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Abstract 

Fluorescence live-cell and super-resolution microscopy methods have considerably advanced 

our understanding of the dynamics and mesoscale organization of macro-molecular 

complexes that drive cellular functions. However, different imaging techniques can provide 

quite disparate information about protein motion and organization, owing to their respective 

experimental ranges and limitations. To address these limitations, we present here a unified 

computer program that allows one to model and predict membrane protein dynamics at the 

ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively 

characterize protein behavior in complex cellular environments. FluoSim is an interactive real-

time simulator of protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, 

and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. The 

software, thoroughly validated against experimental data on the canonical neurexin-

neuroligin adhesion complex, integrates diffusion coefficients, binding rates, and fluorophore 

photo-physics to calculate in real time the distribution of thousands of independent 

molecules in 2D cellular geometries, providing simulated data of protein dynamics and 

localization directly comparable to actual experiments. 
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Introduction 

Critical cellular functions such as membrane adhesion, receptor-mediated signaling, or 

synaptic transmission, involve the diffusional trapping of specific molecules in sub-cellular 

compartments 1,2. To quantitatively describe such molecular dynamics in living cells, several 

fluorescence imaging techniques are currently available 3,4: i) single particle tracking (SPT) 

which resolves the motion of individual proteins at camera frame rate; ii) photo-activation 

and photo-bleaching methods, namely PhotoActivation of Fluorescence (PAF) and 

Fluorescence Recovery After Photobleaching (FRAP) which infer protein turnover at the 

population level; and iii) Fluorescence Correlation Spectroscopy (FCS), which analyzes 

molecular dynamics by correlating intensity fluctuations. More recent approaches based on 

single molecule localization such as PhotoActivated Localization Microscopy (PALM) 5,6, direct 

Stochastic Optical Reconstruction Microscopy (dSTORM) 7, and Point Accumulation In Nanoscopic 

Topography (PAINT) 8, yield images of protein distribution at improved resolution (below 50 nm), 

giving unprecedented information about the nanoscale organization of biological structures 9. 

Despite such progress in imaging power, many experimental parameters remain difficult to 

estimate or control, including protein expression levels, probe labeling density, potential 

fixation artifacts, spatial and temporal sampling of the recordings, and protein motion below 

the system resolution, such that results from different experimental paradigms are often 

difficult to reconcile 10. Thus, there is a pressing need for computer simulators that could unify 

those different imaging modes in a unique framework, estimate their respective biases, and 

serve as a predictive tool for experimenters, with the aim to quantitatively decipher protein 

organization and dynamics in living cells. Several particle-based packages relying on Monte 

Carlo simulations already exist to predict random motion and multi-state reactions of 

biological molecules, but either they do not integrate fluorescence properties or are limited 

to a specific type of imaging mode, and are usually not performing real-time visualization 11–

18. 

In this context, we provide here fast, robust, and user-friendly software (FluoSim) that allows 

real time simulation of membrane protein dynamics in live-cell imaging (SPT, FRAP, PAF, and 

FCS) and super-resolution (PALM, dSTORM, uPAINT) modalities. We also show that FluoSim 

can be further used to produce large virtual data sets for training deep neural networks  for 

image reconstruction 19. This software should thus be of great interest to a wide community 

specialized in imaging methods applied to cell biology and neuroscience, with the common 

aim to better understand membrane dynamics and organization in cells. 
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Results 

General principle of FluoSim 

 

The FluoSim interface looks like performing a real experiment: the user imports a 2D cellular 

geometry from a microscopy image, and populates it with a realistic number of molecules (a 

parameter which depends on protein expression level, cell surface area, and labeling density) 

(Fig. 1a, Supplemental software and accompanying user manual). Kinetic parameters 

characterizing the diffusion and trapping of molecules in cellular regions of interest (ROI), are 

entered as inputs (Supplementary Table 1). At each time increment (typically ~1-100 ms, 

adjusted to typical sensor acquisition rates), the algorithm updates the instantaneous 

positions of all molecules based on random number generation. Photo-switching rates of 

organic fluorophores or fluorescent proteins attached to the proteins of interest, further 

determine the fluorescence intensity associated to each molecule over time. The algorithm is 

optimized to visualize in real time the cellular system and provide post-processing 

information including molecule trajectories, image stacks, and output graphs (i.e. histograms 

of diffusion coefficients, FRAP, PAF, and FCS curves). Examples of simulated data sets for a 

realistic range of parameter values are given in Fig. S1. Moreover, since the positions of 

molecules are known with near-infinite accuracy, the program can generate super-resolved 

images comparable to those obtained with PALM or dSTORM, after introducing additional 

parameters describing protein labeling density, fluorophore duty cycle, and localization 

precision of the system. A complete view of the parameters used in each experimental 

paradigm is available from the individual examples provided in the software menu. 

 

Experimental system to validate FluoSim 

 

To thoroughly validate FluoSim, we performed SPT, dSTORM, FRAP, and FCS experiments 

essentially on the canonical neurexin-neuroligin complex that mediates trans-synaptic 

adhesion in neurons 20. We used COS-7 cells as a model expression system because they form 

large and flat lamellipodia that can be approximated as 2D environments for membrane 

diffusion. Cells were separately electroporated with recombinant GFP-tagged neurexin-1β 

(GFP-Nrx1β) and mCherry-tagged neuroligin-1 (Nlg1-mCherry), then cultured together for 24 

h (Fig. 1b-d). Both molecules reached the cell membrane and accumulated at cell-cell contacts 

(GFP-Nrx1β enrichment = 3.9 ± 0.5, n = 20 cells), revealing adhesive interactions. 

 

Simulations of SPT experiments 

First, we experimentally tracked single GFP-Nrx1β molecules labeled with Atto647-

conjugated anti-GFP nanobody at 50 Hz using uPAINT 8,21,22. Nrx1β exhibited fast free diffusion 

outside the adhesive contact (Dout = 0.3 µm²/s), and was slowed down by ~10-fold in the 

contact, reflecting the formation of Nrx1β-Nlg1 bonds between apposed membranes (Dtrap = 

0.04 µm²/s) (Fig. 2a,c). Nrx1β molecules often bounced at the contact border, revealing steric 
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hindrance to penetrate the narrow cell-cell junction 23, an effect which was described by a 

crossing probability (Pcrossing < 1) (Fig. 2d). Next, we simulated Nrx1β diffusion using FluoSim 

(Fig. 2b). We used the diffusion coefficients obtained experimentally and defined a sparse 

number of molecules (250) corresponding to the number of experimental detections per 

frame , together with two kinetic rates describing the Nrx1β-Nlg1 interaction taken from the 

literature (kon = 0.15 s-1 and koff = 0.015 s-1) 24,25. Using these parameters, FluoSim generated 

diffusion coefficient distribution curves inside and outside the contact that aligned quite well 

on experimental data (Fig. 2c). Experimental distributions were somewhat more spread than 

theoretical ones, most likely because of local membrane heterogeneities which are not 

accounted for in the model. 

