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Abstract (150 words) 

Cortical	layer-specific	ultra-high	field	MRI	has	the	potential	to	provide	anatomically	precise	biomarkers	and	mechanistic	insights	

into	neurodegenerative	disease.	Here	we	compare	cortical	layer-specificity	for	a	7T	multi-parametric	mapping	(MPM)	500μm	

whole	brain	acquisition	to	the	von	Economo	and	Big	Brain	post-mortem	histology	atlases.	We	also	investigate	the	relationship	

between	7T	MPMs,	layer-specific	gene	expression	and	Huntington’s	disease	related	genes,	using	the	Allen	Human	Brain	atlas.	

Finally	we	link	MPM	cortical	depth	measures	with	white	matter	connections	using	high-fidelity	diffusion	tractography	from	a	

300mT/m	Connectom	MRI	system.	We	show	that	R2*	across	cortical	depths	is	highly	correlated	with	layer-specific	cell	number,	

cell	staining	intensity	and	gene	expression.	Furthermore	white	matter	connections	were	highly	correlated	with	grey	matter	R1	

and	R2*	across	cortical	depths.	These	findings	demonstrate	the	potential	of	combining	7T	MPMs,	gene	expression	and	white	

matter	connections	to	provide	an	anatomically	precise	framework	for	tracking	neurodegenerative	disease.	

Introduction  

The	advent	of	ultra	high	field	(UHF)	MRI	now	enables	us	to	image	the	human	brain	at	sub-millimetre	resolution	in-vivo.	

Combining	this	technological	advance	with	quantitative	MRI	(qMRI)	has	now	made	in-vivo	histology	MRI	(hMRI)	a	distinct	

possibility	(Trampel	et	al.,	2019).	Multi-parametric	maps	(MPMs)	include	qMRI	parameters	of	effective	transverse	relaxation	

rate	(R2*),	which	are	sensitive	to	both	myelin	and	iron	(Weiskopf	et	al.,	2013;	Edwards	et	al.,	2018)	and	longitudinal	relaxation	

rate	(R1),	which	is	mainly	sensitive	to	myelin	and	to	a	lesser	extent	to	iron	(Stuber	et	al.,	2014).		

		 The	human	cerebral	cortex	is	composed	of	distinct	cytoarchitectonic	cortical	layers,	which	are	defined	based	on	cell	

density,	cell	size	and	cell	type.	In-vivo	high-resolution	histology	using	UHF	qMRI	has	the	potential	to	provide	cortical	layer-

specific	measures	that	directly	relate	to	these	patterns	of	cell	composition	and	associated	layer-specific	gene	expression.	

Achieving	in-vivo	layer-specificity	would	further	our	understanding	of	the	relationship	between	brain	microstructure	and	

function	and	how	this	is	associated	with	sensory,	motor	and	cognitive	processing.	In-vivo	high-resolution	UHF	qMRI	could	also	

enable	us	to	investigate	neurodegenerative	disease	with	much	greater	anatomical	precision.	For	example	in	Alzheimer’s	disease,	
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superficial	cortical	layers	show	greatest	vulnerability	(Romito-DiGiacomo	et	al.,	2007;	Busche	et	al.,	2008).	However	in	both	

Parkinson’s	disease	(Pasquereau	et	al.,	2016)	and	amyotrophic	lateral	sclerosis	(Braak	et	al.,	2017)	deep	cortical	layers	are	

selectively	vulnerable,	while	in	end	stage	Huntington’s	disease	post-mortem	studies	show	involvement	of	layers	3,	5	and	6	(Rub	

et	al.,	2016).	Thus	layer-specific	in-vivo	MRI	has	the	potential	to	provide	mechanistic	insights	into	layer	selective	vulnerability,	as	

well	as	anatomically	precise	cortical	biomarkers.	In	this	study,	we	aim	to	link	and	characterize	the	sensitivity	of	layer-specific	

cortical	measures	using	7T	qMRI	in	healthy	humans	in-vivo	to	established	histological	and	gene	expression	measures.	For	this	

purpose,	we	relate	R1	and	R2*	at	different	cortical	depths	from	high-resolution	MPMs	to	post-mortem	whole	brain	histology	

atlases,	gene	enrichment	atlases	and	whole	brain	connectomics	derived	from	diffusion	MRI.	This	is	an	important	step	in	the	

development	of	UHF	qMRI	as	a	tool	for	in-vivo	histology.	

	 Here	we	focus	on	two	post-mortem	whole	brain	histology	atlases	that	provide	layer-specific	quantitative	cell	measures,	

the	von	Economo	Koskinas	atlas	and	the	Big	Brain	atlas.	Von	Economo	and	Koskinas	published	their	seminal	work	the	“Atlas	of	

Cyto-architectonics	of	the	Adult	Human	Cerebral	Cortex”	in	1925.	They	parcellated	the	cerebral	cortex	into	56	regions	based	on	

cell	type,	cell	size	and	cell	count	(von	Economo,	1925).	By	translating	the	von	Economo	regions	into	comparable	Freesurfer	

Desikan	regions	(Scholtens	et	al.,	2015)	demonstrated	highly	significant	correlation	with	post-mortem	cortical	thickness	and	in-

vivo	MRI	cortical	thickness.	Subsequently	the	von	Economo	regions	themselves	have	been	mapped	to	MRI	template	space	

(Scholtens	et	al.,	2018;	van	den	Heuvel	et	al.,	2019).	This	enabled	us	to	directly	test	the	sensitivity	of	UHF	qMRI	parameters	to	

cytoarchitecture.	

	 The	Big	Brain	atlas	(Amunts	et	al.,	2013)	was	created	more	recently.	The	brain	of	a	65	year-old	neurotypical	male	was	

sectioned	into	20μm	slices,	stained	for	cell	bodies	and	reconstructed	in	3-D.	Machine	learning	approaches	(Wagstyl	et	al.,	2018;	

Wagstyl	et	al.,	2019)	have	been	employed	to	define	cortical	layers	in	the	Big	Brain	data	providing	a	comparable	cortical	layer	

histology	atlas	to	the	von	Economo	atlas.	Using	the	von	Economo	and	Big	Brain	atlases	we	could	therefore	test	the	hypothesis	

that	UHF	qMRI	parameters	near	the	pial	surface	are	correlated	with	cell	measures	in	superficial	layers	1-3,	UHF	qMRI	

parameters	at	mid-cortical	depth	are	correlated	with	layer	4	and	UHF	qMRI	parameters	near	the	grey	matter/white	matter	

(GM/WM)	boundary	are	correlated	with	deep	cortical	layers	5-6.	
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	 Going	beyond	cell	histology,	the	Allen	Human	Brain	Atlas	(AHBA)	provides	a	densely	sampled	atlas	of	regional	gene	

expression	across	the	human	brain	(Hawrylycz	et	al.,	2012).	For	the	AHBA	six	brains	underwent	post-mortem	MRI	scanning	

enabling	the	mapping	of	gene	expression	to	in-vivo	MRI	data.	This	allowed	us	to	link	qMRI	parameters	across	cortical	depths	

with	layer-specific	gene	expression	(Burt	et	al.,	2018)	and	genes	associated	with	disease	pathophysiology	(Rittman	et	al.,	2016;	

McColgan	et	al.,	2018).	We	could	then	test	the	hypothesis	that	UHF	qMRI	parameters	across	cortical	depths	are	related	to	layer-

specific	gene	expression	in	keeping	with	our	hypothesis	for	UHF	qMRI	parameters	and	cytoarchitecture.	We	also	investigated	

the	relationship	between	regional	UHF	qMRI	parameters	and	the	regional	expression	of	genes	implicated	in	Huntington’s	

disease	(HD)	pathogenesis	as	an	indicator	of	the	potential	application	of	these	measures	in	neurodegeneration.			

	 To	demonstrate	the	sensitivity	of	UHF	qMRI	parameters	to	anatomical	variability	across	cortical	depths	we	related	

them	to	white	matter	connections.	Based	on	a	priori	anatomical	knowledge	intratelencephalic	neurons	are	found	in	cortical	

layers	2-6	and	project	to	other	cortical	regions	and	to	the	striatum,	forming	cortico-cortical	and	cortico-striatal	white	matter	

connections,	while	pyramidal	tract	neurons	are	found	in	layer	5	and	project	to	the	striatum,	forming	cortico-striatal	connections	

and	also	connections	to	deeper	structures.	Cortico-thalamic	neurons	are	found	in	layer	6	forming	cortico-thalamic	connections	

(Molyneaux	et	al.,	2007;	Shepherd,	2013).	We	therefore	hypothesised	that	cortico-cortical	connections	would	be	highly	

correlated	with	UHF	qMRI	parameters	across	all	cortical	depths,	while	cortico-striatal	and	cortico-thalamic	connections	would	

be	highly	correlated	with	UHF	qMRI	parameters	near	the	grey	matter/white	matter	(GM/WM)	boundary.	

