Engineering isoprenoid quinone production in yeast

Divjot Kaur,†‡ Christophe Corre† and Fabrizio Alberti*,†

† School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
‡ Present address: Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3PS, UK.

ABSTRACT: Isoprenoid quinones are bioactive molecules that include an isoprenoid chain and a quinone head. They are traditionally found to be involved in primary metabolism, where they act as electron transporters, but specialized isoprenoid quinones are also produced by all domains of life. Here, we report the engineering of a baker’s yeast strain, Saccharomyces cerevisiae EPYFA3, for the production of isoprenoid quinones. Our yeast strain was developed through overexpression of the shikimate pathway in a well-established recipient strain (S. cerevisiae EPY300) where the mevalonate pathway is overexpressed. As a proof of concept, our new host strain was used to overproduce the endogenous isoprenoid quinone coenzyme Q6, resulting in a final four-fold production increase. EPYFA3 represents a valuable platform for the heterologous production of high value isoprenoid quinones. EPYFA3 will also facilitate the elucidation of isoprenoid quinone biosynthetic pathways.

KEYWORDS: isoprenoid quinones, yeast, coenzyme Q6, shikimate pathway, specialized metabolites

INTRODUCTION

Isoprenoid quinones (IQs) are biologically active metabolites that are made of a hydrophobic isoprenoid tail and a polar quinone head.1 Traditionally, IQs have been found to act as electron transporters in respiratory and photosynthetic electron transport chains.2 In this context, the isoprenoid moiety allows IQs to be anchored to phospholipid bilayer membranes, whereas the polar head enables their interaction with proteins. Naphthoquinones (menaquinone and phylloquinone) contain a naphthalene-related quinone head, whereas benzoquinones (ubiquinone and plastoquinone) include a benzene-related quinone ring. IQs have mixed biosynthetic origins. Their isoprenoid chain comes from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP).3 The quinone head can come from different sources, in particular from the O-succinylbenzoate pathway via chorismate or from the shikimate pathway via chorismate, tyrosine, or phenylalanine.2,4 Specialized IQs often include a polyketide head group, as commonly seen for fungal meroterpenoids.5 Ubiquinone-10 (coenzyme Q10),1 phylloquinone (vitamin K1)6 and α-tocopherol quinone (vitamin E quinone)7 are examples of widespread IQs (Figure 1). Species-specific IQs, which are generally regarded as specialized metabolites, include the antitumor furaquinoicin A,8 the antiviral 4-hydroxypleuropurisine,9 the antioxidant naphterpins10 and the antitumor antibiotics BE-4064411 and shikonin (Figure 1).12,13

The biosynthetic pathways to ubiquitous IQs have been investigated extensively, although a complete picture is still lacking for compounds such as coenzyme Q.14 The biosynthesis of specialized IQs is often directed by cryptic metabolic pathways. Their elucidation requires the use of interdisciplinary approaches, such as total synthesis and reconstitution of in vitro reactions with recombinant biosynthetic enzymes, as shown for instance by Murray et al.10 for the biosynthesis of naphterpins and marinones. To increase IQs production and to facilitate the elucidation of their cryptic biosynthetic routes, a suitable biological platform providing ample precursor supply is needed.

Here we report the engineering of a Saccharomyces cerevisiae (baker’s yeast) strain that overproduces the building blocks required for IQ biosynthesis.
As a proof of concept, we used our strain to improve the production of coenzyme Q. *S. cerevisiae* has been metabolically engineered in the past to overproduce isoprenoids. Notably, the Keasling lab has engineered the mevalonate pathway in yeast, in order to provide increased amounts of IPP and DMAPP for the assembly of various downstream products, such as the antimalarial drug precursor artemisinic acid, the biofuel precursor bisabolene, as well as natural and unnatural cannabinoids. Strain *S. cerevisiae* EPY300 (Supporting Table S1) has been used to produce terpenoids, such as artemisinic acid and costunolide, in high amounts.

EPY300 includes two copies of a truncated, soluble variant of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (*thmGr*), as well as an additional copy of the farnesyl-pyrophosphate (FPP) synthase gene *ERG20*, a copy of the semi-dominant allele *upc2-1* for upregulation of genes involved in the biosynthesis of sterols, and a methionine-inducible downregulation mechanism for the control of *ERG9*, which codes for squalene synthase (Scheme 1). In the present work, we acquired *S. cerevisiae* EPY300 from the Keasling lab and engineered it further to overexpress the shikimate pathway. The gene *aroL* codes for the shikimate kinase II in *Escherichia coli*, and its overexpression in *S. cerevisiae* has been shown to improve production of the shikimate pathway-derived *p*-coumaric acid. *GCN4* codes for a leucine zipper transcriptional activator (Gcn4p) in yeast, which is induced under amino acid starvation, and in turn triggers the upregulation of biosynthetic genes involved in the production of most amino acids. The targets of Gcn4p include genes *ARO1, ARO2, ARO3* and *ARO4*, which are yeast cod for the enzymes that catalyze the seven steps of the shikimate pathway leading to chorismate. Chorismate can then be used for downstream processes, such as the biosynthesis of aromatc amino acids and that of the head group of IQs. Gcn4p also targets vitamin-cofactor biosynthetic genes, such as those that code for the enzymes responsible for the biosynthesis of NAD+, FAD and coenzyme-A, as well as for the biosynthesis of tryptophan, a precursor of nicotinamide, which in turn is a component of NAD+ and NADP+.