 

Simulations of dSTORM experiments 

 

To simulate dSTORM experiments that were experimentally performed on GFP-Nrx1β using 

saturating labeling with Alexa647-conjugated GFP nanobody (Fig. 3a), we defined a relatively 

large number of molecules in the imported geometry (70,000, corresponding to the sum of 

experimental detections per frame integrated over the cell surface area), and set all diffusion 

coefficients to zero to mimic cell fixation. To simulate stochastic fluorescence emission of 

Alexa 647 26, we calculated the switch-on (0.006 s-1) and switch-off (9.3 s-1) rates of Alexa 647 

fluorophores from isolated Alexa 647-conjugated nanobodies in dSTORM imaging conditions 

(Fig. 3c). We then simulated the accumulation of single molecule localizations for 80,000 

frames to mimic the experimental super-resolved maps of Nrx1β distribution (Fig. 3b). 

 

Training of deep neural networks for image reconstruction 

 

Deep learning is becoming increasingly popular for image reconstruction in fluorescence 

microscopy 19,27,28. Convolutional Neural Networks (CNNs) are especially relevant for image 

treatment and have to be trained using large exemplary data sets obtained either 

experimentally, or from simulations. In this context, we tested the ability of FluoSim to train 

deep CNNs based on simulated data. We generated large image sets of randomly distributed 

single molecules represented as Gaussian intensity profiles plus Poisson noise, together with 

their localization maps as ground truth, and trained the previously described CNN called 

Deep-STORM 19. FluoSim-trained Deep-STORM was able to faithfully reconstruct super-

resolved maps of both simulated and experimentally-observed microtubules, from single 

molecule localization stacks (Figs. S2-S3). Strikingly, the CNN worked well at both low and 

high single molecule density, thus offering a considerable gain in acquisition time (x20) for an 

equivalent resolution 27. FluoSim-trained Deep-STORM also allowed the reconstruction of 

images of Nrx1β-Nlg1 contacts that were comparable to images obtained with PALM-Tracer 
29, or to images directly simulated by FluoSim (Fig. S4). FluoSim can therefore be used to train 

deep CNNs. 
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Simulations of FRAP experiments 

 

To challenge the simulator against ensemble measurements, we performed FRAP 

experiments on GFP-Nrx1β expressed in COS-7 cells. GFP-Nrx1β accumulates at cell-cell 

contacts when the opposite cell expresses its molecular partner Nlg1 (Fig. 4a) and shows 

slower recovery in the adhesive contact as compared to membrane regions not in contact 

with other cells (Fig. 4b,e). To mimic these experiments, we introduced a large number of 

molecules in the simulator (up to 150,000) and generated fluorescence-like images by 

defining a Gaussian intensity profile for each GFP-tagged molecule (FWHM = 0.17 µm). Taking 

kinetic parameters from the literature (kon = 0.15 s-1 and koff = 0.015 s-1) and an intermediate 

porosity (P = 0.3), the simulated images at steady state predicted Nrx1β enrichment in the 

contact area that matched experimental values (Fig. 4c,d). To induce local photo-bleaching, 

we chose a bleaching rate (4.25 s-1) reproducing the initial drop of fluorescence observed 

experimentally (~75% in 400 ms). Using those coefficients plus the diffusion parameters 

determined from SPT, FRAP simulations accurately reproduced experimental data (Fig. 4e). 

 

Simulations of FCS experiments 

 

To further validate the simulator in conditions of intermediate molecular density, we 

performed FCS experiments 30 by recording intensity fluctuations of Atto647-nanobody in a 

diffraction-limited laser spot at 200 Hz (Fig. 5a,b). As expected from slower diffusion, the 

autocorrelation function obtained for Nrx1β in the adhesive contact was shifted to the right 

compared to the free region, with a small photo-bleaching bias due to longer residence times 

(Fig. 5e). Again, the simulations performed with an intermediary number of molecules 

introduced in FluoSim, matched experimental FCS curves with the same set of kinetic and 

photophysical parameters used for SPT and FRAP (Fig. 5c-e). 
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Discussion 

In summary, FluoSim allows a prediction and comparison of membrane protein dynamics in 

a wide range of fluorescence cell imaging modes, with a precise control of the relevant kinetic, 

photo-physical, and acquisition parameters determining measurement outputs. The program 

is intended to help biologists adjust and interpret their experiments on a variety of cellular 

systems, and serve as a teaching resource in bio-imaging programs. 

FluoSim reproduced a wide range of experimental results (SPT, FRAP, FCS, SRI) on the 

Nrx1β-Nlg1 membrane complex using a unique set of parameters extracted from published 

in-vitro studies and/or taken from our own measurements 24,25, thereby giving strong credit 

to the correlative approach. The program is very fast and robust, and should be applicable to 

model a wide range of 2D-like dynamic molecular systems experiencing membrane diffusion 

and transient confinement, for example integrins at focal contacts in fibroblasts 31,32, 

cadherins at cell-cell contacts 33–35, neuronal adhesion proteins and neurotransmitter 

receptors at synapses 22,36,37, and trapping of membrane molecules by lipid raft molecules or 

cytoskeletal interactions 38–40. 

We believe that this quantitative simulation approach will be of great help to optimize 

experimental design, especially regarding the choice of various parameters such as 

fluorophores, control of laser powers, acquisition frame rate, and overall timing of the 

experiment with respect to the internal dynamics of the molecular system, thus replacing 

lengthy experimental adjustments and saving research time. The FluoSim code might even be 

integrated into existing microscopy packages to provide a feedback loop to the image 

acquisition parameters. The software can also be used to test the robustness and predictions 

of single molecule tracking algorithms that have been implemented those past years, e.g. SR-

Tesseler and InferenceMap 41,42. Compared to existing software such as PyFRAP, SuReSim, 

FERNET, or MCell 13–15, FluoSim integrates many fluorescence modalities into a single program 

and achieves real-time display (Supplemental Table 2). In its present version, FluoSim is 

limited to Brownian motion and first order molecular reactions, but sub- or super-diffusive 

behaviors as well as more complex multi-state molecular reactions might be implemented on 

a case-by-case basis, depending on user needs. 

Finally, with the advent of single-molecule based super-resolution microscopy such as 

PALM and STORM, many new questions arise regarding the degree of labeling needed, and 

the number of single molecule localizations to accumulate in order to reconstruct a realistic 

image of biological structures, with the risk of finding artificial properties in under-sampling 

conditions 10. By varying the number of molecules, type of fluorophore attached to them, 

localization precision, and length of the acquisition sequence, the software is able to 

determine the conditions for faithful detection of the biological sample. The capacity of 

FluoSim to mimic molecule dynamics might also be used in the near future to train the next 

generation of CNNs for the analysis of live imaging experiments 43. 
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Methods 

 

DNA plasmids 

GFP-Nrx1β was a kind gift from M. Missler (Münster University, Germany). HA-tagged Nlg1 

obtained from P. Scheiffele (Biozentrum, Basel) was used as a backbone to construct NLG1-

mCherry, by inserting mCherry intracellularly at position -21aa before the C-terminus. The 

HA-NLG1 sequence was moved from the pNice vector into a pcDNA vector at the HindIII/ NotI 

sites. Two PCRs were performed on Nlg1: one from KpnI (inside the Nlg1 sequence) at the 

insert position of mCherry (AgeI site added) and one of the end of Nlg1 (NheI / NotI). The 

mCherry gene (AgeI / NheI) was obtained by PCR on pmCherry-N1 (Clontech). A four-

fragment-ligation was then done to obtain the final construct (HindIII-HA-Nlg1-AgeI-mCherry-

NheI-Nlg1Cter-NotI). The plasmid for bacterial expression of the anti-GFP nanobody 44 was a 

kind gift from A. Gautreau (Gif-sur-Yvette, France). The bacterial production of anti-GFP 

nanobody, purification, and conjugation to organic dyes (Atto647N or Alexa 647), was 

described previously 22. 

