- 1 Although host-related factors are important for the formation of gut microbiota,
- 2 environmental factors cannot be ignored
- 3
- 4 YeonGyun Jung^a[¶], Dorsaf Kerfahi^b[¶], Huy Quang Pham^a, HyunWoo Son^a, Jerald Conrad
- 5 Ibal^a, Min-Kyu Park^{a,c}, Yeong-Jun Park^a, Chang Eon Park^{a,d}, Seung-Dae Choi^a,
- 6 YoungJae Jo^a, Min-Chul Kim^a, Min Ji Kim^a, Gi Ung Kang^a, Hyung Woo Jo^e, Hyunju
- Yun^f, Bora Lee^f, Clara Yongjoo Park^f, Eun Soo Kim^g, Sang-Jun Kim^h, and Jae-Ho Shin
 ^a#
- 9 ^aSchool of Applied Biosciences, Kyungpook National University, Daegu, Republic of
- 10 Korea
- 11 ^bDepartment of Biological Sciences, Keimyung University, Daegu, Republic of Korea
- 12 ^cIMMUNISBIO Co., Ltd, Incheon, Republic of Korea
- 13 ^dInstitute of Ornithology, Association of Ex-situ Conservation, Daegu, Republic of
- 14 Korea
- 15 ^eR&I Center, COSMAX BTI, Seongnam-si, Republic of Korea
- ^fDepartment of Food and Nutrition, Chonnam National University, Gwangju, Republic
 of Korea
- 18 ⁸Department of Internal Medicine, School of Medicine, Kyungpook National
- 19 University, Daegu, Republic of Korea
- 20 ^hDepartment of Natural Sciences, Republic of Korea Naval Academy, Changwon,
- 21 Republic of Korea
- 22
- 23 Running Head: Factors influencing human gut microbiota
- 24
- 25 # Address correspondence to Jae-Ho Shin, jhshin@knu.ac.kr

- 26 [¶]YeonGyun Jung and Dorsaf Kerfahi contributed equally to this work. Author order was
- 27 determined on the basis of experimental order.

28 ABSTRACT

29	The gut microbiome is essential to human health. However, little is known about
30	the influence of the environment versus host-related factors (e.g. genetic
31	background, sex, age, and body mass) in the formation of human intestinal
32	microflora. Here, we present evidence in support of the importance of host-
33	related factors in the establishment and maintenance of individual gut
34	assemblages. We collected fecal samples $(n = 249)$ from 44 Korean naval
35	trainees and 39 healthy people living in Korea over eight weeks and sequenced
36	the bacterial 16S rRNA genes. The following hypotheses were tested: 1)
37	microbiome function is linked to its diversity, community structure, and genetic
38	host-related factors, and 2) preexisting host-related factors have a more
39	significant effect on gut microbiome formation and composition than
40	environmental factors. For each individual, the difference between the initial gut
41	microbiota and that after eight weeks was negligible even though the 44 naval
42	trainees lived in the same area and received the same diet, the same amount of
43	exercise, and the same amount of physical stress during the study. This suggests
44	that host-related factors, rather than environmental factors, is a key determinant
45	of individual gut microflora. Moreover, eight weeks of physical training and
46	experiencing the same environmental conditions resulted in an increase in the
47	species Bifidobacterium, Faecalibacterium, and Roseburia in most trainees,
48	suggesting a healthier intestinal environment.

49 **IMPORTANCE** In order to understand the role of human gut microbiome, it is 50 important to know how individual's gut microbiota are formed. In this study, we 51 tested the host-related factors versus environmental factors to affect gut 52 microbiome and found that the former have a more association. However, we 53 also found that the controlled environment give an effect on the gut microflora as 54 well. This study provides preliminary evidence that differences in the formation 55 and diversity of gut microbiota within a population could be determined by host-56 related factors rather than environmental factors.

57 Introduction

80

58	The human body harbors complex and diverse microbial communities (about 10–100
59	trillion microbes), including bacteria, archaea, eukaryotes, and viruses. These
60	communities may be described as the "normal flora" in healthy individuals (1–3). These
61	organisms perform a variety of metabolic functions. For example, organisms residing in
62	human and animal colons, with an estimated density of 10^{11} – 10^{12} cells/g (4–6), have
63	been implicated in niche-specific metabolic, defense, and reproductive functions (1).
64	They also influence their hosts during homeostasis and disease development through
65	existing immunological factors, coexisting interacting networks of other
66	microorganisms, and environmental influences (7).
67	The human gut microbiota is a reservoir of microorganisms and is crucial to
68	health (3) through its involvement in metabolic interactions (e.g., food decomposition
69	and nutrient intake) (8, 9), drug metabolism (10, 11), energy production and storage
70	(12), and protection against pathogens (13). The gut microbiome provides signals that
71	influence the development of the host immune system and stimulate the maturation of
72	immune cells (14, 15). However, the gut microbiota is not only associated with human
73	well-being but also with human disease conditions, including metabolic diseases,
74	growth disorders, mental illness (such as autism), and obesity (16-20). Consequently,
75	gut microbes affect human physiology directly and indirectly (13). Moreover, abrupt
76	changes to the delicate balance of the microbial assemblage can result in unexpected
77	consequences.
78	Despite the importance of the gut microbiome to human well-being, very little is
79	known about the interactions between the host and the intestinal microorganisms (21).

Previous studies of host interactions with intestinal microbes found that gut

4

81	microorganisms play a fundamental role in nutrient metabolism by converting dietary
82	components that escape digestion and polymers excreted by the host into easily
83	accessible nutrients and other compounds, such as vitamins (22). Moreover, gut
84	microbiota regulate host immune system interactions. For example, Bacteroides fragilis
85	induces a specific IgA response that is dependent on commensal colonization factors
86	regulation of surface capsular polysaccharides and enhances epithelial adherence (23).
87	Considering that the in vivo production of IgA is necessary for single-strain stability,
88	mucosal colonization, and epithelial aggregation, this bacterial influence on the host
89	immune system is vital. Adaptive immunity has evolved to rely on an intimate
90	association with members of the gut microbiome (23).
91	Due to host-bacterial mutualism, humans have not needed to evolve some
92	metabolic pathways, such as the ability to harvest otherwise inaccessible nutrients (24).
93	Therefore, investigating factors that influence the diversity and composition of the
94	human gut microbiota increases our understanding of how these communities are
95	structured, and to predict their response to environmental change. Microbial
96	establishment in the human intestine begins at birth. Subsequently, the intestinal
97	microflora continues to develop through successive microbial communities, until the
98	microbial climax community colonizes the intestine. Moreover, due to co-evolutionary
99	interactions, microbes undergo further functional modifications (24). However, the
100	initial gut microbiome of an infant at birth is similar in composition to the mother's
101	(25). In addition to environmental and genetic factors (26–29), other factors, including
102	lifestyle, diet, stress, and probiotics (30–32) have also been implicated in controlling the
103	establishment of gut microbiota. However, it is still poorly understood whether

environmental or host-related factors play a dominant role in shaping the human gutmicrobial community.

106 Most gut microbiome studies to date have focused on Westerners (mostly 107 Europeans and North Americans); therefore, there is a gap in our knowledge about the 108 gut microbiota of people from other parts of the world (33). In this study, we used next-109 generation sequencing of bacterial 16S rRNA genes to analyze the intestinal bacterial 110 community in South Korean naval trainees during a time when the trainees were 111 experiencing relatively similar environmental conditions. 112 Our first objective was to determine whether host-related factors are linked to 113 the community structure and diversity of the intestinal microbiota of naval trainees. 114 Given the broad range of interactions that are commonly associated with gut microbiota, 115 we aimed to identify key functional processes. Glendinning and Free suggested that 116 these functions could range from providing additional metabolic functions to 117 modulating the immune system (34). Our second objective was to determine whether 118 preexisting host-related factors have a more significant effect on the formation and 119 composition of the intestinal microbial community than environmental factors. Turpin 120 et al. suggested that almost one-third of fecal bacterial taxa in the intestine are heritable 121 (35). Furthermore, ecological concepts like dispersal, species diversity and distribution, 122 community assembly and contamination, and genetic makeup may influence the 123 formation, development, and maintenance of the gut microbiota. Through this objective, 124 we sought to investigate which set factors, host-related or environmental, exerts a more 125 significant influence on the composition of the gut microbiota.

