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Abstract 
 
The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers. 
However, computational tools tailored to such analyses are still scarce. Here, we present the 
SIAMCAT R package, a versatile and user-friendly toolbox for comparative metagenome 
analyses using machine learning (ML), statistical tests, and visualization. Based on a large 
meta-analysis of gut microbiome studies, we optimized the choice of ML algorithms and 
preprocessing routines for default workflow settings. Furthermore, we illustrate common 
pitfalls leading to overfitting and show how SIAMCAT safeguards against these to make 
statistically rigorous ML workflows broadly accessible. SIAMCAT is available from 
siamcat.embl.de and Bioconductor. 
 
Keywords 
Microbiome Data Analysis, Machine Learning, Metagenomics, Microbiome-wide Association 
Studies (MWAS), Meta-analysis 
 
 
 
Background 
 
The study of microbial communities through metagenomic sequencing has begun to uncover 
how communities are shaped by – and interact with – their environment, including the host 
organism in the case of gut microbes (1,2). Especially within a disease context, differences in 
human gut microbiome compositions have been linked to many common disorders, for 
example colorectal cancer (3), inflammatory bowel disease (4,5) or arthritis (6,7). As the 
microbiome is increasingly recognized as an important factor in health and disease, many 
possibilities for clinical applications are emerging for diagnosis (8,9), prognosis or prevention 
of disease (10). 
 
The prospect of clinical applications also comes with an urgent need for methodological rigor 
in microbiome analyses in order to ensure the robustness of findings. It is necessary to assess 
the clinical value of biomarkers identified from the microbiome in an unbiased manner – not 
only by their statistical significance, but more importantly also by their prediction accuracy on 
independent samples (allowing for external validation). Machine learning (ML) models – ideally 
interpretable and parsimonious ones – are crucial tools to identify and validate such 
microbiome signatures. Setting up ML workflows however poses difficulties for novices. In 
general it is challenging to assess their performance in an unbiased way, to apply them in 
cross-study comparisons, and to avoid confounding factors, for example when disease and 
treatment effects are intertwined (11). For microbiome studies, additional issues arise from 
key characteristics of metagenomic data such as large technical and inter-individual variation 
(12), compositionality of relative abundances, zero-inflation, and non-Gaussian distribution, all 
of which necessitate data normalisation in order for ML algorithms to work well. 
 
While several statistical analysis tools have been developed specifically for microbiome data, 
they are generally limited to testing for differential abundance of microbial taxa between 
groups of samples and do not allow users to evaluate their predictivity as they do not comprise 
full ML workflows for biomarker discovery (13–15). To overcome the limitations of testing-
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based approaches, several researchers have explicitly built ML classifiers to distinguish case 
and control samples (16–22); however, the software resulting from these studies is generally 
not easily modified or transferred to other classification tasks or data types. To our knowledge, 
a powerful yet user-friendly computational ML toolkit tailored to the characteristics of 
microbiome data has not yet been published. 
 
Here, we present SIAMCAT (Statistical Inference of Associations between Microbial 
Composition And host phenoTypes), a comprehensive toolbox for comparative metagenome 
analysis using ML, statistical modeling, and advanced visualization approaches. It also 
includes functionality to identify and visually explore confounding factors. To demonstrate its 
versatile applications, we conducted a large-scale ML meta-analysis of 104 classification tasks 
from 50 gut metagenomic studies that have been processed with a diverse set of taxonomic 
and functional profiling tools. Based on this large-scale application, we arrive at 
recommendations for sensible parameter choices for the ML algorithms and preprocessing 
strategies provided in SIAMCAT. Additionally, we illustrate how several common pitfalls of ML 
applications can be avoided using the statistically rigorous approaches implemented in 
SIAMCAT. Lastly, we showcase how SIAMCAT facilitates meta-analyses in an application to 
fecal shotgun metagenomic data from several studies of Crohn’s disease. SIAMCAT is 
implemented in the R programming language and freely available from siamcat.embl.de or 
Bioconductor. 
 
