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Abstract

Vector control has been a key component in the fight against malaria for decades, and
chemical insecticides are critical to the success of vector control programs worldwide.
However, increasing resistance to insecticides threatens to undermine these efforts.
Understanding the evolution and propagation of resistance is thus imperative to
mitigating loss of intervention effectiveness. Additionally, accelerated research and
development of new tools that can be deployed alongside existing vector control
strategies is key to eradicating malaria in the near future. Methods such as gene drives
that aim to genetically modify large mosquito populations in the wild to either render
them refractory to malaria or impair their reproduction may prove invaluable tools.
Mathematical models of gene flow in populations can offer invaluable insight into the
behavior and potential impact of gene drives as well as the spread of insecticide
resistance in the wild. Here, we present the first multi-locus, agent-based model of
vector genetics that accounts for mutations and many-to-many mappings of genotypes
to phenotypes to investigate gene flow and the propagation of gene drives in Anopheline
populations. This model is embedded within a large scale individual-based model of
malaria transmission representative of a high burden, high transmission setting
characteristic of the Sahel. Results are presented for the selection of insecticide-resistant
vectors and the spread of resistance through repeated deployment of insecticide treated
nets (ITNs), in addition to scenarios where gene drives act in concert with existing
vector control tools such as ITNs. The roles of seasonality, spatial distribution of vector
habitat and feed sites, and existing vector control in propagating alleles that confer
phenotypic traits via gene drives that result in reduced transmission are explored. The
ability to model a spectrum of vector species with different genotypes and phenotypes
in the context of malaria transmission allows us to test deployment strategies for
existing interventions that reduce the deleterious effects of resistance and allows
exploration of the impact of new tools being proposed or developed.

Author summary

Vector control interventions are essential to the success of global malaria control and
elimination efforts but increasing insecticide resistance worldwide threatens to derail
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these efforts. Releasing genetically modified mosquitoes that use gene drives to pass on
desired genes and their associated phenotypic traits to the entire population within a
few generations has been proposed to address resistance and other issues such as
transmission heterogeneity that can sustain malaria transmission indefinitely. While the
ethics and safety of these methods are being debated, mathematical models offer an
efficient way of predicting the behavior and estimating the efficacy of these
interventions if deployed to specific regions facing challenges to reaching elimination.
We have developed a detailed mathematical model of vector genetics where specific
genomes code for physical attributes that influence transmission and are affected by the
surrounding environment. This is the first model to incorporate an individual-based
multi locus genetic model into a detailed individual-based model of malaria
transmission. This model opens the door to investigate a number of subtle but
important questions such as the effects of small numbers of mosquitoes in a region
sustaining malaria transmission during the low transmission season, and the success of
gene drives in regions where extant vector control interventions could kill off gene drive
mosquitoes before establishment. Here, we investigate the reduced efficacy of current
vector control measures in the presence of insecticide resistance and evaluate the
likelihood of achieving local malaria elimination using gene drive mosquitoes released
into a high transmission setting alongside other vector control measures.

Introduction 1

Malaria remains a deadly disease in a number of regions around the world but increased 2

surveillance, improved access to care and vector control have put elimination in sight in 3

a number of countries worldwide. In sub-Saharan Africa, where malaria is largely 4

endemic [1], vector control is a cornerstone of control and elimination efforts, and 5

insecticide based interventions such as insecticide treated nets (ITNs) and indoor 6

residual spraying (IRS) are the most widely used vector control tools [2]. This has led 7

to large decreases in malaria transmission in the region with ITNs being responsible for 8

around 68% of averted cases [3]. 9

However, the effectiveness of malaria control through insecticides is being threatened 10

by growing insecticide resistance in a number of countries [2, 4, 5]. Of the 81 endemic 11

countries surveyed between 2010 and 2018, 73 showed at least one major malaria species 12

being resistant to at least one of four insecticide classes approved for malaria control [6]. 13

Additionally, pyrethroids have thus far been the only approved class of insecticides for 14

ITNs, and resistance to these insecticides is widespread, which severely compromises 15

insecticide-based vector control [7]. To further complicate matters, mechanisms for 16

resistance vary widely given the different target sites in the vector genome for different 17

classes of insecticides and the differing decay rates of killing efficacy across insecticides. 18

Point mutations result in reduced sensitivity of the mosquito nervous system to 19

insecticides [8] while amplification or over-expression of certain genes that result in 20

increased enzymatic metabolism of insecticides [9] is another form of resistance. 21