	 In	order	to	test	these	hypotheses	we	acquired	whole	brain	MPMs	at	7T	with	500μm	resolution	in	a	group	of	10	healthy	

young	adults.	We	first	present	the	R1	and	R2*	profiles	across	cortical	depths.	We	then	investigate	the	relationship	of	these	

measures	across	cortical	depths	with	von	Economo	cortical	layer	cell	count,	Big	Brain	cell	staining	intensity	and	layer-specific	

gene	expression	using	the	AHBA.	In	addition	we	use	the	AHBA	to	explore	the	relationship	of	these	whole	brain	qMRI	parameters	

with	expression	of	genes	implicated	in	HD.	Finally,	we	link	cortical	depth	UHF	qMRI	parameters	with	specific	anatomical	a	priori-

defined	white	matter	connections	using	diffusion	tractography	and	connectomics,	providing	a	high	anatomical	precision	

framework	that	can	be	used	in	future	to	track	neurodegenerative	disease.		
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Figure	1.	Assessment	of	layer-specificity	of	MRI.	Exploring	R1	and	R2*	quantitative	7T	MRI	across	cortical	depths	using	

cytoarchitectonics,	connectomics	based	on	diffusion	weighted	imaging	(DWI)	with	ultra-strong	gradients	and	regional	gene	

expression.	
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Results 

R2*	and	R1-based	myelination	patterns	across	cortical	regions	and	depths	

The	first	aim	of	this	study	was	to	use	UHF	qMRI	to	reproduce	known	myelination	patterns	across	both	primary	sensory	and	

association	cortices.	We	therefore	expected	that	both	effective	transverse	relaxation	rate	(R2*)	and	longitudinal	relaxation	rate	

(R1)	would	be	higher	in	primary	sensory	areas,	such	as	the	primary	visual	cortex	V1,	than	the	rest	of	the	cortex.	To	this	aim,	R2*	

and	R1	were	sampled	at	50%	equi-volume	cortical	depth	and	averaged	across	all	participants.	Visual	inspection	of	R1	and	R2*	

revealed	high	values	in	the	motor	and	auditory	cortices	and	in	the	primary	visual	area	V1	(Fig.	2)	consistent	with	post-mortem	

histology	and	cortical	myelination	patterns	reported	for	3T	T1-weighted/T2-weighted	images	(Glasser	et	al.,	2016),	3T	R1	maps	

(Sereno	et	al.,	2013),	7T	R1	maps	(Haast	et	al.,	2016)	and	R2*	maps	(Marques	et	al.,	2017).		
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Figure	2.	R2*	and	R1	values	sampled	at	50%	cortical	depth	projected	on	Freesurfer	average	inflated	cortical	surfaces	(a)	R2*	

(in	s-1)	(b)	R1	(in	s-1).	Regions	of	interest	(ROIs)	from	the	human	connectome	project	multi-modal	parcellation	1.0	(HCP-MMP	1.0)	

atlas	are	outlined	on	the	inflated	surfaces.	

	

	

	 We	expected	that	the	myelination	patterns	estimated	at	7T	for	the	visual,	sensorimotor,	auditory	and	parietal	cortices	

would	be	comparable	to	those	at	3T	(Sereno	et	al.,	2013;	Glasser	et	al.,	2016).	This	allowed	us	to	directly	compare	the	same	

HCP-MMP	1.0	atlas	based	ROIs	at	3T	and	7T.		

	 For	the	visual	cortex	R1	was	highest	for	primary	visual	cortex	(V1),	consistent	with	previous	T1w/T2w	ratio	maps	and	R1	

maps	at	3T,	however	the	middle	temporal	area	(MT),	which	is	reported	as	heavily	myelinated	at	3T	showed	lower	R1	values	

(Sereno	et	al.,	2013;	Glasser	et	al.,	2016)	compared	to	other	regions	in	the	visual	cortex.	These	patterns	were	generally	

consistent	across	depths	(Fig.	3	(a)).	For	R2*	both	V1	and	region	MT	values	were	greater	nearest	the	pial	surface,	and	then	
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initially	decreased	in	the	middle	depths	before	increasing	between	the	middle	and	deep	depths	reaching	highest	values	at	the	

GM/WM	boundary	(Fig.	3	(b)).		

	 Sensorimotor	myelination	patterns	were	consistent	with	patterns	of	T1w/T2w	ratio	maps	at	3T	and	with	post	mortem	

histology	(Hopf,	1968;	Geyer	et	al.,	1996;	Glasser	et	al.,	2016).		Brodmann	Area	(BA)	3b	showed	higher	R1	values	than	BA	3a,	

with	the	exception	of	the	two	most	superficial	depths.	BA	2	and	BA	1	showed	low	values	for	both	R1	and	R2*,	across	all	cortical	

depths.	The	values	in	the	primary	motor	cortex,	BA	4,	were	highest	relative	to	other	regions	in	the	middle	depths	for	both	R1	

and	R2*.	In	BA	3a,	R1	and	R2*	values	increased	sharply	between	the	middle	and	superficial	depths.	This	may	be	related	to	blood	

vessel	artefacts	at	the	pial	surface	causing	higher	R2*	values	in	the	most	superficial	depths	due	to	susceptibility	and	flow	effects	

(Fig.	3	(c)	and	(d)),	particularly	as	R2*	is	expected	to	be	more	sensitive	to	this	than	R1.		

	 For	the	auditory	cortex	R1	values	for	primary	auditory	cortex	A1,	para	belt,	posterior	belt	(PBelt)	and	medial	belt	

(MBelt)	were	similar,	while	R2*	showed	better	discrimination	of	these	regions.	For	both	R1	and	R2*	retroinsular	cortex	(RI)	

showed	the	lowest	values	relative	to	neighbouring	regions.	This	is	consistent	with	T1w/T2w	patterns	at	3T	(Glasser	et	al.,	2016).	

Sharp	decreases	in	R2*	were	seen	between	the	superficial	and	middle	depths	for	lateral	belt	(LBelt)	and	PBelt.	Again	this	may	be	

related	to	blood	vessel	artefacts	at	the	pial	surface	causing	higher	values	at	the	most	superficial	layers.		With	this	exception,	

patterns	were	consistent	with	the	literature	across	cortical	depths	for	R2*	and	R1	(Fig.	3	(e)	and	(f)).	

	 The	superior	parietal	cortex	was	chosen	as	an	example	of	a	multimodal	association	area.	Using	T1w/T2w	at	3T	(Glasser	

et	al.,	2016)	reported	that	MIP	has	less	myelin	than	lateral	intra-parietal	dorsal	cortex	(LIPd)	and	lateral	intra-parietal	ventral	

cortex	(LIPv),	but	MIP	has	more	myelin	than	lateral	parietal	7	area	(7PL)	and	intra-parietal	1	(IP1)	area.	R2*	values	(Fig.	3	(h))	

were	most	consistent	with	this	showing	higher	MIP	values	compared	with	7PL	and	IP1	across	most	cortical	depths,	with	higher	

LIPd	values	higher	than	MIP	in	the	superficial	and	middle	depths.	R1	values	(Fig.	3	(g))	are	less	consistent	as	LIPd	and	LIPv	are	

lower	than	MIP	across	most	cortical	depths.	

	 In	summary	the	R1	and	R2*	values	we	measured	using	7T	qMRI	for	sensory,	motor	and	association	cortices	were	

generally	consistent	with	known	patterns	of	myelination,	supporting	their	validity.	Therefore,	we	proceeded	to	investigate	their	

relationship	to	cytoarchitectonics,	layer-specific	gene	expression	and	connectomics.			
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Figure	3.	R1	and	R2*	profiles	across	primary	sensory,	primary	motor	and	association	cortices.	Cortical	depth	profile,	were	y-

axis	is	MRI	contrast	(R1	or	R2*)	and	x-axis	is	equi-volume	cortical	depth	(1	–	nearest	pial	surface,	8	–	nearest	grey	matter/white	

matter	(GM/WM)	boundary),	for	visual	cortex	(a)	R1	and	(b)	R2*,	sensorimotor	motor	cortex	(c)	R1	and	(d)	R2*,	auditory	cortex	

(e)	R1	and	(f)	R2*	and	superior	parietal	cortex	(g)	R1	and	(h)	R2*.		GM	–	grey	matter,	WM	–	white	matter,	V1	–	primary	visual	

area,	V2-V6	–	visual	areas	2	to	6,	MT	–	middle	temporal	area.	1	–	area	1,	2	–	area	2,	3a	–	area	3a,	3b	–	area	3b,	4	-	area	4	

(primary	motor	cortex).	A1	–	primary	auditory	cortex,	RI	–	retroinsular	cortex,	MBelt	–	medial	belt,	LBelt	–	lateral	belt,	PBelt	–	

posterior	belt.	7PL	–	lateral	area	7P,	LIPv	–	area	lateral	intra-parietal	ventral,	IP1	–	intra-parietal	1,	MIP	–	medial	intra-parietal	

area,	LIPd	–	area	lateral	intra-parietal	dorsal.	Cortical	labels	refer	to	(Glasser	et	al.,	2016).	Myeloarchitectonic	profiles	

reproduced	from	(Vogt,	1919;	Zilles	et	al.,	2015)	are	provided	for	areas	V1	(singulostriate	–	absence	of	inner	Baillarger	stripe),		

BA4	(astriate	–	Baillarger	stripes	cannot	be	delineated),	A1	(unitostriate	–	both	Baillarger	stripes	appear	to	be	fused	to	a	broad	

band)	and	IPL	(bistriate	–	both	Baillarger	stripes	are	clearly	detectable).		
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Big	Brain	cell	staining	intensity	is	highly	correlated	with	von	Economo	cell	count		

Before	relating	post-mortem	histology	measures	to	7T	qMRI	we	determined	the	relationship	between	von	Economo	and	Big	

Brain	measures	at	the	region	of	interest	(ROI)	level	and	across	cortical	layers.	We	therefore	performed	correlations	between	Big	

Brain	staining	intensity	and	von	Economo	cell	count	and	cell	size.	This	was	done	by	mapping	the	von	Economo	MRI	atlas	onto	

the	Big	Brain	data	using	a	surface-based	registration.	Big	Brain	cortical	layers	were	defined	using	a	machine	learning	approach,	

as	previously	described	(Wagstyl	et	al.,	2019).	Von	Economo	total	cell	count	showed	a	significant	positive	correlation	with	

average	staining	intensity	(rho	=	0.44,	p	=	0.003)	at	the	ROI	level	(Fig	4.	(a)),	whereas	von	Economo	total	cell	size	did	not	show	

significant	correlation	with	average	cell	staining	intensity	profile	(rho	=	0.04,	p	=	0.79)	at	the	ROI	level	(Fig	4.	(b)).	Comparison	

between	von	Economo	layer	cell	count	and	Big	Brain	layer	staining	intensity	revealed	correlations	across	layers	2,	3,	4	and	6.	Big	

Brain	correlations	with	von	Economo	layers	2,	3	and	6	survived	Bonferroni	correction	(Fig	4.	(c)).	No	Bonferroni	corrected	

correlations	were	seen	for	cell	size	across	cortical	layers.	However,	von	Economo	layer	5	cell	size	was	most	highly	correlated	

with	Big	Brain	layers	2,	3	and	6	(Fig	4.	(d)),	although	not	reaching	significance.	The	absence	of	correlations	between	von	

Economo	and	Big	Brain	layer	1	is	unsurprising	given	this	layer	contains	very	few	cells	(von	Economo,	1925).	The	absence	of	

correlation	for	layer	5	cell	count	in	the	context	of	positive	correlation	for	layer	5	cell	size	for	von	Economo	suggests	the	

properties	of	layer	5	are	quite	different	from	layers	2,	3,	4	and	6.	Indeed	layer	5	contains	large	pyramidal	cells	(von	Economo,	

1925)	suggesting	large	cells	(which	are	fewer	in	number)	may	account	for	these	findings.	

