing 

Images were analyzed using the FreeSurfer analysis suite (v5.1) with default 

settings to provide detailed anatomical information customized for each individual (27–

29). The FreeSurfer analysis stream includes intensity bias field removal, skull stripping, 

and generation of a “ribbon” image and reconstruction of gray and white matter 

surfaces. Total brain tissue volume was derived as the sum of total gray and white 
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matter volumes. For all images, sulcal segmentation and identification was performed 

with BrainVISA software (v4.5) using the Morphologist Toolbox using default settings 

(30). Sulcal width and the sulcation index were calculated using the default protocols 

within BrainVISA (17,31). Using BrainVISA sulci nomenclature the recognized sulci 

were pooled in eleven (a priori determined) bilateral areas, identical to the regions used 

by (32). See the Supplement for a detailed description of BrainVISA image processing, 

the calculation of sulcal width and the sulcation index, BrainVISA nomenclature and a 

graphical illustration of the eleven regions. FreeSurfer and BrainVISA derived 

measurements have been validated via histological and manual measurements and 

have demonstrated to show good test–retest reliability (18,33–35). 

 

PBSI-SW 

The PBSI-SW calculation was based on (16). Briefly, at each time point and for 

each individual we computed a PBSI-SW value using a five-step procedure (see Figure 

1). First, we created the sulcal width profile of each participant by concatenating the 

corresponding morphometric measures (sulcal width for eleven bilateral sulcal regions). 

Second, for each of the nc controls we calculated the interindividual Spearman’s rank 

correlation coefficients between the participant’s sulcal width profile and the profiles of 

the other nc-1 controls. Third, for each patient we calculated the interindividual 

Spearman’s rank correlation coefficient between the participant’s sulcal width profile 

and the profiles of all nc controls. Fourth, for each control the nc−1 interindividual 

correlation coefficients for sulcal width were averaged to yield one PBSI-SW per control. 

Fifth, for each patient the np interindividual correlation coefficients for sulcal width were 
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averaged to yield one PBSI-SW per patient. Higher PBSI-SW (with a maximum of 1)

denotes greater similarity between an individual’s sulcal width profile and those of the

(other) controls. The R script used for the PBSI-SW calculation is available from github. 

 

Figure 1. Pipeline for computing a Person-Based Similarity Index (PBSI) for healthy

controls (based on (16)) and patients.  
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Statistical analyses 

All analyses were performed in R (https://cran.rstudio.com/). 

Longitudinal trajectory of PBSI-SW 

To investigate the longitudinal trajectories of PBSI-SW over the age range, 

generalized additive mixed models (GAMMs) were used (36). The GAMM fitting 

technique represents a flexible routine that allows nonparametric fitting with relaxed 

assumptions about the relationship between brain morphological metrics and age (37).  

The  technique  is  well  suited  for  fitting  nonlinear  relationships  through  local 

smoothing  effects, independent  of  any  predefined  model, and robust to age-range 

selections and distant data points (38). GAMM models were implemented to examine 

age, diagnosis (i.e., patient vs control), as well as an age×diagnosis interaction while 

controlling for scanner, total brain volume and the random effect of the individual. We 

first fitted models including a sex and age×sex term but these terms were not 

significant, we therefore excluded these terms from the model. Including scanner as a 

random effect did not change the results. To better understand the age×diagnosis 

interaction, GAMM estimates for age were also implemented and visualized for patients 

and controls separately.  

 

Cross-sectional comparisons 

 To compare PBSI-SW between groups at baseline and follow-up separately, 

PBSI-SW values were residualized for age, scanner, and total brain volume, at each 

time point and within each diagnostic group. Next, after adding back group mean values 
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for each metric we used the Welch t-test to assess differences between the diagnostic 

groups at baseline and follow-up. 