126 Results

127 The aim of our study was to determine whether host-related background or 128 environmental factors play a more significant role in the formation and diversity of the 129 intestinal microbial community. Therefore, we first identified the composition of the 130 intestinal microbial communities of the OCS trainees, who had different host-related 131 and environmental backgrounds, on the day they were admitted (T = week 0). After 132 living together for eight weeks at the naval OCS and being exposed to the same 133 environmental conditions (e.g., same diet, same physical exercise, and same sleeping 134 regimes), their intestinal microbial communities were reanalyzed at T = 4 weeks and T 135 = 8 weeks. As a control sample, intestinal microflora samples from healthy Koreans 136 with different host-related and environmental backgrounds were also analyzed. 137 Theoretically, if the host-related background is more significant in determining the 138 intestinal microbiota, the initial composition and diversity of microbial communities of 139 naval trainees would be maintained, with negligible differences between samples 140 collected at the beginning and end of the experimental period, and samples would 141 remain equally distant from each other (Figure 1a). However, if environmental factors 142 are more significant in shaping the intestinal microbiota, then the composition of 143 microbial communities would shift, the bacterial compositions between samples would 144 become similar, and PCoA plots would show clustering of samples (Figure 1b). 145 From 132 fecal samples collected from the 44 naval trainees (OCS), we obtained 146 2218 OTUs at 97% similarity from 1.49 million reads. The average number of reads per 147 sample was 38 443 (ranging from 27 652 to 48 155). Similarly, 117 stool samples were 148 collected from 39 healthy Korean adults as the control group. We obtained 1927 OTUs 149 at 97% similarity from 3.19 million reads. The average number of reads per sample was 150 27 102 (ranging from 7331 to 45 842).

7

151 Composition and diversity of the gut microbial community at week zero

152 Based on the demographic questionnaire and the FFQ, we compared characteristics of 153 the control and experimental groups at the beginning of the experiment. We found no 154 significant differences among most of the individuals except for age, regular exercise, 155 recent weekly exercise time, and hours of sleep (Table 1). We then performed PCoA 156 ordination based on weighted UniFrac distances to determine the beta diversity of the 157 intestinal microbial communities of the experimental and control groups. The PCoA 158 plot shows that both the experimental and control groups had distinct intestinal 159 microbial communities, and all samples remained distant from each other (Figure 2a 160 and 2b). The adonis function was used to determine whether host-related factors, such 161 as sex, age, weight, height and BMI, and environmental factors, including exercise, 162 sleep and daily nutrient intake, have a major effect on the composition of the intestinal 163 microbial community. Adonis results show that the majority of environmental factors 164 studied did not significantly affect the gut microbial community. Sex (P = 0.006, R2 =165 0.131), height (P = 0.031, R2 = 0.085), weight (P = 0.001, R2 = 0.174), BMI (P = (1.131)) 166 0.001, R2 = 0.079), and number of bowel movements per week (P = 0.005, R2 = 0.142) 167 show significant association with the intestinal microbiome in the control group. In the 168 experimental group, sex (P = 0.029, R2 = 0.064), height (P = 0.008, R2 = 0.081), and 169 weight (P = 0.007, R2 = 0.089) show significant association with the intestinal 170 microbiome (Table 2). Alpha diversity was also calculated before admission to the navy 171 center and was significantly higher in the experimental group than in the control group 172 (Figure 2c-d). The Shannon index (P = 0.010, Mann Whitney test), which is the most 173 commonly used alpha diversity index, shows an average diversity of 5.38 (3.91-7.14) 174 for the control group, and 5.81 (3.88–6.84) for the experimental group. Phylogenetic 175 diversity (P = 0.016, Mann Whitney test), which measures the phylogenetic relationship

between OTUs, has a median value of 27.08 (15.35–43.83) for the control group, and

177 29.43 (10.10–37.94) for the experimental group.

178 Composition and diversity of gut microbial community after eight weeks of 179 training

180	In the experimental group, one host-related factor and majority of environmental factors
181	show significant differences between the first day of admission to the OCS (T = week
182	0), four weeks (T = 4 weeks), and eight weeks later (T = 8 weeks). The factors that
183	differed were BMI, exercise time, the number of housemates, and daily nutrient intake
184	(carbohydrates, cholesterol, and fiber). However, a host-related factor (BMI) and
185	environmental factors did not statistically differ in the control group (Table 3). The
186	intestinal bacterial communities of the experimental group did not differ among the first
187	day of admission to the OCS ($T = week 0$), four weeks ($T = 4$ weeks), and eight weeks
188	later (T = 8 weeks). This finding is confirmed by the PCoA plot showing dissimilarities
189	in bacterial communities and no clustering of samples according to the measured
190	environmental factors (Figure 3a-b). The composition of bacteria in the intestines of
191	trainees and ordinary people remain distinct, suggesting that host-related factors have a
192	greater effect than environmental factors in determining the composition of the
193	intestinal microbial community. Similarly, alpha diversity indices show no significant
194	differences at the end of the experiment in experimental and control groups (Figure 3c-
195	f). The Shannon index shows no significant change between 0, 4, and 8 weeks (control
196	group: $F = 0.585$, $P = 0.559$, repeated-measures one-way ANOVA; experimental group:
197	P = 0.431, Friedman test) and neither does the phylogenetic diversity (control group: F
198	= 0.504, $P = 0.602$, repeated-measures one-way ANOVA; experimental group: $P =$
199	0.084, Friedman test).

9

200	Changes in the intestinal microbiota for each experimental period were
201	measured using the distance matrix (Figure 4).
202	This study was designed to determine the distribution of the intestinal microbial
203	community for each subject at each sampling time. The average distance between all
204	samples was used to determine the degree to which the intestinal microflora of subjects
205	differed at each time point (Figure 4a).
206	For the control group (Figure 4b), there is no significant change ($P = 0.204$,
207	Kruskal-Wallis test) between $T = 0$ weeks (mean = 0.47, 0.38–0.71), $T = 4$ weeks (mean
208	= 0.47, 0.37-0.60), and T = 8 weeks (mean = 0.45, 0.38-0.54).
209	The experimental group (Figure 4c) also shows no significant change (P =
210	0.238, Kruskal-Wallis test) between $T = 0$ weeks (mean = 0.30, 0.24–0.53), $T = 4$ weeks
211	(mean = 0.31, 0.24–0.44), and T = 8 weeks (mean = 0.32, 0.25–0.53). Despite highly
212	controlled environmental factors, the composition of the intestinal microbial community
213	does not seem to be affected.
214	The distance matrix was again used to illustrate changes in the intestinal
215	microbial community (Figure 5).
216	Changes in intestinal microflora over time were tracked for each subject (Figure
217	5a). The results showed that there is no significant difference ($P = 0.154$) in the
218	individual distance matrix between $T = 0$ weeks and $T = 4$ weeks. The mean distance in
219	the control group is 0.26 (ranging between 0.07 and 0.73), and in the experimental
220	group, the mean distance measures 0.20 (ranging between 0.07 and 0.50), as shown in
221	Figure 5b. Similarly, the individual distance matrices do not differ between the control
222	group (mean = 0.24 ; 0.07–0.31) and the experimental group (mean = 0.20 ; 0.08–0.50)
223	between $T = 0$ weeks and $T = 8$ weeks (P = 0.516), as shown in Figure 5c. However,
224	between $T = 4$ weeks and $T = 8$ weeks, the individual distance matrices are significantly

different (P = 0.033) between the control group (mean = 0.23; 0.09–0.55) and the

experimental group (mean = 0.19; 0.07-0.53), as shown in Figure 5d. This suggests that

- 227 environmental factors do not exert major effects on the composition of the intestinal
- 228 microbial community but they do have some influence.

229 Shifts in intestinal microbial communities after eight weeks

- 230 The majority of bacterial sequences recovered in our study belonged to the following
- phyla: Firmicutes (mean = 5413.70, 3104-6925) and Bacteroidetes (mean = 2319.19,
- 232 219–3343), which do not differ significantly between T = 0 weeks and T = 8 weeks.
- 233 The relative abundance of the top five groups (at the phyla, class, order, and family
- levels) was compared between T = 0 weeks and T = 8 weeks in the experimental group
- 235 (Figure S1). The class Actinobacteria (P = 0.022), the order Bifidobacteriales (P =
- 0.026), and the families Bifidobacteriaceae (P = 0.026) and Ruminococcaceae (P =
- 0.019 increase significantly at T = 8 weeks. However, the phylum Proteobacteria (P =
- 238 0.003), the class Coriobacteriia (P = 0.0001), the order Coriobacteriales (P = 0.0001),
- and the family Lachnospiraceae (P = 0.042) decrease significantly at T = 8 weeks. At
- 240 the genus level, *Bifidobacterium* sp. (P = 0.026), *Faecalibacterium* sp. (P = 0.045), and
- 241 *Roseburia* sp. (P = 0.020) significantly increase at T = 8 weeks. However, *Blautia* sp. (P
- 242 = 0.015), Collinsella sp. (P = 0.0001), and Ruminococcus sp. (P = 0.022) decrease
- significantly at T = 8 weeks (Figure 6). In the control group, intestinal microorganisms
- do not change significantly, unlike the experimental group (Figure S2).