Behavioral changes in a vector population within a few generations due to extreme 22

stress exerted by the introduction of insecticides [10] has remained a more difficult form 23

of resistance to identify and mitigate. There is a critical need to address these threats 24

expeditiously to not lose ground in the fight against malaria. 25

The use of transgenic mosquitoes that carry gene drives has been proposed as 26

another form of vector control [11]. The use of gene drives has been put forward as a 27

means to address loss of intervention effectiveness in a region due to insecticide or drug 28

resistance [12]. Furthermore, gene drives could be a potentially ideal modality to 29

drastically reduce vectorial capacity [13] in high transmission settings where current 30

vector control interventions under the most optimal conditions could fail to achieve 31
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elimination [14]. Gene drives could also address changing mosquito behavior such as 32

increased outdoor biting due to increasing indoor vector control pressure [15]. A gene 33

drive system based on preferential inheritance can result in an entire population 34

acquiring an engineered genetic trait and a desired effect within a few generations [16]. 35

Gene drive methods for the purposes of vector control broadly fall under two categories: 36

first, modifying a population to make it refractory to malaria, a practice referred to as 37

population replacement [17], and second, restricting the population of a specific 38

subspecies, which is referred to as population suppression [18]. James et al. [19], and 39

Hammond and Galizi [20] provide an overview of different gene drive strategies being 40

currently considered or developed. 41

There are a number of challenges to be addressed before gene drives become an 42

accepted tool for vector control. Besides technical challenges such as engineering 43

genetically modified (GM) mosquitoes with reduced fitness costs and deploying gene 44

drive mosquitoes in areas with existing vector control that could kill GM mosquitoes 45

before establishment, addressing community concerns and communicating the ecological 46

risks and epidemiological benefits of gene drives in a region are crucial to deploying gene 47

drives to fight malaria [21]. 48

Due to these challenges, mathematical models offer one of the best methods to 49

evaluate the spread and impact of transgenic mosquitoes in a given setting. Examples of 50

in silico models include population suppression by driving the Y chromosome or 51

replacement using dual germline homing in different spatiotemporal settings [22,23], 52

optimal homing rates of multiplexed guide RNAs to reduce resistant alleles and increase 53

the chances of population suppression or replacement [24,25], and a reaction diffusion 54

model to study fixation of deleterious gene drives through accidental release [26,27]. 55

These models include both individual-based approaches [22,28], which are excellent for 56

modeling small, isolated populations characteristic of a suppression drive, or continuous 57

well-mixed populations [26,29], which offer a rapid way of estimating long term effects 58

of a gene drive campaign. Additionally, insecticide resistance has been modeled using 59

either compartment models [30–32] or statistical approaches based on field data [33,34]. 60

However, given future release scenarios for gene drives into regions with existing vector 61

control, insecticide resistance, distinct seasonalities and specific physical barriers, an 62

agent-based approach to modeling vector genetics within the context of a vector-borne 63

disease that includes all of these features would be invaluable. 64

In this paper, we describe the key components of a new stochastic, agent-based 65

vector genetics model that follows Mendelian inheritance rules influenced by mosquito 66

life and feeding cycle dynamics in a spatiotemporal setting. We then present simple 67

examples of how phenotypes and genotypes interact in the model, and how gene drives 68

establish themselves in a population. Next, we proceed to more complex examples 69

where the vector genetics model is embedded into an agent-based model of malaria 70

dynamics. We demonstrate the impact on mosquitoes interacting with vector control 71

interventions that are deployed in a region with high malaria transmission. We also look 72

at factors for success of population replacement gene drives that result in vectors 73

becoming refractory to malaria with or without the presence of vector control in a given 74

setting, and the role of transmission heterogeneity and vector migration on malaria 75

elimination efforts. Finally, we present future use cases of the vector genetics model 76

ranging from vector control deployment strategies that combat insecticide resistance to 77

optimizing gene drive releases to achieve malaria elimination. 78
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Methods 79

Vector genetics model 80

Mosquitoes in EMOD v2.20 [35] can be modeled as individuals or cohorts. Each 81

individual or cohort has a 64-bit diploid genome that is a recombination of two haploid 82

genomes or gametes inherited from each parent, respectively. This diploid genome can 83

account for up to 10 different loci or genes with up to 8 different alleles per gene. Two 84

bits are reserved to code for the presence of either Wolbachia [36] or other biological 85

insecticides such as Metarhizium [37] (supplementary figure S1). When mating occurs 86

in the model, the male and female produce offspring with a combination of genes and 87

alleles obtained from the gametes of the parents via Mendelian inheritance (Fig 1). 88

Mutations can occur during gametogenesis (supplementary figure S2), and phenotypic 89

traits can be assigned to specific genotypes (Fig. 1). Broadly, the traits that can be 90

modified currently could affect the ability of a vector to transmit malaria, generate 91

progeny biased towards a specific gender, confer fitness costs such as reduced fecundity 92

or increased mortality, and simulate partially or fully insecticide-resistant vectors. The 93

model also captures genetic drift due to factors such as spatial bottlenecks, initial allele 94

skewness and fitness costs associated with environmental factors. By defining species 95

complexes, the model can be extended to simulate subspecies introgression as well. 96