 

Normative modeling 

 First, we created a normative reference for PBSI-SW, by calculating the average 

and standard deviation of the residualized PBSI-SW values for the healthy control 

subjects. Then, individual deviance of a participant’s PBSI-SW with respect to the 

normative group was determined as follows. We calculated for each participant at each 

time point the distance between his/her residualized PBSI-SW value and the normative 

residualized PBSI-SW value in terms of standard deviations, i.e. a PBSI-SW-Z value for 

each participant. This PBSI-SW-Z value reflects how deviant the PBSI-SW value of a 

given individual is compared to the normative value at a certain time point, 

independently of the participant’s age, scanner and total brain volume. For comparison, 

we also calculated Z-values using the method described in (39). The Pearson 

correlation coefficient between them was 0.94 (see SFigure 3). Then, we applied a 

threshold, |PBSI-SW-Z| > 2, (as in (40)) to identify individuals whose morphometric 

profile is markedly dissimilar (at any time point) to the morphometric profiles of the 

normative group: the deviants. 

To assess the impact of deviance on the PBSI-SW lifespan trajectories we 

recalculated GAMM models without healthy control and patient deviants. To investigate 

whether the group of patients with deviant PBSI-SW shared differential clinical, 

cognitive and morphological characteristics relative to the rest of the patients we 

compared age at baseline, sex, PANSS total scores and positive, negative and general 
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subscores at baseline, estimated IQ at baseline, and sulcation index at baseline and 

follow-up between the deviant and non-deviant patient groups. Finally, we also 

assessed whether image quality differed in patients at the extremes of the distributions. 

 

Regional contribution to PBSI-SW 

 To calculate the regional contribution to the PBSI-SW values we used a leave-

one-region-out method, i.e., recalculating each individual’s PBSI-SW after removing one 

region at a time. The region’s contribution was calculated by subtracting the 

recalculated residualized PBSI-SW values from the original residualized PBSI-SW value 

(as in (16)). Average regional contributions were calculated for healthy controls, non-

deviant patients and deviant patients at baseline and follow-up. A larger positive 

contribution meant that the recalculated PBSI-SW decreased more, i.e., the region 

contributed more to the original PBSI-SW value. A more negative contribution value 

meant that excluding the region increased the recalculated PBSI-SW more, i.e., the 

region had a larger negative impact on the original PBSI-SW. 

The regions were then ranked by contribution value from healthy control 

participants at baseline. For each region, contributions were compared between healthy 

controls, patient non-deviant and deviant groups using the Welch t-test and corrected 

for multiple comparisons using FDR (baseline and follow-up, 66 comparisons). Effect 

sizes for mean differences are given as Cohen’s d. 
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Results 

Longitudinal trajectory of PBSI-SW 

The PBSI-SW trajectories were significantly different between groups (age-by-

diagnosis interaction: F=14.57, p<0.001, see Table 2 and Figure 2A). Patients displayed 

a close to linear reduction with age. Controls showed an increase of PBSI-SW until 30 

years approximately after which PBSI-SW remained stable. Cross-sectional 

comparisons of PBSI-SW between patients and controls at baseline and at follow-up 

demonstrated a significant difference with small to intermediate effect size at follow-up 

(mean PBSI-SW for controls = 0.80, for patients = 0.78, t = 3.23, df = 278.16, p = 0.001, 

mean difference 0.02, 95% confidence interval (CI): 0.01,0.04, Cohen’s d = 0.36), see 

Figure 2B. 
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Figure 2: A) Generalized additive mixed models (GAMM) for Person Based Similarity

Index for Sulcal Width (PBSI-SW). Four fits over the spaghetti plot are shown: 1)

healthy controls, 2) patients, 3) non-deviant healthy controls, 4) non-deviant patients.