 
Results 
 
Machine learning and statistical analysis workflows implemented in SIAMCAT 
The SIAMCAT R package is a versatile toolbox for analysing microbiome data from case-
control studies. The default workflows abstract from and combine many of the complex steps 
that these workflows entail and that can be difficult to implement correctly for non-experts. In 
SIAMCAT, design and parameter choices are carefully adapted to metagenomic data analysis 
to increase ease of use. In addition to functions for statistical testing of associations, SIAMCAT 
workflows include ML procedures, including data preprocessing, model fitting, performance 
evaluation and visualization of the results and models (Figure 1a). The input for the package 
consists of a feature matrix (abundances of microbial taxa, genes or pathways across all 
samples), a group label (case-control information for all samples), and optional meta-variables 
(such as demographics, lifestyle, and clinical records of sample donors or technical 
parameters of data acquisition). 
To demonstrate the main workflow and primary outputs of the SIAMCAT package (see 
Methods and Supplementary Note 1), we analysed a representative dataset (23) consisting 
of 128 fecal metagenomes from patients with ulcerative colitis (UC) and non-UC controls 
(Figure 1). As input, we used species-level taxonomic profiles available through the 
curatedMetagenomicsData R package (24).  
After data preprocessing (unsupervised abundance and prevalence filtering, Figure 1a and 
Methods), the check.associations function tests for associations of single species with the 
disease using the nonparametric Wilcoxon test and visualizes the results. The association plot 
displays the distribution of microbial relative abundance, the significance of the association, 
and a generalized fold change as non-parametric measure of effect size (25) (Figure 1b).  
The central component of SIAMCAT consists of ML procedures, which include a selection of 
normalization methods (normalize.features), functionality to set up a cross validation scheme 
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(create.data.split), and interfaces to different ML algorithms, such as LASSO, Elastic Net, and 
Random Forest (26–28). As part of the cross-validation procedure, models can be trained 
(train.model) and applied to make predictions (make.predictions) on samples not used for 
training. Based on these predictions, the performance of the model is assessed 
(evaluate.predictions) using the area under the receiver operating characteristic (ROC) curve 
(AUROC) (Figure 1d). SIAMCAT also provides diagnostic plots for the interpretation of ML 
models (model.interpretation.plot) which display the importance of individual features in the 
classification model, normalized feature distributions as heatmaps, next to sample meta-
variables (optionally, see Figure 1 c,e). 
Expert users can readily customize and flexible recombine the individual steps in the described 
workflow above. For example, filtering and normalization functions can be combined or omitted 
before ML models are trained or association statistics calculated. To demonstrate its versatility 
beyond the workflow presented in Figure 1a, we used SIAMCAT to reproduce two recent ML 
meta-analyses of metagenomic datasets (18,19). By implementing the same workflows as 
described in the respective papers, we could generate models with very similar accuracy 
(within the 95% confidence interval) for all datasets analyzed (Supplementary Figure 1). 
 
Confounder analysis using SIAMCAT 
As many biological and technical factors beyond the primary phenotype of interest can 
influence microbiome composition (1), microbiome association studies are often at a high risk 
of confounding, which can lead to spurious results (11,29–31). To minimize this risk, SIAMCAT 
provides a function to optionally examine potential confounders among the provided meta-
variables. In the example dataset from (23), control samples were obtained from both Spanish 
as well as Danish subjects, while UC samples were only taken from Spanish individuals 
(Figure 2a). Here, the meta-variable “country” could be viewed as a surrogate variable for 
other (often difficult-to-measure) factors, which can influence microbiome composition, such 
as diet, lifestyle, or technical differences between studies. The strong association of the 
“country” meta-variable with the disease status (SIAMCAT computes such associations using 
Fisher’s exact test or the Wilcoxon test for discrete and continuous meta-variables, 
respectively; see Figure 2a) hints at the possibility that associations computed with the full 
dataset could be confounded by the country of the sample donor. 
To quantify this confounding effect on individual microbial features, the SIAMCAT 
check.confounder function additionally provides a plot for each meta-variable that shows the 
variance explained by the label in comparison with the variance explained by the meta-variable 
for each individual feature (Figure 2b). In our example case, several microbial species are 
strongly associated with both the disease phenotype (UC vs control) and the country, 
indicating that their association with the label might simply be an effect of technical and/or 
biological differences between samples taken and data processed in the different countries. 
To further investigate this confounder, we used the check.association function of SIAMCAT to 
compute statistical association for the full dataset (including the Danish control samples) and 
the reduced dataset containing only samples from Spanish individuals. The finding that P-
values were uncorrelated between the two datasets (Figure 2c) directly quantified the effect 
of confounding by country on the disease-association statistic. The potential severity of this 
problem is highlighted by a comparison of the relative abundance of Dorea formicigenerans 
across subjects: the differences between UC cases and controls are only significant when 
Danish control samples are included, but not when restricted to Spanish samples only (Figure 
2d), exemplifying how confounders can lead to spurious associations. 
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Finally, confounding factors can not only bias statistical association tests, but can also impact 
the performance of ML models. A model trained to distinguish UC patients from controls 
seemingly performs better if the Danish samples are included (AUROC of 0.84 compared to 
0.76 if only using Spanish samples), because the differences between controls and UC 
samples are artificially inflated by the differences between Danish and Spanish samples 
(Figure 2e). How these overall differences between samples taken in different countries can 
be exploited by ML models can also be directly quantified using SIAMCAT workflows. The 
resulting model trained to distinguish between control samples from the two countries can do 
so with almost perfect accuracy (AUROC of 0.96) (Figure 2f). This analysis demonstrates 
how confounding factors can lead to exaggerated performance estimates for ML models. 
In summary, the check.confounder function of SIAMCAT can help to detect influential 
confounding factors that have the potential to bias statistical associations and ML model 
performance (see Supplementary Figure 2 for additional examples). 
 