	 We	assessed	the	intrinsic	autocorrelation	of	histological	features	across	cortical	depth	in	the	von	Economo	and	Big	

Brain	data.	To	this	end,	we	determined	the	correlation	of	cell	numbers	between	different	layers	within	the	von	Economo	data,	

which	revealed	cell	numbers	in	von	Economo	layers	2-4	and	6	were	highly	cross-correlated.	Big	Brain	staining	intensity	defined	

across	cortical	layers	was	also	highly	cross-correlated	across	all	layers	(see	supplemental	Fig.	1).	These	correlations	were	

statistically	significant	surviving	Bonferroni	correction	for	multiple	comparisons.	
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Figure	4.	Relationship	between	Big	Brain	staining	intensity	and	von	Economo	cell	count	and	cell	size.	(a)	Average	Big	Brain	

staining	intensity	plotted	against	von	Economo	(VE)	cell	count	for	each	VE	MRI	region	of	interest	(ROI).	Each	blue	dot	is	an	ROI,	

were	the	y-axis	represents	the	average	Big	Brain	staining	intensity	and	the	x-axis	represents	the	average	VE	cell	count,	the	red	

line	represents	a	least	squares	linear	regression	line.	(b)	Average	Big	Brain	staining	intensity	against	VE	cell	size	(μm)	for	each	VE	

ROI.	Each	blue	dot	is	an	ROI,	were	the	y-axis	represents	the	average	Big	Brain	staining	intensity	and	the	x-axis	represents	the	

average	VE	cell	size.	(c)	Big	Brain	layer	staining	intensity	against	VE	cortical	layer	cell	count,	were	the	y-axis	represents	Big	Brain	

intensity	for	each	cortical	layer	I-VI	and	the	x-axis	represents	VE	cell	count	for	each	cortical	layer	I-VI.		The	colours	represent	the	

correlations	across	VE	ROIs	for	Big	Brain	intensity	and	VE	cell	count	(highest	–	red,	lowest	–	blue)	(d)	Big	Brain	layer	staining	

intensity	against	cortical	layer	cell	size,	were	the	y-axis	represents	Big	Brain	intensity	for	each	cortical	layer	I-VI	and	the	x-axis	

represents	VE	cell	number	for	each	cortical	layer	I-VI,	the	colours	represent	the	correlations	across	VE	ROIs	for	Big	Brain	

intensity	and	VE	cell	count	(highest	–	red,	lowest	–	blue).	Asterisks	indicate	Bonferroni	corrected	significant	correlations.		
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Supplemental	Figure	1.	Cross-correlation	for	(a)	von	Economo	(VE)	layer	cell	count,	where	both	the	y-axis	and	x-axis	represent	

cortical	layer	(I-VI)	cell	count	and	the	colours	represent	correlations	across	VE	ROIs	(highest	–	red,	lowest	–	blue),	and	(b)	Big	

Brain	cortical	layer	staining	intensity,	where	both	the	y-axis	and	x-axis	represent	Big	Brain	cortical	layer	(I-VI)	staining	intensity	

and	the	colours	represent	correlations	across	VE	ROIs	(highest	–	red,	lowest	–	blue).	Asterisks	indicate	Bonferroni	corrected	

significant	correlations.	
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R2*	across	cortical	depths	is	highly	correlated	with	von	Economo	cell	count	and	Big	

Brain	cell	staining	intensity	across	cortical	layers	

To	examine	the	sensitivity	of	the	R1	and	the	R2*	measures	to	cytoarchitectonic	properties,	we	compared	R1	and	R2*	at	the	ROI	

level	and	across	cortical	depths	with	Big	Brain	intensity	and	von	Economo	cell	count	and	cell	size.	Motivated	by	the	relation	

between	cyto-	and	myeloarchitecture	and	the	myelin-sensitive	quantitative	MRI	measures	(Hellwig,	1993;	Dinse	et	al.,	2015)	we	

hypothesised	that	UHF	qMRI	parameters	across	cortical	depths	would	correlate	with	cell	measures	in	post-mortem	cortical	

layers,	such	R1	and	R2*	at	depths	near	the	pial	surface	would	correlate	with	superficial	layers,	R1	and	R2*	at	mid-depths	would	

correlate	with	layer	4,	while	R1	and	R2*	at	depths	near	the	GM/WM	boundary	would	show	greater	correlation	with	deep	layers.	

	 For	the	purposes	of	this	analysis	the	HCP-MMP	1.0	(Glasser	et	al.,	2016)	and	von	Economo	MRI	(Scholtens	et	al.,	2018)	

atlases	were	mapped	to	MPM	images	using	surface-based	registration,	and	eight	equi-volume	cortical	depths	were	defined	

using	Nighres	(Huntenburg	et	al.,	2018).	R1	and	R2*	values	were	then	sampled	across	ROIs	and	depths	and	averaged	across	

participants.	The	Big	Brain	data	was	parcellated	using	the	HCP-MMP	1.0	atlas	and	cortical	layers	were	defined	using	machine	

learning	(Wagstyl	et	al.,	2019).		

	 At	the	ROI	level	significant	correlations	were	seen	between	R2*	and	von	Economo	cell	count	(rho	=	0.65,	p	=	2.93x10-6)	

(Fig	5.	(a))	and	Big	Brain	staining	intensity	(rho	=	0.58,	p	=	6.81x10-18)	(Fig.	5	(b)).	Across	cortical	layers	Bonferroni	corrected	

significant	correlations	for	R2*	were	seen	in	von	Economo	layers	2	(across	all	R2*	cortical	depths),	3	(for	mid	cortical	R2*,	depths	

3-6),	4	(across	R2*	cortical	depths	1-7)	and	6	(for	R2*	superficial	layers,	depths	2-3)	(Fig.	5(c)).	For	Big	Brain	cortical	layers	

Bonferroni	corrected	significant	correlations	were	seen	across	all	layers	and	all	depths	of	R2*.	In	keeping	with	previous	Big	Brain	

and	von	Economo	comparisons,	correlations	for	R2*	were	absent	for	von	Economo	layers	1	and	5,	similarly	for	Big	Brain	cortical	

layers	correlations	with	R2*	were	lowest	for	layers	1	and	5.	This	is	likely	due	to	the	small	number	of	cells	in	layer	1	and	the	large	

size	of	pyramidal	cells	in	layer	5	discussed	previously	(Fig.	5	(d)).			

	 For	the	R1	analysis,	no	Bonferroni	corrected	significant	correlations	were	seen	at	the	ROI	level	for	von	Economo	cell	

count	or	Big	Brain	staining	intensity.	Across	layers	no	Bonferroni	corrected	significant	correlations	were	seen	for	the	von	

Economo	data	(see	Supplemental	Fig.	2).	Removal	of	frontal	and	temporal	regions,	which	are	more	susceptible	to	artefact	at	7T,	
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due	to	off-resonance	effects	and	RF	transmit	field	reductions,	had	minimal	effect	on	correlations	with	von	Economo	with	none	

surviving	Bonferroni	correction.	Bonferroni	corrected	significant	correlations	were	seen	for	R1	and	Big	Brain	layer	intensity	at	

depth	7	for	layer	1	and	depth	8	for	layers	1-6.		

	 Our	findings	show	R2*	but	not	R1	is	highly	correlated	with	cell	count	and	cell	staining	intensities	across	cortical	depths	

particularly	for	layers	2,	3,	4	and	6.	The	presence	of	high	cross	correlations	between	layers	for	both	von	Economo	and	Big	Brain	

demonstrated	previously	may	at	least	partly	account	for	the	lack	of	layer	specificity	of	the	observed	correlations	between	the	

MRI	parameters	and	histological	measures,	i.e.	UHF	qMRI	parameters	near	the	pial	surface	correlating	with	superficial	layers	but	

not	deep	layers.	

	

Fig.	5.	Relationship	between	R2*,	von	Economo	cell	count	and	big	brain	cell	staining	intensity.	(a)	Average	R2*	against	von	

Economo	(VE)	cell	count	for	each	VE	MRI	region	of	interest	(ROI).	Each	blue	dot	is	an	ROI,	were	the	y-axis	represents	the	average	

R2*,	for	each	ROI	across	participants,	and	the	x-axis	represents	the	average	VE	cell	count,	the	red	line	represents	a	least	squares	

linear	regression	line	(b)	Average	R2*	against	average	Big	Brain	intensity	for	each	HCP-MMP	1.0	MRI	ROI.	Each	blue	dot	is	an	

ROI,	where	the	y-axis	represents	the	average	R2*,	for	each	ROI	across	participants,	and	the	x-axis	represents	the	average	Big	

Brain	staining	intensity.	(c)	R2*	across	cortical	depths	against	von	Economo	cortical	layer	cell	count,	where	the	y-axis	represents	

R2*	for	each	equi-volume	cortical	depth	1-8	and	the	x-axis	represents	VE	cell	number	for	each	cortical	layer	I-VI,	the	colours	

represent	the	correlations	across	VE	ROIs	for	R2*	and	VE	cell	count	(highest	–	red,	lowest	–	blue)	(d)	R2*	across	cortical	depths	

against	Big	Brain	cortical	layer	intensity,	where	the	y-axis	represents	R2*	for	each	equi-volume	cortical	depth	1-8	and	the	x-axis	

represents	Big	Brain	staining	intensity	for	each	cortical	layer	I-VI,	the	colours	represent	the	correlations	across	HCP-MMP	1.0	

