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Abstract. Whole-exome sequencing (WES) has facilitated the discovery of genetic lesions 

underlying monogenic disorders. Incomplete penetrance and variable expressivity suggest a 

contribution of additional genetic lesions to clinical manifestations and outcome. Some 

monogenic disorders may therefore actually be digenic. However, only a few digenic 

disorders have been reported, all discovered by candidate gene approaches applied to at least 

one locus. We propose here a novel two-locus genome-wide test for detecting digenic 

inheritance in WES data. This approach uses the gene as the unit of analysis and tests all pairs 

of genes to detect pairwise gene x gene interactions underlying disease. It is a case-only 

method, which has several advantages over classic case-control tests, in particular by avoiding 

recruitment and bias of controls. Our simulation studies based on real WES data identified 

two major sources of type I error inflation in this case-only test: linkage disequilibrium and 

population stratification. Both were corrected by specific procedures. Moreover, our case-only 

approach is more powerful than the corresponding case-control test for detecting digenic 

interactions in various population stratification scenarios. Finally, we validated our unbiased, 

genome-wide approach by successfully identifying a previously reported digenic lesion in 

patients with craniosynostosis. Our case-only test is a powerful and timely tool for detecting 

digenic inheritance in WES data from patients.  

Significance statement. Despite a growing number of reports of rare disorders not fully 

explained by monogenic lesions, digenic inheritance has been reported for only 54 diseases to 

date. The very few existing methods for detecting gene x gene interactions from next-

generation sequencing data were generally studied in rare-variant association studies with 

limited simulation analyses for short genomic regions, under a case-control design. We 

describe the first case-only approach designed specifically to search for digenic inheritance, 

which avoids recruitment and bias related to controls. We show, through both extensive 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.936922doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.936922
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

simulation studies on real WES datasets and application to a real example of craniosynostosis, 

that our method is robust and powerful for the genome-wide identification of digenic lesions. 
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INTRODUCTION 1 

Next-generation sequencing (NGS) is now widely used and is gradually being 2 

optimized for the detection of rare and common genetic variants underlying human diseases 3 

(1–3). These advances, including whole-exome sequencing (WES), in particular, have led to 4 

major new findings in the field of human genetics, particularly for rare and common 5 

monogenic disorders (4–12). The growing number of reports of incomplete penetrance or 6 

variable expressivity of monogenic disorders suggests that additional genetic contributions, 7 

other than the mono- or biallelic causal lesions, may contribute to clinical manifestations and 8 

outcome (13, 14). Digenic inheritance (DI) is the simplest genetic model of this type with 9 

alleles at two different loci being necessary and sufficient to determine disease status (15, 16). 10 

The recently established Digenic Diseases DAtabase (DIDA) contains detailed information 11 

about DI for 258 reported digenic combinations, corresponding to 54 conditions, since 1994 12 

(17). Well known examples relate to genetic modifier (GM) variants influencing the 13 

expression of the clinical phenotype caused by a primary disease-causing mutation. Cystic 14 

fibrosis (CF) is a classic example of a monogenic disease for which several GM variants have 15 

been identified. An elegant WES-based study showed that two low-frequency (minor allele 16 

frequency [MAF] < 5%) missense variants of DCTN4 were associated with the severity of 17 

pulmonary Pseudomonas aeruginosa infections in CF patients (18). One remarkable example 18 

of DI explaining incomplete penetrance was recently provided for craniosynostosis. 19 

Timberlake et al. (2016) found a highly significant enrichment in rare damaging SMAD6 20 

mutations in patients with craniosynostosis (n=191). However, variants were also carried by 21 

13 asymptomatic family members. The authors thus showed that a common variant close to 22 

BMP2, a SMAD6-related gene, accounted for almost all the observed incomplete penetrance.  23 