 

Cell culture and electroporation 

COS-7 cells (ATCC) were cultured in Dulbecco's modified Eagle's medium (DMEM; GIBCO/BRL) 

supplemented with 10% fetal bovine serum (FBS), 100 units mL-1 penicillin, and 100 µg mL-1 

streptomycin, in a 37°C-5% CO2 atmosphere. One day before the experiments, cells were 

rinsed twice in warm PBS, trypsinized for 5 min, mixed in culture medium, and centrifuged for 

5 min at 1,000 rpm. The cell pellet was suspended in 100 µL electroporation medium and 

electroporated for either GFP-Nrx1β or NLG1-mCherry plasmids with the Amaxa Nucleofector 

system (Lonza), using 500,000 cells per cuvette and 3 µg DNA. Electroporated cells were 

mixed in culture medium, seeded on 18 mm glass coverslips at a concentration of 50,000-

80,000 cells per coverslip, cultured in 12-well plates, and imaged 24-48 hrs after 

electroporation. 

 

Single Molecule Tracking (uPAINT) 

Universal point accumulation in nanoscale topography (uPAINT) experiments were carried 

out as reported 8. Cells were mounted in Tyrode solution (15 mM D-glucose, 108 mM NaCl, 5 

mM KCl, 2 mM MgCl2, 2 mM CaCl2 and 25 mM HEPES, pH 7.4) containing 1% globulin-free BSA 

(Sigma A7638) in an open Inox observation chamber (Life Imaging Services, Basel, 

Switzerland). The chamber was placed on a fully motorized inverted microscope (Nikon Ti-E 

Eclipse) equipped with perfect focus system, a thermostatic box (Life Imaging Services) 

providing air at 37°C, and an APO TIRF 100x/1.49 NA oil immersion objective. GFP-and 

mCherry expressing cells were detected using a mercury lamp (Nikon Xcite) and the following 

filter sets (SemROCK): EGFP (Excitation: FF01-472/30; Dichroic: FF-495Di02; Emission: FF01-

525/30) and mCherry (Excitation: FF01-543/22; Dichroic: FF-562Di02; Emission: FF01-

593/40). Cells expressing GFP- Nrx1β were labeled using a low concentration of Atto647N-
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conjugated GFP nanobody (1 nM). A four-colour laser bench (405/488/561nm lines, 100 mW 

each; Roper Scientific, and 1 W 647 nm line, MPB Communications Inc., Canada) is connected 

through an optical fiber to the Total Internal Reflection Fluorescence (TIRF) illumination arm 

of the microscope. Laser power was controlled through an acousto-optical tunable filter 

(AOTF) driven by the Metamorph® software (Molecular Devices). Atto 647N was excited with 

the 647 nm laser line (~2 mW at the objective front lens), through a four-band beam splitter 

(BS R405/488/561/635, SemRock). Samples were imaged by oblique laser illumination, 

allowing the excitation of individual Atto-conjugated ligands bound to the cell surface, 

without illuminating ligands in solution. Fluorescence was collected on an EMCCD camera 

with 16 µm pixel size (Evolve, Roper Scientific, Evry, France), using a FF01-676/29 nm emission 

filter (SemRock). Stacks of 4,000 consecutive frames were obtained from each cell with an 

integration time of 20 ms, using the Nikon perfect focus system to avoid axial drift. Images 

were analyzed using PALM-Tracer, a program running on Metamorph® and based on wavelet 

segmentation for molecule localization and simulated annealing algorithms for tracking 

(generously provided by JB Sibarita, Bordeaux) 45. This program allows the tracking of localized 

molecules through successive images. Trajectories longer than 20 frames (400 ms) were 

selected. The diffusion coefficient, D, was calculated for each trajectory, from linear fits of the 

first 4 points of the mean square displacement (MSD) function versus time. Trajectories with 

displacement inferior to the pointing accuracy (~50 nm in uPAINT conditions) whose MSD 

function cannot be fitted are arbitrarily taken as D = 10-5 µm² s-1. 

 

dSTORM experiments 

COS-7 cells expressing GFP-Nrx1β were surface-labeled with a high concentration (100 nM) 

of Alexa647-conjugated GFP Nanobody in Tyrode solution containing 1% globulin-free BSA 

(Sigma A7638) for 10 min, rinsed and fixed with 4% PFA-0.2% glutaraldehyde in PBS for 10 

min at room temperature, and stored in PBS at 4°C until imaging. For microtubule staining, 

COS-7 cells were rinsed twice in PBS, fixed using 4% PFA-20% sucrose for 15 min at room 

temperature, washed 3 times in PBS, and incubated with 50 mM NH4Cl in PBS for 10 min. 

After fixation, cells were washed 3 times in PBS, permeabilized using 0.2% Triton-X 100 for 10 

min, washed in PBS, blocked in 1% BSA-PBS for 30 minutes, and incubated with anti-α-tubulin 

(Thermofisher MA1-80017, 1/500) overnight at 4°C. The next day, cells were washed 3 times 

in PBS, and incubated 45 min with secondary goat-anti-rat-Alexa647 antibody (ThermoFisher

 A21247, 1/800) and kept in PBS before dSTORM imaging. 

Cells were imaged in Tris‐HCl buffer (pH 7.5), containing 10% glycerol, 10% glucose, 

0.5 mg/mL glucose oxidase (Sigma), 40 mg/mL catalase (Sigma C100-0,1% w/v) and 50 mM β-

mercaptoethylamine (MEA) (Sigma M6500) 46. The same microscope described for uPAINT 

was used. Pumping of Alexa647 dyes into their triplet state was performed for several seconds 

using ~60 mW of the 647 nm laser at the objective front lens. Then, a lower power (~30 mW) 

was applied to detect the stochastic emission of single-molecule fluorescence, which was 

collected using the same optics and detector as described above for uPAINT. 10-20 streams 

of 3,000-4,000 frames each were acquired at 50 Hz. To generate images intended to test deep 
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CNN algorithms, a higher density of fluorescent molecules was generated by turning on the 

405 nm laser power to 5 mW during acquisition. Multi-color 100 -nm fluorescent beads 

(Tetraspeck, Invitrogen) were used to register long-term acquisitions and correct for lateral 

drift. The localization precision of our imaging system in STORM conditions is around 60 nm 

(FWHM). Stacks were analyzed using the PALM-Tracer program, allowing the reconstruction 

of a unique super-resolved image of 32 nm pixel size (zoom 5 compared to the original images) 

by summing the intensities of all localized single molecules (1 detection per frame is coded by 

an intensity value of 1). 