ROIs	for	R2*	and	Big	Brain	staining	intensity	(highest	–	red,	lowest	–	blue).	Asterisks	indicate	Bonferroni	corrected	significant	

correlations.	
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Supplemental	Fig.	2.	Relationship	between	R1,	von	Economo	cell	count	and	Big	Brain	staining	intensity.	(a)	Average	R1	against	

von	Economo	(VE)	cell	count	for	each	VE	MRI	region	of	interest	(ROI).	Each	blue	dot	is	an	ROI,	where	the	y-axis	represents	the	

average	R1,	for	each	ROI	across	participants,	and	the	x-axis	represents	the	average	VE	cell	count,	the	red	line	represents	a	least	

squares	linear	regression	line	(b)	Average	R1	against	average	Big	Brain	intensity	for	each	HCP-MMP	1.0	MRI	ROI.	Each	blue	dot	is	

an	ROI,	where	the	y-axis	represents	the	average	R1,	for	each	ROI	across	participants,	and	the	x-axis	represents	the	average	Big	

Brain	staining	intensity.	(c)	R1	across	cortical	depths	against	von	Economo	cortical	layer	cell	count,	where	the	y-axis	represents	

R1	for	each	equi-volume	cortical	depth	1-8	and	the	x-axis	represents	VE	cell	number	for	each	cortical	layer	I-VI,	the	colours	

represent	the	correlations	across	VE	ROIs	for	R1	and	VE	cell	count	(highest	–	red,	lowest	–	blue).	(d)	R1	across	cortical	depths	

against	Big	Brain	cortical	layer	intensity,	where	the	y-axis	represents	R1	for	each	equi-volume	cortical	depth	1-8	and	the	x-axis	

represents	Big	Brain	staining	intensity	for	each	cortical	layer	I-VI,	the	colours	represent	the	correlations	across	HCP-MMP	1.0	

ROIs	for	R1	and	Big	Brain	staining	intensity	(highest	–	red,	lowest	–	blue).	Asterisks	indicate	Bonferroni	corrected	significant	

correlations.	
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R2*	is	highly	correlated	with	layer-specific	genes	and	genes	related	to	Huntington’s	

disease	

To	further	examine	the	relationship	between	qMRI	parameters	and	layer-specific	properties,	we	next	investigated	the	

relationship	between	R1	and	R2*	and	layer-specific	genes.	In	a	similar	vein	to	the	cytoarchitectural	features,	we	hypothesised	

qMRI	parameters	in	depths	near	the	pial	surface	would	correlate	with	genes	specific	to	layers	2	and	3,	mid-depths	would	

correlate	with	layer	4	and	depths	near	the	GM/WM	boundary	would	correlate	with	layers	5	and	6.		

	 For	this	analysis	lists	of	genes	specific	to	cortical	layers	were	obtained	(Bernard	et	al.,	2012)	and	brain	region	expression	

data	was	taken	from	the	AHBA	for	each	ROI	in	the	left	hemisphere	of	the	HCP-MMP	1.0	atlas,	as	the	complete	data	set	is	not	

available	for	the	right	hemisphere	(Glasser	et	al.,	2016;	Arnatkevic	Iute	et	al.,	2019).	R2*	values	were	averaged	for	each	ROI.	For	

the	layer-specific	gene	lists	correlations	were	performed	using	principal	component	analysis	(PCA),	using	the	first	component,	

and	also	mean	gene	expression	of	each	list.	The	latter	was	performed	in	order	to	confirm	the	direction	of	correlation.	Significant	

Bonferroni	corrected	correlations	were	seen	for	R2*averaged	across	layers	and	ROI	with	genes	specific	to	cortical	layer	2	(rho	=	-	

0.73,	p	=	2.24x10-30),	layer	3	(rho	=	-0.78,	p	=	1.32x10-36),	layer	4	(rho	=	0.76,	p	=	3.51x10-34)	and	layer	5	(rho	=	-0.80,	p	=	1.01x10-

39),	but	not	layer	6	(rho	=	0.086,	p	=	1.26;	Fig.	6a-d).	Similarly	significant	correlations	were	seen	for	R2*	across	cortical	depths	

(averaged	across	the	entire	brain)	and	genes	specific	for	layers	2,	3,	4	and	5,	but	not	for	layer	6	(Fig.	6e).	Significant	correlations	

for	both	PCA	and	mean	gene	expression	analyses	were	in	the	same	direction.	No	correlations	between	ROI	averaged	R1	and	

layer-specific	genes	were	significant	(p>0.2	uncorrected	for	all	correlations).		In	order	to	assess	whether	specific	genes	were	

driving	the	correlations	with	R2*,	for	each	individual	gene	in	the	layer-specific	gene	lists	correlations	were	performed	between	

gene	expression	and	ROI	averaged	R2*.	This	did	not	identify	a	single	gene	or	group	of	genes	that	were	driving	these	results	(see	

supplemental	information).			

	 As	an	example	of	how	our	analyses	could	be	used	to	examine	the	mechanism	in	neurodegenerative	diseases	and	to	

establish	a	standard	reference	in	healthy	volunteers,	we	explored	the	relationship	between	the	regional	expression	of	genes	

implicated	in	Huntington’s	disease	pathogenesis	and	R2*	and	R1.	A	list	of	29	candidate	genes	were	tested	including	24	which	

show	abnormal	transcription	in	the	cerebral	cortex	in	HD	(Langfelder	et	al.,	2016),	4	genes	which	modify	disease	onset	(Genetic	
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Modifiers	of	Huntington's	Disease,	2015)	and	the	normal	huntingtin	gene.	Of	those	29	tested	19	survived	Bonferroni	correction.	

The	four	most	highly	correlated	candidate	genes	included	RRM2B	(rho	=	0.57,	p	=	6.7x10-15),	which	modifies	disease	onset,	

KCNA1	(rho	=	0.65,	p	=	2.1x10-21),	ATP2B2	(rho	=	0.73,	p	=	1.21x10-29),	and	VAMP1	(rho	=	0.75,	p	=	6.1x10-32)	all	of	which	show	

abnormal	transcription	in	the	cortex	in	HD	(Fig.	6f-i).	For	R1	only	one	gene,	OLFM1	(rho	=	0.27,	p	=	0.01),	survived	Bonferroni	

correction.	Results	for	all	29	genes	tested	are	available	in	supplemental	information.		

	

Fig.	6.	7T	MRI	R2*	and	cortical	layer-specific	genes	and	genes	implicated	in	Huntington’s	disease.	R2*	against	(a)	layer	2	genes,	

(b)	layer	3	genes,	(c)	layer	4	genes,	(d)	layer	5	genes.	Each	blue	dot	represents	an	ROI	from	the	HCP-MMP	1.0	atlas,	the	y-axis	

represents	R2*,	averaged	across	participants,	and	the	x-axis	represents	the	PCA	weight	for	each	ROI	from	the	first	PCA	

component	of	layer-specific	gene	expression.	(e)	R2*	across	cortical	depths,	where	the	y-axis	represents	R2*	for	each	equi-

volume	cortical	depth	1-8	and	the	x-axis	represents	the	PCA	weight	for	each	ROI	from	the	first	PCA	component	of	layer-specific	

gene	expression	for	layers	II-VI,	the	colours	represent	the	correlations	across	HCP-MMP	1.0	ROIs	for	R2*	and	layer-specific	gene	

expression	(highest	–	red,	lowest	–	blue).	Asterisks	indicate	Bonferroni	corrected	significant	correlations.	The	most	highly	R2*	

correlated	Huntington’s	disease	genes	(f)	VAMP1,	(g)	ATP2B2,	(h)	KCNA1,	(i)	RRM2B,	where	each	blue	dot	represents	an	ROI	

from	the	HCP-MMP	1.0	atlas,	the	y-axis	represents	R2*,	averaged	across	participants,	and	the	x-axis	represents	the	gene	

expression	for	each	ROI	for	the	named	gene.	The	red	line	represents	a	least	squares	linear	regression	line.	
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R1	and	R2*	across	cortical	depths	are	highly	correlated	with	R1/R2*-weighted	white	

matter	connections	determined	by	DWI	

The	last	step	in	our	assessment	examined	the	relationship	between	cortical	depth	dependent	qMRI	parameters	and	white	

matter	connections	estimated	by	DWI	based	tractography.	We	hypothesised	that	UHF	qMRI	parameters	across	all	cortical	

depths	would	correlate	with	characteristics	of	the	cortico-cortical	connections,	as	these	project	across	cortical	layers	2-6,	while	

qMRI	parameters	near	the	GM/WM	boundary	would	correlate	with	characteristics	of	cortico-striatal	and	cortico-thalamic	

connections	as	these	project	to	the	deep	cortical	layers	5	and	6.				

	 For	this	analysis,	whole	brain	diffusion	tractography	was	performed	in	the	same	participants.	A	white	matter	

connectome	was	generated	and	connections	were	then	sub-divided	into	cortico-striatal	(C-S),	cortico-thalamic	(C-T)	and	cortico-

cortical	(C-C).	C-C	connections	were	further	sub-divided	into	inter-hemispheric	(inter-H)	and	intra-hemispheric	(intra-H),	as	inter-

H	connections	are	more	vulnerable	than	intra-H	connections	in	a	number	of	neurodegenerative	diseases	(Qiu	et	al.,	2016;	

McColgan	et	al.,	2017;	Lanskey	et	al.,	2018).	Following	a	tractometry	approach,	streamlines	were	multiplied	by:	cross-sectional	

area	(Smith	et	al.,	2015)	based	on	diffusion	signal	(streamline	weighting);	average	R1	(R1	weighting);	and	R2*	(R2*	weighting).	

This	type	of	tractometry	is	analogous	to	fractional	anisotropy	weighting	performed	in	previous	connectome	studies	(van	den	

Heuvel	and	Sporns,	2011).	Correlations	were	then	performed	for	streamline-weighted	connection	subtypes	against	both	R1	and	

R2*	across	cortical	depths.	White	matter	connections	weighted	by	R1	and	R2*	were	also	correlated	with	R1	and	R2*,	

respectively,	across	cortical	depths.		

	 The	streamline-weighted	connectome	was	not	significantly	correlated	with	either	R1	or	R2*	across	all	cortical	depths	

after	Bonferroni	correction	(Fig.	7	(a)	and	(b)).	However	the	R2*-weighted	connectome	showed	Bonferroni	corrected	

significance	with	R2*	across	nearly	all	cortical	depths	for	cortico-striatal	(depths	1-7)	and	intra-hemispheric	(depths	1-8)	white	

matter	connections.	Significant	correlations	were	also	seen	for	cortico-thalamic	connections	at	superficial	depths	(depths	1-2).	