Large-scale machine learning meta-analysis 
Previous studies that applied ML to microbiome data (16–19) have compared and discussed 
the performance of several learning algorithms. However, their recommendations were based 
on the analysis of a small number of data sets which were technically relatively homogeneous. 
To overcome this limitation and to demonstrate that SIAMCAT can readily be applied to 
various types of input data, we performed a large-scale ML meta-analysis of case-control gut 
metagenomic datasets. We included taxonomic profiles obtained with the RDP taxonomic 
classifier (32) for 26 data sets based on 16S rRNA gene sequencing (19); additionally, 
taxonomic profiles generated from 14 and 20 shotgun metagenomic data sets using either 
MetaPhlAn2 (33) or mOTUs2 (34), respectively, as well as functional profiles obtained with 
HUMAnN2 (35) or with eggNOG 4.5 (36) for the same set of shotgun metagenomic data were 
included (in total 104 classification tasks, see Supplementary Table 1 for information about 
included datasets). 
As a first result, we found that given a sufficiently large input data set (with at least 100 
samples), SIAMCAT models are generally able to accurately distinguish between cases and 
controls: the majority (55%) of these datasets in our analysis could be classified with an 
AUROC of 0.8 or higher – compared to only 12% of datasets with fewer than 100 samples 
(Figure 3a-e, Supplementary Figure 3 and Methods). Of note, accurate ML-based 
classification was possible even for datasets in which cases and controls could not easily be 
separated using beta-diversity analyses (Supplementary Figure 4), indicating that a lack of 
separation in ordination analysis does not preclude ML-based workflows to extract accurate 
microbiome signatures. In the datasets for which a direct comparison of mOTUs2 and 
MetaPhlAn2 profiles was possible, we did not find any consistent trend towards either profiling 
method (paired Wilcoxon P = 1, see Supplementary Figure 5). When comparing taxonomic 
and functional profiles derived from the same dataset, we found a high correlation between 
AUROC values (Pearson’s r = 0.91, P = 1*10-19), although on average taxonomic profiles 
performed slightly better than functional profiles (Supplementary Figure 5). Taken together 
this indicates that SIAMCAT can extract accurate microbiome signatures from a range of 
different input profiles commonly used in microbiome research. 
SIAMCAT provides various methods for data filtering and normalization and offers 
implementations of several ML algorithms. This made it easy to explore the space of possible 
workflow configurations in order to arrive at recommendations about sensible default 
parameters. To test the influence of different parameter choices within the complete data 
analysis pipeline, we performed an ANOVA analysis to quantify their relative importance on 
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the resulting classification accuracy (Figure 3f and Methods). Whereas the choice of filtering 
method and feature selection regime has little influence on the results, the normalization 
method and ML algorithm explained more of the observed variance in classification accuracy. 
Analysis of the different normalization methods shows that most of the differences can be 
explained by a drop in performance for naively normalized data (only total sum scaling and no 
further normalization) in combination with LASSO or Elastic Net regression (Supplementary 
Figure 6). In contrast, the Random Forest classifier depended much less on optimal data 
normalization. Lastly, we compared the best classification accuracy for each classification task 
across the different ML algorithms. Interestingly, in contrast to a previous report (18), this 
analysis indicates that on average Elastic Net regression outperforms LASSO regression and 
the Random Forest classifier when considering the optimal choice of ML algorithm (P = 0.004 
comparing Elastic Net to LASSO and P = 8*10-09 comparing it to Random Forest, Figure 3g). 
In summary, this large-scale analysis demonstrates the versatility of the ML workflows 
provided by SIAMCAT and comprehensively validates its default parameters and how 
sensitive classification accuracy is to deviations from these. 
 
 
Advanced machine learning workflows 
When designing more complex ML workflows involving feature selection steps or applications 
to time series data, it becomes more challenging to set up cross validation procedures 
correctly. Specifically, it is important to estimate how well a trained model would generalize to 
an independent test set, which is typically a main objective of microbial biomarker discovery. 
An incorrect ML procedure, in which information leaks from the test to the training set, can 
result in overly optimistic performance estimates (also called overfitted). Two pitfalls that can 
lead to overfitting and poor generalization to other datasets (Figure 4a) are frequently 
encountered in ML analyses of microbiome and other biological data, even though they are 
well described in the statistics literature (37–39). These issues, namely supervised feature 
filtering and naive splitting of dependent samples, can be exposed by testing model 
performance in an external validation set, which has not been used during cross validation at 
all (Figure 4b). 
The first issue arises when feature selection taking label information into account (supervised 
feature selection) is naively combined with subsequent cross validation on the same data (37). 
This incorrect procedure selects features that are associated with the label (e.g. by testing for 
differential abundance) on the complete dataset leaving no data aside for an unbiased test 
error estimation of the whole ML procedure. To avoid overfitting, correct supervised feature 
selection should always be nested into cross validation (that is, the supervised feature 
selection has to be applied to each training fold of the cross validation separately). To illustrate 
the extent of overfitting resulting from the incorrect approach, we used two datasets of 
colorectal cancer (CRC) patients and controls and performed both the incorrect and correct 
way of supervised feature selection. As expected, the incorrect feature selection led to inflated 
performance estimates in cross validation but lower generalization to an external dataset, 
whereas the correct procedure gave a better estimate of the performance in the external test 
set; the fewer features were selected, the more the performance in the external datasets 
dropped (see Figure 4c). SIAMCAT readily provides implementations of the correct procedure 
and additionally takes care that the feature filtering and normalization of the whole data set 
are blind to the label (therefore called unsupervised), thereby preventing accidental 
implementation of the incorrect procedure.  
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The second issue tends to occur when samples are not independent (38). For example, 
microbiome samples taken from the same individual at different time points are usually a lot 
more similar to each other than those from different individuals (see (12) and Supplementary 
Figure 7). If these dependent samples are randomly split in a standard cross validation 
procedure, so that some could end up in the training set and others in the test set, it is 
effectively estimated how well the model generalizes across time points (from the same 
individual) rather than across individuals. To avoid this, dependent measurements need to be 
blocked during cross validation, ensuring that measurements of the same individual are 
assigned to the same test set. How much the naive procedure can overestimate the 
performance in cross validation and underperform in external validation compared to the 
correctly blocked procedure is demonstrated here using the iHMP dataset, which contains 
several samples per subject (40). Although the cross-validation accuracy appears dramatically 
lower in the correct compared to the naive procedure, generalization to other datasets of the 
same disease is higher with the correctly blocked model (Figure 4d). SIAMCAT offers the 
possibility to block the cross validation according to meta-variables by simply providing an 
additional argument to the respective function call. 
 