 

FRAP experiments and analysis 

COS-7 cells expressing GFP-Nrx1β in co-culture with cells expressing NLG1-mCherry were 

mounted in Tyrode solution, and observed under the same set-up used for uPAINT and 

STORM. The laser bench has a second optical fiber output connected to an illumination device 

containing two x/y galvanometric scanning mirrors (ILAS, Roper Instrument) steered by 

MetaMorph. It allows precise spatial and temporal control of the focused laser beam at any 

user-selected region of interest within the sample for targeted photo-bleaching. Switching 

between the two fibers for alternating between imaging and bleaching is performed in the 

ms time range using an AOTF. Oblique illumination acquisition was performed using the 491 

nm at low power (0.3 mW at the front of the objective) to image molecules in the plasma 

membrane close to the substrate plane. After acquiring a 10 sec baseline at 1 Hz frame rate, 

rapid selective photo-bleaching of 3-9 circular areas of diameter 2.8 µm was achieved at 

higher laser power (3 mW at the objective front lens), during 400 ms. Fluorescence recovery 

was then recorded immediately after the bleach sequence for 80 sec. The recording included 

three phases with decreasing frame rate ranging from 2 to 0.1 Hz. Observational photo-

bleaching was kept very low, as assessed by observing control unbleached areas nearby. FRAP 

curves were obtained by computing the average intensity in the photobleached area, after 

background subtraction, and normalized between 1 (baseline) and 0 (time zero after photo-

bleaching). 

 

FCS experiments and analysis 

COS-7 cells expressing GFP-Nrx1β were surface-labeled at an intermediate concentration (10 

nM) of Atto647-conjugated GFP nanobody for 5 min at 37°C, then mounted in Tyrode solution 

on the same microscope. The 642 nm laser beam was parked on a region of interest, either 

on the free cell membrane, or in the cell-cell contact area. The laser was kept at low power 

(3% of 100 mW, i.e. ~0.2 mW at the objective front lens) to avoid photo-bleaching the organic 

dye. Using glass coverslips coated with polylysine and higher concentrations of Atto647-

conjugated nanobody (100 nM) to provide a uniform density, we independently measured 

the Gaussian intensity profile of the laser beam, which gave a standard deviation σ = 0.26 µm 

(FWHM = 0.6 µm). Intensity fluctuations due to Nrx1β molecules entering and leaving the 

laser spot by membrane diffusion, were detected using a second camera (Hamamatsu Orca 

Flash 4.0) on the opposite port of the microscope. A square area of 16 x 16 pixels (1 µm x 1 
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µm) centered on the laser spot was chosen, and streams of 60,000 images at binning 4 were 

acquired through the Hokawo software (Hamamatsu) at 200 Hz or 500 Hz, for the study of 

cell-cell contacts or free regions, respectively. Control stacks with the laser off were acquired 

to record the camera noise. The integrated intensity of each image was read from the multi-

TIFF stacks, from which the average camera noise was subtracted, and the autocorrelation 

function was computed using custom-made routines written in C++, and normalized by its 

first value. 

 

Description of the simulator 

 

Programing details 

The FluoSim source code has been written with the C++ programming language using the 

ISO/IEC 14882:2011 standard (C++11 standard). The FluoSim program and its related libraries 

have been compiled with the 32bit MinGW compiler (MinGW 4.8 32bit) and can be executed 

on 32-bit and 64-bit Windows operating systems. The FluoSim project has been developed 

using the Integrated Development Environment QtCreator 3.0.1. 

 

Libraries 

The C++ standard library has been extensively used to write the FluoSim source code. The Qt 

library (Qt 5.2.1) has been used to implement the Graphical User Interface. To allow live 

rendering of the simulations, FluoSim benefits from hardware acceleration through the 

openGL library (openGL 3.2). OpenGL extensions have been loaded with the glew library. 

Vectors and matrices manipulations utilized in FluoSim calculations are implemented in the 

glm library. The lmfit library which contains functions to perform non-linear fitting has been 

used during MSD fitting. Qt, openGL, glew and glm libraries are dynamically linked to FluoSim 

while the lmfit library has been directly integrated in the source code. The program is 

provided as an executable file within a folder containing the necessary .dll files to operate 

properly (see the user manual for a description of how to run the program). 

 

Code availability 

The software is freely available for academic use as Supplementary Software or upon request 

to the corresponding author. Source code will be made available to the scientific community 

after manuscript acceptance. 

 

General algorithm 

Our computational approach is based on previously reported frameworks to describe AMPA 

receptor trafficking at synapses 47 and actin retrograde flow in growth cones34. However, 

whereas in previous programs the simulations were run one by one, and later visualized using 

a commercial image analysis software (Metamorph, Molecular Devices), FluoSim is a stand-

alone program that allows the fast calculation of thousands of single molecule positions in 
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parallel, compatible with live image rendering. A further important improvement over 

previous approaches is that the working space is now determined from an imported 

microscopy image with potentially complex shapes. The cell outline is imported as a region 

file previously made in Metamorph or Image J, or directly drawn on the screen using a 

toolbox. This internal space is randomly populated by a given number of molecules (1-

200,000), GFP-Nrx1β in our case. Those molecules are kept within the cell boundaries by 

rebound conditions. An individual molecule is characterized by its 2D coordinates x and y over 

time t, and its intensity. The total duration of the simulations (typically 5 s - 10 min) is set 

according to the experiment to model. The time step of the simulations ∆t is varied between 

1-100 ms, corresponding to typical detector frame rates in FCS and SPT experiments, 

respectively. The initial position of a freely diffusing molecule is defined by x(0) = x0 and y(0) 

= y0, taken as random numbers to fall within the cell boundaries. The diffusion coefficient 

outside the contact area (Dout) is chosen around 0.3 µm²/s, based on SPT data, while the 

contact area can be characterized by a lower diffusion coefficient (Din in the range of 0.1-0.3 

µm²/s), owing to molecular crowding and steric hindrance. An additional coefficient called 

crossing probability (Pcrossing between 0 and 1) describes the potentially limited penetrability 

of molecules into the contact. A small fraction of immobile Nrx1β molecules was observed 

(~5% with D < 10-3 µm²/s), which might be due to non-specific adhesion or endocytosis48, and 

introduced in the program at random positions with zero diffusion coefficient. In the contact 

area, surface-diffusing Nrx1β and Nlg1 molecules are allowed to bind reversibly, with first 

order binding and unbinding rates kon and koff, respectively (both in s-1). The koff value was 

taken from surface plasmon resonance data obtained on purified extracellular domains of 

Nrx1β and Nlg1 24 (0.015 s-1), while kon was inferred from previous experiments of Nrx1β-

coated Quantum dots interacting with neurons expressing Nlg1 25 (0.15 s-1). Bound complexes 

were allowed to diffuse at a lower diffusion coefficient Dtrap = 0.04 µm²/s, reflecting their slow 

movement within the cell-cell contact. The number of Nlg1-mCherry binding sites is assumed 

to be in excess (consistently with high expression levels in COS-7 cells), such that the binding 

rate kon is maintained constant throughout the simulations, i.e. it does not depend on the 

number of Nrx1β-Nlg1 complexes formed over time. We further consider a uniform (not a 

discrete) distribution of binding sites in the trapping area, also consistent with a high density 

of Nlg1 molecules. 

 

Calculation of positions 

At each time step, the (x,y) coordinates of each molecule are incremented by the distances 

(Δx, Δy), which depend on whether the molecule is outside or inside the contact area, or in 

an adhesive complex. If the molecule is outside the contact area, it follows a random walk 

with diffusion coefficient Dout. The positions x(t) and y(t) are then incremented at each time 

step by nx(2D∆t)1/2 and ny(2D∆t)1/2, respectively, where nx and ny are random numbers 

generated from a normal distribution, to account for the stochastic nature of diffusion. This 

ensures that the mean square displacement stays proportional to time, i.e. <x2 + y2> = 4Doutt. 