Similarly	the	R1	weighted	connectome	showed	Bonferroni	corrected	significance	with	R1	across	nearly	all	cortical	depths	for	

cortico-striatal	(depths	2-8),	particularly	at	the	GM/WM	boundary,	and	intra-hemispheric	connections	(depths	2-3	and	7-8)	(Fig.	

7	(c)	and	(d)).	
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Fig.	7.	Cortical	depth	7T	qMRI	is	related	to	white	matter	connection	subtypes.	(a)	R1	cortical	depth	against	streamline-

weighted	connections,	were	the	y-axis	represents	R1	across	cortical	depths	averaged	across	participants	and	the	x-axis	

represents	streamline	weighted	connectivity	for	different	white	matter	connection	subtypes	(cortical-striatal	(C-S),	cortical-

thalamic	(C-T),	cortical-cortical	(C-C),	Inter-hemispheric	(Inter-H),	Intra-hemispheric	(Intra-H),	averaged	across	participants.	

Colours	represent	correlation	across	Killiany-Desikan	atlas	ROIs	for	R1	and	streamline	weighted	connectivity	(highest	–	red,	

lowest	–	blue),	(b)	R2*	cortical	depth	against	streamline-weighted	connections,	(c)	R1	cortical	depth	against	R1-weighted	

connections,	(d)	R2*	cortical	depth	against	R2*-weighted	connections.	Asterisks	indicate	Bonferroni	corrected	significant	

correlations.	
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Discussion 

The	aim	of	this	study	was	to	establish	the	use	of	qMRI	parameters	for	the	study	of	laminar	microstructure	in	the	human	brain	in-

vivo.	For	this	purpose	we	examined	the	relationship	between	R1	and	R2*	measures	at	7T	across	different	cortical	depths	with	

well-established	histological	measures,	gene-expression	data	and	white-matter	connectivity.	We	show	that	R2*	across	cortical	

depths	is	highly	correlated	with	layer-specific	cell	number,	cell	staining	intensity	and	gene	expression	for	the	von	Economo,	Big	

Brain	and	Allen	Human	Brain	atlases,	respectively.	This	highlights	the	sensitivity	of	R2*	to	layer-specific	cytoarchitecture	and	

gene	expression.	Furthermore,	cortico-striatal	and	intra-hemispheric	white	matter	connections	weighted	by	R1	and	R2*	were	

highly	correlated	with	R1	and	R2*	respectively	across	most	cortical	depths	demonstrating	the	potential	of	linking	cortical	

characteristics	and	white	matter	connections	using	7T	qMRI	R1	and	R2*.			

Depth	profiles	of	myelination	across	cortical	areas	

Myelination	patterns	for	the	7T	MPMs	presented	here	are	consistent	with	post-mortem	histology	and	previous	7T	and	3T	

studies	using	both	R1	(Sereno	et	al.,	2013;	Haast	et	al.,	2016)	R2*	(Marques	et	al.,	2017)	and	T1w/T2w	ratios	(Glasser	et	al.,	

2016)	as	myelin	markers.	Whole	brain	R1	maps	at	700μm	(Sereno	et	al.,	2013;	Haast	et	al.,	2016)	and	R2*	maps	at	650μm	

(Marques	et	al.,	2017)	generated	using	7T	are	consistent	with	the	500μm	myelination	patterns	presented	here	with	highest	

levels	of	myelin	seen	in	the	primary	visual	cortex,	the	auditory	cortex	and	the	somatosensory	cortex.		

	 When	inspecting	myelination	profiles	from	the	pial	to	the	white	matter	surface	in	some	cases	there	are	distinct	

differences	between	R1	and	R2*.	In	general	R2*	tends	to	be	higher	in	very	superficial	layers,	which	may	be	caused	by	

susceptibility	effects	in	pial	surface	veins	containing	paramagnetic	deoxygenated	haemoglobin	(i.e.,	the	blood	oxygen	level	

dependent	(BOLD)	effect).	Both	the	middle	temporal	area	and	V1	showed	high	levels	of	R2*	consistent	with	high	levels	of	myelin	

in	these	areas	(Fig.	2).	In	contrast	for	R1,	middle	temporal	area	values	were	lower	than	in	visual	regions	V2,	V3,	V4	and	V6.	

Similarly	in	the	superior	parietal	cortex	R1	and	R2*	profiles	diverged,	such	that	R2*	was	more	reflective	of	patterns	seen	in	

(Glasser	et	al.,	2016).	In	contrast	to	this	R1	and	R2*	in	the	somatosensory	cortex	were	consistent	and	showed	a	distinct	
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hierarchy	across	selected	regions.		The	observed	discrepancies	between	R1	and	R2*	may	be	due	to	a	different	contrast-to-noise	

ratio	(CNR)	of	the	parameter	maps.	The	co-localisation	of	iron	and	myelin	typical	in	cortical	regions	(Fukunaga	et	al.,	2010)	leads	

to	a	rather	strong	additive	effect	for	the	myelination	contrast	particularly	in	R2*	(Stuber	et	al.,	2014;	Callaghan	et	al.,	2015a).	

The	increased	contrast	and	sensitivity	may	make	R2*	a	more	reliable	measure	of	myelination.	For	astriate	(BA	4)	and	unitostriate	

(A1)	areas	sharp	increases	can	be	seen	for	R2*	at	different	depths	of	the	cortex	in	keeping	with	their	myeloarchitectonic	

classification.	However,	bistriate	regions,	such	as	area	BA	3b	and	the	superior	parietal	cortex	do	not	show	the	expected	double	

peaks	in	their	myelin	profiles.	This	can	be	most	likely	explained	by	the	limited	spatial	sampling	density	and	consequent	partial	

volume	effects	at	the	qMRI	resolution	of	500μm	compared	to	typically	smaller	thickness	of	anatomical	layers,	as	discussed	by	

(Dinse	et	al.,	2015).	Challenges	of	precise	registration,	segmentation	and	MRI-based	depth/layer	definition	may	add	further	to	

spatial	imprecisions	and	reduce	the	effective	spatial	resolution	(Bazin	et	al.,	2014;	Trampel	et	al.,	2019),	obscuring	features	in	

myelination	profiles.	

	 At	sub-millimeter	resolution	physiological	noise	and	motion	become	more	problematic.	We	monitored	involuntary	

head	motion	by	using	optical	prospective	motion	correction	(Trampel	et	al.,	2019).	B1+	inhomogeneities	and	residual	

magnetisation	transfer	effects	are	also	greater	in	UHF	MRI	compared	to	3T.	We	modelled	the	signal	dependence	on	relaxation	

parameters	(R1,	R2*)	as	mono-exponentials	and	neglected	the	orientation	dependence	of	R2*	(Rudko	et	al.,	2014).	This	may	

have	led	to	systematic	bias	and	also	increased	inter-subject	variability,	since	e.g.	the	head	orientation	and	thus	orientation	

dependent	effects	may	have	varied.		

	 Image	processing	at	UHF	is	also	challenging.	Current	pipelines	are	typically	optimised	for	T1-weighted	images	at	3T	

(Fischl	et	al.,	2002)	and	to	a	much	lesser	extent	to	7T	MRI	or	quantitative	parameter	maps	(Choi	et	al.,	2019;	Tabelow	et	al.,	

2019).	Therefore,	we	had	to	add	processing	steps,	such	as	denoising,	in	order	to	use	existing	pipelines.	The	definition	of	cortical	

layers	requires	highly	accurate	GM/WM	segmentations	and	the	use	of	equi-volume	as	opposed	to	equi-distant	layer	definition	

approaches	(Waehnert	et	al.,	2016),	which	take	into	account	the	morphology	of	the	cortex.	In	order	to	achieve	this	we	

combined	CAT12	for	segmentations	and	Nighres	software	for	the	equi-volume	layering	(Huntenburg	et	al.,	2018).	
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Correlations	of	R1,	R2*,	and	von	Economo	and	Big	Brain	histology	atlases	

High	correlations	were	observed	between	Big	Brain	cell	staining	intensity	and	von	Economo	cell	count,	but	not	cell	size.	This	

indicates	that	while	cell	staining	intensity	in	the	Big	Brain	atlas	may	potentially	conflate	cell	size,	cell	count	and	cell	staining	

inhomogeneity,	cell	count	is	the	most	significant	contributor	to	cell	staining,	with	the	exception	of	layer	5,	which	shows	no	

correlation	with	cell	count	and	a	modest	correlation	with	cell	size.		

	 In	comparing	7T	qMRI	correlations	with	von	Economo	cell	count	and	Big	Brain	cell	staining	intensity	a	clear	pattern	

emerges	such	that	R2*	across	cortical	regions	and	cortical	depths	shows	higher	correlations	than	R1	with	post-mortem	

histological	atlases.	The	relation	between	cytoarchitecture	and	the	R2*	and	R1	parameters	is	believed	to	be	largely	mediated	by	

the	dependence	of	myeloarchitecture	on	cytoarchitecture	(Hellwig,	1993;	Dinse	et	al.,	2015),	since	myeloarchitecture	is	known	

to	influence	macromolecular	concentration	and	iron	concentration	as	major	MRI	contrast	drivers.	The	increased	correlations	of	

R2*	over	R1	with	cytoarchitecture	may	be	due	to	the	presence	of	iron	in	multiple	cell	types	including	neurons,	astrocytes	and	

oligodendrocytes.	Thus,	the	correlation	with	cell	number	/	cell	staining	intensity	and	R2*	may	reflect	the	iron	present	in	both	

oligodendrocytes	and	neurons	(Ward	et	al.,	2014)	and	macromolecules	in	myelin,	whereas	lower	correlations	are	seen	with	R1	

as	this	is	mainly	sensitive	to	macromolecules	in	myelin	in	oligodendrocytes	(Stuber	et	al.,	2014),	but	much	less	so	to	the	iron.	