Meta-analysis of Crohn’s disease gut microbiome studies 
Microbiome disease associations being reported at an ever-increasing pace have provided 
opportunities for comparisons across multiple studies of the same disease to assess the 
robustness of associations and the generalizability of ML models in so-called meta-analyses 
(18,19,25,41). Meta-analyses will be critical to help resolve the debate about spurious 
associations and reproducibility issues in microbiome research (42). To demonstrate how 
SIAMCAT enables cross-study comparisons, we analyzed five metagenomic datasets 
(5,23,40,43,44) which all included samples from patients with Crohn’s disease (CD) as well 
as controls not suffering from inflammatory bowel diseases (IBD). Raw sequencing data were 
downloaded from ENA and consistently processed to obtain genus abundance profiles with 
mOTUs2 (34). 
Based on SIAMCAT’s check.associations function, we identified microbial genera that are 
significantly associated with CD in each study and visualized their agreement across studies 
(Figure 5a, left panel). In line with previous findings (4), the gut microbiome of CD patients is 
characterised by a loss of diversity and many beneficial taxa. Though our re-analysis of the 
data from (40) could not identify any statistically significant genus-level associations, possibly 
due to the relatively small number of individuals or the choice of control samples obtained from 
patients with non-IBD gastrointestinal symptoms, the other four studies showed remarkable 
consistency among the taxa lost in CD patients.  
We further investigated variation due to technical and biological differences between studies 
as a potential confounder using SIAMCAT’s check.confounder function following a previously 
validated approach (25). For many genera, variation can largely be attributed to heterogeneity 
among studies; the top five associated genera (cf. Figure 5a), however, vary much more with 
disease status, suggesting that their association with CD is only minimally confounded by 
differences between studies (Figure 5b). 
Lastly, we systematically assessed cross-study generalisation of ML models trained to 
distinguish CD patients from controls using SIAMCAT workflows. To this end, we trained an 
Elastic Net model for each study independently and evaluated the performance of the trained 
models on the other datasets (Figure 5c and Methods). Most models maintained very high 
classification accuracy when applied to the other data sets for external validation (AUROC 
>0.9 in most cases); again with the exception of the model cross-validated on the data from 
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(40), which exhibited substantially lower accuracy in both cross validation and external 
validation. 
As many ML algorithms allow for an examination for the most influential predictors, 
microbiome biomarkers can easily be extracted from these models. In (generalised) linear 
models, such as LASSO or Elastic Net logistic regression models, the model coefficients 
directly quantify the importance of microbial predictors. Since the LASSO, and to some extent 
also the Elastic Net, are sparse (also called regularised or penalised) models, the number of 
influential predictors (with nonzero coefficients) is kept small. As a consequence, these ML 
methods tend to omit many statistically significant features when they are correlated to each 
other in favor of a small subset of features with optimal predictive power. Nonetheless, in our 
meta-analysis of CD the feature importance values derived from multivariable modeling 
correspond well to the univariate associations, and also show some consistency across the 
four studies in which clear CD associations could be detected and an accurate ML model 
trained (Figure 5a, right panel). Taken together, these results demonstrate that SIAMCAT 
could be a tool of broad utility for consolidating microbiome-disease associations and 
biomarker discovery by leveraging the large amount of metagenomic data becoming available 
for ML-based analyses. 
 
 
Discussion 
 
The rising interest in clinical microbiome studies and microbiome-derived diagnostic, 
prognostic, and therapeutic biomarkers also calls for more standardized analysis procedures. 
An important step in that direction is the development of freely available, comprehensive, and 
extensively validated analysis workflows that make complex ML procedures available to non-
experts, ideally while safeguarding against statistical analysis flaws. Designed with these 
objectives in mind, SIAMCAT utilizes a modular architecture, allowing advanced users to 
flexibly set up and customize more complex ML procedures, including non-standard cross-
validation splits for dependent measurements and supervised feature selection methods that 
are properly nested into cross validation (Figure 4), while also providing well-validated 
workflows built from those same modules for novices to explore. To enable rapid integration 
into R-based microbiome analysis environments, we optimized the interoperability of 
SIAMCAT with other widely-used tools for microbiome research. Handover of data from 
DADA2 (45) or phyloseq (46) is straightforward, as SIAMCAT builds on the phyloseq R object. 
Furthermore, ML models and procedures are based on the mlr package (47), which makes it 
easy to extend the selection of ML algorithms interfaced in SIAMCAT. 
 