If the adhesion molecule reaches a contact area, it is set to diffuse with a lower diffusion 
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coefficient Din, with increments nx(2Din∆t)1/2 and ny(2Din∆t)1/2. Whenever the molecule 

reaches the contact area, it is allowed to bind to its counter-receptor only if the probability of 

coupling in this time interval, Pcoupl = kon∆t, is greater than a random number N between 0 and 

1 generated from a uniform distribution. If this is not the case, the molecule continues to 

diffuse until both conditions are met, i.e. it is within the contact area and the probability of 

binding is greater than the random number N, chosen different at each time increment. Upon 

binding, the adhesive complex is set to diffuse with a slow diffusion coefficient Dtrap, thus the 

positions x(t) and y(t) are incremented by nx(2Dtrap∆t)1/2 and ny(2Dtrap∆t)1/2, respectively. The 

complex stays bound until the probability for dissociation Pdetach = koff∆t, exceeds another 

random number N’. It then binds again or escapes into the contact or outside space. Starting 

with random positions, it can take a relatively long time before molecules reach a steady-

state distribution. Yet, it is necessary that the molecular system is at steady-state before 

recording a given simulation. To accelerate this process, an option is proposed in FluoSim to 

theoretically estimate the steady-state, by placing more molecules in the membrane 

compartments, considering both slower diffusion and adhesion. The molecular enrichment 

was then given by the formula (Pcrossing Dout /Din) (1+kon/koff). Using those dynamic coefficients, 

we chose the value of Pcrossing for each type of simulation (0.25-0.7), to match the 

experimental enrichment of GFP-Nrx1β in the cell contact normalized to outside areas. 

 

Photophysics and molecule intensity 

In addition to its position, each molecule is defined by its fluorescence intensity over time 

which can be either 0 or 1. Intensity is set by two photo-physical parameters: the switch-on 

rate (kon
Fluo) and the switch-off rate (koff

Fluo). These rates are in units of sec-1 and represent the 

probabilities per unit of time that a molecule will switch from a state where it emits 

fluorescence, to a state where it does not emit fluorescence, and vice versa. The rates are 

specific for each fluorophore (GFP, mCherry, mEos2, Atto dyes) and strongly depend on the 

laser powers used to image them. By playing on these two rates, many types of experiments 

can be mimicked. For example, to model a PALM or STORM experiment, one sets a low switch-

on rate to induce sparse stochastic emission and a high switch-off rate to induce rapid 

extinction of fluorescence. In a PAINT experiment, kon
Fluo represents instead the rate of 

binding of fluorescent ligands in solution to receptors on the cell surface, which 

spontaneously appear in the oblique illumination plane, whereas koff
Fluo combines 

fluorophore photo-bleaching and probe detachment from the cell surface. To mimic a FRAP 

experiment, koff
Fluo is set to a high level in a given ROI to quickly and irreversibly photo-bleach 

fluorophores, then monitor recovery. Conversely, in a Photo-Activation of Fluorescence (PAF) 

experiment, kon
Fluo is set to a high value in the ROI to be activated, and the fluorescence 

redistribution is followed. In FCS experiments, a low value of koff
Fluo can be introduced to 

reproduce observational photo-bleaching. 

 

Running simulations and data export 
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Once realistic parameters have been tested in live mode, simulations can be generated, and 

results are exported in various forms. For SPT simulations, .trc files containing the spatial 

positions and intensity of each molecule over time are saved, and can be loaded later for 

offline visualization and analysis (menu SPT Analysis). For FRAP, PAF, and FLIP simulations, 

average intensities over time in defined ROIs are saved as txt files. For FCS simulations, both 

intensity fluctuations and autocorrelation values over time are exported as .txt files. For SRI 

simulations, a single super-resolved image integrating all single molecule localizations is 

exported as a TIFF file. 

 

SPT simulations 

To mimic the sparse density of GFP-Nrx1β bound to Nanobody-Atto647 as used in uPAINT 

experiments, a low number of molecules were introduced in the model cell (250 molecules 

corresponding to a surface density of 0.43 mol/µm²). The length of the simulated trajectories 

was adjusted to the experimental one by choosing koff
Fluo = 3 s-1 corresponding to a mean 

trajectory duration of 340 ms (i.e. 17 frames of 20 ms each). The parameter kon
Fluo which 

determines the number of fluorescent molecules was set to 1 s-1, so as to yield approximately 

the same density of visible molecules per surface area as in the experiments (0.1 mol/µm²). 

Sequences of 4,000 frames were generated as in the experiments, and only trajectories longer 

than 20 frames were selected (total 2244 trajectories). The diffusion coefficient, D, was 

calculated for each trajectory, from linear fits of the first 4 points of the MSD function versus 

time. Five independent simulations were run for each set of parameters, allowing the 

construction of histograms of diffusion coefficients directly comparable to SPT experiments. 

 

FRAP simulations 

To match the very dense distribution of GFP-Nrx1β molecules that characterize FRAP 

experiments, a large number of molecules were introduced in the virtual cell (150’000 

molecules corresponding to a surface density of ~200 mol/µm²). Simulations of 1,000 frames, 

including a baseline of 100 frames, were generated with a time step of 100 ms (total duration 

100 s). Two areas were recorded, one within the adhesive contact, the other outside 

(bleached diameter = 2.8 µm). The photoactivation rate was set to a maximal value (kon
Fluo = 

5 s-1), i.e. all molecules are initially fluorescent, while the photo-bleaching rate is set to zero 

during baseline and recovery acquisition (i.e. observational photo-bleaching is neglected 

here). During the short photo-bleaching period (400 ms), the photo-bleaching rate is set to 

koff
Bleach = 4.25 s-1 for 4 frames, to precisely match the initial drop of fluorescence observed 

experimentally (~75%). The number of molecules in the photo-bleached areas was computed 

over time, and normalized between 1 (baseline number of fluorescent molecules before 

photo-bleaching) and zero (number of fluorescent molecules right after photobleaching). 

FRAP simulations were repeated 10 times, and the corresponding curves were averaged. 

 

FCS simulations 
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To mimic the intermediate densities of GFP-Nrx1β bound to Nanobody-Atto647 used in FCS 

experiments, 200 or 2500 molecules (corresponding to 0.27 and 2.8 mol/µm²) were entered 

in the program, to simulate cells forming or not forming adhesive contacts, respectively. 

These values roughly correspond to the experimental labeling densities, and ensure large 

enough fluctuations to calculate a reliable autocorrelation function. Simulations of 500,000 

or 1,000,000 frames with time steps of 0.2 ms were generated for the two conditions, 

respectively. The diffraction-limited laser spot is defined by a normalized Gaussian intensity 

profile with a full width at half maximum (FWHM) of 0.6 µm, and maximal value of 1. A 

molecule which reaches the ROI containing the virtual laser spot, is counted with an intensity 

equal to the value of this Gaussian function, at the location r from the center of the laser spot. 