This	is	supported	by	a	recent	study	that	used	weighted	gene	co-expression	network	analysis	(WGCNA)	to	understand	the	cellular	

composition	underlying	the	R2t*	component	of	R2*.	The	R2t*	relaxation	rate	constant	depends	solely	on	the	cellular	

environment	of	water	molecules.	Using	the	AHBA	the	authors	showed	that	R2t*	was	related	to	the	regional	expression	of	

neurons	and	glia,	including	astrocytes,	microglia	and	oligodendrocyte	precursor	cells	(Wen	et	al.,	2018).		

	 A	one-to-one	relationship	of	UHF	qMRI	and	post-mortem	histology	whereby	UHF	qMRI	parameters	at	the	pial	surface	

would	show	high	correlation	with	cells	in	superficial	cortical	layers	and	UHF	qMRI	parameters	at	the	GM/WM	boundary	would	

show	correlation	with	cells	in	the	deep	layers	was	not	demonstrated.	The	reason	for	this	is	at	least	in	part	related	to	high	cross-

correlations	of	cell	counts	and	cell	staining	across	cortical	layers	(see	supplemental	Fig.	1).	Given	the	high	auto-correlation	across	

layers	for	both	post-mortem	atlases	it	is	difficult	to	determine	with	this	data	alone	the	exact	layer-specificity	of	qMRI.	The	auto-	

and	inter-correlations	between	myelin,	cells	and	UHF	MRI	complicate	the	interpretation	and	inferring	causal	factors.	
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	 Auto-correlations	across	layers	are	much	higher	for	the	Big	Brain	than	the	von	Economo	atlas	and	this	likely	leads	to	

greater	similarity	across	layers	with	respect	to	R2*	correlations.	There	are	a	number	of	potential	reasons	for	this.	Staining	

intensity	in	Big	Brain	differs	from	cell	counting	in	von	Economo	in	that	it	conflates	cell	size,	cell	density	and	neuropil,	which	can	

extend	across	layer	boundaries.	Big	Brain	layer	surfaces	are	taken	from	3-dimensional	automated	measurements	at	20μm	of	a	

reconstructed	volume	with	additional	imperfections	of	section	alignments.	By	contrast	von	Economo	layers	were	manually	

segmented	on	2	dimensional	images	at	1μm	resolution	with	subsequent	counting	of	cell	bodies.	An	additional	factor	may	be	the	

ceiling	effect	of	the	cell	staining	in	Big	Brain.		These	factors	may	increase	the	autocorrelation	of	depth	dependent	measures	in	

Big	Brain.	

Relationship	of	R1,	R2*	and	layer-specific	and	Huntington’s	disease	related	genes	

For	cortical	layer-specific	genes	high	correlations	are	seen	for	layers	2,	3,	4	and	5,	but	not	6,	and	R2*.	For	layers	2,	3	and	5	

correlations	with	R2*	were	negative,	whereas	correlation	with	layer	4	was	positive.	This	is	in	keeping	with	a	study	at	3T	

examining	gene	expression	at	different	cortical	levels	using	the	T1w/T2w	ratio	(Burt	et	al.,	2018).	In	Burt	et	al.	layer-specific	

gene	lists	were	obtained	from	a	study	analysing	the	visual	and	mid-temporal	cortex	of	post-mortem	adult	brains,	where	genes	

were	assigned	to	cortical	layers	(Zeng	et	al.,	2012).	For	our	study	we	replicated	these	findings	using	a	more	extensive	layer	-

specific	gene	list	obtained	from	a	study	of	10	distinct	cortical	regions	in	the	macaque	(Bernard	et	al.,	2012).	The	previously	

reported	negative	correlations	between	T1w/T2w	ratios	with	layers	1-3	and	positive	correlations	with	layer	4	genes	have	been	

interpreted	in	the	context	of	the	thick	and	well	defined	granular	layer	4	in	primary	sensory	areas	in	contrast	to	a	gradual	loss	of	

the	granular	layer	in	association	cortices	with	progression	up	hierarchical	levels	(Burt	et	al.,	2018).	During	cortical	development	

there	is	a	complex	interplay	between	genes	driving	layer-specific	development,	such	that	genes	associated	with	development	of	

superficial	layers	suppress	those	involved	in	development	of	deep	layers	and	vice	versa	(Greig	et	al.,	2013).	While	this	does	not	

explain	the	R2*	negative	correlation	with	layer	2,3	and	5	specific	genes	and	positive	correlation	with	layer	4	genes	we	observed,	

the	interplay	between	layer-specific	genes	may	be	a	contributing	factor.		

	 As	proof-of-concept	of	how	such	methods	could	be	used	to	study	neurodegenerative	diseases,	we	examined	the	

relationship	between	qMRI	parameters	at	different	cortical	depths	and	the	expression	of	genes	implicated	in	Huntington’s	
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disease.	We	demonstrate	significant	positive	correlations	of	R2*	and	the	expression	of	19	genes	from	a	list	of	29	that	are	

implicated	in	Huntington’s	disease	pathogenesis.	This	suggests	that	R2*	could	be	used	to	study	layer-specific	pathophysiology	in	

Huntington’s	disease.	Lack	of	correlation	between	layer-specific	genes	and	R1	may	again	reflect	the	more	ubiquitous	nature	of	

iron	across	different	cell	types	(Ward	et	al.,	2014)	and	the	additive	effect	of	iron	and	myelin	driven	contrast	in	R2*	(Stuber	et	al.,	

2014;	Callaghan	et	al.,	2015a).	

	

Linking	cortical	grey	matter	and	white	matter	

To	link	cortical	grey	matter	and	white	matter	we	tested	correlations	between	specific	(R1	and	R2*	weighted)	white	matter	

connections	with	R1	and	R2*	across	cortical	depths.	Significant	correlations	were	seen	for	both	R1	and	R2*	with	cortico-striatal	

and	intra-hemispheric	white	matter	connections.	For	R1	the	strongest	correlations	for	cortico-striatal	connections	were	seen	at	

the	lowest	cortical	depths,	consistent	with	pyramidal	tract	neurons	in	layer	5	forming	ipsilateral	connections	with	the	striatum	

(Shepherd,	2013),	while	intra-hemispheric	connections	showed	correlations	across	all	cortical	depths	for	R2*,	consistent	with	

intratelencephalic	pyramidal	neurons	present	in	layers	2-6	forming	cortico-cortical	connections	(Molyneaux	et	al.,	2007).	

Correlations	between	R2*	and	cortico-striatal	connections	were	highest	at	superficial	depths,	however	this	may	be	related	to	

the	directional	dependence	of	R2*	in	white	matter	due	to	microstructure	orientation	and	myelin	concentration	(Rudko	et	al.,	

2014).	No	significant	correlations	were	seen	for	streamline	weighted	connections,	this	suggests	that	there	is	a	stronger	

relationship	with	R1/R2*	in	white	matter	and	cortical	grey	matter	than	inter-modal	comparisons	using	diffusion	MRI	based	

streamline	weighting	in	white	matter	and	qMRI	(R1/R2*)	measures	in	grey	matter.	

	 A	previous	study	has	shown	that	Big	Brain	cell	staining	intensities	across	cortical	depths	are	strongly	correlated	with	

intra-hemispheric	white	matter	connections	between	cortical	regions	(Wei	et	al.,	2019).	This	is	in	keeping	with	our	results	

showing	high	correlations	between	intra-hemispheric	connections	and	R1	and	R2*	across	cortical	depths.		
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A	high	anatomical	precision	framework	for	neurodegenerative	disease	

In	summary,	we	have	shown	that	whole	brain	R1	and	R2*	patterns	acquired	at	7T	with	500μm	resolution	are	consistent	with	

myelination	patterns	seen	at	lower	MRI	resolutions	and	known	post-mortem	myeloarchitectonics.	R2*	at	different	cortical	

depths	strongly	correlates	with	layer-specific	cell	count,	cell	staining	intensity	and	layer-specific	genes.	Furthermore,	both	

cortical	grey	matter	R2*	and	R1	have	strong	correlations	with	cortical-striatal	and	intra-hemispheric	R1	and	R2*-weighted	white	

matter	connections.		

	 The	qMRI	and	connectivity	measures	can	provide	a	high	anatomical	precision	framework	identifying	the	origin	and	

tracking	the	spread	of	neurodegeneration.	Taking	HD	as	an	example,	this	is	a	monogenic	dominantly	inherited	

neurodegenerative	disease,	which	causes	striatal	atrophy	(Tabrizi	et	al.,	2009)	and	loss	of	cortico-striatal	white	matter	

connections	(McColgan	et	al.,	2015;	McColgan	et	al.,	2017)	prior	to	symptom	onset,	with	subsequent	cell	death	in	cortical	layers	

3,	5	and	6	during	the	end	stages	of	disease	having	been	shown	post-mortem	(Rub	et	al.,	2016).		This	paper	establishes	the	

framework	to	non-invasively	test	the	following	hypothesis:	deep	cortical	layers	will	be	affected	first,	in	keeping	with	the	early	

loss	of	cortico-striatal	connections,	followed	by	superficial	layers	and	that	the	inter-regional	patterns	of	cortical	degeneration	

will	be	associated	with	the	regional	expression	of	HD	related	genes.		Using	the	proposed	framework	cortico-striatal	white	matter	

loss	can	be	characterised	using	R1-weighted	white	matter	and	linked	to	cortical	myelin	(R1)	and	cellular	dysfunction	(R2*)	across	

cortical	depths.	This	information	can	then	be	incorporated	with	the	regional	expression	of	genes	involved	in	HD	pathogenesis,	

which	we	have	shown	are	highly	correlated	with	R2*.	In	this	manner	we	can	combine	measures	of	myelin	and	iron	in	white	and	

grey	matter	(inferred	using	R1	and	R2*)	and	measures	of	cell	count	across	cortical	depths	(inferred	using	R2*)	with	pathogenic	

gene	expression	to	form	a	comprehensive	picture	of	the	mechanism	of	neurodegeneration	(see	summary	Fig.	8).		