To showcase the power of ML workflows implemented in SIAMCAT and to select default 
parameters and to assess the robustness of these choices, we performed a meta-analysis of 
human gut metagenomic studies at considerably larger scale than previous efforts (16–21) 
(see Figure 3). It importantly encompassed a large number of diseases as well as different 
taxonomic and functional profiles as input that were derived from different metagenomic 
sequencing techniques (16S rRNA gene and shotgun metagenomics sequencing) and 
profiling software. Consequently, these benchmarks are expected to yield much more robust 
and general results than those from previous studies (16–21). In our exploration of more than 
7.000 different parameter combinations per classification task (see Methods), we found the 
Elastic Net logistic regression algorithm to yield highest cross-validation accuracies on 
average, but it required the input data to be appropriately normalized (see Figure 3 and 
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Supplementary Figure 6). Compared with the choice of normalization method and 
classification algorithm, other parameters had a considerably lower influence on the resulting 
classification accuracy. 
 
Although the analyses presented here are focused on human gut metagenomic datasets with 
disease prediction tasks, SIAMCAT is not restricted to these. It can also be applied to other 
tasks of interest in microbiome research, e.g. for investigating the effects of medication (see 
Supplementary Figure 2). Metagenomic or metatranscriptomic data from environmental 
samples can also be analyzed using SIAMCAT, e.g. to understand associations between 
community composition or transcriptional activity of the ocean microbiome with 
physicochemical environmental properties (see Supplementary Figure 8 for an example 
(48)) highlighting that SIAMCAT could be of broad utility in microbiome research. 
 
 
Conclusion 
 
We developed SIAMCAT to make ML-based microbiome analysis easily accessible to the 
research community. SIAMCAT workflows will help to improve statistical rigor due to 
safeguards against issues commonly encountered in ML applications that lead to 
overestimating the accuracy of microbial signatures. While SIAMCAT is broadly applicable to 
different types of input data and prediction tasks, we anticipate it to be particularly useful for 
clinical studies exploring the potential of microbial biomarkers for diagnostics, treatment 
efficacy and safety. 
 
 
Methods 
 
Implementation 

SIAMCAT is implemented as R package with a modular architecture, allowing for flexible 
combination of different functions to build ML and statistical analysis workflows (see Code 
Box). The output of the functions (for example, the feature matrix after normalization) is stored 
in the SIAMCAT object, which is an extension of the phyloseq object that contains the raw 
feature abundances, meta-variables about the samples, and other optional information (for 
example, a taxonomy table or a phylogenetic tree) (46). The label defining the sample groups 
for comparison is then derived from a user-specified meta-variable or an additional vector. ML 
models are trained using the mlr infrastructure as interface to the implementations of different 
ML algorithms in other R packages (47). SIAMCAT is available under the GNU General Public 
License, Version 3. 
 
Code Box 
Given two R objects called feat (relative abundance matrix) and meta (meta-variables about 
samples as a dataframe, containing a column called disease which encodes the label), the 
entire analysis can be conducted with a few commands (more extensive documentation can 
be found in the Supplementary Notes and the online SIAMCAT vignettes). 
 
sc.obj <- siamcat(feat=feat, meta=meta, label='disease') 
sc.obj <- filter.features(sc.obj, filter.method = 'abundance') 
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sc.obj <- check.associations(sc.obj, 
  fn.plot = 'associations_plot.pdf')) # produces Fig. 1b 
check.confounders(sc.obj,  
  fn.plot = 'confounder_plot.pdf') # produces Fig. 1c 
sc.obj <- normalize.features(sc.obj, norm.method = 'log.std') 
sc.obj <- create.data.split(sc.obj) 
sc.obj <- train.model(sc.obj, method='lasso') 
sc.obj <- make.predictions(sc.obj) 
sc.obj <- evaluate.predictions(sc.obj) 
model.evaluation.plot(sc.obj,  
  fn.plot = 'evaluation.pdf') # produces Fig. 1d 
model.interpretation.plot(sc.obj, consens.thres = 0.8,  
  fn.plot = 'interpretation.pdf') # produces Fig. 1e 

 

 
Included datasets and microbiome profiling 

In this study, we analyzed taxonomic and functional profiles derived with different profiling 
tools from several metagenomic datasets (see Supplementary Table 1). Taxonomic profiles 
generated using the RDP classifier (32) on the basis of 16S rRNA gene sequencing data were 
downloaded from a recent meta-analysis by Duvallet et al. (19) and summarized at the genus 
level. MetaPhlAn2 (33) and HUMAnN2 (35) taxonomic and functional profiles were obtained 
from the curatedMetagenomicsData R package (24) for all human gut datasets within the 
package that contained at least 20 cases and 20 controls. MetaPhlAn2 profiles were filtered 
to contain only species-level microbial taxa.  
Additional datasets were profiled in-house with the following pipeline implemented in NGless 
(49): after preprocessing with MOCAT2 (50) and filtering for human reads, taxonomic profiles 
were generated using the mOTUsv2 profiler (34) and functional profiles were calculated by 
first mapping reads against the integrated gene catalogue (51) and then aggregating the 
results by eggNOG orthologous groups (36). 
Additionally, genus-level taxonomic profiles from the TARA Oceans microbiome project (48) 
were used for two different classification tasks: to classify samples from polar and non-polar 
ocean regions and to classify samples based on their iron concentration at a depth of 5 meters 
(high versus low iron content). 
 