Fig 1. Representative genomes of cohorts or individual mosquitoes within
EMOD. The model supports the inheritance of traits from parents (a), random
mutations of alleles (b), and definitions of phenotypic traits associated with a
combination of genes or alleles, that are expressed only when those combinations are
present (c). Inheritance of genes is modeled as a Mendelian process, and combinations
of alleles can be mapped to combinations of traits via a many-to-many mapping.
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Gene drives within EMOD 97

Various gene drive strategies can also be simulated using this model such as classic 98

endonuclease drives where driver and effector genes are driven as one construct [38], 99

integral drives with independent autonomous driver and non-autonomous effector 100

genes [39], as well as daisy-chain drives with serially dependent but unlinked drive 101

elements [40]. Cleaving at the target site and copying of the desired allele occurs during 102

gametogenesis (Fig. 2). For Mendelian inheritance rules, see supplementary figure S2. 103

This allows for simulated mosquitoes to carry the drive in a heterozygous or homozygous 104

configuration to facilitate modeling fully or partially recessive traits associated with 105

driven alleles, as used in either population suppression or replacement contexts. 106

Fig 2. Inheritance rules for gene drives. In this example, ‘a1’ is the driven allele
and ‘a0’ is the wild type allele. Red mosquitoes represent mosquitoes with the driven
allele ’a1’ either in the homozygous or heterozygous configuration. Black mosquitoes
represent wild type mosquitoes, which are homozygous in ’a0’. The drive successfully
cleaves the target site 95% of the time. In the event of drive failure, the wild type allele
remains. This is akin to modeling drive failure in terms of the driven allele failing to
home in to the target site. This does not include target site resistance through natural
mutation or non-homologous end joining (NHEJ). No other mutations are considered.
Three mating scenarios are presented: (A) When a drive carrying heterozygous
mosquito mates with a homozygous wild type mosquito, (B) a heterozygous-with-drive
mosquito mates with a homozygous-with-drive mosquito, and (C) two
heterozygous-with-drive mosquitoes mating.

Insecticide resistance within EMOD 107

Insecticide resistance is modeled as a phenotypic trait associated with the expression of 108

specific alleles or allele combinations in an individual vector or a cohort of vectors. 109

Resistant alleles are defined for each insecticide at the start of the simulation. The 110

expression of resistant alleles in a vector could code for changes in either killing efficacy 111

or the efficiency of repellence of insecticides applied to various interventions such as 112

insecticide treated nets (ITNs), indoor residual spraying (IRS), attractive targeted sugar 113

baits (ATSBs) and space spraying. Additionally, vector host seeking behavior can also 114

be modified to model behavioral resistance. Fitness costs affecting the lifespan of 115

vectors or their fecundity can also be imposed and associated with combination of genes 116

and alleles. 117
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Simulation framework 118

All simulations were carried out with EMOD v2.20 [35], an agent-based mechanistic 119

model of Plasmodium falciparum malaria transmission with vector life cycle [41], and 120

parasite and immune dynamics calibrated to within-host asexual and sexual stages of 121

the parasite [42]. The vector life cycle in the model consists of four stages : eggs, larvae, 122

immature adults and host seeking adults. The larval habitat available at a given time 123

dictates the total number of larvae that can be accommodated per habitat type at that 124

time, which in turn governs the number of vectors emerging at the end of the life cycle. 125

For simulations modeled as a single location, a single peak seasonality characteristic 126

of the Sahel is used to model the amount of vector habitat available at a given time 127

(Fig.3A). Malaria transmission is modeled in a population of approximately 1000 128

individuals with birth and death rates observed in the Sahel, and an effective annual 129

entomological innoculation rate (EIR) of 120 absent any interventions. For 130

multi-location spatial simulations, population data was obtained using the High 131

Resolution Settlement Layer (HRSL) generated by the Facebook Connectivity Lab and 132

Center for International Earth Science Information Network (CIESIN) at Columbia 133

University [43]. An area covering 300 square kilometers in rural Burkina Faso was 134

resolved into one square kilometer grid cells, and only grid cells with more than 5 people 135

were assumed to be inhabited, which resulted in a total of 150 populated grid cells and 136

total of 4000 individuals (Fig. 3B). 137

Fig 3. Seasonality and spatial simulation setup using EMOD. (A) Single peak
seasonality profile characteristic of a Sahelian seasonal and transmission setting. All
simulations presented here with a prevalence endpoint measure use this seasonality
profile resulting in an annual EIR of around 125 infectious bites per person. (B) Spatial
grid used for spatiotemporal gene drive simulations. Six nodes with the largest human
population are selected as release sites for genetically modified mosquitoes carrying
drives and are marked in red.