Discussion

246	The primary goal of microbiome research is to elucidate the factors that determine
247	microbial structure and composition within and upon a host (36). To this end, the
248	current study demonstrated that variations in the formation and composition of the
249	human intestinal microbiota are primarily determined by host-related factors rather than
250	environmental factors. Previous studies (37, 38) support our findings. Moreover, the
251	results of Kolde et al. suggest that host genetic factors are vital in maintaining gut
252	microbiome interactions (39). Furthermore, it has been proposed that the genetic
253	background of the host may influence the composition and formation of the intestinal
254	microbial community.
255	One host-related factor (age) and some environmental factors, including regular
256	exercise and exercise time, and sleep time, showed significant differences between the
257	experimental and control groups (Table 1). In the case of the experimental group, we
258	propose that these differences are because the subjects were enlisted as military officer
259	candidates. Alpha diversity was significantly higher in the experimental group than in
260	the control group (Figure 2c–d). This may be due to differences in specific
261	environmental factors in the experimental group. According to Clarke et al. (40),
262	athletes frequently have high intestinal microbial diversity. In addition, we found that
263	similarity in intestinal microbial communities occurs more frequently when specific
264	host-related factors (sex, height, weight, BMI) and an environmental factor (the number
265	of bowel movements per week) are similar (Table 2). Our results mirror the findings of
266	Oki et al. (41), and Haro et al. (42), who report that host-related and environmental
267	factors have a notable effect on the formation of the intestinal microbiome in various
268	cohorts. Compared with the control group, the experimental group was not significantly

269 different in BMI and the number of bowel movements per week. This is probably

270 because the majority of individuals in both groups had similar values for these factors.

271 Hypothesis 1: The structure and diversity of the gut microbial community are 272 linked to genetic host-related factors

273 The results reported in this study (Figure 3) support our hypothesis that host-related 274 factors control the host gut microflora. Our results also showed that host-related factors 275 had a considerable effect on the composition of the intestinal microbial community. 276 This is shown in the PCoA plot, which clusters intestinal bacterial communities by 277 individual subjects under a controlled environment. The results showed that samples 278 remained distinct from each other after trainees shared identical environmental 279 conditions for eight weeks (Figure 3b). Bacterial diversity showed the same pattern as 280 community composition, with no significant changes at the end of the experimental 281 period (Figure 3b). Together, these findings suggest that genetically-driven intrinsic 282 factors exist that may organize the gut microbiota structure and participate in the 283 formation of the microbial community. Although the cause-and-effect relationships 284 behind these links have yet to be elucidated, host genetics does have an impact on host 285 health (43). Although our results showed that the environmental influence on the gut 286 microbiota in our cohort is limited, we suggest that greater interaction between genetic 287 and environmental factors exists, which may contribute to the genetic influence 288 observed in this study. Small et al. investigated the importance of genotype-289 environment interactions in understanding host genetic mechanisms and complex 290 molecular relationships between hosts and their resident microbes (44). Similar studies 291 using genetic techniques have demonstrated that the gut microbiota is influenced by 292 both environmental and genetic factors (29, 45, 46). Genetic factors have been proposed 293 to control the composition and diversity of gut microbiota under controlled

13

environmental conditions. However, genetics cannot be the only factor that influences
the intestinal microbial community because the intestine can only be colonized by
microorganisms present in the environment (47).

297 Our findings are also consistent with a study by Org et al. (48). They reported 298 that genetic background, under controlled environmental conditions, plays a 299 considerable role in the composition and diversity of the intestinal microbial 300 community. Host genes that are associated with the gut microbiota regulate diet-301 sensing, metabolism, and host immunity (49). These background interactions may, in 302 turn, influence the nature and structure of the overall host gut microbiota. Other studies 303 have demonstrated that the host genetic background has a significant effect on the 304 composition of the gut microbial community. Henao-Mejia et al. (50) and Peng et al. 305 (51) showed that mice with diabetes or mutations in inflammatory signaling genes differ 306 in their gut microbial composition relative to wild-type mice. Functionalities associated 307 with the genome encoded by the gut microbiome assemblage expand the host's 308 physiological potential by increasing digestive capabilities, priming the immune system, 309 producing vitamins, degrading xenobiotics, and resisting colonization by pathogens 310 (49). Governing these host gene-gut microbiota interactions are ecological and 311 evolutionary consequences that often emerge from complex interspecies relationships 312 (44). In a related finding, Buhnik-Rosenblau et al. (52) reported that because the gut 313 microbiota is strongly associated with the health status of the host, its composition may 314 be affected by environmental factors, such as diet and maternal inoculation. Moreover, 315 the operational functions behind the host's genetic control over gut microbiota are 316 consistent with the broader effects of evolutionary divergence of the gut microbiota 317 composition (29).

318 Hypothesis 2: Preexisting host-related factors have a more significant effect 319 than environmental factors on the formation and composition of the intestinal 320 *microbial community*

321 Our hypothesis was again supported by our results because the abundance of certain 322 types of microbial taxa was consistently and significantly associated with host-related 323 factors. The relative abundance of the two most abundant microbial taxa (i.e., 324 Bacteroidetes and Firmicutes) showed slight differences at the beginning and end of the 325 experiment, with variation between study groups (Figure S1–S2). This finding is 326 consistent with that reported by Richards et al. (53) when they sought to identify host 327 genes responsible for microbiome regulation. Koliada et al. (54) also found that 328 Bacteroidetes and Firmicutes are abundant in the gut microbiota of healthy obese 329 individuals in Ukraine. However, in the present study, no enrolled subjects were obese 330 at enrollment and did not have a history of obesity. This agrees with the findings of 331 Clarke et al. (55) that Bacteroidetes and Firmicutes are found in both lean and obese 332 individuals in varying proportions. However, the relative abundance of these taxa in the 333 present study was not related to lean or obese status. Correlations between the relative 334 abundance of gut microbes and genetic loci have been found in mice following the same 335 diet (29, 45) and in humans with Crohn's disease (27). It is likely that variations in the 336 gut microbiome are governed by molecular mechanisms, such as changes in gene 337 regulation in the host epithelial cells that directly interface with the gut microbiota (53).

338

Environmental factors also affect intestinal microbial community formation

339 Controlling for environmental factors, such as regular sleep, a well-balanced diet, and

- 340 steady exercise, the genera Bifidobacterium, Faecalibacterium, and Roseburia
- 341 significantly increased in abundance by the end of the experimental period (Figure 6).
- 342 Bifidobacterium is a significant component of gut microflora and plays a crucial role in

343 human health (56). Furthermore, Bifidobacterium regulates intestinal homeostasis, 344 modulates local and systemic immune responses, and protects against inflammatory and 345 infectious diseases (57, 58). The abundance of *Bifidobacterium* was found to 346 significantly increase in rats undergoing moderate exercise (59). Bifidobacterium is also 347 associated with a healthier status in adults; Aizawa et al. (60) reported a decrease in 348 *Bifidobacterium* in patients with severe depression relative to people without severe 349 depression. Similarly, *Faecalibacterium*, which promotes a healthy digestive tract by 350 producing butyrate and lowering the oxygen tension of the lumen (61), significantly 351 increased in our experiment. These results mirror the findings of Campbell et al. (62), 352 who reported an increase in *Faecalibacterium prausnitzi* in rats after physical exercise 353 and concluded that F. prausnitzi might protect the intestine through oxygen 354 detoxification by a flavin/thiol electron shuttle. *Roseburia* also plays a role in 355 maintaining intestinal health and immune defense systems (e.g., regulatory T cell 356 homeostasis) through the production of butyrate (63). The abundance of *Roseburia* 357 decreases in many intestinal diseases and has been used as an indicator of intestinal 358 health (64). These bacteria ferment insoluble fiber as an energy source (65). The 359 abundance of Roseburia decreases as the host intake of carbohydrate decreases (66) or 360 fat increases (67). In our results, carbohydrate intake significantly decreased after 361 training, but the abundance of *Roseburia* showed an opposite pattern. We propose that 362 the increased fiber intake during training produced these results. Faecalibacterium 363 prausnitzii and Roseburia are known as key organisms in the formation of a healthy 364 microbiota (19, 68). 365 Some taxa decrease significantly during training. For example, the abundance of

the Proteobacteria phylum cause dysbiosis in the intestinal microflora (69). They are

Proteobacteria had significantly decreased by the end of the study. Bacteria belonging to