The resulting intensity fluctuations over time were analyzed by computing the 

autocorrelation function. To mimic the impact of photo‐bleaching in the probing area, we 

introduced in the simulations a small photo‐bleaching rate, proportional to the local laser 

intensity. Hence, the photobleaching rate also follows a Gaussian distribution with a maximal 

rate koff
Bleach at the beam center (koff

Bleach = 0.4 s‐1, 10 times less than for FRAP). Photobleaching 

had more impact on the autocorrelation function when calculated for the slower molecules 

in the adhesive contact. FCS simulations were repeated 10 times, and the corresponding 

autocorrelation functions normalized to their initial value, were averaged. 

 

SRI simulations 

To mimic STORM experiments that rely on the dense labeling of GFP-Nrx1β bound to 

Nanobody-Alexa647, a large number of molecules were introduced in the virtual cell (70,000 

corresponding to 125 mol/µm²). After the diffusion/trapping steady-state has been reached 

or imposed, the simulation is paused and all diffusion coefficients are set to zero to mimic cell 

fixation. This procedure accelerates the calculator which does not have to compute new 

positions at each time frame and just updates fluorescence states. Alternatively, to take into 

account the fact that a fraction of transmembrane molecules may still be mobile even after 

fixation with aldehydes49, one can impose slow diffusion coefficients. The switch-on rate 

kon
Fluo at which fluorescent dyes spontaneously emit light was determined by measuring the 

fluorescence intensity collected from single Alexa647-conjugated GFP Nanobody molecules 

bound to the glass coverslip during a STORM sequence, and counting the number of peaks 

(mean ± sem = 2.5 ± 0.3 peaks over a time period of 420 sec, n = 20 molecules analyzed, giving 

kon
Fluo = 0.006 s-1). The switch-off rate koff

Fluo was determined by taking the inverse of the 

number of time frames during which single Alexa647-conjugated GFP Nanobodies emitted 

light before entering again the non-emitting state (5.4 ± 0.5 frames of 20 ms, 87 events 

analyzed), giving a value of koff
Fluo = 9.3 s-1. The on-off duty cycle δ = kon

Fluo/(kon
Fluo + koff

Fluo) is 

the fraction of time that fluorophores spend in the light-emitting state, and equals here 

0.00064, very close to reported values for single Alexa647 dyes in MEA-based STORM buffer 
26. The number of detected molecules per plane in the field of view was around N = 45, 

corresponding to a total number N/δ = 70,300 actual molecules in the cell geometry that was 

imaged. Then, simulations were run for 80,000 frames of 20 ms each (total time of 1,600 sec), 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.06.937045doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937045
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

and a single 16-bit image was generated which contained the integration of all molecule 

localizations throughout time. To generate a higher number of detected molecules for CNN 

applications, the parameter kon
Fluo was multiplied by a factor of 5 (to 0.03 s-1) to mimic the 

increase in fluorescence emission induced by the 405 nm laser. Three parameters are used to 

render the super resolution image: the intensity associated with a single detection; the zoom 

factor which is the ratio between the pixel sizes of the super-resolved image and the low 

resolution reference picture (a 5-fold zoom corresponds to a pixel size of 32 nm in the high 

resolution image); and the localization precision, which corresponds to the standard deviation 

of the Gaussian distribution used to spread detections around the theoretical position of the 

molecule (σ = 25 nm, FWHM = 58 nm). The SRI still image is saved as a TIFF file. 

 

Use of FluoSim to train deep CNNs for fluorescence image reconstruction 

Deep-STORM training procedure 

To assess the ability of FluoSim to train deep learning algorithms, we used Deep-STORM 19, a 

Convolutional Neural Network (CNN) designed to localize the positions of fluorescence 

emitters from dense labeling microscopy images to produce super-resolved images. Deep-

STORM is trained with several thousand image pairs: a low resolution fluorescence picture 

and its associated super-resolved image. The ImageJ plugin ThunderSTORM 50 was previously 

used to generate hundreds of simulated images (of size 64 x 64 pixels) containing randomly 

positioned emitters, together with a text file containing their positions 19. These simulated 

images depend on several parameters such as camera specifications, point spread function 

(PSF) of a single emitter, signal-to-noise ratio, and density of emitters. The images and the 

localization files together with a scaling factor were processed in the MATLAB® (MathWorks) 

script provided by the authors (GenerateTrainingExamples.m) to format and expand the 

training set, resulting in several thousand pairs of low- and high-resolution images. Each pair 

contains a randomly selected cropped image of 26x26 pixels and its high resolution 

counterpart scaled by a zoom factor (typically 4 or 8). These pairs, exported in a single file, 

are given to the Python script (Training.py) to train the network, which provides as output 

two files containing the network weights and the mean and standard deviation of each image 

of the training data set, respectively. The weights can ultimately be provided to the testing 

Python script (Testing.py) to create the Deep-STORM network used to reconstruct super-

resolution images. Both Python and MATLAB scripts are freely accessible from the Deep-

STORM project web page: https://github.com/EliasNehme/Deep-STORM. Deep-STORM and 

its dependencies were installed on a 64 bits Ubuntu (18.04.2 LTS) workstation, equipped with 

an Intel Xeon CPU (E5-1607 @ 3.00 GHz x4) together with 40 GB RAM and a 24 GB memory 

Nvidia P6000 graphics card. 

 

Reconstruction of simulated microtubules 
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To validate the procedure, we first trained a Deep-STORM network using ThunderSTORM, 

with simulated microtubule datasets that were generated for a contest to evaluate software 

packages for single molecule localization microscopy 51, and are available on the EPFL website: 

http://bigwww.epfl.ch/smlm/challenge2013/index.html. We generated with ThunderSTORM 

200 images of 64 x 64 pixels containing randomly positioned emitters (density = 0.5 µm-2). 

Each emitter was set to produce a Gaussian diffraction spot in the simulated images, with a 

standard deviation ranging between 115 nm and 180 nm and a peak intensity ranging from 

110 to 440 grey levels. No intensity offset was added but a Poisson noise was applied to each 

pixel. A zoom factor of 8 was set in the MALTAB script to expand the training dataset 

producing the pairs of low/high-resolution images used to train the Deep-STORM network. 

This network was able to reconstruct a high resolution image of the simulated microtubules, 

as described 19. 

Another Deep-STORM network was then trained with simulated data generated by 

FluoSim. A square region of 64 x 64 pixels with a 100 nm pixel size was defined, and populated 

with 20 emitters to reach an emitter density of ~0.5 µm-2. To randomize the positions of the 

emitters between consecutive frames, the diffusion coefficient of the emitters (D = 2 µm²/s) 

and the simulation time step (δt = 1 s) were chosen so that the displacements were of the 

same magnitude as the region length, i.e. √4𝐷𝛿𝑡 ≈ 6.4 µm. Each emitter was set to produce 

a Gaussian PSF of 120 nm standard deviation and of peak intensity equal to 110 grey levels in 

the recorded frames. Here, no intensity offset was added and no Poisson noise was applied 

to the simulated images. An SPT simulation of 200 steps was performed with the Stack Export 

option enabled. The resulting image stack and localization file were then processed by the 

MATLAB script to produce 5,000 pairs of low/high resolution images (Zoom Factor = 8), which 

were used to train the Deep-STORM network. The resulting network was tested on the 

simulated microtubules and compared to the ground truth and the image reconstructed with 

the ThunderSTORM-based network. 