Therefore, overexpression of *GCN4* can also lead to increased amounts of the cofactors that are required by secondary metabolite biosynthetic enzymes, including those oxidoreductases that catalyze the assembly of IQs. Eukaryotic cytochrome P450 enzymes, such as CYP76B74 involved in the biosynthesis of the IQ shikonin, require the cofactor NADPH as a source of electrons, and some dehydrogenases use NAD+ or NADP+ as electron acceptors.

RESULTS AND DISCUSSION

In order to produce a yeast strain that would accumulate precursors to IQs in high amounts, we set out to overexpress the shikimate pathway in EPY300. To introduce the *E. coli* *aroL* and overexpress the endogenous *GCN4*, we assembled the multigene vector pFA011 using the MoClo Yeast Toolkit (see Methods for details on plasmid assembly). The sequence of the shikimate kinase II gene *aroL* (NCBI Gene ID: 945031) was codon-optimized for expression in *S. cerevisiae* (Supporting Table S2), whereas *GCN4* (NCBI Gene ID: 856709) was amplified from the genomic DNA of *S. cerevisiae* EPY300. The strong constitutive promoters *pTEF1* and *pTEF2* were placed upstream of *aroL* and *GCN4*, respectively, as they are known to drive steady gene expression in media with different carbon sources. Upon linearization with NotI, pFA011 was introduced into *S. cerevisiae* EPY300 via the LiAc/single-stranded carrier DNA/PEG method, producing strain EPYFA3 (Scheme 1). Correct integration in the *LEU2* locus was verified through PCR amplification of the *LEU2* 5’ region (Supporting Figure S3a), as well as of the *LEU2* 3’ region (Supporting Figure S3b). In order to confirm that the genes of the shikimate pathway were upregulated by the transcriptional activator Gcn4p in EPYFA3, we performed RT-qPCR analysis, targeting the aromatic amino acid biosynthetic genes *ARO1, ARO2, ARO3* and *ARO4*. The expression of *GCN4* itself was also evaluated in EPYFA3 and compared to that of the *GCN4* single copy-containing strain EPY300. Three independent colonies of each EPYFA3 and EPY300 were grown in synthetic defined (SD) broth with dextrose, shaking at 200 rpm, 30°C, for 24 hours. The pre-cultures were used to inoculate production cultures in SD broth with 0.1% dextrose, 2% galactose and 1 mM methionine, which were shaken at 200 rpm, 30°C, for 120 hours.

Figure 1. Examples of isoprenoid quinones.
Cells were harvested, RNA purified, converted into first-strand cDNA and used for RT-qPCR. The expression of GCN4 was confirmed to be higher in EPYFA3 than in EPY300 by almost a five-fold (Figure 2), due to the introduction of a second copy of GCN4 under control of the strong constitutive pTEF2 promoter in EPYFA3. Upregulation of ARO1, ARO2, ARO3 and ARO4 was confirmed in EPYFA3 upon overexpression of GCN4, in accordance with what described by Natarajan et al.22 ARO1 showed a 5.60 (± 1.00)-fold increase, ARO2 a 2.86 (± 0.92)-fold increase, ARO3 a 10.27 (± 1.40)-fold increase, and ARO4 a 5.26 (± 0.82)-fold increase in EPYFA3 compared to EPY300 (Figure 2).

Next, we tested the ability of S. cerevisiae EPYFA3 to be used as a host for the increased production of IQs. As a proof of concept, we decided to test for the overproduction of ubiquinone-6 (coenzyme Q\textsubscript{6}), since this is the yeast endogenous benzoquinone and is assembled by condensing building blocks derived from the mevalonate and the shikimate pathways (see the review of Stefely and Pagliarini14 for an extensive overview of coenzyme Q biosynthesis). The quinone head of coenzyme Q\textsubscript{6} in yeast comes primarily from 4-hydroxybenzoate (4-HB), as well as from 4-aminobenzoate through a secondary pathway that is only active in the absence of 4-HB.23 In turn, 4-HB either comes from tyrosine or is made \textit{de novo} through the shikimate pathway. It should be noted that the overexpression of GCN4 does not upregulate the tyrosine biosynthetic gene \textit{TYR1}.22