366

16

368 found in many patients with irritable bowel disease and are known to cause 369 inflammation (70). Inflammation increases oxygen levels in the large intestine, which 370 reduces the absolute anaerobic bacteria that constitute most of the intestinal microflora, 371 resulting in dysbiosis (71). Our results indicated that, due to the controlled living 372 conditions imposed during training, the abundance of microorganisms that produce 373 short-chain fatty acids increased. Therefore, the internal anaerobic condition was 374 maintained, resulting in a decrease in Proteobacteria. 375 The abundance of bacteria of the genera Collinsella and Ruminococcus 376 decreased by the end of the study. Collinsella was increased in obese pregnant women 377 with low fiber diet group (72). It is also reported that this genus increases as 378 carbohydrate intake decreases (73). Diet changes during training could explain the 379 decrease in Collinsella. Ruminococcus showed the same pattern as Collinsella because 380 Ruminococcus gnavus and R. torques decreased significantly during training (Figure 381 S3). This result suggests that the controlled living routine of the OCS training increases 382 the abundance of bacteria that have a beneficial effect on the host and reduces the 383 abundance of bacteria that have a harmful effect. Ruminococcus is an enterotype that 384 enters the intestine (74) and has the ability to ferment complex carbohydrates, such as 385 cellulose, pectine, and starch (73, 75), and is a producer of acetate and propionate (76, 386 77). The *Ruminococcus* genus is quite heterogeneous, including both beneficial and 387 harmful species. For example, Ruminococcus bromii is known to exert beneficial effects 388 on health (77), whereas other *Ruminococcus* species are proinflammatory (78, 79). 389 Recently Ruminococcus gnavus and R. torques are reported to be associated with 390 allergic diseases, Crohn's disease in infants, and autism spectrum disorders (80–82). 391 Overall, the increases in Bifidobacterium, Faecalibacterium, and Roseburia observed in 392 our study indicate an improvement in the health of the intestinal environment. The

393 effects of dietary changes on gut metabolism due to the strict naval training regime that 394 the subjects of this study followed may have caused the proliferation of these bacterial 395 taxa. This has previously been noted by Thomas et al. (83), who investigated the effects 396 of inter-individual microbiota differences, focusing on the presence or absence of 397 keystone species involved in butyrate metabolism. 398 Further studies in large population-based cohorts are necessary to gain a greater 399 understanding of the relationship between the host genetic profile, gut microbiome 400 composition, and host health (39, 43). Moreover, it will be important to map the loci 401 that control microbiota composition and prioritize the investigation of candidate genes 402 to improve our understanding of host-microbiota interactions (48). 403 The present work is a preliminary study showing that differences in the 404 formation and diversity of intestinal microbial communities within a population are 405 primarily determined by host-related factors rather than environmental factors. Long-406 term experiments, more controlled environmental conditions, and more detailed 407 metadata are required to elucidate the factors that control the function of the gut 408 microbiota. However, it is challenging to standardize human environmental conditions 409 and to ignore the influence of unique lifestyle factors on a community. The results 410 reported here support findings from recent studies (29, 36, 44, 48) suggesting that the 411 microbiome depends more on host-related factors and less on related environmental 412 factors for its variation, composition, and control. Finally, according to Kolde et al. (39) 413 and Richards et al. (53), manipulating the microbiome alter the expression of the host 414 genes. Therefore, knowledge of healthy microbiota for each genetic types suggests 415 future therapeutic routes for human wellness.

416 Materials and Methods

417 Sampling

- 418 The present study was approved by the Institutional Review Board of Kyungpook
- 419 National University (KNU 2017-84), and Armed Forces Medical Research Ethics
- 420 Review Committee (AFMC-17-IRB-092), Republic of Korea. All subjects gave written
- 421 informed consent in accordance with the Declaration of Helsinki.
- 422 Fecal samples were collected from 44 trainees of the naval officer candidate
- 423 school (OCS) on the first day of enlistment (week 0) and at four and eight weeks after
- 424 their admission to the naval center. The trainees lived in the same environment for eight
- 425 weeks, ate the same food at regular intervals, and participated in similar training and
- 426 sleeping regimes. Fecal samples were also collected from 39 healthy people living in
- 427 Korea at the same sampling points as the OCS as controls. All samples were collected
- 428 by participants using Transwab tubes (Sigma, Dorset, UK) and sent to the laboratory,
- 429 where they were stored at -80 °C until DNA extraction.

430 Data Collection

431 Participants were asked to complete a self-administered questionnaire to collect

- 432 demographic, lifestyle, and physical activity data at weeks 0, 4, and 8. Dietary
- 433 consumption was assessed by a food frequency questionnaire (FFQ) used in the 2017
- 434 Korea National Health and Nutrition Examination Survey conducted by the Korea
- 435 Centers for Disease Control and Prevention. The FFQ was completed by the control and
- 436 the experimental groups at week 0 and in the experimental group at weeks 4 and 8.
- 437 Reported intakes below 500 kcal/d or >5,000 kcal/d for controls and >6,000 kcal/d for
- 438 trainees were determined inaccurate and excluded from further analyses. The OCS
- 439 provided naval trainees' menus which were analyzed for nutrient content using the

computer-aided nutritional analysis program (CAN Pro 5.0, Korea Nutrition Society).
The daily nutrient intake for foods consumed by trainees that were not available in CAN
Pro 5.0 were calculated by referencing the Korean Food Composition Database, Version
9.1 (2019, Rural Development Administration). Meals were served buffet style, thus the
analyzed nutrients were based on the ideal diet intake for trainees. Five day menus
immediately prior to each naval trainees' fecal collection date were used to estimate
mean daily nutrient intake for weeks 4 and 8 of the naval trainees.

447 DNA extraction, PCR amplification, and sequencing

- 448 Genomic DNA was extracted from approximately 500 µL (wet weight) of each sample
- 449 using QIAamp PowerFecal DNA Isolation kits (Qiagen, Hilden, Germany), following
- 450 the manufacturer's instructions. Extracted DNA was assessed for quality by
- 451 electrophoresis and was quantified using a Qubit 2.0 Fluorometer (Life Technologies,
- 452 Carlsbad, CA, USA). DNA isolated from each sample was amplified using the universal
- 453 primers, 515 F (5'-barcode-GTGCCAGCMGCCGCGGTAA-3') and 907 R (5'-barcode-
- 454 CCGYCAATTCMTTTRAGTTT-3'), targeting the V4-V5 regions of prokaryotic 16S
- 455 rRNA genes. The barcode is an eight-base sequence unique to each sample. PCR
- 456 experiments were performed under the following conditions: 95 °C for 5 min, 5 cycles
- 457 of 57 °C for 30 s and 72 °C for 30 s, and 25 cycles of 95 °C for 30 s and 72 °C for 30 s.
- 458 PCR was performed in duplicate in 24 μL reaction volumes, consisting of 20 μL
- 459 Emerald AMP GT PCR 1X Master Mix (Takara Bio, Shiga, Japan), 0.5 μ L (10 μ M) of
- 460 each barcoded PCR primer pair, and 3 μ L of DNA template (10–50 ng DNA). PCR
- 461 products were purified using an AMPure XP bead purification kit (Beckman Coulter,
- 462 Brea, CA, USA) and pooled in equal concentrations. An Agilent 2100 Bioanalyzer

463 (Agilent Technologies, Santa Clara, CA, USA) was used to confirm the correct

464 concentration needed for sequencing. Each amplified region was sequenced on an

- 465 Illumina MiSeq sequencing platform (Illumina, San Diego, CA, USA) using a MiSeq
- 466 Reagent Kit v3 (Illumina, San Diego, CA, USA), according to the manufacturer's

467 protocols.

468 Sequence processing

- 469 Raw FASTQ files were processed using QIIME version 1.9.1⁸⁴ and quality filtered with
- 470 Trimmomatic (85) using the following criteria: MINLEN:250 CROP:250. After
- 471 chimera removal, all sequences were clustered into operational taxonomic units (OTUs)
- 472 at 97% identity and classified against the SILVA database (v132) for 16S rRNA genes
- 473 using the VSEARCH pipeline. To correct for differences in the number of reads, which
- 474 can bias downstream analyses estimates, all samples were rarefied at an even
- 475 sequencing depth of 7,331 reads per sample.