Human individuals in these spatial simulations are assigned a daily probability to 138

take overnight trips to other grid cells according to a gravity model of migration. The 139

gravity model is calibrated to human movement on scales of one to tens of kilometres 140

observed in geotagged campaign data [44] leading to an average of 5 overnight trips per 141

person per year. There is no disease importation from outside the modelled area. Vector 142

migration follows the same gravitational model with the amplitude scaled by a factor of 143

100. There is no human or vector migration outside the area. 144

While fitness costs can be modeled using the genotype to phenotype mapping of the 145

vector genetics model, none of the wild type, mutated or genetically modified alleles in 146

the scenarios discussed here are assumed to possess associated fitness costs. 147
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Interventions 148

Treatment with artemether–lumefantrine (AL) is available for symptomatic cases in all 149

simulation scenarios. 80% of severe malaria cases are assumed to seek treatment, and 150

treatment is sought within 2 days of symptoms occurring. We assume Only 50% of 151

clinical cases seek treatment, which happens within 3 days of symptom onset. 152

Intervention scenarios are simulated for six years. ITN distributions occur every 153

three years per WHO recommendations [45] on July 1 just as the peak season starts to 154

pick up. ITN retention is modeled as decaying with exponential rate of two years [3]. In 155

the insecticide resistance scenario, ITN killing efficacy starts at 80% with an exponential 156

decay rate of four years per WHO guidelines for classifying a vector population as 157

susceptible. In the gene drive scenarios, ITN killing starts at 60% to account for efficacy 158

loss due to insecticide resistance. ITN blocking starts at 90% with an exponential decay 159

rate of two years to model the physical integrity of nets for all scenarios. 160

In the gene drive scenarios, mosquitoes carrying a population replacement drive are 161

released on July 1 just as the peak season begins to pick up to give the drive maximum 162

chance of spreading. In the single location simulations, the likelihood of elimination is 163

evaluated for different levels of transmission efficacy from mosquitoes to humans, and 164

drive cleave-and-copy success probability. The efficiency of the drive, that is the copying 165

over of the drive allele at the target locus, is varied from 50% to 100%. The probability 166

of infected vectors carrying the drive transmitting malaria to humans is varied from 0 to 167

50% compared to a vector without drive. For the spatial simulation, the likelihood of 168

drive copying over is maintained at 100% while the probability of transmitting malaria 169

to a human when the vector carries the drive is reduced to 30% compared to a vector 170

without drive. 171

Given the absence of importation or migration outside the simulated area, 172

elimination is defined as zero infected individuals at the end of the sixth year. Each 173

scenario is run for 50 stochastic realizations. 174

Results 175

In each of the simulation scenarios, values for the parameters within the model are 176

chosen within physiologically plausible limits. Additionally, these values were chosen to 177

demonstrate the capabilities of the model and only broadly reflect malaria transmission 178

in a Sahelian setting. Calibration of the model to entomology, genetics, and 179

epidemiological data representative of a specific setting are required before simulating 180

future scenarios and outcomes that are predictive of the same setting. 181

The vector genetics model can capture the effects of fitness 182

costs and benefits of specific phenotypes on an entire 183

population as well as the inheritance of gene drives in the model 184

To demonstrate how different mosquito phenotypes interact with each other in the 185

model, we released 1000 male mosquitoes homozygous with a mutated allele, which 186

reduces the mortality of male mosquitoes by half (Fig 4A), into a wild type population 187

of 100000 adult male and female mosquitoes. The reduced mortality is modeled as a 188

dominant trait conferring the same phenotypic characteristics to the male mosquito 189

irrespective of its zygosity with respect to the mutated allele. For this single location 190

simulation, no seasonality was imposed to isolate conferred physical traits as the cause 191

for propagation of different alleles in the population. The modified males were released 192

six months after the start of the simulation (Fig. 4B). We assumed are no variations in 193

any of the genotypes in this simulation. 194
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Fig 4. Example of how traits and alleles interact in the vector genetics
model. There is no seasonal variation and no spatial component. (A) Genomes of
mosquitoes in the model. Mosquitoes homozygous in ‘a0’ are the wild type mosquitoes.
Male mosquitoes carrying the ‘a1’ allele in a homozygous or heterozygous configuration
have decreased mortality, which is thus a dominant trait, and is modeled as a halving of
their probability of dying. (B) Distributions of genomes in the population over time
average over 50 stochastic realizations. Male mosquitoes homozygous in the ‘a1’ allele
are released mid-year during the first year of the simulation.