Primary package outputs and confounder analysis 

To illustrate the main outputs of SIAMCAT, we analyzed the taxonomic profiles from a 
metagenomic study of IBD (23) included in the curatedMetagenomicsData R package (24). 
For the analyses presented in Figure 1, we restricted the dataset to control samples from 
Spain and cases with UC, since the two IBD subtypes included in the dataset (ulcerative colitis 
and Crohn’s disease) are very different from one another in terms of the associated changes 
in gut microbiome composition. See Supplementary Note 1 for more information or the Code 
Box for an outline of the basic SIAMCAT workflow.  
To demonstrate how SIAMCAT can aid in confounder detection, we used the same dataset 
but this time included the Danish control samples in order to explore potential confounding by 
differences between samples collected and processed in these two countries. The analyses 
presented in Figure 2 have all been conducted with the respective functions of SIAMCAT (see 
Supplementary Note 1).  
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Machine learning hyperparameter exploration 

To explore suitable hyperparameter combinations for ML workflows, we trained an ML model 
for each classification task and each hyperparameter combination. By hyperparameter we 
mean configuration parameters of the workflow, such as normalization parameters, tuning 
parameters controlling regularization strength or properties of external feature selection 
procedure in contrast to model parameters fitted during the actual training of the ML 
algorithms. Specifically, we varied the filtering method (no data filtering, prevalence filtering 
with 1%, 5%, 10% cutoffs, abundance filtering with 0.001, 0.0001, 0.0001 as cutoffs, and a 
combination of abundance and prevalence filtering), the normalization method (no 
normalization beyond the total sum scaling, log-transformation with standardization, rank-
transformation with standardization, and centered log ratio transformation), the ML algorithm 
(LASSO, Elastic Net, and Random Forest classifiers), and feature selection regimes (no 
feature selection, feature selection based on generalized fold change or based on single-
feature AUROC; cutoffs were 25, 50, 100, 200, and 400 features for taxonomic profiles and 
100, 500, 1000, and 2000 features for functional profiles). To cover the full hyperparameter 
space, we therefore trained 7.488 models for taxonomic and 3.168 models for functional 
datasets for each classification task. 
To determine the optimal AUROC across input types (shown in Figure 3a-e), we calculated 
for each individual parameter combination the mean AUROC across all classification tasks 
with a specific type of input. Different feature filtering procedures could lead to cases in which 
the feature selection cutoffs were larger than the number of available features after filtering, 
therefore terminating the ML procedure. For that reason, we only considered those parameter 
combinations that did produce a result for all classification tasks with the specific type of input 
data. 
To compare the importance of feature filtering, feature selection, normalization method and 
ML algorithm on classification accuracy, we trained one linear model per classification task 
predicting the AUROC values from those variables. We then partitioned the variance 
attributable to each of these variables by calculating type III sums of squares using the Anova 
function from the car package in R (52). 
In order to contrast class separation of samples in distance space with the classification 
performance achieved by ML algorithms (see Supplementary Figure 4), we designed a 
distance-based measure of separation. For each dataset, we determined the distances 
between all pairs of samples within a class as well as all pairs of samples between classes 
and then calculated an AUROC value based on these two distributions. This distance-based 
measure effectively quantifies to what extent samples are closest to other samples from the 
same class (i.e. cluster together) and hence corresponds well to the visual separation of 
classes in ordination space (see Supplementary Figure 4). 
 
Illustration of common pitfalls in machine learning procedures 

To demonstrate how naive sequential application of supervised feature selection and cross 
validation might bias performance estimations, we trained LASSO ML models to distinguish 
colorectal cancer cases from controls based on MetaPhlAn2-derived species abundance 
profiles using the dataset with the handle ThomasAM_2018a (41) obtained through the 
curatedMetagenomicsData R package (24). For the incorrect procedure of feature selection, 
single-feature AUROC values were calculated using the complete dataset (inverted for 
negatively associated features). Then, the features with the highest AUROC values were 
selected for model training (number depending on the cutoff). In contrast, the correct 
procedure implemented in SIAMCAT excludes the data in the test fold when calculating single-
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feature AUROC values; instead, AUROC values are calculated on the training fold only. To 
test generalization to external data, the models were then applied to another colorectal cancer 
metagenomic study (8) available through the curatedMetagenomicsData R package (also see 
the SIAMCAT vignette: Holdout testing). 
To illustrate the problem arising when combining naive cross validation with dependent data, 
we used the Crohn’s disease (CD) datasets used in the meta-analysis described below. We 
first subsampled the iHMP dataset (40) to five repeated measurements per subject, as some 
subjects had been sampled only five times and others more than 20 times. Then, we trained 
LASSO models using both a naive cross validation and a cross validation procedure in which 
samples from the same individual were always kept together in the same fold. External 
generalization was tested on the other four CD datasets described below. 
 