Deviants were participants with |PBSI-SW-Z| > 2, i.e., markedly deviating from the

normative morphometric value at any time point. GAMMs included total brain volume

and scanner as covariates. The age×diagnosis interaction was no longer significant

after removal of the deviants. B) PBSI-SW values for healthy controls and patients at

baseline and follow-up. PBSI-SW was residualized for age, scanner and total brain

volume. B, baseline; FU, follow-up.  
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PBSI-SW deviance (PBSI-SW-Z) 

As expected, more patients than controls had significant deviance at any of the 

time points: 10 controls had PBSI-SW-Z < -2 and 19 patients (χ2 = 3.06, df = 1, p = 

0.04). Of these 19 patients, 16 patients showed a decrease in PBSI-SW-Z between 

baseline and follow-up (see Figure 3A), which is, assuming equal proportions of 

increase and decrease, a disproportional high number (χ2 = 8.89, df = 1, p < 0.01). In 

non-deviant patients the effect was opposite, 57 out of 145 participants showed a 

decrease (χ2 = 6.63, df = 1, p = 0.01). We recalculated lifespan PBSI-SW trajectories 

excluding deviants and the age×diagnosis interaction was no longer significant (see 

Table 2 and Figure 2A) 

The PBSI-SW-Z < -2 deviant group of 19 patients did not differ from the other 

patients in terms of age, sex, scanner, baseline total PANSS scores, positive, negative 

and general PANSS subscores, or image quality metrics (see SFigure 4), but they did 

differ in estimated IQ at baseline (mean (se) estimated IQ non-deviants: 98.66 (1.64), 

deviants: 89.00 (2.14), t = -3.32, df = 21.06, p < 0.01, mean difference: -9.66, 95%CI: -

16.46,-3.79, Cohen’s d = -0.62, see Figure 3B). In order to deal with potential problems 

related to unbalanced and small sample sizes we repeated the comparison of estimated 

IQ between the deviant patient group and the non-deviant group using non-parametric 

permutation testing (1000 permutations, F = 4.145, p < 0.05).  

Patients had a lower sulcation index compared to healthy control subjects at 

follow-up (mean (se) sulcation index healthy control subjects: 1.68 (0.01), patients: 1.64 

(0.01), t = -3.44, df = 321.79, p < 0.01, mean difference -0.04, 95%CI: -0.06,-0.02, 

Cohen’s d = -0.38). The deviant patient group had a lower sulcation index compared to 
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the non-deviant patient group (mean (se) sulcation index non-deviants: 1.65 (0.01), 

deviants: 1.60 (0.02), t = -2.40, df = 13.25, p = 0.03, mean difference -0.05, 95%CI: -

0.13,-0.01, Cohen’s d = -0.76, see Figure 3C and 3D below). For patients, estimated IQ 

at baseline and sulcation index at baseline and follow-up were not significantly 

associated with PBSI-SW (all p-values > 0.05, see Figure S5) 

 In controls, the PBSI-SW-Z < -2 deviant group did not differ from the non-deviant 

healthy control group in estimated IQ at baseline (mean (se) estimated IQ non-deviants: 

112.57 (1.49), deviants 113.00 (3.08), t = 0.13, df = 10.63, p = 0.90, mean difference 

0.43, 95%CI: -7.12,7.99, d = 0.03) and sulcation index at baseline (mean (se) sulcation 

index non-deviants: 1.68 (0.01), deviants: 1.71 (0.05), t = 0.72, df = 9.52, p = 0.49, 

mean difference 0.03, 95%CI: -0.08,0.15, d = 0.34) or follow-up (mean (se) sulcation 

index non-deviants: 1.70 (0.01), deviants: 1.73 (0.04), t = 0.59, df = 9.65, p-value = 

0.57, mean difference 0.03, 95%CI: -0.07,0.13, d = 0.25). 
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Figure 3: A) Person Based Similarity Index for Sulcal Width Z values (PBSI-SW-Z) for

thirteen deviant patients (six deviant patients did not have estimated IQ at baseline

available) with PBSI-SW-Z < -2 at any time point. All but one patient had a more

negative PBSI-SW-Z value at follow-up as compared to baseline. B)  Average and

standard error for estimated Intelligence Quotient (IQ) at baseline for controls and

patients, non-deviant patients and deviant patients. C) Sulcation Index at baseline and

follow-up for deviant patients. D) Average sulcation index and standard error at follow-

up for controls and patients, non-deviant patients and deviant patients. 
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Regional contribution to PBSI 