Just under a year after the start of the simulation, heterozygous females start to 195

emerge. A year after the release of the male mosquitoes carrying the mutated allele, 196

homozygous in ’a1’ females start to emerge. As the simulation progresses, the mutated 197

’a1’ allele dominates the population while the ’a0’ allele-carrying females die out. Males 198

carrying the ’a1’ allele either in a homozygous or heterozygous configuration live longer 199

and have a greater chance of passing on their genes to offspring. This results in the ’a1’ 200

allele being propagated to almost the entire population five years after release. 201

As an example of how gene drives work in the model, we released 1000 male 202

mosquitoes carrying a gene drive allele ’a1’ in a heterozygous configuration into a 203

population of 150000 male and female mosquitoes carrying the wild-type ’a0’ allele in a 204

homozygous configuration. The ’a1’ allele cleaves and copies the ’a0’ allele at the target 205

site of the second chromosome with a success rate of 50%. This is representative of 206

drive failing to home in on the target site 50% of the time. There are no mutations 207

modeled and neither of the alleles have phenotypic differences. Males carrying the gene 208

drive allele are released 200 days after the start of the simulation. Again, no seasonlity 209

was imposed in this single location simulation 210

Heterozygous females start to emerge almost immediately after release and just as 211

the homozygous in ’a1’ females start to form a large fraction of the population about a 212

year after the release, there is a precipitous drop in the wild type allele, ’a0’, in the 213

population (Fig. 5. A homing rate of 50% results in the ’a1’ fixating in the population 214

around 2 years after the initial release of GM mosquitoes carrying gene drives. In the 215

absence of fitness costs, vector migration, and seasonality, the ’a1’ allele will always 216

fixate but the rate at which it achieves fixation will be dependent on the homing rate. 217
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Fig 5. Example of how gene drives behave in the vector genetics model.
The mean (solid line) and one standard deviation (shaded area) of genomes in the
population over time of 50 stochastic realizations when male mosquitoes with drive are
released into a wild type population. There is no seasonal variation and no spatial
component. Mosquitoes homozygous in ‘a0’ are the wild type mosquitoes. Male
mosquitoes carrying the ‘a1’ allele in a homozygous configuration are released 200 days
after simulation starts. The ’a1’ allele is a driven allele and has a homing rate of 50% to
the ’a0’ site.

Insecticide resistance could lead to malaria transmission rapidly 218

becoming refractory to vector control that involves repeated 219

deployment of the same insecticide 220

Vector control tools such as ITNs and IRS have been deployed extensively across the 221

Sahel over the past two decades. In a high transmission setting with seasonality 222

modeled after the single peak wet season (Fig. 3A) the start of the peak season is the 223

most optimal time to deploy ITNs [42]. In the modeled scenario presented here, vectors 224

heterozygous with a resistant allele constitute around 3% of the total vector population 225

while vectors homozygous with a resistant allele constitute less than 0.1% of the total 226

population at the start of the simulation. The heterozygous vectors are modeled as 227

being partially resistant to insecticides with killing efficacy reduced to 25% while 228

vectors homozygous with the resistant allele are fully resistant with only 12% efficacy in 229

killing. When nets are deployed at the end of June, there is rapid selection of the 230

resistant allele (supplementary figure S3). However, the effect of increasing the resistant 231

population on malaria transmission is only observed after the second deployment of 232

ITNs treated with the same insecticide three years later (Fig. 6). 233

When no interventions are deployed RDT prevalence oscillates between 15% in the 234

low season to a high of around 45% in the peak season. However, when ITN’s are 235

deployed with no resistance, peak RDT prevalence is around 10% in the middle of the 236

third year and drops to levels under 2% after the second deployment of nets. As usage 237

wanes towards the end of year 6, RDT prevalence peaks at 5%. The total number of 238

clinical cases, however, has dropped by 85% over the course of six years resulting in an 239

annual EIR of 9 infectious bites per person. In the case with resistance, RDT prevalence 240

mimics the scenario with no resistance until the fourth year. Selection of resistant 241

January 27, 2020 9/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.01.27.920421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920421
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 6. Tracking the effect of insecticide resistance on prevalence in a
Sahelian setting. RDT prevalence (top row) across a period of six years averaged
over 50 stochastic realizations for three scenarios - when no interventions are deployed,
when ITNs are deployed at 60% coverage absent any resistance, and with the presence
of resistance. Establishment rates of susceptible and resistant genomes in the scenario
with resistance (bottom row). The shaded area around the mean represents one
standard deviation calculated across the 50 stochastic realizations. ITNs are distributed
every three years at the beginning of the peak season.

vectors increases the resistant proportion of the population (supplementary figure S3) 242

leading to higher sustained prevalence rates similar to rates seen after the first 243

deployment of nets with a peak of 10%. The total number of clinical cases averted over 244

the six years drops to 80%. The annual EIR climbs to a mean of 30 infectious bites per 245

person over the course of the final year. 246

Traditional vector control strategies increase the chance of 247

malaria elimination via genetically modified vectors refractory 248

to malaria in high transmission settings 249

In highly seasonal settings, releasing mosquitoes that carry gene drives at the start of 250

the peak season maximizes the chances of spreading introduced genes through the entire 251

population. Here, vectors carrying a gene drive that renders them refractory to malaria 252

are released at the end of June in a setting with seasonality characteristic of the Sahel 253

(Fig. 3A). The spread and effect of malaria refractory gene drives in inhibiting malaria 254

transmission is explored in three scenarios: one with no other forms of vector control, 255

and two scenarios with ITNs distributed at the start of the wet season every three years 256

at 60% and 80% coverage, respectively. This is a single location simulation and for each 257
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scenario the probability of elimination six years after the start of the simulation is 258

calculated for a range of transmission blocking efficiencies and successful drive copy 259

rates (Fig. 7). 260

Fig 7. Likelihood of elimination in a Sahelian setting using gene drives that
reduce the probability of transmission of parasites from mosquitoes to
humans. Three scenarios are presented - one without ITNs, and ITNs distributed
every three years over a six year period at 60% and 80% coverage, respectively. The
fraction of simulations eliminating is evaluated over 50 stochastic realizations for a given
value pair of probability of transmission from mosquito to human and likelihood of
successful gene drive of the gene responsible for reduced transmission.