Only 1% of the 5,442 traits listed in OMIM as single-gene disorders are also known to 24 

display DI and are listed in DIDA. Interestingly, all the lesions known to be caused by defects 25 
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with DI were discovered in candidate gene studies, rather than through unbiased GW 26 

statistical tests. In some cases, as for the cystic fibrosis example cited above, the defects were 27 

identified by single-gene analyses of patients with known disease-causing variants at the 28 

primary causal locus (18). The craniosynostosis example is unique in that its discovery 29 

involved a combination of GW single-gene analysis with prior knowledge of a common 30 

variant from genome-wide association study (GWAS) data (19, 20). For genetically 31 

heterogeneous diseases, such as Alport syndrome, for which there are three known disease-32 

causing genes, long-QT syndrome and Bardet-Biedl syndrome, each with more than a dozen 33 

disease-causing genes, the proven digenic combinations display various modes of dominance 34 

and involve the known disease-causing genes (21, 22). However, other GM genes may be 35 

hidden among genes with an unknown functional impact on disease, or even genes with no 36 

detectable main effect. Similarly, many heritable conditions masked in apparently sporadic 37 

cases, for which the genetic etiology remains unknown, may be due to DI.   38 

There is, therefore, a need for two-locus GW methods for the detection of DI in NGS 39 

data. WES is a NGS technique focusing on sequencing of protein-coding exons. It is currently 40 

the most cost-effective NGS technology, as variants with a strong effect are more likely to 41 

affect protein-coding sequences than non-coding sequences (23–25). Very few methods have 42 

been developed for detecting gene x gene interactions in the general context of rare variant 43 

association studies; all techniques to date are based on case-control designs (26–28). Here, we 44 

propose a case-only approach to specific searches for DI. This design avoids the need for 45 

control recruitment and the associated bias. Furthermore, case-only approaches have been 46 

shown to be more powerful than classic case-control tests when common variants are tested 47 

for interaction, particularly in the context of GWAS (29–33). Our novel approach is based on 48 

the aggregation of rare variants within a gene as the unit of analysis, overcoming the lack of 49 

power inherent to studies of rare variants. It also greatly decreases the computer time required 50 
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for interaction analyses, by testing pairwise combinations at the gene level.  51 

 52 

MATERIAL AND METHODS 53 

The variant aggregation model 54 

A strategy commonly used for low-frequency variants from NGS data involves tests 55 

based on the aggregation of variants within a genomic region. Several types of tests are used 56 

for this purpose: burden tests, adaptive burden tests, variance-component tests and 57 

combinations of these three classes (34). Here, we propose a method based on the classic 58 

collapsing of variants within the unit of a gene. This approach optimizes statistical power 59 

under a hypothesis of genetic homogeneity, whilst making it possible to assess actual gene x 60 

gene interactions with a number of tests corresponding to the number of possible two-way 61 

combinations of genes. In this study, the aggregation of variants within a gene is based on the 62 

methodology of a class of burden tests known as the “cohort allelic sums test” (CAST). 63 

Formally, for each gene 𝑗 and a given subset of variants 𝑆𝑗 observed within this gene, if n is 64 

the number of individuals studied, we consider the following vector (𝑔𝑗1 , … , 𝑔𝑗𝑛) denoted  65 

𝐺𝑗 .  For each 𝑖 = 1, … , 𝑛, 𝑔𝑗𝑖 is then defined as follows: 66 

𝑔𝑗𝑖 =  {
1                                  𝑖𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖 carries 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 𝑆𝑗    

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                            
 . 67 

The term “carries” depends here on the biological inheritance model. For example, in a 68 

dominant model, 𝑔𝑗𝑖 = 1 if individual i harbors at least one copy of at least one variant allele 69 

from the set of variants studied 𝑆𝑗 within gene j.  In addition, the choice of 𝑆𝑗 may be based on 70 

different features at the variant level, such as the MAF or functional impact prediction, as 71 

described below. 72 

The case-control design for interaction 73 
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Using this notation, data for genes 𝑘 and 𝑗 in a case-control dataset, with a binary 74 

disease status D, can be summarized into two 2x2 contingency tables, one for affected 75 

individuals (cases, D=1) and one for unaffected individuals (controls, D=0), as in Table 1. 76 

Based on these tables, let 𝑁𝑘𝑗
𝑎 = (𝑛𝑘𝑗,00

𝑎 , 𝑛𝑘𝑗,10
𝑎 , 𝑛𝑘𝑗,01

𝑎 , 𝑛𝑘𝑗,11
𝑎 ) be a vector of the observed 77 

numbers of carriers for gene 𝑘 and gene 𝑗 among cases, such that, for example, 𝑛𝑘𝑗,11
𝑎 =78 