Meta-analysis of Crohn’s disease metagenomic studies 

For the meta-analysis of Crohn’s disease gut microbiome studies, we included five 
metagenomic datasets (5,23,40,43,44) that had been profiled with the mOTUs2 profiler (34) 
on genus level. While some datasets contained both UC and CD patients (5,23,40), other 
datasets contained only CD cases (43,44). Therefore, we restricted all datasets to a 
comparison between only CD cases and control samples, since the two subtypes of IBD are 
very different from each other.  
For training of ML models, we blocked repeated measurements for the same individual when 
applicable (23,40,43); specifically for the iHMP dataset (40), we also subsampled the dataset 
to five repeated measurements per individual to avoid biases associated with differences in 
the number of samples per individual. For external validation testing, we completely removed 
repeated measurements in order not to bias the estimation of classification accuracy. 
To compute association metrics and to train and evaluate ML models, each dataset was 
encapsulated in an individual SIAMCAT object. To produce the plot showing the variance 
explained by label versus the variance explained by study, all data were combined into a single 
SIAMCAT object. The code to reproduce the analysis can be found in Supplementary Note 
2.  
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Figure captions 
 
Figure 1. SIAMCAT statistical and machine learning approaches model differences 
between groups of microbiome samples. 

(a) Each step in the SIAMCAT workflow (green boxes) is implemented by a function in the 
R/Bioconductor package (see Supplementary Note 1). Functions producing graphical 
output (red boxes) are illustrated in (b)-(e) for an exemplary analysis using a data set 
from Nielsen et al. (23) which contains ulcerative colitis (UC) patients and non-UC 
controls. 

(b) Visualization of the univariate association testing results. The left panel visualizes the 
distributions of microbial abundance data differing significantly between groups. 
Significance (after multiple testing correction) is displayed in the middle panel as 
horizontal bars. The right panel shows the generalized fold change as a nonparametric 
measure of effect size (25). 

(c) SIAMCAT offers statistical tests and diagnostic visualizations to identify potential 
confounders by testing for associations between such meta-variables as covariates 
and the disease label. The example shows a comparison of body mass index (BMI) 
between the study groups. The similar distributions between cases and controls 
suggests that BMI is unlikely to confound UC associations in this dataset. 

(d) The model evaluation function displays the cross-validation error as a receiver 
operating characteristic (ROC) curve, with a 95% confidence interval shaded in gray 
and the area under the receiver operating characteristic curve (AUROC) given below 
the curve.  

(e) SIAMCAT finally generates visualizations aiming to facilitate the interpretation of the 
machine learning models and their classification performance. This includes a barplot 
of feature importance (in the case of penalized logistic regression models, bar width 
corresponds to coefficient values) for the features that are included in the majority of 
models fitted during cross validation (percentages indicate the respective fraction of 
models containing a feature). A heatmap displays their normalized values across all 
samples (as used for model fitting) along with the classification result (test predictions) 
and user-defined meta-variables (bottom). 

 
Figure 2. Analysis of covariates that potentially confound microbiome-disease 
associations and classification models.  
The UC data set from Nielsen et al. (23) contains fecal metagenomes from subjects enrolled 
in two different countries and generated using different experimental protocols (data shown is 
from curatedMetagenomicData with CD cases and additional samples per subject removed). 

(a) Visualizations from the SIAMCAT confounder checks reveals that only control samples 
were taken from Denmark suggesting that any (biological or technical) differences 
between Danish and Spanish samples might confound a naive analysis for UC-
associated differences in microbial abundances. 

(b) Analysis of variance (using ranked abundance data) shows many species to differ 
more by country than by disease, with several extreme cases highlighted. 

(c) When comparing (FDR-corrected) P-values obtained from SIAMCAT’s association 
testing function applied to the whole data set (y-axis) to those obtained for just the 
Danish samples (x-axis), only a very weak correlation is seen and strong confounding 
becomes apparent for several species including Dorea formicigenerans (highlighted). 
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(d) Relative abundance differences for D. formicigenerans are significantly larger between 
countries than between Spanish UC cases and controls (P-values from Wilcoxon test). 

(e) Distinguishing UC patients from controls with the same workflow is possible with lower 
accuracy when only samples from Spain are used compared to the full dataset 
containing Danish and Spanish controls. This implies that in the latter case the 
machine learning model is confounded as it exploits the (stronger) country differences 
(see (c) and (f)), not only UC-associated microbiome changes.  

(f) This is confirmed by the result that control samples from Denmark and Spain can be 
very accurately distinguished with an AUROC of 0.96 (using SIAMCAT classification 
workflows). 

 
Figure 3. Large-scale application of the SIAMCAT machine learning workflow to human 
gut metagenomic disease association studies. 