476 Statistical analysis

- 477 Alpha and beta diversities and phylogenetic diversity were calculated in QIIME. PCoA
- 478 plots were generated using the weighted UniFrac distance to visualize the beta diversity.
- 479 CALYPSO software was used for the interpretation and comparison of taxonomic
- 480 information from 16S rDNA datasets (Davenport, 2016). The D'Agostino-Pearson
- 481 Omnibus test was used to determine the distribution of data in RStudio 1.0.153
- 482 (https://www.rstudio.com/).
- 483 The Pearson chi-square test or Fisher's exact test was used to compare
- 484 categorical variables. Statistical analysis was performed by repeated-measures one-way
- 485 analysis of variance (ANOVA), ordinary one-way ANOVA, Friedman, and Kruskal-
- 486 Wallis tests for multiple comparisons. Paired or unpaired Student's t-tests with Welch's

487	correction were used to analyze normal data, and a Wilcoxon matched-pairs signed-rank
488	test or Mann-Whitney U-test was used to analyze non-normal data. A p-value of < 0.05
489	was considered significant. Analyses were performed using Prism 8 software (GraphPad
490	Software, San Diego, CA).
491	Data were tested to determine whether diversity indices and relative abundances
492	of taxonomical groups were significantly different between samples collected at
493	different time points. Variations in the composition of microbial communities were
494	analyzed using the adonis function (a nonparametric method that is analogous to
495	ANOVA) with a weighted UniFrac distance and 999 permutations. All analyses were
496	performed using the "vegan" package in RStudio 1.0.153 (https://www.rstudio.com/).

497 Data Availability Statement

498 The datasets generated during and/or analyzed during the current study are available

499 from the NCBI Sequence Read Archive database under accession numbers

500 PRJNA596059 (Experimental group) and PRJNA596112 (Control group).

501 Ethics Statement

- 502 The present work was approved by the Institutional Review Board of Kyungpook
- 503 National University, South Korea (KNU 2017-84), and by the Korea Armed Forces
- 504 Medical Research Ethics Review Committee (AFMC-17-IRB-092).

505 Acknowledgments

506 We thank the Republic of Korea Naval Academy (ROKNA) for their cooperation.

507 The study was supported by the National Research Foundation of Korea (NRF-

508 2018R1D1A1B07044147) and the Strategic Initiative for Microbiomes in Agriculture

- and Food funded by Ministry of Agriculture, Food and Rural Affairs (918010-4),
- 510 Republic of Korea.
- 511 No potential conflicts of interest were disclosed.

Reference

513	1.	Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and
514		disease 2012. Nat Rev Genet. 13:260-70.
515	2.	Weinstock GM. 2012. Genomic approaches to studying the human microbiota.
516		Nature. 489:250 – 6.
517	3.	Ursell LK, Metcalf JL, Parfrey LW, Knight R. 2012. Defining the human
518		microbiome. Nutr Rev. 70(1):S38–S44.
519	4.	Berg RD. 1996. The indigenous gastrointestinal microflora. Trends Microbiol.
520		4:430 – 5.
521	5.	Moore WE, Holdeman LV. 1974. Human fecal flora: the normal flora of 20
522		Japanese-Hawaiians. Appl Microbiol. 27:961-79.
523	6.	Tannock GW. 1997. Normal microbiota of the gastrointestinal tract of rodents,
524		p 187–215. In RI Mackie, BA White, RE Isaacson (ed), Gastrointestinal
525		microbiology, Vol 2. Chapman and Hall Microbiolgy Series, London, UK.
526	7.	Thursby E, Juge N. 2017. Introduction to the human gut microbiota. Biochem J.
527		474:1823–1836.
528	8.	Bengmark S. 1998. Ecological control of the gastrointestinal tract. The role of
529		probiotic flora. Gut. 42:2–7.
530	9.	Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI,
531		Relman DA, Fraser-Liggett CM, Nelson KE. 2006. Metagenomic analysis of
532		the human distal gut microbiome. Science. 312:1355 – 9.
533	10.	Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S.
534		2012. Host-Gut microbiota metabolic interactions. Science, 336: 1262-7.

535	11. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012.
536	Diversity, stability and resilience of the human gut microbiota. Nature. 489:220-
537	30.
538	12. Clemente JC, Ursell LK, Parfrey LW, Knight R. 2012. The impact of the gut
539	microbiota on human health: an integrative view. Cell. 148:1258-70.
540	13. Shreiner AB, Kao, JY, Young, VB. 2015. The gut microbiome in health and in
541	disease. Curr Opin Gastroenterol. 31:69–75.
542	14. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H,
543	Zinkernagel RM. 2000. A primitive T cell-independent mechanism of intestinal
544	mucosal IgA responses to commensal bacteria. Science. 288:2222 – 2226.
545	15. Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. 2010. Host-bacterial
546	symbiosis in health and disease. Adv Immunol. 107:243-74.
547	16. Karlsson CL, Onnerfalt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K. 2012.
548	The microbiota of the gut in preschool children with normal and excessive body
549	weight. Obesity (Silver Spring) 20:2257-61.
550	17. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M,
551	Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N,
552	Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F,
553	Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S,
554	Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten
555	T, De Vos, WM, Zucker JD, Raes J, Hansen T, MetaHIT consortium, Bork P,
556	Wang J, Ehrlich SD, Pedersen O. 2013. Richness of human gut microbiome
557	correlates with metabolic markers. Nature. 500: 541-6.
558	18. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005.
559	Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 102:11070 – 5.

560	19. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D,
561	Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai
562	Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q,
563	Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G,
564	Okuda S, Almeida M, Le Chatelier E, Renault P, Pons N, Batto JM, Zhang Z,
565	Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R,
566	Pedersen O, Kristiansen K, Wang J. 2012. A metagenome-wide association
567	study of gut microbiota in type 2 diabetes. Nature. 490:55 – 60.
568	20. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE,
569	Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC,
570	Knight R, Gordon JI. 2009. A core gut microbiome in obese and lean twins.
571	Nature. 457:480-4.
572	21. Hooper LV, Littman DR, Macpherson AJ. 2012. Interactions between the
573	microbiota and the immune system. Science. 336(6086):1268-73.
574	22. Tannock GW. 1995. Normal microflora: an introduction to mi-crobes inhabiting
575	the human body. Chapman and Hall, Lon-don, UK.
576	23. Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, Conner
577	ME, Earl AM, Knight R, Bjorkman PJ, Mazmanian SK. 2018. Gut microbiota
578	utilize immunoglobulin a for mucosal colonization. Science. 360:795-800.
579	24. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y,
580	Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D,
581	Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X,
582	Madsen L, Kristiansen K, Dahlgren J, Wang J. 2015. Dynamics and
583	Stabilization of the Human Gut Microbiome during the First Year of Life. Cell
584	Host Microbe. 17:690-703.

585	25. Kir	javainen PV, Gibson GR. 1999. Healthy gut microflora and allergy: factors
586	infl	uencing development of the microbiota. Ann Med. 31: 288–92.
587	26. Spc	or A, Koren O, Ley R. 2011. Unravelling the effects of the environment and
588	hos	t genotype on the gut microbiome. Nat Rev Microbiol. 9:279 – 90.
589	27. Li I	E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, Zhang T, Rohlf FJ,
590	Zhu	W, Gu C, Robertson CE, Pace NR, Boedeker EC, Harpaz N, Yuan J,
591	We	instock GM, Sodergren E, Frank DN. 2012. Inflammatory bowel diseases
592	phe	enotype, C. difficile and NOD2 genotype are associated with shifts in human
593	ileu	im associated microbial composition. PLoS One. 7:e26284.
594	28. Car	mody RN, Gerber GK, Luevano JM, Jr, Gatti DM, Somes L, Svenson KL,
595	Tur	mbaugh PJ. 2014. Diet dominates host genotype in shaping the murine gut
596	mic	crobiota. Cell Host Microbe. 17:72-84.
597	29. Ber	nson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL,
598	Neł	nrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA,
599	Por	np D. 2010. Individuality in gut microbiota composition is a complex
600	pol	ygenic trait shaped by multiple environmental and host genetic factors. Proc
601	Nat	l Acad Sci U S A. 107:18933 - 8
602	30. Dav	vid LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE,
603	Lin	g AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ,
604	Tur	mbaugh PJ. 2013. Diet rapidly and reproducibly alters the human gut
605	mic	crobiome. Nature. 505(7484):559-63.
606	31. Koi	nturek PC, Brzozowski T, Konturek SJ. 2011. Stress and the gut:
607	patl	hophysiology, clinical consequences, diagnostic approach and treatment
608	opti	ions. J Physiol Pharmacol. 62(6):591–599.