 

Reconstruction of real microtubules and Nrx1β-Nlg1 cell-cell contact 

To reconstruct our own STORM experiments using Deep-STORM networks, we had to 

generate specific training sets which reproduce our experimental conditions. Two networks 

were educated, one trained with ThunderSTORM and one with FluoSim. In both cases 200 

square images of 64x64 pixels at pixel size = 160 nm were produced. Each frame contained 

20 emitters resulting in an emitter density of 0.5 µm-2; for the FluoSim simulation, we 

followed the same procedure to randomize the positions as for the simulated microtubules. 

Each emitter was set to produce a Gaussian PSF with standard deviation ranging from 170 nm 

to 212 nm in the ThunderSTORM simulation, and with a standard deviation equal to 192 nm 

in FluoSim. In both situations, the PSF maximum was set to 110 grey levels, an intensity offset 

equal to 30 was added to the images, and a Poisson noise was applied so that each resulting 

pixel value was randomly taken in a Poisson probability distribution of mean (and hence 

variance) equal to the sum of the raw pixel intensity value and the intensity offset. The 

generated low resolution image stacks and localization files were processed by the MATLAB 
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script to produce 5000 pairs of low/high resolution images (Zoom Factor = 4). The Zoom 

Factor was set to 4 to limit the amount of GPU memory needed to reconstruct the large 

STORM experiment images (118 x 284 pixels for the Real MT and 168x288 pixels for the Cell 

Cell contact). Two Deep-STORM networks were finally trained using the data originating from 

both ThunderSTORM and FluoSim simulations, and were used to reconstruct real 

microtubules and the Nrx1β-Nlg1 cell-cell contact from STORM experiments in both low and 

high emitters density situations. STORM experiments in the low density regime resulted in a 

large amount of images (~50,000) which could not be processed directly with the provided 

Python script, because of saturation in computer memory. To overcome this problem, the 

STORM images were reconstructed by batches of 200 images, each batch giving a single 

super-resolved image. Once reconstructed, the single super-resolved images were summed 

up to produce the final STORM image. 
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Figures 1-5 

 

 

 

 

 

Figure 1. Schematics of the simulator and experimental system. 

(a) General principle of FluoSim. (b) Contact between two COS cells, one expressing GFP-

Nrx1β (green) and the other expressing Nlg1-mCherry (magenta), resulting in molecule 

accumulation through adhesive interactions (yellow zone). (c) Diagram showing a zoomed 

section of the cell-cell interface at the coverslip; the yellow beam represents oblique laser 

illumination. (d) Cartoon of Nrx1β diffusional trapping by Nlg1 in a cell-cell contact. 
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Figure 2. Fitting SPT experiments. (a) Raw image of a COS‐7 cell expressing GFP‐Nrx1β 
sparsely labeled with Atto647‐conjugated GFP nanobody (white signal). (b) Image of 
simulated molecules in the same geometry. Rectangles highlight the interface between the 
cellular region with freely diffusing GFP‐Nrx1β molecules (blue outline), and the contact 
region with a cell expressing Nlg1‐mcherry (yellow outline). On the right, a zoom on this ROI 
shows single molecule trajectories for both experiments and simulations. The diffusion 
coefficient expressed in log scale is color coded. (c) Distributions of GFP‐Nrx1β diffusion 
coefficients for experiments (circles, average ± sem of 3 cells, 4145 trajectories in contact and 
4867 outside contacts) and simulations (dashed lines, 5 repetitions, 8757 trajectories in 
contact and 2645 trajectories outside contacts) on a semi‐log plot. The Spearman correlation 
coefficient comparing experiment and simulation was r = 0.85 (P< 0.001, n = 36 bins) for 
contact regions, and r = 0.81 (P < 0.001, n =36 bins) for outside regions. (d) Representative 
examples of single molecule trajectories at the interface: (left) a molecule escapes the contact 
and diffuses out freely, or enters the contact and gets trapped; (right) a molecule stays stuck 
in the contact with low diffusion, or bounces on the contact without entering it. 
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Figure 3. Fitting SRI experiments. 

(a) Representative single frame image of a STORM sequence performed on GFP-Nrx1β labeled 

with Alexa647-conjugated GFP nanobody, and corresponding super-resolved image 

generated from 3.57 x 106 single molecule localizations (pixel size 32 nm, total acquisition 

time 1,600 s). The number of molecules detected per pixel is color coded. (b) Simulated image 

showing single molecule fluorescence emission in the same cell geometry, and corresponding 

super-resolved map with a localization precision of 58 nm (FWHM). The total number of 

detections is 3.61 x 106. (c) Fluorescence emission over time from an isolated Alexa647‐

conjugated GFP nanobody bound to the glass coverslip in a STORM sequence, and simulated 

emission of fluorescence of an immobile molecule obtained with switch‐on and ‐off rates of 

0.006 s‐1 and 9.3 s‐1, respectively. 
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Figure 4. Fitting FRAP experiments. (a) Representative images of COS cells expressing GFP-
Nrx1β either not forming contact (left), or forming contact with another cell expressing Nlg1‐
mCherry (right). (b) Corresponding FRAP sequences on the zoomed square areas (bleached 
circle diameter = 2.8 µm). Intensity is color coded. (c, d) Simulated images of the same cell 
geometries filled with 150,000 fluorescent molecules, and corresponding FRAP sequences. (e) 
Normalized FRAP curves obtained by experiment (dashed) outside (mean ± sem of 6 cells, 44 
bleached regions) or inside contact regions (mean ± sem of 18 cells, 144 bleached regions) 
and corresponding simulations (solid curves, average of 30 repetitions each, sem < 1% mean, 
not shown). The Spearman correlation coefficient comparing experiment and simulation was 
r = 1.0 (P< 0.001, n = 21 time points) for contact regions, and r = 0.98 (P < 0.001, n =43 time 
points) for outside regions. 
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Figure 5. Fitting FCS experiments. 
(a) Images of Atto647‐conjugated GFP nanobody bound to COS cells expressing GFP-Nrx1β 
not forming contact (left), or forming contact with a cell expressing Nlg1‐mCherry (right). A 
642 nm focused laser beam of 0.6 µm FWHM was parked in contact or no‐contact region, and 
square images of the illuminated area (1 µm x 1 µm) were collected at 200 Hz. (b) Intensity 
fluctuations over time in the two regions (color), above the camera noise (grey). Insets 
represent images acquired at the indicated times (stars). Intensity is color coded. (c, d) 
Simulated images using the same cell geometries populated with 2500 and 200 molecules, 
respectively, and corresponding intensity fluctuations. (e) Normalized autocorrelation 
functions for FCS experiments (dashed) performed outside (2 cells / 10 recordings) and inside 
contact regions (1 cell / 3 recordings), and corresponding simulations (solid, average of 10 
repetitions for each curve). 
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Supplementary material 

 

Supplementary Table 1. Simulator parameters 

Category Parameter Notation Unit/format 

    

Geometry Reference image   .TIFF, PNG, JPG, GIF 

 Image pixel size  Pixels/µm 

 Region file  .rgn or .roi 

 FRAP laser spot  2.8 µm 

 FCS laser spot width σ 0.25 µm 

Molecules Number*  1-150,000 

 Initial position  Random or estimated  

Times Length scale of 
simulations* 

 1,000-100,000 frames 
(40-1600 s) 