∑  (𝑔𝑘𝑖𝑖 𝑖𝑛 𝑐𝑎𝑠𝑒𝑠 × 𝑔𝑗𝑖). Similarly, we define 𝑁𝑘𝑗
𝑢 = (𝑛𝑘𝑗,00

𝑢 , 𝑛𝑘𝑗,10
𝑢 , 𝑛𝑘𝑗,01

𝑢 , 𝑛𝑘𝑗,11
𝑢 ) as a vector of 79 

the observed numbers of carriers for gene 𝑘 and gene 𝑗 among controls. The odds ratios for 80 

cases and controls, respectively, for genes 𝑘 and, are defined as follows: 81 

       𝑂𝑅𝑘𝑗
𝑎 =

𝑛𝑘𝑗,11
𝑎  × 𝑛𝑘𝑗,00

𝑎

𝑛𝑘𝑗,10
𝑎  × 𝑛𝑘𝑗,01

𝑎 ,       𝑂𝑅𝑘𝑗
𝑢 =

𝑛𝑘𝑗,11
𝑢  × 𝑛𝑘𝑗,00

𝑢

𝑛𝑘𝑗,10
𝑢  × 𝑛𝑘𝑗,01

𝑢 . 82 

Classic statistical analyses of interaction are based on the comparison of 𝑂𝑅𝑘𝑗
𝑎  and 𝑂𝑅𝑘𝑗

𝑢 . 83 

More specifically, the following classic case-control logistic regression model is often used to 84 

test for interaction: 85 

   𝑙𝑜𝑔𝑖𝑡 𝑃(𝐷 = 1) = 𝛽0 + 𝛽𝑘𝐺𝑘 + 𝛽𝑗𝐺𝑗 + 𝛽𝐼𝐺𝑘 × 𝐺𝑗                                                          (1), 86 

where it can be shown that the interaction coefficient, 𝛽𝐼 equals  log (
𝑂𝑅𝑘𝑗

𝑎

𝑂𝑅𝑘𝑗
𝑢 ). This model also 87 

takes main effects into account, by considering coefficient terms for each gene (𝛽𝑘 and 𝛽𝑗). In 88 

addition, specific covariates, such as principal components (PCs), can easily be introduced 89 

into the model. Including a matrix of covariates 𝑋 and a vector 𝐶 of coefficients, the full 90 

logistic regression model takes the following form:  91 

 𝑙𝑜𝑔𝑖𝑡 𝑃(𝐷 = 1) = 𝛽0 + 𝛽𝑗𝐺𝑗 + 𝛽𝑘𝐺𝑘 + 𝛽𝐼𝐺𝑗 × 𝐺𝑘 + 𝐶𝑋                                               (2). 92 
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Subsequently, the null hypothesis of no interaction 𝛽𝐼 = 0 can be tested in a likelihood ratio 93 

test (LRT) with one degree of freedom, in the presence or absence of main genetic effects 94 

and/or covariate effects.   95 

The case-only model 96 

Interactions can also be assessed by focusing exclusively on cases, such that all the 97 

information is provided by the 2x2 contingency table for affected individuals (Table 1). In 98 

this situation, the standard full logistic regression model to test for interaction between genes 99 

Gk and Gj is now written as 100 

 𝑙𝑜𝑔𝑖𝑡 𝑃(𝐺𝑘 = 1) = 𝛾0 + 𝛾𝐼𝐺𝑗 + 𝐶𝑋                                                                                    (3), 101 

where 𝛾𝐼 is equal to log(𝑂𝑅𝑘𝑗
𝑎 ), 𝑋 is a matrix of covariates and 𝐶 a vector of coefficients. As 102 

before, a LRT can be used to test the null hypothesis 𝛾𝐼 = 0.  103 

Under the assumption that vectors Gk and Gj are not correlated, implying, in particular, that 104 

variants of the two genes are not in linkage disequilibrium (LD), a deviation from 1 of 𝑂𝑅𝑘𝑗
𝑎  105 

indicates interaction. In addition, if the disease is rare, 𝑂𝑅𝑘𝑗
𝑢  is close to 1, and, consequently, 106 