 In controls, regional contribution showed a similar pattern at baseline and follow-

up with frontal regions contributing negatively to PBSI-SW (see Figure 4 and Figure 5 ), 

i.e. leaving the region out increased the PBSI-SW. This pattern was also present in non-

deviant patients. For the temporal basal region at follow-up the contribution was 

significantly higher in non-deviant patients compared to controls after correction for 

multiple comparisons (t = -4.032, df = 270.77, p < 0.01, mean difference -0.01, 95%CI: -

0.013,-0.004, Cohen’s d = -0.45). The deviant patient group did not differ from the other 

groups in contribution value for any of the regions.  
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Figure 4: Average and standard error of each region’s contribution value to the Person
Based Similarity Index for Sulcal Width (PBSI-SW) for healthy controls, non-deviant and
deviant patients (PBSI-SW-Z < -2 at any time point) at baseline (A) and at follow-up (B).
Regional contribution values to PBSI-SW were calculated as (average PBSI-SW(all-
regions-included) - average PBSI-SW(leave-one-region-out)), thus a negative
contribution value means that leaving the region out increased the PBSI-SW, i.e., the
region had a negative effect on the PBSI-SW. Regions are ranked by contribution
values for healthy controls at baseline. **: p<0.01 between controls and non-deviant
patients after FDR correction (baseline and follow-up, controls vs non-deviant patients,
controls vs deviant patients, non-deviant patients vs deviant patients).
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Figure 5: Baseline and follow-up heat maps for the contribution of each of the 11 sulcal 

regions to the Person Based Similarity Index for Sulcal Width (PBSI-SW) in healthy 

controls and non-deviant patients. Sulci are identified by sulcal median meshes (30). 

The regional contribution value to PBSI-SW was calculated as (average PBSI-SW(all-

regions-included) - average PBSI-SW(leave-one-region-out)), thus a negative 

contribution value implies that leaving the region out increases the PBSI-SW, i.e., the 

region has a negative effect on the PBSI-SW.  
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Discussion 

This study is the first to use the Person Based Similarity Index (PBSI), a recently 

developed metric that quantifies variation in brain structural profiles across the cortex at 

the level of the individual. We extended the PBSI such that it quantifies the similarity 

between the sulcal width (SW) profile of an individual patient with schizophrenia to that 

of healthy control subjects. This approach allowed us to index for each individual patient 

the level of deviance of PBSI of sulcal width (PBSI-SW) with respect to a normative 

group (i.e., healthy control subjects). Our main finding is that significant deviance of 

PBSI-SW was present in a small group of patients only. These patients had more 

severe deficits in estimated IQ, and a lower sulcation index at follow-up when compared 

to non-deviating patients and controls. On average, schizophrenia was associated with 

progressive reduction of PBSI-SW over the lifespan when compared to controls, but this 

diagnostic effect was primarily driven by the relatively small subgroup of participants 

who deviated markedly in PBSI-SW.  

Schizophrenia is characterized by complex and heterogeneous neurobiological 

and genetic underpinnings. Indeed, schizophrenia is a highly polygenic condition, with 

many common alleles of small effect size cumulatively conferring risk for the disorder 

(41). Brain structural deficits are spread out over the cortex and there is great variability 

in the pattern of regional deficits among patients (7,12). This makes global measures 

such as the PBSI-SW suitable metrics as they summarize deviations in multiple regions 

instead of focusing on a single region (16). Using the adapted PBSI approach we were 

able to translate the heterogeneity of the pattern of sulcal width deficits present in 

patients with schizophrenia into variation in a single number, PBSI-SW. However, in 
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contrast to the traditional case-control approach, this variation could be used as a 

measure of individual deviance and therefore facilitate detection of biologically more 

homogeneous subgroups with schizophrenia (14).  