 Time step Δt 2-100 ms 

Diffusion 
coefficients 

Outside contact Dout 0.3 µm²/s 

 Inside contact Din 0.3 µm²/s 

 Trapped Dtrap 0.04 µm²/s 

 Crossing probability Pcrossing 25-70% 

Kinetics Binding rate kon 0.15 s-1 

 Unbinding rate koff 0.015 s-1 

Photophysics Switch-on rate* kon
Fluo 0.005-5 s-1 

 Switch-off rate* koff
Fluo 0-10 s-1 

 Bleaching rate* koff
Bleach 0.4-4 s-1 

Export files SPT or SRI images  .TIFF or multi-TIFF 

 SPT trajectories  .trc 

 SPT histogram  .txt 

 FRAP curves  .txt 

 FCS fluctuations and 
autocorrelation 

 .txt 

 

Table Footnotes 

*See the methods above for the specific molecule numbers and photo-physical parameters 

used in the various imaging modes (SPT, STORM, FRAP, FCS). 
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Supplementary Table 2. Comparison of FluoSim with other packages 

Software  2D/3D Modalities Real-time Fluorescence Reference 

FluoSim 2D  SPT, FRAP, PAF, 
FCS, PALM, STORM, 
uPAINT 

Yes Yes This study 

MCell 3D Diffusion, multi-
state reactions 

No No 12,17 

Meredys 3D Diffusion, multi-
state reactions 

No No 18 

SRSim 3D Diffusion, multi-
state reactions 

No No 16 

FERNET 3D FCS No Yes 15 

pyFRAP 3D FRAP No Yes 13 

SuReSim 3D SRI No Yes 14 

 

Table Footnotes 

Only particle-based software including spatial information is cited here. 

 

Supplementary Software 

 

Supplementary Software 

Upon request to the corresponding author, the FluoSim software can be provided as a 

compressed .zip file to be installed on a computer equipped with Windows operating system. 

An accompanying user manual describes step-by-step how to use the software. It includes 

examples of simulations that were used to fit the experimental data contained in the 

manuscript. 

 

 

Supplementary Movie: FluoSim demonstration 

To visualize a high definition movie demonstrating the various imaging modalities of FluoSim, 

please go to the following website: 

http://www.iins.u-bordeaux.fr/SOFTWARE-285?lang=en 
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Supplementary Figures 1-4 

 

 
 
Figure S1. Effect of model parameters on SPT, FRAP and FCS simulations. 

(a) Effect of varying Dout (from 0.001 to 1 µm².s-1) on SPT, FRAP and FCS simulations outside 

the adhesive contact. Note the right shift of the distribution of diffusion coefficients in SPT, 

the increase in fluorescence recovery for FRAP, and the left shift of the autocorrelation 

function in FCS, as Dout increases. (b) Effect of varying Din (from 0.1 to 0.5 µm².s-1) on the SPT, 

FRAP and FCS simulations inside the adhesive contact, the other parameters being held 

constant (Dout = 0.25 µm².s-1, Dtrap = 0.025 µm².s-1, kon = 0.15 s-1, koff = 0.015 s-1). Note the 

modest effect of Din on the FRAP and FCS types of curves, which is due to the fact that only a 

small proportion of molecules diffuse freely at Din within the contact (i.e. most molecules are 

trapped, due to the high ratio kon/koff = 10). In SPT, the small peak of diffusing molecules 
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gradually shifts to the left as Din decreases from Dout to Dtrap. (c) Effect of varying Dtrap (from 

0.01 to 0.05 µm².s-1) on SPT, FRAP, and FCS simulations inside the adhesive contact (Dout = Din 

= 0.25 µm².s-1, kon = 0.15 s-1, koff = 0.015 s-1). Note the left shift of the distribution of diffusion 

coefficients in SPT, the decrease in fluorescence recovery for FRAP, and the right shift of the 

autocorrelation function in FCS, as Dtrap decreases. (d) Effect of varying kon on SPT, FRAP, and 

FCS simulations inside the adhesive contact (Dout = Din = 0.25 µm².s-1, Dtrap = 0.025 µm².s-1, koff 

= 0.15 s-1). Note that in SPT the slowly moving population centered at Dtrap increases with kon, 

while the highly mobile population centered at Dout decreases concomitantly. Increasing kon 

also slows down the fluorescence recovery in FRAP, and induces a right shift of the FCS curve. 

 

 

Figure S2. Reconstruction of super-resolved images of simulated microtubules using deep 

CNN trained with FluoSim. 

(a) Maximal intensity projection image of 350 frames of simulated single molecules randomly 

placed at high density along virtual microtubules. (b) Ground truth image of simulated 

microtubules taken from the EPFL website 51. (c) Image reconstructed by the CNN from the 

single molecule microtubule stack, after training with ThunderSTORM. (d) Image 

reconstructed by the CNN from the single molecule microtubule stack, after training with 

FluoSim. Note that the images reconstructed by the CNN are close to the ground truth, using 

either ThunderSTORM or FluoSim training. Insets show zooms on several microtubule ends 

to highlight the reconstruction accuracy. 
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Figure S3. Reconstruction of super-resolved images of real microtubules using deep CNN 

trained with FluoSim. 

(a, b) Single plane images of microtubules in COS-7 cells, labeled with primary α-tubulin 

antibody followed by Alexa647-conjugated secondary antibody, and acquired under STORM 

conditions at low or high density, respectively (obtained for two different values of 405 nm 

laser power). (c, d) Images of microtubules reconstructed using PALM-Tracer from a stack of 

48,000 frames at low molecule density, or a stack of 4,000 frames at high molecule density, 

respectively. Note that the image resolution is degraded at high molecule density because 

single molecules are too close to one another for proper centroid determination. (e, f) Images 

of microtubules reconstructed by the CNN trained with ThunderSTORM, from low and high 

molecule density stacks, respectively. (g, h) Images of microtubules reconstructed by the CNN 

trained with FluoSim, from low and high molecule density stacks, respectively. Note that the 

CNN performs well at both low and high molecule density, thereby offering a significant 

temporal gain in the image acquisition process. 
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Figure S4. Reconstruction of super-resolved images of Nrx1β-Nlg1 cell contacts using deep 

CNN trained with FluoSim. 

(a, b) Single plane images of GFP-Nrx1β in COS-7 cells labeled with Alexa647-conjugated GFP 

nanobody and acquired under STORM conditions, at low or high density, respectively. (c, d) 

Images of Nrx1β-Nlg1 adhesive contacts reconstructed using PALM-Tracer from a stack of 

48,000 frames at low molecular density (~30 molecules per frame in the field of view), or a 

stack of 4,000 frames at high molecular density (~150 molecules per frame in the field of 

view), respectively. (e, f) Images of Nrx1β-Nlg1 contacts reconstructed by the CNN trained 

with FluoSim, from low and high molecule density stacks, respectively. (g, h) SRI images were 

directly generated by FluoSim at low and high molecule density, respectively. 47,000 

molecules were entered in the simulator for a cell surface area of 544 µm², with parameters 

kon = 0.15 s-1, koff = 0.015 s-1, Pcrossing = 0.81, kon
Fluo = 0.006 s‐1 (low density) or 0.03 s‐1 (high 

density), and koff
Fluo = 9.3 s‐1. The total number of detections at low versus high molecular 

density was 1,436,260 vs 462,607 for experiments and 1,434,610 vs 615,262 for simulations. 
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