𝛽𝐼 is approximately 𝛾𝐼. The advantages of this test over case-control tests have been 107 

extensively studied theoretically (29, 33), in particular the gain of power. This gain stands 108 

from the nature of the estimators of the interaction coefficients of both designs. These 109 

estimators depend either on the ratio 
𝑂𝑅𝑘𝑗

𝑎

𝑂𝑅𝑘𝑗
𝑢  for the case-control or only on 𝑂𝑅𝑘𝑗

𝑎  for the case-110 

only test. The asymptotic variances of the estimators are the sum of the reciprocal counts of 111 

Table 1, either for both affected and unaffected subjects (case-control design), or for affected 112 

individuals only (case-only) (29). Hence, the variance of the estimator of the case-control 113 

interaction coefficient has a larger variance leading to a less powerful test. The advantages 114 

include also the absence of a need to recruit controls, which, in addition to saving time and 115 
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reducing costs, avoids the problem of the misclassification of individuals with the unaffected 116 

phenotype. The only known limitation of this test is that it assumes independence in the 117 

general population of the variants tested. In fact, our type I error analyses revealed possible 118 

sources of violation of this assumption in the context of WES data that, to our knowledge, had 119 

never before been considered.   120 

Samples 121 

For the simulation study we worked on real exome data, using samples from the 1000 122 

Genome project (1000G) populations, and a subset of our in-house exome database, the 123 

Human Genetics of Infectious Diseases (HGID) database. Six populations from the 1000G 124 

database were used: four European populations — the Iberian population in Spain (IBS, 125 

n=107), Toscani in Italy (TSI, n=107), British in England and Scotland (GBR, n=91) and 126 

Finnish in Finland (FIN, n=99) — and two Asian populations of Chinese origin —Southern 127 

Han Chinese (CHS, n=105) and Chinese Dai in Xishuangbanna, China (CDX, n=93). From 128 

the HGID database, which includes data for > 4,000 individuals of various ethnic origins, 129 

including patients suffering from severe infectious diseases, we selected 1,331 individuals of 130 

European origin, as defined by principal component analysis (PCA) on WES data, as 131 

previously described (Belkadi, PNAS 2016). Based on a refined PCA on these 1,331 132 

individuals, together with the 404 European 1000G individuals, we identified three distinct 133 

subpopulations (SI Appendix, Fig. S1): “Northern Europeans” (N), “Middle Europeans” (M) 134 

and “Southern Europeans” (S). For the real data analysis we used the craniosynostosis WES 135 

dataset reported in (20) (see Supplemental Data). 136 

 137 

RESULTS 138 

Simulation study 139 
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We first investigated the properties of our case-only test through simulations on real 140 

exome data from the 1000G populations and a subset of our in-house exome HGID database. 141 

We performed analyses under the null hypothesis of no digenic interactions, for which we 142 

assessed type I errors. We also worked under the alternative hypothesis of a digenic 143 

interaction, for which we assessed statistical power under genetic effects of different 144 

magnitudes. In these analyses, we compared the case-only approach to the corresponding 145 

case-control approach, for various population stratification (PS) scenarios. 146 

Type I error analyses 147 

Case-only design. We first performed our case-only test on an ethnically homogeneous 148 

population based on the 214 IBS+TSI 1000G South-European samples. After the application 149 

of quality control filters (see Supplemental Data), 1,588 genes for which at least 15% of 150 

individuals carried rare variants were included in the analysis, resulting in 1,260,067 151 

interaction tests. In tests of all possible pairs of genes, we observed a moderate inflation of 152 

type I error to 0.00147 for 𝛼 = 0.1% (Table 2), and 0.0535 for 𝛼 = 5% (Table S1). LD has 153 

been identified as a possible cause of type I error inflation in case-only tests (35). We 154 

therefore assessed the possible effect of LD, by restricting our analysis to pairs of genes 155 

physically separated by a minimal distance 𝛿 (measured in Mb). Empirical type I errors 156 

decreased with increases in 𝛿 from 0.1 to 2 Mb (Table S2), and a type I error of 0.00121 was 157 

obtained at a nominal value 𝛼 of 0.1% when δ=2 Mb (Table 2). The distributions of p values 158 

for tests of pairs of genes with δ <2 Mb was strikingly inflated (SI Appendix, Fig. S2). In 159 

particular, the 204 p values <10
-10

 observed in the full analysis were all due to tests involving 160 

pairs of genes with δ <2 Mb. Type I errors did not improve significantly for δ >2 Mb (data not 161 

shown). Globally, these results show that LD accounted for the lowest p values in the case-162 