In the use case of a population replacement gene drive, the likelihood of the driver 261

successfully cleaving the target site and copying over the desired gene has minimal 262

impact in all three scenarios. However, it does have an impact on how quickly the drive 263

establishes (supplementary figure S4). This in turn has an effect on how quickly 264

transmission is reduced. However, the degree to which the desired gene blocks 265

transmission of the malaria parasite from mosquito to human is a stronger predictor of 266

elimination. When no ITNs are present, and when the likelihood of infected vectors 267

transmitting malaria to humans decreases to 20%. malaria persists in the region. 268

However, with the addition of ITNs at 60% coverage, a vector to human transmission 269

efficiency of 35% still results in 50% of the simulations eliminating. At 80% ITN 270

coverage and only 50% chance of a bite being infectious, there is a 60% chance of 271

elimination in the region. In the last two scenarios, the inclusion of ITNs increases the 272

chances of elimination despite ITNs killing off vectors carrying the drive as well. The 273

drive spreads through the population because male mosquitoes are unaffected by ITNs 274

and reseed the vector population with the drive until the drive establishes in the entire 275

population. 276

Spatial connectivity and interaction with traditional vector 277

control are critical factors in determining gene drive success 278

Vector migration plays an important role in the spread and establishment of a gene in a 279

regional vector population as migration determines the rate of gene flow between 280

subpopulations that are spatially segregated. To explore the effects of a region’s 281

connectedness and the migration of vectors between habitat and meals, the Sahelian 282

seasonality (Fig. 3A) is imposed on a representative region of settlements in the Sahel 283

(Fig. 3B). Release sites for mosquitoes carrying drive are marked in red, and 100 284

genetically modified mosquitoes are released from each of the sites at the end of June as 285

the peak season begins to pick up. The effects of a vector control intervention such as 286

ITNs when combined with a gene drive release are explored (Fig. 8). 287

For gene drive releases in the multi-location simulations, infectious vectors carrying 288

the drive are modeled to have a 70% drop in their efficiency to transmit malaria to a 289

January 27, 2020 11/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.01.27.920421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920421
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 8. Evolution of true prevalence over time when different intervention
packages are deployed in a multi location Sahelian setting. Results are from a
spatial simulation with 150 one square kilometer nodes with varying population and
larval habitat sizes spread across 300 square kilometers. Four different scenarios are
explored - absent any vector control interventions, release of genetically modified
mosquitoes carrying a drive that reduces the probability of parasite transmission from
mosquitoes to humans, deploying ITNs every three years just as the peak season begins
to pick up, and a combination of gene drive and ITNs. The average of 50 stochastic
realizations of each scenario is represented by solid lines while the shaded area
represents one standard deviation.

human. The likelihood of drive copying over is maintained at 100% to simulate an 290

optimistic scenario for gene drive establishment in this setting. Vector migration is 291

modeled as described in section Simulation framework. When there are no interventions, 292

the true prevalence in the region oscillates between around 65% in the dry season to 293

over 95% at the peak of the wet season. With the introduction of ITNs at 80% coverage, 294

large drops in prevalence are observed immediately after deployment but waning usage 295

of the nets over time coupled with decreasing net integrity and insecticide effectiveness 296

over time leads to prevalence reverting to levels without vector control a year and a half 297

following deployment. This is seen after both ITN distribution events that are three 298

years apart. 299

In the scenario where there is a single release of mosquitoes carrying drives at the 300

end of June in the first year of the simulation, there is a large drop in prevalence 301

approximately 2 years after release. This is because vectors carrying the drive take time 302

to migrate away from the release sites and establish in other areas before driving down 303

transmission. However, after establishment, transmission persists with a maximum 304

prevalence of around 90% and a minimum prevalence of around 25% over a given year. 305

This is in line with single location simulations of gene drive releases (Fig. 7). 306