Conversely, the isoprenoid tail of coenzyme Q\textsubscript{6} in yeast comes from the mevalonate pathway, presumably as a result of the condensation of IPP with the allylic pyrophosphates DMAPP, geranyl pyrophosphate (GPP) or FPP.3 To assess the ability to redirect building blocks towards a specific metabolite of interest in EPYFA3, we overexpressed the gene \textit{COQ2}, which codes for the 4-HB polyprenyltransferase, a UbiA family prenyltransferase that catalyzes the first committed reaction in the biosynthesis of coenzyme Q\textsubscript{6}.20 The sequence of gene \textit{COQ2} (NCBI Gene ID: 855778) was optimized to remove a BsmBI site through the introduction of a synonymous substitution (G885A). We assembled an expression vector, pFA004, that contained a copy of \textit{COQ2} under control of the strong constitutive promoter pCCW12 (see Methods for details on plasmid assembly). Upon linearization with NotI, pFA004 was introduced into both S. cerevisiae EPY300 and EPYFA3 via the LiAc/single-stranded carrier DNA/PEG method,27 producing strains EPYFA4 and EPYFA7 respectively. Correct integration in the \textit{URA3} locus was verified through PCR amplification of the \textit{URA3} 5’ region (Supporting Figure S3c), as well as of the \textit{URA3} 3’ region (Supporting Figure S3d).
specific mevalonate and shikimate pathways to the assembly of a prenyltransferase biosynthetic gene for an IQ in S. cerevisiae, as S-adenosylmethionine (SAM) is employed as a co-factor by the O-methyltransferase Coq3p in the catalysis of two coenzyme Q₆ biosynthetic steps. However, the amount of coenzyme Q₆ produced by EPYFA7 corresponds to 0.047 (± 0.015) mM. Therefore, only 0.094 (± 0.03) mM equivalent of methionine is used for the production of coenzyme Q₆ by the highest producing strain, meaning that ample methionine is available to direct downregulation of ERG9 through the methionine-repressible promoter Pₘ₆₅₃ (Scheme 1).

The growth of the four yeast strains in shake-flask cultures was monitored measuring the OD₆₀₀ at various timepoints (Supporting Figure S5). The growth of EPYFA3 and EPYFA7 appeared to be slower than their counterpart strains EPY300 and EPYFA4, showing a possible metabolic impairment due to the shikimate pathway being upregulated. Overexpression of the prenyltransferase gene COQ2 appeared instead to increase cell growth, as it could be seen in strains EPYFA4 and EPYFA7 compared to EPY300 and EPYFA3, respectively, putatively due to an improved fitness upon accumulation of additional coenzyme Q₆ or to a reduced toxicity of shikimate-derived pathway intermediates.

Noteworthily, since S. cerevisiae EPYFA3 is a derivative of BY4742, it harbors unused auxotrophic markers that can be employed to introduce other expression vectors. Loci LYS2 (mutated to lys2Δ0), URA3 (mutated to ura3Δ0) and HO can be used for the chromosomal integration of up to three plasmids. LYS2, URA3, as well as expression cassettes for resistance to antifungals, such as HygromycinB and KanMX, can be used as selectable markers for the maintenance of integrative and/or replicative plasmids. This will allow EPYFA3 to be used to reconstitute the biosynthesis of IQs, as well as that of any other compounds derived from the mevalonate and the shikimate metabolic pathways.

In conclusion, we have engineered a yeast strain that overexpresses both the mevalonate and the shikimate pathways and can therefore be used to produce IQs in which the quinone ring derives from the shikimate pathway. We envisage that our strain will be particularly useful to express prenyltransferase enzymes and other IQ biosynthetic enzymes, which have recently gained attention as potential biocatalysts. It will also allow to support accumulation of metabolites in amounts sufficient for purification and structure determination. Therefore, it will be a valuable platform to re-factor and characterize the cryptic biosynthesis of specialized IQs for which a fast-growing heterologous host is needed.

METHODS

Reagents. All chemicals were purchased from Sigma-Aldrich, unless otherwise stated. Q5 High-Fidelity 2X Master Mix, restriction endonucleases, shrimp alkaline phosphatase (SAP), and T4 DNA ligase, were purchased from New England Biolabs.