Marked deviance of PBSI-SW was sparse, limited to only a small subset of 

patients. This finding is in line with recent reports using normative modeling showing 

that deviance (with respect to a control group) for cortical thickness was present only in 

small subsets of patients with schizophrenia, bipolar disorder or autism spectrum 

disorders (39,40,42). Furthermore, in patients with bipolar disorder, greater deviance 

was associated with worse performance on tasks of processing speed and executive 

functioning but not with age. However, deviance was not used to classify patients into 

subgroups (39). The current study extends these findings by demonstrating that while 

PBSI-SW did not correlate significantly with cognitive performance and global sulcation 

in the whole group, patients with markedly deviating PBSI-SW had lower cognitive 

performance and decreased global sulcation compared to non-deviating patients. The 

clinical importance of PBSI-SW deviance was further underlined by our finding that the 

effect of diagnosis on change of PBSI-SW over time was driven by the same small 

subset of deviating patients. This stresses further the limitations of focusing on common 

effects in traditional case-control designs to appropriately appraise the complex 

neurobiology of psychiatric disorders.   

Leveraging the heterogeneity among patients with schizophrenia, bipolar 

disorder or schizo-affective disorder,  patients with one of these three psychotic 

disorders have been regrouped into three biotypes using brain electrophysiological and 

neuropsychological measurements; these subgroups were validated by assessing the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.932210doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.932210


23 
 

patients’ structural brain deficits (2). The biotype that clustered on low cognitive control 

performance also had the severest structural brain deficits compared to the other 

biotypes but diagnostic categories were spread out over the three biotypes. These 

findings together with ours demonstrate large interindividual differences in severity, type 

and location of structural brain deficits in schizophrenia and strongly suggest that 

criteria from diagnostic manuals do not adhere to neurobiology. As such, proposed 

alternative approaches such as the Research Domain Criteria may be important for 

harmonizing clinical characterization and neurobiological underpinnings (1).  

Abnormally increased sulcal width and decreased sulcation index have been 

associated with schizophrenia, bipolar disorder and senescence (17,20,21,31). 

Schizophrenia has been associated with aberrant early life neurodevelopmental 

processes. Indeed, exposure to adverse environmental factors during fetal life may 

increase the risk of developing psychotic disorders (43). Sulcal morphology is strongly 

linked to early life neurodevelopmental processes responsible for changing the cortical 

surface from lissencephalic to its archetypical folded appearance (18,44). The sulcation 

index may be used to retrospectively assess potential impairments in these processes. 

However, the sulcation index also reduces during adolescence as a consequence of 

cortical thinning and white matter growth (19). Synaptic pruning,  trophic glial and 

vascular changes and/or cell shrinkage in combination with genetics may be underlying 

decreases in sulcation (18,45,46); some of these processes may be particularly 

pronounced in schizophrenia (47,48). 

Although we did not find differences between deviants and non-deviants on 

imaging quality metrics, we cannot rule out subtle effects (e.g. more severely ill patients 
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moving slightly more during scan acquisition and taking more medication) on the 

results. Future studies focusing on this question are warranted. IQ was estimated from 

the performances on four subtests of the Wechsler Adult Intelligence Scale III; this 

procedure may show some limitations in particular populations relative to using full 

scale IQ scores (49). However, it has shown good validity as a measure of general 

cognitive ability, thus supporting the association between marked deviance and poorer 

cognitive performance (50). Although we assessed a large sample of patients with 

schizophrenia, the small proportion of patients with considerable deviance in PBSI-SW 

led to small sample sizes for the clinical and cognitive characterization. If applied to 

larger (multicenter) samples, our methodological approach could enable identification of 

larger groups with marked deviance to further characterize this phenotype using 

additional clinical and cognitive measures. Moreover, although the sample was well 

characterized, with diagnostic, clinical and cognitive assessments conducted by 

experienced professionals, we did not have information about development or 

premorbid adjustment.  Adding such variables, and extending the range of age at onset 

with patients with adolescent-onset or even childhood-onset schizophrenia, could aid in 