609	32. Rauch M, Lynch SV. 2012. The potential for probiotic manipulation of the
610	gastrointestinal microbiome. Curr Opin Biotechnol. 23:192-201
611	33. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H,
612	Stenvang J, Li Y, Wang X, Xu X, Chen N, Wu WKK, Al-Aama J, Nielsen HJ,
613	Kiilerich P, Jensen BAH, Yau TO, Lan Z, Jia H, Li J, Xiao L, Lam TYT, Ng
614	SC, Cheng AS, Wong VW, Chan FKL, Xu X, Yang H, Madsen L, Datz C,
615	Tilg H, Wang J, Brünner N, Kristiansen K, Arumugam M, Sung JJ, Wang J.
616	2017. Metagenomic analysis of faecal microbiome as a tool towards targeted
617	non-invasive biomarkers for colorectal cancer. Gut. 66(1):70-8.
618	34. Glendinning L, Free A. 2014. Supra-organismal interactions in the human
619	intestine. Cell Infect Microbiol. 4(47):1-4.
620	35. Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI,
621	Guttman DS, Griffiths A, Panaccione R, Otley A, Xu L, Shestopaloff K,
622	Moreno-Hagelsieb G, GEM Project Research Consortium, Paterson AD,
623	Croitoru K. 2016. Association of host genome with intestinal microbial
624	composition in a large healthy cohort. Nat Genet. 48(11):1413-1417.
625	36. Davenport ER. 2016. Elucidating the role of the host genome in shaping
626	microbiome composition. Gut Microbes. 7:178-84.
627	37. Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, de Visser JAGM,
628	de Vos WM. 2011. The Host Genotype Affects the Bacterial Community in the
629	Human Gastrointestinal Tract. Microbial Ecol Health Dis. 13:129-34.
630	38. Stewart JA, Chadwick VS, Murray A. 2005. Investigations into the influence of
631	host genetics on the predominant eubacteria in the faecal microflora of children.
632	J Med Microbiol. 54:1239–1242.

633	39.	Kolde R, Franzosa EA, Rahnavard G, Hall AB, Vlamakis H, Stevens C, Daly
634		MJ, Xavier RJ, Huttenhower C. 2018. Host genetic variation and its microbiome
635		interactions within the human microbiome project. Genome Med. 10(1):6.
636	40.	Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A,
637		Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross
638		RP, O'Toole PW, Molloy MG, Falvey E, Shanahan F, Cotte PD. 2014. Exercise
639		and associated dietary extremes impact on gut microbial diversity. Gut.
640		63:1913–20.
641	41.	Oki K, Toyama M, Banno T, Chonan O, Benno Y, Watanabe K. 2016.
642		Comprehensive analysis of the fecal microbiota of healthy Japanese adults
643		reveals a new bacterial lineage associated with a phenotype characterized by a
644		high frequency of bowel movements and a lean body type. BMC Microbiol.
645		16:284.
646	42.	Haro C, Rangel-Zúñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez
647		P, Delgado-Lista J, Quintana-Navarro GM, Landa BB, Navas-Cortés JA, Tena-
648		Sempere M, Clemente JC, López-Miranda J1, Pérez-Jiménez F, Camargo A.
649		2016. Intestinal microbiota is influenced by gender and body mass index. PLoS
650		One. 11:e0154090.
651	43.	Dąbrowska K, Witkiewicz W. 2016. Correlations of host genetics and gut
652		microbiome composition. Front Microbiol. 7:1357.
653	44.	Small CM, Milligan-Myhre K, Bassham S, Guillemin K, Cresko WA. 2017.
654		Host genotype and microbiota contribute asymmetrically to transcriptional
655		variation in the threespine stickleback gut. Genome Biol Evol. 9:504–520.
656	45.	McKnite AM, Perez-Munoz ME, Lu L, Williams EG, Brewer S, Andreux PA,
657		Bastiaansen JW, Wang X, Kachman SD, Auwerx J, Bastiaansen JWM, Wang

- 658 X, Kachman SD, Auwerx J, Williams RW, Benson AK, Peterson DA, Ciobanu
- 659 DC. 2012. Murine gut microbiota is defined by host genetics and modulates
- 660 variation of metabolic traits. PloS One. 7:e39191.
- 46. Srinivas G, Möller S, Wang J, Künzel S, Zillikens D, Baines JF, Ibrahim SM.
- 662 2013. Genome-wide mapping of gene-microbiota interactions in susceptibility
- to autoimmune skin blistering. Nat Commun. 4:2462.
- 47. Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK. 2010.
- 665 Variation in the gut microbiota of laboratory mice is related to both genetic and
 666 environmental factors. Comp Med. 60:336 47.
- 48. Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, Mehrabian M,
- 668 Pan C, Knight R, Gunsalus R, Drake TA, Eskin E, Lusis AJ. 2015. Genetic and
- 669 environmental control of host-gut microbiota interactions. Genome Res.670 25:1558-69.
- 671 49. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C,
- 672 Spector TD, Bell JT, Clark AG, Ley RE. 2016. Genetic determinants of the gut
 673 microbiome in UK twins. Cell Host & Microbe. 19(5):731-43.
- 50. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau
- 675 AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI,
- Hoffman HM, Flavell RA. 2012. Inflammasome-mediated dysbiosis regulates
 progression of NAFLD and obesity. Nature.482:179-85.
- 51. Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L. 2014. Long
 term effect of gut microbiota transfer on diabetes development. J Autoimmun.
 53:85-94.

681	52. Buhnik-Rosenblau K, Danin-Poleg Y, Kashi Y. 2011. Predominant effect of
682	host genetics on levels of Lactobacillus johnsonii bacteria in the mouse gut.
683	Appl Environ Microbiol. 77, 6531–8.
684	53. Richards AL, Muehlbauer AL, Alazizi A, Burns MB, Findley A, Messina F,
685	Gould TJ, Cascardo C, Pique-Regi R, Blekhman R, Luca F. 2019. Gut
686	microbiota has a widespread and modifiable effect on host gene regulation.
687	MSystems. 4:e00323-18.
688	54. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchokov K, Perederity V.
689	2017. Association between body mass index and Firmicutes/Bacteroidetes ratio
690	in an adult Ukrainian population. BMC Microbiol. 17:120.
691	55. Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shanahan F, O'Toole PW,
692	Cotter PD. 2012. The gut microbiota and its relationship to diet and obesity:
693	new insights. Gut Microbes. 3:186–202.
694	56. Turroni F, Marchesi JR, Foroni E, Gueimonde M, Shanahan F, Margolles A,
695	Sinderen DV, Ventura M. 2009. Microbiomic analysis of the bifidobacterial
696	population in the human distal gut. ISME J. 3:745 – 751.
697	57. Lomax AR, Calder PC. 2009. Probiotics, immune function, infection and
698	inflammation: a review of the evidence from studies conducted in humans. Curr
699	Pharm Des. 15:1428 – 518.
700	58. Salminen S, Nybom S, Meriluoto J, Collado MC, Vesterlund S, El-Nezami H.
701	2010. Interaction of probiotics and pathogens-benefits to human health? Curr
702	Opin Biotechnol. 21, 157–167.
703	59. Queipo-Ortuno MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM,
704	Cardona F, Casanueva F, Tinahones FJ. 2013. Gut Microbiota Composition in

705		Male Rat Models under Different Nutritional Status and Physical Activity and
706		Its Association with Serum Leptin and Ghrelin Levels. PloS one. 8:e65465.
707	60.	Aizawa, E., H. Tsuji, T. Asahara, T. Takahashi, T. Teraishi, S. Yoshida, M. Ota,
708		N. Koga, K. Hattori, H. Kunugi. 2016. Possible association of Bifidobacterium
709		and Lactobacillus in the gut microbiota of patients with major depressive
710		disorder. J Affecti Disord. 202:254–57.
711	61.	Meehan CJ, Beiko RG. 2014. A phylogenomic view of ecological specialization
712		in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome
713		Biol Evol. 6:703–713
714	62.	Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Haggblom MM,
715		Lightfoot SA, Joseph LB, Kerkhof LJ. 2016. The effect of diet and exercise on
716		intestinal integrity and microbial diversity in mice. PLoS ONE. 11:e0150502.
717	63.	Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. 2002. The microbiology
718		of butyrate formation in the human colon. FEMS Microbiol Lett. 217:133 – 9.
719	64.	Tamanai-Shacoori Z, Smida I, Bousarghin, L, Loreal O, Meuric V, Fong SB,
720		Bonnaure-Mallet M, Jolivet-Gougeon A. 2017. Roseburia spp.: a marker of
721		health? Future Microbiol. 12, 157–170.
722	65.	Aminov RI, Walker AW, Duncan SH, Harmsen HJ, Welling GW, Flint HJ.
723		2006. Molecular diversity, cultivation, and improved detection by fluorescent in
724		situ hybridization of a dominant group of human gut bacteria related to
725		Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol. 72: 6371-6.
726	66.	Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE.
727		2007. Reduced dietary intake of carbohydrates by obese subjects results in
728		decreased concentrations of butyrate and butyrate-producing bacteria in feces.
729		Appl Environ Microbiol. 73: 1073–8.