Figure 2. RT-qPCR expression analysis. Relative transcript abundance of genes ARO1, ARO2, ARO3, ARO4 and GCN4 in S. cerevisiae EPYFA3. Actin (ACT1) was used as the reference gene, and the average Ct value of each target gene in S. cerevisiae EPY300 was used as the calibrator (the expression of each gene in S. cerevisiae EPYFA3 is shown relative to the expression of the same gene in S. cerevisiae EPY300). Values and error bars reflect mean and standard deviation of three biological replicates.
Nucleospin RNA extraction kit, GeneJET Gel Extraction Kit, GeneJET Plasmid Miniprep Kit, First-strand cDNA Synthesis Kit, 1 Kb Plus DNA Ladder, DreamTaq Green PCR Master Mix, Power SYBR Green PCR Master Mix and 0.2 μm microcentrifugal filters were purchased from Thermo Fisher Scientific. GelRed nucleic acid gel stain was purchased from Bio- tion. Salmon sperm DNA was purchased form Agilent Technologies. Ninety-six-well microplates for RT-qPCR analysis were purchased from ABI Applied Biosystems. Primers for technologies.

Microorganisms and media. *S. cerevisiae* EPY300, a derivative of *S. cerevisiae* BY4742, was provided by Prof. Jay Keasling (UC Berkeley). This and derived strains EPYFA3, EPYFA4 and EPYFA7 were grown in synthetic defined (SD) broth (6.7 g L⁻¹ yeast nitrogen base without amino acids, 1.318 g L⁻¹ drop-out mix) with histidine, leucine, uracil and/or methionine, uracil without yeast nitrogen base was purchased from US Biological. Coenzyme Q₀ standard (Saccharomyces cerevisiae, >99% purity) was purchased from Sigma-Aldrich.

Expression vector assembly. Plasmids for expression of aroL, GCN4 and COQ2 were assembled using the MoClo Yeast Toolkit according to the manufacturer’s instructions using Golden Gate assembly. The gene aroL was codon-optimized for expression in *S. cerevisiae*, obtained as a synthetic gBlock from IDT and cloned into pYTK001 to obtain the part plasmid pFA002, which was checked through Sanger sequencing. GCN4 was amplified from the genomic DNA of *S. cerevisiae* EPY300 and cloned into pYTK001 to obtain the part plasmid pFA003. Cassette plasmids pFA007 and pFA008 were constructed for aroL and GCN4, respectively, using pFA002, pFA003 and the pre-assembled vector pYTK095 as a backbone. Finally, the multigene plasmid pFA011 was assembled to include the expression cassettes that comprised aroL and GCN4 using as a backbone the GFP-drop out containing plasmid pFA010, which contained homologous recombination arms for integration in the LEU2 locus, as well as the yeast selectable marker LEU2. Correct assembly of pFA011 was verified through restriction digestion (Supporting Figure S1) and Sanger sequencing. COQ2 was obtained as a synthetic gBlock from IDT where a BsmBI site was removed through a synonymous substitution (G885A). We cloned COQ2 into pYTK001, obtaining part plasmid pFA001, which was checked through Sanger sequencing and then used to produce the cassette plasmid pFA004 through Golden Gate, which included homologous recombination arms for integration in the URA3 locus, as well as the yeast selectable marker URA3. Correct assembly of pFA004 was checked through restriction digestion (Supporting Figure S2) and Sanger sequencing. Golden Gate assembly reaction was performed as follows: 5.7 fmols of DNA vector were added with inserts in a 1:3 molar ratio (vector : insert), as well as with 1 μL of 10x T4 Ligase buffer, 0.5 μL of T4 Ligase, 0.5 μL of either 10,000 U mL⁻¹ BsmBI (for part and multigene plasmid assembly) or 10,000 U mL⁻¹ BstI (for cassette plasmid assembly), then made up to a final volume of 10 μL with deionized water. The reaction mixture was incubated in a thermal cycler with the following program: 10 cycles of digestion and ligation (37°C for 10 minutes, 16°C for 10 minutes) followed by a final digestion step (50°C for 5 minutes), and a heat inactivation step (65°C for 20 minutes). The final digestion and heat inactivation steps were omitted, therefore ending on a ligation, for the assembly of the GFP-dropout containing plasmid pFA010.

Author Information

ORCID
Acknowledgments

The authors would like to acknowledge E.M. Wellington for providing equipment. E. Silvano and Y. Chen are thanked for support and guidance with lipid extraction and analysis. J. Keasling (UC Berkeley) is thanked for providing strain S. cerevisiae EPY300. J.E. Duerer (UC Berkeley) is thanked for providing the MoClo Yeast Toolkit. The authors would like to acknowledge funding from the Leverhulme Trust (EFC-2018-691) and the University of Warwick, through an Early Career Fellowship to F.A., as well as from EPSRC and BBSRC (EP/L016494/1) for a scholarship to D.K. through the Centre for Doctoral Training in Synthetic Biology (SynBioCDT). The Warwick Integrative Synthetic Biology Centre (WISB), a UK Synthetic Biology Research Centre grant from EPSRC and BBSRC (BB/M017982/1), is also acknowledged.

References