Fig.	8.	A	high	anatomical	precision	framework	for	neurodegenerative	disease.	Schematic	showing	how	we	can	use	the	qMRI	

and	the	relationships	identified	in	this	study	to	combine	information	on	white	matter	(R1),	neuronal	count	at	different	cortical	

depths	(R2*),	myelination	at	different	cortical	depths	(R1,	R2*)	and	pathogenic	gene	expression	(R2*)	to	provide	a	

comprehensive	picture	of	neurodegeneration.		
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Materials and Methods  

Data	Acquisition	

Data	from	10	healthy	volunteers	(6	females,	4	males,	mean	age	28±3.6	years)	were	acquired	on	a	7T	whole-body	MRI	system	

(Magnetom	7T,	Siemens	Healthineers,	Erlangen,	Germany)	equipped	with	a	1-channel	transmit/32-channel	radio-frequency	(RF)	

receive	head	coil	(Nova	Medical,	Wilmington,	MA,	USA).	The	MPM	protocol	consisted	of	two	multi-echo	fast	low	angle	shot	

(FLASH)	scans	with	T1-	and	PD-weighting	(T1w,	PDw),	plus	maps	of	the	radio	frequency	(RF)	transmit	field	B1+	and	static	

magnetic	field	B0.	The	MPM	acquisition	was	adapted	for	whole-brain	coverage	at	500μm	isotropic	resolution	from	methods	

described	previously	(Weiskopf	et	al.,	2011;	Weiskopf	et	al.,	2013;	Lutti	et	al.,	2014;	Trampel	et	al.,	2019)	

	 The	PD-weighted	and	T1-weighted	multi-echo	FLASH	scans	were	acquired	with	flip	angles	of	5o	and	24	o	respectively,	

readouts	of	alternating	polarity	to	give	6	echoes	evenly	spaced	between	2.8	and	16	ms,	and	a	TR	of	25	ms	for	a	total	imaging	

time	of	18	minutes	per	volume.	Additional	parameters	were	as	follows:	matrix	size	(read	x	phase	x	partition)	496	x	434	x	352,	

sagittal	orientation,	generalised	autocalibrating	partial	parallel	acquisition	(GRAPPA)	(Griswold	et	al.,	2002)	with	acceleration	

factor	2	in	both	phase	and	partition	directions	(inner	phase	encoding	loop),	non-selective	excitation	with	a	sinc-shaped	RF	pulse,	

readout	bandwidth	420	Hz/pixel.	The	transmit	voltage	was	calibrated	by	an	initial	low-resolution	transmit	field	map	to	be	

optimal	over	the	occipital	lobe.	Motion	was	monitored	and	corrected	prospectively	by	an	optical	tracking	system	(Kineticor,	

Honolulu,	HI,	USA)	(Callaghan	et	al.,	2015b).	For	the	purposes	of	prospective	motion	correction	of	the	high	resolution	MPM	

acquisitions,	each	volunteer	was	scanned	while	wearing	a	mouth	guard	assembly	(with	attached	passive	Moiré	pattern	markers)	

moulded	to	their	front	teeth	(manufactured	by	the	Department	of	Cardiology,	Endodontology	and	Periodontology,	University	

Medical	Center	Leipzig;	(Papoutsi	et	al.,	2018)).	R1,	R2*	and	PD	parameter	maps	were	computed	using	the	hMRI	toolbox	

(Tabelow	et	al.,	2019).	
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	 Diffusion	weighted	images	(DWI)	were	acquired	for	ten	healthy	participants	(6	females,	4	males,	mean	age	28±3.6	

years)	on	a	3T	Connectom	(Siemens	Healthineers,	Erlangen,	Germany)	scanner	(300	mT/m	maximum	gradient	strength)	using	a	

32-channel	RF	head	coil	for	reception	and	a	body	RF	coil	for	transmission.	DWI	were	acquired	with	high	isotropic	spatial	

resolution	(voxel	size=	1.3×1.3×1.3	mm3)	and	four	interleaved	diffusion	weighting	shells	(b=500	s/mm2,	b=1000	s/mm2,	b=2000	

s/mm2	,	b=3000	s/mm2)	to	enable	simultaneous	partial	volume	effect	(PVE)	and	crossing	fibre	modelling	of	the	underlying	voxel-

wise	fibre	populations	(Jeurissen	et	al.,	2014).	DWI	were	acquired	along	24,	36,	60	and	60	non-collinear	diffusion	encoding	

directions	in	the	order	of	lowest	to	highest	b-value	shell.	The	diffusion	encoding	was	achieved	using	monopolar	diffusion	

weighting	gradients	and	the	diffusion	weighting	directions	were	distributed	on	the	whole-sphere	for	optimum	balancing	and	

eddy	current	(EC)-induced	distortion	correction	(Andersson	and	Sotiropoulos,	2016).	A	total	of	twenty-four	non-DWI	(b=0	

s/mm2)	were	also	acquired	as	baseline	signal	at	every	ten	DWI	(b≠0	s/mm2)	intervals.	A	Centre	for	Magnetic	Resonance	Research	

(CMRR)	single-shot,	two-dimensional,	multi-slice	spin-echo	echo	planar	imaging	(SE-EPI)	sequence	(flip	angle	90°,	TE=65.60	ms,	

TR=5500	ms,	partial	Fourier	factor=⅝,	in-plane	acceleration	factor	in	phase	encoding	(PE)	direction	(GRAPPA)=2	(Griswold	et	al.,	

2002),	multi-band	acceleration	factor	in	slice	direction	=	2	(CMRR,	University	of	Minnesota,	Minneapolis,	USA.	

https://www.cmrr.umn.edu/multiband/,	(Feinberg	et	al.,	2010;	Moeller	et	al.,	2010;	Setsompop	et	al.,	2012;	Xu	et	al.,	2013))	

with	leak-block	kernel	reconstruction,	readout	bandwidth=1234	Hz/Px,	effective	PE	bandwidth=13.256	Hz/Px,	echo	spacing=0.93	

ms,	acquisition	matrix=210×212.5	(101.2%	FOV	phase),	reconstructed	matrix=162×164,	number	of	axial	slices=90,	distance	

factor=0%	and	frequency	selective	fat	suppression	with	both	saturation	RF	pulses	and	the	principle	of	slice	selection	gradient	

reversal	was	used	for	the	DWI	acquisition	(Nagy	and	Weiskopf,	2008).	The	DWI	were	acquired	with	phase	encoding	(PE)	in	the	

anterior-posterior	(AP)	direction.	The	DWI	acquisition	was	repeated	twice	to	improve	the	signal-to-noise	ratio	(SNR).	Five	

additional	non-DWI	(b=0	s/mm2)	were	acquired	at	the	beginning	of	the	DWI	sequence	preceded	by	the	acquisition	of	five	non-

DWI	(b=0	s/mm2)	with	reversed	PE	gradient	polarity,	i.e.	posterior-anterior	(PA)	instead	of	anterior-posterior	(AP)		encoding	

direction.	The	collection	of	AP-PA	non-DWI		(b=0	s/mm2)	enabled	correction	of	susceptibility-induced	geometric	distortions	in	

the	DWI	(Andersson	and	Sotiropoulos,	2016).	The	total	DWI	acquisition	time	was	approximately	50	minutes.	

	 An	accompanying	3D	magnetisation	prepared	rapid	gradient	echo	(MPRAGE)	image	was	acquired	in	the	same	session	

as	the	diffusion	MRI	with	the	following	imaging	parameters:	voxel	size	=	1	x	1	x	1	mm3,	TR/TE	=	2300/2.91	ms,	flip	angle	=	9°,	
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parallel	acceleration	factor	(GRAPPA)	=	2,	field-of-view	=	256	and	240	mm,	matrix	size	=	256	x	240	x	176,	sagittal	slices	acquired	

with	AP	phase	encoding,	non-selective	inversion	recovery	with	inversion	time	TI	=	900	ms,	fat	suppression	and	RF	spoiling.		

	

Cortical	layer	construction	

To	enable	surface	based	registration	of	cortical	atlases	to	individual	subjects	the	Freesurfer	recon-all	pipeline	was	used	(Fischl	et	

al.,	2004)	for	cortical	surface	reconstruction.	As	the	pipeline	is	designed	for	standard	T1w	MPRAGE	images	the	following	

modifications	were	made	for	the	7T	MPMs.	A	synthetic	T1w	image	was	created	using	Freesurfer’s	mri_synthesize	from	R1	and	

PD	maps.	This	involved	scaling	R1	and	PD	images	and	removing	negative	values.	A	synthetic	FLASH	volume	with	optimal	white	

matter/grey	matter	contrast	was	created	using	the	FreeSurfer	mri_synthesize	routine	with	TR	=	20ms,	flip	angle	=	30	degrees,	TE	

=	2.5ms.	Inputs	to	the	routine	were	scaled	quantitative	PD	and	T1	maps	(1/R1	volumes,	with	removal	of	a	small	number	of	

negative	and	very	high	values	produced	by	estimation	errors).	SPM	segment	(https://www.fil.ion.ucl.ac.uk/spm)	was	applied	to	

the	synthetic	image	to	create	a	combined	grey	matter	(GM)/white	matter	(WM)/	cerebrospinal	fluid	(CSF)	brain	mask	with	a	

tissue	probability	cut-off	of	0,	which	was	used	to	remove	the	skull	from	the	PD	image.	The	PD	image	(normalised	such	that	the	

average	white	matter	intensity	is	at	69%	(Tabelow	et	al.,	2019))	was	then	subtracted	from	100%,	inverting	the	contrast	and	thus	

making	it	more	MPRAGE-like	and	at	the	same	time	providing	macromolecular	tissue	volume	fraction	(MTV)	measures	(Mezer	et	

al.,	2013)	.	Next,	Rician	denoising	(http://www.cs.tut.fi/~foi/GCF-BM3D)	(Maggioni	et	al.,	2013)	was	applied	and	the	resulting	

image	was	used	for	Freesurfer	cortical	reconstruction.	Freesurfer	was	then	used	to	perform	surface	based	registration	of	the	

von	Economo	(Scholtens	et	al.,	2018),	HCP-MMP	1.0	(Glasser	et	al.,	2016)	and	Desikan-Killiany	(Desikan	et	al.,	2006)	atlases	from	

template	to	subject	space.		