730	67.	Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD,
731		Larondelle Y, Delzenne NM, Brennan L. 2011. Prebiotic effects of wheat
732		arabinoxylan related to the increase in bifidobacteria, roseburia and
733		bacteroides/prevotella in diet-induced obese mice. PLoS One. 9;6(6):ARTN
734		e20944.
735	68.	Guinane CM, Cotter PD. 2013. Role of the gut microbiota in health and chronic
736		gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv
737		Gastroenterol. 6:295-308
738	69.	Shin NR, Whon TW, Bae JW. 2015. Proteobacteria: microbial signature of
739		dysbiosis in gut microbiota. Trends Biotechnol. 33(9):496–503.
740	70.	Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. 2012. IBD-what role do
741		Proteobacteria play? Nat Rev Gastroenterol Hepatol. 9:219-30.
742	71.	Litvak Y, Byndloss MX, Tsolis RM, Baumler AJ. 2017. Dysbiotic
743		Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr
744		Opin Microbiol. 39:1–6.
745	72.	Gomez-Arango LF, Barrett HL, Wilkinson SA, Callaway LK, McIntyre HD,
746		Morrison M, Nitert MD. 2018. Low dietary fiber intake increases Collinsella
747		abundance in the gut microbiota of overweight and obese pregnant women. Gut
748		Microbes. 9:189–201.
749	73.	Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D,
750		Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley
751		GE, Parkhill J, Flint HJ. 2010. Dominant and diet-responsive groups of bacteria
752		within the human colonic microbiota. ISME J. 5:220-30
753	74.	Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR.
754		Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F,

755	Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M,
756	Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T,
757	Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E,
758	Zoetendal EG, Wang J, Guarner F, Pedersen O, De Vos WM, Brunak S, Doré J,
759	MetaHIT Consortium, Weissenbach J, Ehrlich SD, Bork P. 2011. Enterotypes of
760	the human gut microbiome. Nature. 473:174 – 80.
761	75. Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a keystone
762	species for the degradation of resistant starch in the human colon. ISME J.
763	6:1535-43.
764	76. Christopherson M, Dawson J, Stevenson DM, Cunningham A, Bramhacharya S,
765	Weimer PJ, Kendziorski C, Suen G. 2014. Unique aspects of fiber degradation
766	by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological
767	and transcriptomic analysis. BMC Genomics. 15:1066.
768	77. Crost EH, Tailford LE, Le Gall G, Fons M, Henrissat B, Juge N. 2013.
769	Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus
770	is strain-dependent. PLoS One. 8:e76341.
771	78. Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI,
772	McGuckin MA, Florin TH. 2010. Mucolytic bacteria with increased prevalence
773	in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J
774	Gastroenterol. 105:2420-8.
775	79. Sartor RB. 2011. Key questions to guide a better understanding of host-
776	commensal microbiota interactions in intestinal inflammation. Mucosal
777	Immunol. 4(2), 127–132.

778	80. Chua HH, Chou HC, Tung YL, Chiang BL, Liao CC, Liu HH, Ni YH. 2018.
779	Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates
780	with allergic diseases in infants. Gastroenterology. 154(1):154–167.
781	81. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P,
782	Vandamme P, Vermeire S. 2011. Dysbiosis of the faecal microbiota in patients
783	with Crohn's disease and their unaffected relatives. Gut. $60:631 - 7$.
784	82. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA.
785	2013. Increased abundance of Sutterella spp. and Ruminococcus torques in
786	feces of children with autism spectrum disorder. Mol Autism. 4:42.
787	83. Thomas LV, Ockhuizen T, Suzuki K. 2014. Exploring the influence of the gut
788	microbiota and probiotics on health: a symposium report. Br J Nutr. 112 Suppl
789	1:S1-18.
790	84. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello
791	EK, Fierer N, Pena AG, Goodrich JK, Gordon JI. 2010. QIIME allows analysis
792	of high-throughput community sequencing data. Nat Methods. 7(5):335–336.
793	85. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
794	illumina sequence data. Bioinformatics. 30:2114–2120.

Figure 1. A schematic representation of how genetic and environmental factors affect the composition and structure of the host intestinal microbial community differently. (a) If genetic factors have a more significant effect, then the intestinal microbial community in each individual is maintained, and samples remain distant from each other. (b) If environmental factors have a more significant effect, then the intestinal microbial community in each individual changes, and samples will cluster together.

Figure 2. Individuals have distinctive intestinal microbial communities. PCoA plots of weighted UniFrac distances in (a) control and (b) experimental groups at T = 0 weeks. The first and second principal components (PCo1 and PCo2) are plotted. The percentage of variance in the dataset explained by each axis is reported. Variation of bacterial alpha diversity indices in intestinal microbiota between control and experimental groups: (c) Shannon index and (d) phylogenetic diversity. Data are shown as mean \pm SEM; *p < 0.05, **p < 0.01 by the Mann Whitney U test.

811 Figure 3. Environmental factors have negligible effects on the gut microbiome. PCoA 812 plots of weighted UniFrac distances in (a) control and (b) experimental groups at T = 0

- 813 weeks, T = 4 weeks, and T = 8 weeks. Variation of bacterial alpha diversity indices in
- 814 intestinal microbiota at T = 0 weeks, T = 4 weeks, and T = 8 weeks: Shannon index of
- 815 (c) control and (d) experimental groups and phylogenetic diversity index of (e) control
- 816 and (f) experimental groups. Data are shown as mean \pm SEM. The alpha diversity of the
- 817 control group was analyzed using repeated-measures one-way ANOVA. The alpha
- 818 diversity of the experimental group was analyzed using the Friedman rank-sum test.

Figure 4. Even when environmental factors are controlled, individual intestinal
microbial communities are maintained. (a) A schematic representation of the average
weighted UniFrac distance on the composition of the intestinal microbial community.
The average distance between all samples was used to determine how differentiated the
intestinal microflora of subjects were at each time point. The average weighted UniFrac
distances among (b) control and (c) experimental groups within each time point are
shown in the box plot. Data were analyzed using the Kruskal-Wallis test.

819

Figure 5. Regular living stabilizes the gut microbiome in a healthy direction. (a) A schematic representation of the variation in individual weighted UniFrac distances according to sampling time, explaining how individual intestinal microflora changes over time. Changes in gut microbiome between (b) T = 0 weeks and T = 4 weeks, (c) T= 0 weeks and T = 8 weeks, and (d) T = 4 weeks and T = 8 weeks of the control and experimental groups. *p < 0.05 by the Mann Whitney U test.

835 Figure 6. Controlled living conditions of the OCS training cause beneficial changes to

the gut microbial community. Abundance of intestinal bacteria by family. Data are

837 shown as mean \pm SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. *Blautia*,

- 838 Fusicatenibacter, and Ruminococcus were analyzed using a paired t-test. Anaerostipes,
- 839 Bacteroides, Bifidobacterium, Collinsella, Faecalibacterium, Prevotella, and Roseburia
- 840 were using the Wilcoxon matched-pairs signed-rank test.

Figure S1. Comparison of the abundance of the detected phyla, classes, orders and

- families in the intestine of experimental gorup at T = 0 week and T = 8 weeks. Data are
- 844 shown as mean \pm SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
- 845 Bacteroidetes, Firmicutes, Bacteroidia, Clostridia, Bacteroidales, Clostridiales,
- 846 Ruminococcaceae were using paired t-test. Actinobacteria (phylum), Euryarchaeota,
- 847 Proteobacteri, Actinobacteria (class), Coriobacteriia, Erysipelotrichia, Bifidobacteriales,
- 848 Coriobacteriales, Erysipelotrichales, Bacteroidaceae, Bifidobacteriaceae,

- 849 Lachnospiraceae and Prevotellaceae were using Wilcoxon matched-pairs signed-rank
- 850 test.

and genera in the intestine of control group at T = 0 week and T = 8 weeks. Data are

shown as mean \pm SEM. Bacteroidetes, Firmicutes, Bacteroidia, Clostridia,

855 Bacteroidales, Clostridiales, Lachnospiraceae and Ruminococcaceae were using paired

856 t-test. Actinobacteria (phylum), Euryarchaeota, Proteobacteri, Actinobacteria (class),

857 Coriobacteriia, Erysipelotrichia, Bifidobacteriales, Coriobacteriales, Erysipelotrichales,

858 Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae, Anaerostipes, Bacteroides,

859 Bifidobacterium, Blautia, Collinsella, Faecalibacterium, Fusicatenibacter, Prevotella,

860 *Roseburia* and *Ruminococcus*.

Figure S3. Comparison of gut microbiota within the genus *Prevotella* at T = 0 week and

863 T = 8 weeks. *p < 0.05, **p < 0.01, ***p < 0.001 by Willcoxon matched-pairs signed-

rank test.

- 865 Table 1. Baseline characteristics of participants in the study. Data are shown as
- 866 mean \pm SEM; p-values are obtained by unpaired t-test (Welch's correction) or Mann-
- 867 Whitney U test (continuous variables) or chi-square test (proportions).