Additionally, the release sites have been held constant at six for this scenario. In this 307

setting, the number of release sites only impacted the speed of establishment and not 308

the probability a gene drive would establish. Six sites with the largest human 309

population were chosen to keep release numbers under 1% of the total vector population 310

in the simulated region. 311

However, when gene drives and ITNs are combined the probability of elimination 312

decreases in the multi-location simulation compared to the single location ones. In the 313

multi-location scenarios, gene drive mosquito release and the first round of net 314
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distribution are conducted concurrently at the end of June of the first year of simulation 315

with an additional round of net distribution after three years. Again, gene drives take 316

two years to establish and have an impact on transmission but ITN usage in the 317

meantime drives the prevalence lower in year 3 of the simulation than in the case with 318

only ITNs. As the impact of gene drives begins to grow after year 3, the prevalence 319

drops to almost undetectable levels in combination with the second ITN distribution 320

event. However, as ITN usage wanes, the prevalence begins to pick up again towards 321

the end of year 5. Now only 80% of simulations eliminate as opposed to 100% 322

elimination seen in the single location. Partial suppression of transmission due to drives 323

and uneven migration leads to pockets of lower establishment (supplementary figure S5). 324

The decreases in establishment rates are especially distinct around the start of the wet 325

season when wild type mosquitoes could have survived in greater numbers than GM 326

mosquitoes leading to a resurgence of wild type mosquitoes in the node. This combined 327

with dropping ITN usage lead to regions of high prevalence in some simulations 328

(supplementary figure S5). This in turn leads to prevalence increasing if transmission is 329

not eliminated by the time net usage starts to decrease. 330

Discussion 331

Insecticide resistance threatens to drastically undermine malaria control and elimination 332

efforts. New tools are required to understand the spread of insecticide resistance, and 333

how new technologies such as gene drives should be optimally deployed in the field. 334

Here, we present a mathematical model that captures gene flow in vector populations in 335

an agent-based spatiotemporal framework. We also investigate he impact of existing 336

vector control interventions when combined with gene drives or in the presence of 337

insecticide resistance. 338

The results from embedding this agent-based model of vector genetics within an 339

agent-based model of malaria transmission dynamics show that even a small number of 340

insecticide-resistant vectors can start to dominate a local population facing repeated 341

exposure to the same insecticides. This could lead to a rapid rise in the number of 342

clinical cases of malaria. Additionally, in regions with highly seasonal and 343

heterogeneous transmission, existing vector control methods such as ITNs can work in 344

concert with gene drives that seek to replace the wild population with mosquitoes that 345

have a reduced ability to transmit the disease to bring even high transmission settings 346

close to elimination in a few years. 347

The scope of this study is limited to presenting a modeling framework. However, 348

there are a number of unanswered questions with respect to mosquito gene flow, 349

insecticide resistance and gene drives that mathematical modeling and this model in 350

particular could aid in answering. For example, the model presented here could be 351

leveraged to understand the rise of insecticide resistance given different vector control 352

strategies in a region. For an assortment of insecticides that can be delivered via 353

different modalities such as IRS and ITNs, mathematical models of resistance such as 354

the one presented here could be used to calculate optimal timing and spatial 355

deployment of these interventions as well as develop insecticide cycling strategies [46] 356

that could mitigate the spread of resistant vectors. Furthermore, the impact of vector 357

control strategies that employ two or more insecticides [47] deployed concurrently 358

amidst resistance in a given region can also be assessed. 359

The model is limited to 8 alleles and 10 loci to make the model computationally 360

efficient by limiting the amount of memory allotted to each genome to 64 bits, which is 361

a common width for registers in a CPU. Additionally, a 10 loci genome is sufficient to 362

model a number of complicated scenarios ranging from single gene mutations in kdr 363

resistant mosquitoes [48] to complicated multi driver effector gene drives that could be 364
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developed using emerging constructs [39]. There are, of course, limitations to this model 365

such as the absence of a framework to account for genetic linkage of resistant alleles 366

with alleles coding for other phenotypic characteristics, which could impact how 367

genomes are selected for under insecticide pressure. However, the modular framework of 368

this model is extensible to include these characteristics should the need arise. 369

As the debate continues on if and how gene drives should be released, mathematical 370

models could prove invaluable in narrowing down questions and concerns of regulators 371

and stakeholders to aid in making informed decisions. The optimal size and timing of 372

release that result in drive fixation given a deliberate or accidental release in a region, 373

whether replacement, suppression or a combination of the two strategies is best suited 374

to a region, and the effects of ongoing vector control on gene drives and their combined 375

effect on malaria transmission are just a few examples of some of the more specific 376

questions this model can be leveraged to simulate within the framework of malaria 377

transmission in a region. 378

While we aim to use this model to investigate important questions related to vector 379

genetics, we also aim to continually improve the model to accurately capture how 380

resistance spreads or gene drives establish themselves in a region. For example, we use a 381

simple gravitational model to simulate mosquito migration whereas more complicated 382

mechanisms are at play in vector migration such as long range migration aided by 383

wind [49] or preferential migration towards habitat or food sources depending on the 384

part of the feeding and life cycle each vector in a region is in [50]. Additionally, we have 385

limited migration to within the simulated region while there could be mosquitoes 386