	 In	order	to	create	cortical	layers,	first	CAT12	(http://www.neuro.uni-jena.de/cat)	was	used	to	create	GM	and	WM	

tissue	probability	maps	(TPMs)	from	the	synthetic	T1w	image.	In	CAT12	the	synthetic	image	was	spatially	normalised	using	an	

affine	and	a	non-linear	registration,	bias	field	correction	was	applied	and	the	image	was	segmented	into	GM,	WM	and	CSF	

(Farokhian	et	al.,	2017).	CAT12	was	used	instead	of	SPM	segment	as	it	resulted	in	more	accurate	WM	segmentations	for	the	7T	

images	with	much	higher	WM	tissue	probabilities.	In	order	to	construct	conservative	GM	and	WM	masks,	the	GM	and	WM	TPMs	
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were	thresholded	such	that	values	below	1	converted	to	0.	This	was	done	in	order	to	avoid	erroneous	labelling	of	GM	as	WM	at	

the	GM/WM	boundary.	The	GM	TPM	was	manually	corrected	to	improve	minor	segmentation	errors.	Nighres	(Huntenburg	et	

al.,	2018)	was	used	to	create	level	set	images	from	the	GM	and	WM	masks.	The	resulting	outer	and	inner	level	set	images	were	

used	to	create	8	equi-volume	layers.	R1	and	R2*	were	then	sampled	at	each	layer	creating	profile-sampled	images.	These	were	

masked	using	regions	of	interest	(ROIs)	from	the	von	Economo	(Scholtens	et	al.,	2018),	HCP-MMP	1.0	(Glasser	et	al.,	2016)	and	

Desikan-Killiany	(Desikan	et	al.,	2006)	atlases	and	mean	R1	and	R2*	values	were	extracted	for	each	ROI	for	each	layer	per	

participant.	Values	were	then	averaged	across	participants	and	only	the	left	hemisphere	was	used	in	order	to	match	the	data	

from	the	AHBA,	since	it	contains	data	from	6	left	hemispheres	and	only	2	right	hemispheres.	Thus,	this	analysis	was	in	keeping	

with	previous	analyses	using	only	the	left	hemisphere	(Arnatkevic	Iute	et	al.,	2019).	This	resulted	in	matrices	of	8x43	for	von	

Economo	and	8x180	for	HCP-MMP	1.0	atlases.	

Diffusion	MRI	processing	

A	white	matter	connectome	was	created	for	each	participant	using	anatomically	constrained	tractography	(Smith	et	al.,	2012)	

implemented	in	MRtrix	(Tournier	et	al.,	2012).	Raw	diffusion	images	were	first	visually	quality	controlled.	Denoising	(Veraart	et	

al.,	2016)	and	Gibbs	ringing	artefact	removal	was	performed	(Kellner	et	al.,	2016)	using	MRtrix.	FSL	Eddy	and	Top-up	were	used	

to	correct	for	eddy	currents,	susceptibility-related	distortion	and	subject	movement	(Andersson	and	Sotiropoulos,	2016).	Bias	

field	correction	was	then	performed	using	the	ANTS	N4	algorithm	(Tustison	et	al.,	2010).	Voxelwise	fibre	orientation	distribution	

were	calculated	using	multi-shell	multi-tissue	constrained	spherical	deconvolution	(MSMT-CSD)	(Jeurissen	et	al.,	2014),	with	

group	averaged	response	functions	for	WM,	GM	and	CSF.	Intensity	normalisation	was	then	performed	on	fibre	orientation	

distributions	(FODs)	and	probabilistic	whole	brain	tractography	implemented	to	generate	10	million	streamlines.	Spherical	

deconvolution	informed	filtering	of	tractograms	(SIFT2)	was	used	to	remove	biases	inherent	in	tractography	were	longer	

connections	are	over-determined,	streamlines	follow	the	straightest	path	and	lack	an	associated	volume	(Smith	et	al.,	2013).	

Freesurfer	was	used	(Fischl	et	al.,	2004)	to	segment	and	parcellate	the	whole	brain	3T	MPRAGE	image.	The	resulting	Desikan-

Killiany	(Desikan	et	al.,	2006)	parcellation	was	used	to	construct	the	WM	connection	matrix.	R1	and	R2*	weighted	connectomes	

were	also	created	by	taking	the	average	R1/R2*	value	across	streamlines	connecting	a	pair	of	ROIs,	where	higher	R1/R2*	were	
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used	as	indicators	for	a	higher	myelination	and	stronger	connectivity.	This	is	analogous	to	fractional	anisotropy	weighting	of	

streamlines,	which	is	commonly	used	in	white	matter	connectome	studies,	but	it	more	directly	targets	the	myelination	of	

connections	(van	den	Heuvel	and	Sporns,	2011).		Cortico-striatal,	cortico-thalamic,	cortico-cortical,	inter-hemispheric	and	intra-

hemispheric	connections	were	then	extracted	for	each	Desikan-Killiany	ROI	per	subject	and	averaged	across	the	group.	

Cell	histology	and	genetic	atlases	

Cell	count	and	cell	size	data	across	cortical	layers	for	the	von	Economo	atlas	were	taken	from	(von	Economo,	2009),	which	

provides	cell	count	and	cell	size	data	for	each	cortical	layer	1-6	in	every	von	Economo	atlas	ROI.	Big	Brain	cortical	layers	were	

defined	using	a	machine	learning	approach,	as	previously	described	(Wagstyl	et	al.,	2019).	Gene	expression	data	for	the	AHBA	

was	extracted	for	180	left-hemisphere	regions	of	the	HCP-MMP	1.0	atlas	as	detailed	by	(Arnatkevic	Iute	et	al.,	2019).	Data	was	

available	from	6	neurotypical	human	brains	(6	left-hemisphere	and	2	right	hemisphere).	Only	data	was	used	for	the	left-

hemisphere	as	the	dataset	for	the	right	hemisphere	was	incomplete.	Genetic	data	processing	involved	six	steps;	gene	

information	re-annotation,	data	filtering,	probe	selection,	sample	assignment,	data	normalisation	and	gene	filtering.	The	code	to	

run	these	processing	steps	is	available	at	https://github.com/BMHLab/AHBAprocessing.	The	processed	data	for	180	left-

hemisphere	regions	of	the	HCP-MMP	1.0	atlas	is	available	at	https://doi.org/10.6084/m9.figshare.6852911.	Lists	of	genes	

specific	to	cortical	layers	2-6	were	obtained	from	the	supplementary	information	of	(Bernard	et	al.,	2012).	

Experimental	design	and	statistical	analysis	

In	order	to	compare	von	Economo	measures,	cell	count	and	cell	size	with	Big	Brain	staining,	correlations	were	performed	

between	von	Economo	measures	across	cortical	layers	and	Big	Brain	staining	intensity	within	cortical	layers	as	defined	by	

machine	learning	(Wagstyl	et	al.,	2019).		

	 For	R1	and	R2*	pairwise	Pearson	correlations	were	performed	between	each	cortical	depth	and	each	von	Economo	

cortical	layer	across	43	regions	of	the	MRI	von	Economo	atlas.	This	resulted	in	8x6	(8	depth	in	MRI	x	6	layers	in	von	Economo)	

correlations	for	each	quantitative	map.	A	Bonferroni-corrected	p(corrected)	<	0.05	threshold	was	applied	to	correct	for	multiple	

comparisons	(implemented	by	a	p(uncorrected)	<	0.05/(8x6)).	For	Big	Brain	data	cortical	layer	staining	intensities	were	used,	as	
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described	above.	Pearson	correlations	were	then	performed	between	each	MRI	cortical	depth,	for	R1	and	R2*,	and	each	Big	

Brain	staining	intensity	value,	across	180	regions	of	the	HCP-MMP	1.0	atlas.	This	resulted	in	8x6	correlations.	A	Bonferroni-

corrected	p(corrected)	<	0.05	threshold	was	applied	to	correct	for	multiple	comparisons	(implemented	by	a	p(uncorrected)	<	

0.05/(8x6)).	For	both	von	Economo	and	Big	Brain	cross	correlations	within	each	atlas	across	cortical	depths	were	explored	in	

order	to	aid	interpretation	of	layer-specificity	and	spill	over	effects/covariation	between	layers.		

	 For	the	genetic	analysis	R1	and	R2*	were	each	averaged	for	each	layer	within	each	HCP-MMP	1.0	ROI.	A	principal	

component	analysis	(PCA)	was	performed	on	gene	expression	data	for	layers	2,	3,	4,	5	and	6	separately.	For	each	PCA	the	first	

principle	component	was	selected,	and	Pearson	correlations	were	performed	between	R1/R2*	per	layer	and	the	first	PCA	for	

each	ROI	(Bonferroni-corrected	p<0.05/5).	Correlations	were	also	performed	based	on	mean	gene	expression	for	each	gene	list	

in	order	to	confirm	the	direction	of	correlation	from	the	PCA	analysis.	Correlations	were	performed	between	R2*	across	cortical	

depth	and	layer-specific	genes	creating	a	matrix	of	8	depths	x	5	layers	(for	each	gene	set)	(Bonferroni-corrected	p<0.05/(8x5)).	In	

addition,	the	correlation	of	depth-dependent	R1	and	R2*	with	29	genes	implicated	in	Huntington’s	disease	pathogenesis	was	

studied.	Genes	included	four	age-of-onset	modifiers	from	a	Genome	Wide	Association	Study	(GWAS)	(Genetic	Modifiers	of	

Huntington's	Disease,	2015),	24	from	a	consensus	list	of	genes	showing	abnormal	transcription	in	Huntington’s	disease	

(Langfelder	et	al.,	2016)	and	the	normal	huntingtin	gene.	The	regional	expression	of	these	genes	were	correlated	against	R1	and	

R2*	for	each	ROI	of	the	HCP-MMP	1.0	atlas	(Bonferroni-corrected	p<0.05/29).		

For	the	connectome	analysis	white	matter	connections	were	split	into	5	groups	(cortico-striatal,	cortico-thalamic,	cortico-

cortical,	inter-hemispheric	or	intra-hemispheric).	Correlations	were	then	performed	between	these	white	matter	subtypes	and	

MRI	cortical	depth	across	34	Desikan	regions	resulting	in	an	8	depths	x	5	connection	sub-type	correlation	matrix	and	Bonferroni	

correction	was	applied	for	multiple	comparisons	(Bonferroni-corrected	p	<	0.05/(8x5)).	This	was	done	for	a	connectome	

weighted	by	streamlines,	R1	and	R2*.	
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