(a) Application of SIAMCAT machine learning workflows to taxonomic profiles generated 
from fecal shotgun metagenomes using MetaPhlAn2 as available from 
curatedMetagenomicData (24). Cross-validation performance for discriminating 
between diseased patients and controls quantified by the area under the ROC curve 
(AUROC) is indicated by diamonds (95% confidence intervals denoted by horizontal 
lines) with sample size per dataset given as additional panel (cut at N = 250 and given 
by numbers instead). See Supplementary Table 1 for information about the included 
datasets and key for disease abbreviations. 

(b) Application of SIAMCAT machine learning workflows to functional profiles obtained 
from HUMAnN2 as provided by curatedMetagenomicData (24) for the same datasets 
as in (a) (see Supplementary Figure 5 for a direct comparison between taxonomic 
and functional input data). 

(c) Disease classification accuracies, similar to (a), obtained from taxonomic profiles 
generated with mOTUs2 from fecal shotgun metagenomic data (for a direct 
comparison between MetaPhlAn2 and mOTUs2 input data see Supplementary 
Figure 5). 

(d) Disease classification accuracies, similar to (b), obtained from functional profiles 
generated with eggNOG4 (see Supplementary Figure 5 for a direct comparison 
between taxonomic and functional input data). 

(e) Cross-validation accuracy of SIAMCAT machine learning workflows as applied to 16S 
rRNA gene amplicon data for human gut microbiome case-control studies (19) (see (a) 
for definitions).  

(f) Influence of different parameter choices on the resulting classification accuracy. After 
training a linear model to predict the AUROC values for each classification task, the 
variance was assessed using an ANOVA (see Methods). Dots show the percentage of 
variance attributable to each parameter and the boxes denote the IQR across all 
values with the median as a thick black line and the whiskers extending up to the most 
extreme points within 1.5-fold IQR. 

(g) Performance comparison of machine learning algorithms on gut microbial disease 
association studies. For each machine learning algorithm, the best AUROC values for 
each task are shown as boxplots (defined as in (f)). Generally, the choice of algorithm 
only has a small effect on classification accuracy, but both the Elastic Net and LASSO 
performance gains are statistically significant (paired Wilcoxon test: LASSO vs Elastic 
Net, P = 0.004; LASSO vs Random Forest, P = 0.001; Elastic Net vs Random Forest, 
P = 8e-09).  
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Figure 4. SIAMCAT aids in avoiding common pitfalls leading to poor generalization of 
machine learning models. 

(a) Incorrectly set up machine learning workflows can lead to overoptimistic accuracy 
estimates (overfitting): the first issue arises from a naive combination of feature 
selection on the whole data set and subsequent cross validation on the very same data 
(39). The second one arises when samples that were not taken independently (as is 
the case for replicates or samples taken at multiple time points from the same subject) 
are randomly partitioned in cross validation with the aim to assess the cross-subject 
generalization error (see Main text). 

(b) External validation, for which SIAMCAT offers analysis workflows, can expose these 
issues. The individual steps in the workflow diagram correspond to SIAMCAT functions 
for fitting a machine learning model and applying it to an external data set to assess 
its external validation accuracy (see SIAMCAT vignette: Holdout testing with 
SIAMCAT). 

(c) External validation shows overfitting to occur when feature selection and cross 
validation are combined incorrectly in a sequential manner, rather than correctly in a 
nested approach. The correct approach is characterized by a lower (but unbiased) 
cross-validation accuracy, but better generalization accuracy to external data sets (see 
header for data sets used). The fewer features are selected, the more pronounced the 
issue becomes and in the other extreme case (‘all’), feature selection is effectively 
switched off. 

(d) When dependent observations (here by sampling the same individuals at multiple time 
points) are randomly assigned to cross-validation partitions, effectively the ability of the 
model to generalize across time points, but not across subjects is assessed. To 
correctly estimate generalization accuracy across subjects, repeated measurements 
need to be blocked, all of them either into the training or test set. Again, the correct 
procedure shows lower cross-validation accuracy, but higher external validation 
accuracy. 

 
 
Figure 5. Meta-analysis of CD studies based on fecal shotgun metagenomic data. 

(a) Genus-level univariate and multivariable associations with CD across the five included 
metagenomic studies. The heatmap on the left side shows the generalized fold change 
for genera with a single-feature AUROC higher than 0.75 or smaller than 0.25 in at 
least one of the studies. Associations with a false discovery rate (FDR) below 0.1 are 
highlighted by a star. Statistical significance was tested using a Wilcoxon test and 
corrected for multiple testing using the Benjamini-Hochberg procedure. Genera are 
ordered according to the mean fold change across studies. The right side displays the 
median model weights for the same genera derived from Elastic Net models trained 
on the five different studies. For each dataset, the top 20 features (regarding their 
absolute weight) are indicated by their rank. 

(b) Variance explained by disease status (CD versus controls) is plotted against the 
variance explained by differences between studies for individual genera. The dot size 
is proportional to the mean abundance and genera included in (a) are highlighted in 
red or blue. 
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(c) Classification accuracy as measured by AUROC is shown as heatmap for Elastic Net 
models trained on genus-level abundances to distinguish controls from CD cases. The 
diagonal displays values resulting from cross validation (when the test and training set 
are the same) and off-diagonal boxes show the results from study-to-study transfer of 
models. 
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