entering or escaping the region with dire consequences. Gene drive mosquitoes escaping 387

the simulated or control region and establishing elsewhere is a genuine cause for 388

concern [19]. Including these migration characteristics in our simulations could also 389

impact the outcomes of the simulations presented here. For example, importation of 390

wild type mosquitoes into the study area could reseed transmission year after year. Or 391

preferential migration to some nodes during certain times of the year could lead to other 392

regions being primed for colonization by non-gene drive mosquitoes. 393

While we have only focused on a loss of killing efficacy for insecticides when 394

resistance is present, changes in vector behavior due to resistance could lead to a further 395

increase in transmission. For example, resistant vectors that are averse to insecticides 396

may avoid landing on nets or entering houses treated with IRS [51] and shift 397

transmission modes by preferentially seeking more outdoor feeds. While we have not 398

explored these questions in detail here, the scenarios presented here serve as an example 399

of how the model can be adapted to address scenarios arising from more complex 400

resistant vector behavior. 401

Finally, we have almost entirely avoided including fitness costs associated with 402

resistance or mosquitoes carrying drives that could have large effects on the outcomes of 403

gene drive or vector control based intervention strategies in the field. There are likely 404

fitness costs in insecticide-resistant vectors [52] or genetically modified mosquitoes [53]. 405

However, the modeling framework presented here has the ability to accommodate the 406

addition of fitness costs, which will have to be carefully characterized and included in 407

the model before simulations can predict outcomes for different characteristics 408

associated with vector genetics in a particular region. 409

Conclusion 410

An agent-based model of vector genetics that can account for insecticide resistance and 411

gene drives is presented here. When embedded into an agent-based model of malaria 412

immunity and transmission dynamics, it can be used to simulate the evolution of 413

insecticide resistance in a range of transmission settings with ongoing vector control 414
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interventions. The impact of insecticide resistance in a high transmission setting with 415

repeated deployments of insecticide-treated nets was simulated as an example. The 416

results suggest periodic exposure over a number of years to the same insecticides can 417

lead to selection of resistant vectors despite low prevalence of resistance in a highly 418

seasonal setting. While the effects of resistance are minor after the first round of 419

exposure to insecticides, subsequent rounds can accelerate resistance, which could lead 420

to rapid resurgences in malaria prevalence and burden. 421

The model also provides a flexible framework to evaluate expected impact of new 422

tools in programmatic settings. For example, gene drives could be a powerful tool in the 423

fight against malaria. However, gene drives alone may not be able to eliminate malaria. 424

As an example, the vector genetics model presented here was leveraged to simulate a 425

scenario when gene drives are combined with traditional vector control tools such as 426

ITNs in a highly seasonal and high transmission setting. Preliminary results from these 427

simulations suggest a combination of gene drives and traditional vector control methods 428

offer a more robust strategy to achieving malaria elimination than deploying each of 429

these interventions independently. 430
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Supporting information 431

432

S1. Memory allocation for vector genetics model embedded in EMOD. 433

Each vector or vector cohort carries with it 64 bits of memory dedicated to a diploid 434

carrying 10 different representative genes with up to 8 different alleles per gene. 4 bits 435

are allocated for Wolbachia status. While a mosquito has 3 chromosome, the 436

representative genome here consists of only one pair of representative chromosomes. 437
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438

S2. Mendelian inheritance of vector genes in EMOD. EMOD adopts a 4 part 439

lifecycle for the vector starting from eggs that progress to the larval stage before moving 440

onto the immature adult and adult stage. When adults mate, genomes from male and 441

female mosquitoes are used to calculate the likelihood of existence of a gamete carrying 442

a certains set of allele combinations. Random mutation are then applied and possible 443

genome probabilities calculated. These probabilites are multiplied by the egg batch size 444

for each species to obtain the number of eggs bearing each genome. 445

January 27, 2020 17/23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.01.27.920421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.27.920421
http://creativecommons.org/licenses/by-nc-nd/4.0/


446

S3. Daily EIR across a period of six years averaged over 50 stochastic 447

realizations for three scenarios - when no interventions are deployed, when 448

ITNs are deployed at 60% coverage absent any resistance, and with the 449

presence of resistance. The shaded area around the mean represents one standard 450

deviation calculated across the 50 stochastic realizations. ITNs are distributed every 451

three years at the beginning of the peak season. 452

453

S4. Establishment rates for different probabilities of the drive being 454

copied over to the target location. There are no other vector control interventions. 455

And transmission to human is set to 0. 456
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457

S5. Single realization of the combined ITN and gene drive scenario where 458

elimination was not attained at end of a six year simulation. Upper panel 459

describes spatial distribution of prevalence at the end of six years. Blue line in lower 460

panel describes total prevalence in simulated area. Black line describes overall 461

establishment of GM mosquitoes over time while the red envelope describes the range of 462

establishment rates across all spatial nodes. 463
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