Characteristics	Control Group	Experimental Group	p-value
	Host-related factors	(11 = 44)	
Sex. % (n)	hoot folated factore		0.056 ^c
Male	58.97 (23)	77.27 (34)	
Female	41.02 (16)	22.72 (10)	
Age, (years)	29.92 ± 1.39	24.25 ± 0.30	<0.001 ^b
Height, (cm)	169.54 ± 1.33	171.00 ± 1.08	0.400 ^a
Weight, (kg)	66.21 ± 2.08	71.30 ± 1.71	0.063ª
Body mass index (BMI)	- (0)		0.679°
<18.50	5.13 (2)	2.27 (1)	
18.50-24.99	69.23 (27)	65.90 (29)	
25.00-29.99	25.64 (10)	31.82 (14)	
>30.00	Environmental factors	0.00 (0)	
Do you Smoke?, % (n)	Environmental factors		0.924°
Yes	28.20 (11)	27,27 (12)	0.021
No	71.79 (28)	72.73 (32)	
Do you exercise regularly?, % (n)	(),	· · · ·	0.019 ^c
Yes	33.33 (13)	59.09 (26)	
No	66.66 (26)	40.91 (18)	
If you do regular exercise, what kind of			0.904 ^c
exercise do you do?, % (n)			
	15.38 (2)	26.92 (7)	
Both	15.30 (2)	7.09 (2) 65.39 (17)	
How much time did you exercise	09.23 (9)	05.36 (17)	
during the past week? (min)	96.03 ± 27.00	208.10 ± 37.34	0.008 ^b
How many hours a day do you sleep?			
(hr)	6.38 ± 0.21	7.69 ± 0.19	<0.001
How is your sleep quality?, % (n)			0.212 ^c
Very Bad	7.69 (3)	0.00 (0)	
Bad	10.26 (4)	6.82 (3)	
Normal	30.77 (12)	50.00 (22)	
Good	41.03 (16)	31.82 (14)	
Very Good	10.26 (4)	9.09 (4)	
No Answer	0.00 (0)	2.27 (1)	
now many people do you live with?,	2.69 ± 0.24	3.25 ± 0.21	0.083 ^a
Do you have pets?. % (n)			0 222°
Yes	12.82 (5)	22.72 (10)	0
No	87.17 (34)	75.00 (33)	
No Answer	0.00 (0)	2.27 (1)	
How many times a week do you have a	5.49 ± 0.45	6 18 + 0 24	0 052 ^b
bowel movement?, (n)	3.43 ± 0.43	0.10 ± 0.24	0.052
How do you feel after a bowel			0.880 ^c
movement?, % (n)	E 12 (2)	2.27 (1)	
Normal	35.00 (14)	2.27 (1)	
Good	48 72 (19)	45.46 (20)	
Verv Good	10.26 (4)	11.36 (5)	
No Answer	0.00 (0)	0.00 (0)	
Daily nutrient intake ¹			
	3377 48 + 182 33	3924 18 + 254 79	0 089ª
Carbohydrate (g)	519.24 ± 29.66	584.84 + 46.31	0.241ª
Protein (g)	117.02 ± 8.40	138.24 ± 9.821	0.108ª
Fat (g)	79.89 ± 6.48	95.52 ± 6.92	0.106ª
Cholesterol (g)	473.82 ± 41.44	603.84 ± 68.07	0.112ª
Fiber (mg)	28.11 ± 2.04	28.77 ± 2.09	0.822 ^a

868 ¹ Daily nutrient intake were adjusted subjects number; control group (n = 28), experimental group (n =

869 21); FFQ non-responders were excluded, ^a p-values were obtained by the unpaired t-test (Welch's

870 correction), ^b p-values were obtained by the Mann-Whitney U test, ^c p-values were obtained by

the chi-squre test

- 872 Table 2. Adonis function results for host-related and environmental factors (T = 0
- 873 weeks) based on weighted UniFrac distance. Weighted UniFrac beta diversity analysis
- 874 was performed using the adonis function to identify significant differences in
- microbiota composition. 875

Characteristics	Control G (n = 39	roup))	Experimenta (n = 4	al Group 4)
	p-value	R ²	p-value	R ²
Host-re	elated factors			
Sex (male, female)	0.006	0.131	0.029	0.064
Age (years)	0.770	0.012	0.106	0.042
Height (cm)	0.031	0.085	0.008	0.081
Weight (kg)	0.001	0.174	0.007	0.089
Body mass index (BMI)	0.001	0.161	0.778	0.968
Environ	mental factor	S		
Smoker (yes, no)	0.050	0.071	0.821	0.012
Regular exercise (yes, no)	0.085	0.058	0.173	0.033
Recent weekly exercise time (min)	0.500	0.045	0.657	0.019
Sleep time (hr)	0.420	0.023	0.070	0.048
Quality of sleep (very bad, bad, normal, good, very good)	0.159	0.041	0.678	0.016
Number of housemates (n)	0.514	0.019	0.789	0.012
Raise pet (yes, no)	0.211	0.038	0.192	0.033
Number of bowel movements per week (n)	0.005	0.142	0.149	0.041
Feeling after a bowel movement (very bad, bad, normal, good, very good)	0.552	0.017	0.959	0.008
Daily nutrient intake ¹				
Energy (kcal)	0.101	0.060	0.554	0.019
Carbohydrate (g)	0.178	0.045	0.701	0.015
Protein (g)	0.160	0.050	0.523	0.020
Fat (g)	0.164	0.046	0.488	0.020
Cholesterol (g)	0.121	0.055	0.492	0.020
Fiber (mg)	0.061	0.071	0.738	0.014

876

¹ Daily nutrient intake were adjusted subjects number; control group (n = 28), experimental group (n =

877 21); FFQ non-responders were excluded

Table 3. Characteristics of participants at T = 0 weeks, T = 4 weeks, and T = 8 weeks.

879 Data are shown as mean \pm SEM; p-values are obtained by repeated-measures one-way

880 ANOVA.

		Control Gro	oup (n = 39)		п	xperimental	group (n = 44)	
	0 wks	4 wks	8 wks	p-value	0 wks	4 wks	8 wks	p-value
Body mass index (BMI)	22.83 ± 0.48	22.73 ± 0.46	22.77 ± 0.47	0.996	24.22 ± 0.41	23.96 ± 0.38	23.25 ± 0.31	<0.001
Recent weekly exercise time (min)	88.33 ± 27.35	99.87 ± 25.52	89.23 ± 24.81	0.734	208.10 ± 37.34	3252.00 ± 32.35	1311.00 ± 24.43	<0.001
Sleep time (hr)	6.38 ± 0.21	6.51 ± 0.19	6.44 ± 0.19	0.835	7.69 ± 0.19	7.51 ± 0.10	7.63 ± 0.09	0.552
Number of housemates (n)	2.69 ± 0.24	2.39 ± 0.23	2.38 ± 0.22	0.543	3.25 ± 0.21	4.00 ± 0.00	4.00 ± 0.00	<0.001
Number of bowel movements per week (n)	25.44 ± 0.46	6.08 ± 0.56	6.09 ± 0.61	0.865	6.17 ± 0.24	5.55 ± 0.44	5.36 ± 0.28	0.083
Daily nutrient intake [¶]								
Energy (kcal)	3377.48 ± 182.33	3330.89 ± 182.47	3284.30 ± 189.63	0.209	3924.18 ± 254.79	3474.01 ± 11.03	3369.69 ± 24.78	0.055
Carbohydrate (g)	519.24 ± 29.66	512.84 ± 29.07	506.43 ± 30.12	0.367	584.84 ± 46.31	468.66 ± 1.08	464.84 ± 3.92	0.017
Protein (g)	117.02 ± 8.40	116.24 ± 8.43	115.45 ± 8.54	0.332	138.24 ± 9.82	139.70 ± 0.88	135.12 ± 1.36	0.694
Fat (g)	79.89 ± 6.48	78.08 ± 6.42	76.28 ± 6.53	0.091	95.52 ± 6.92	112.22 ± 0.54	104.29 ± 0.62	0.051
Cholesterol (g)	473.82 ± 41.44	466.13 ± 41.17	458.44 ± 41.25	0.052	603.84 ± 68.07	836.35 ± 11.31	733.68 ± 21.46	0.006
Fiber (mg)	28.11 ± 2.04	27.69 ± 2.02	27.26 ± 2.03	0.095	28.77 ± 2.09	37.99 ± 0.57	39.81 ± 0.62	<0.001

881 n Daily nutrient intake were adjusted subjects number; control group (n = 28), experimental group (n =

882 21); FFQ non-responders were excluded