characterizing the subgroup with marked deviance, especially considering its 

association with deficits in sulcation index, as a measure of developmental impairments. 
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Table 1. Demographics, cognitive, clinical and imaging characteristics of patients with schizophrenia and healthy controls. The total amount of scans is 912. 1Age of onset is the 
age at which the first positive symptom occurs. 2Duration of illness is calculated based on the date of the appearance of first positive symptoms of schizophrenia until the date of 
scan. 3Antipsychotic treatment data is not available for all the patients included (82 patients had medication information). Cumulative doses were calculated per time of scan and 
given in chlorpromazine equivalents using standard conversion factors and estimated by the daily doses of each of the antipsychotics used by the patient. Significance calculated 
by Chi-square or Welch t-tests when appropriate. Significant diagnostic differences are for one or both timepoints. *<0.05, **<0.01, ***<0.001. IQ, Intelligence quotient; PANSS, 
Positive and Negative Symptom Scale. 

 
 
 

 
                  Schizophrenia patients                               Healthy controls  

Baseline Follow-up Baseline Follow-up P 

Number of subjects 164  164   

Sociodemographics      

Sex, n (%), males 126 (77) 126 (77)  

Age, years: mean (SD) 29.52 (8.95) 33.60 (9.21) 31.04 (11.65) 35.05 (11.88)  

Education, years: mean (SD) 11.94 (2.68) 12.11 (2.85) 13.61 (2.65) 13.66 (2.63)  

Cognitive and clinical variables      

Estimated-scale IQ total: mean (SD) 97.62 (16.56) 102.97 (20.47) 112.59 (15.78) 115.46 (16.11) *** 

Age of onset, years: mean (SD)1 21.63 (5.70)    

Duration of illness, years: mean, (SD)2 6.77 (7.61) 11.23 (8.27)    

PANSS score, total: mean (SD) 62.78 (18.78) 50.24 (14.30)    

Total Positive symptoms 14.83 (5.78) 12.36 (4.63)    

Total Negative symptoms 16.17 (6.01) 12.09 (5.66)    

Total General symptoms 30.88 (11.04) 24.99 (7.05)    

Antipsychotics3
       

Without medication, n (%) 7 (4.14) 7 (4.16)    

Exclusively typical, n (%) 23 (13.6) 12 (7.14)    

Exclusively atypical, n (%) 89 (52.66) 92 (54.76)    

Both, n (%) 4 (2.36) 2 (1.19)    

Cumulative dose exposure (mg):  
mean (SD)  275837.8 (397345.9) 945754.9  

(1285851)    

Missing, n (%) 103 (61.54)  102 (60.71)    

Imaging       

Total brain volume 1181.27(112.70) 1171.50 (115.42) 1218.15 (111.20) 1213.57 (110.68) ** 
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Intercept Estimate SE t p 
  Diagnosis -1.302e-02 7.032e-03 -1.851 0.0649 
  Total brain volume 6.446e-05 3.100e-05 2.079 0.0382 
  Scanner 7.521e-03 7.407e-03 1.015 0.3105 
     
Slope edf Ref.df F p 
  s(age) 2.204 3 11.864 0.07815 
  s(age):patients 1.042 3 14.570 0.00975 
     
Outliers removed     
Intercept Estimate SE t p 
  Diagnosis -7.168e-03 3.941e-03 -1.819 0.069694 
  Total brain volume 5.944e-05 1.781e-05 3.338 0.000919 
  Scanner 1.031e-03 4.172e-03 0.247 0.804988 
     
Slope edf Ref.df F P 
  s(age) 2.5759 3 24.974 0.000234 
  s(age):patients 0.5552 3 1.217 0.139211 
Table 2. Generalized Additive Model estimates for age, diagnosis, scanner, total brain volume and 
age*diagnosis for Person Based Similarity Index for Sulcal Width (PBSI-SW) before and after outlier removal. 
Smooth function (edf) as well as degrees of freedom (Ref.df) and F-statistic and associated significance 
(***=p<0.001;**=p<0.01;*=p<0.05). 
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