only test. The refined investigation of statistically significant pairs of genes located close 163 

together (680 with p <0.05 among 4,082 pairs with δ <2 Mb in the IBS+TSI cohort) would 164 
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require a case-control design. Even a small number of controls might help to reveal the true 165 

nature of the statistical signals for these pairs, through an analogous control-only approach, 166 

which would detect only LD. Even so, after simple LD correction based on removing the 167 

pairs of genes with δ <2 Mb, type I errors remained slightly above the corresponding upper 168 

limit of the confidence interval. No further improvement was obtained by adjusting our tests 169 

for the first three principal components, consistent with the fact that the IBS and the TSI 170 

populations are very close.  171 

Case-control design. We conducted an analogous investigation with a case-control 172 

design on an enlarged European population consisting of the 404 IBS+TSI+GBR+FIN 1000G 173 

samples, in order to have ~200 cases and ~200 controls. We first applied it in a population 174 

balanced scenario (Table 2), in which 1,563 genes were retained after the application of 175 

quality control filters (see Supplemental Data). No inflation due to LD (as expected in a case-176 

control design) or PS (as expected for a balanced scenario) was observed. Nevertheless, the 177 

empirical type I error of 0.00128 at 𝛼 = 0.1% indicated that slight inflation, similar to that 178 

observed for the case-only test, also occurred with this test (Table 2). Similar trends were 179 

observed at 𝛼 = 5% (Table S1). We hypothesized that this inflation might be at least partly 180 

due to the small sample sizes in the contingency cells of Table 1. We tested this hypothesis by 181 

repeating the analyses for both the case-only and the case-control tests with more common 182 

variants and a larger number of carriers at the gene level (i.e., variants with a MAF < 10% and 183 

genes with carriage rates of at least 25%, and variants with a MAF < 15% and genes with 184 

carriage rates of at least 35%; Table 2). The type I error was clearly lower, and improved as 185 

the frequency of variants increased. For both tests, empirical type I errors were within the 186 

boundaries of the confidence interval for 𝛼 = 0.1%, but remained slightly above the upper 187 

limit of this interval for 𝛼 = 5% (Table S1).  188 
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Sample size investigation. We investigated the impact of contingency cell sample sizes 189 

and the number of tests on the case-only approach, by extending the previous scenario to two 190 

new settings with less stringent MAF thresholds. First, we conducted a case-only test for all 191 

genes carried by at least 5% rather than 15% of individuals in the IBS+TSI population. This 192 

strategy increased the number of genes retained to 5,563, and, after the removal of genes in 193 

LD, we tested a total of 15,465,141 pairs of genes and generated the QQ-plot for SI 194 

Appendix, Fig. S3. The type I error was moderately inflated (0.057) for 𝛼 = 5% and there was 195 

a slightly conservative type I error value (0.00085) for 𝛼 = 0.1% (Table S3). Finally, we 196 

simulated the data for one gene considered “rare” (at least 1% carriers, total of 11,470 genes) 197 

and another considered “common” (at least 15% carriers, total of 1,588 genes). Under this 198 

scenario, 16,951,106 pairs of genes were tested, and the QQ-plot for SI Appendix, Fig. S4 199 

was generated. The type I errors of 0.053 and 0.00097 obtained were closer to the expected 200 

values of 5% and 0.1%, respectively (Table S3). These results suggest that the case-only test 201 

is reliable for investigating a large range of carrier frequencies provided that LD is taken into 202 

account. 203 

Population stratification. We then investigated the effect of PS, again focusing only 204 

on genes for which at least 15% of the individuals in the study population were carriers and 205 

which were separated by at least 2 Mb. For the case-only test, we used the 212 IBS+CHS 206 

samples, and we assessed 1,248 genes, in 776,879 tests (see Supplemental Data). Type I 207 

errors were highly inflated (0.0143 for 𝛼 = 0.1% and 0.1264 for 𝛼 = 5%) (Table 3 and Table 208 

S4). The application of PS correction (adjustment for the first three principal components) 209 

brought empirical type I errors back down to levels very similar to those previously observed 210 

(0.0013 for 𝛼 = 0.1% and 0.0550 for 𝛼 = 5%). For the case-control test, we used the 412 211 

IBS+TSI+CHS+CDX samples under an unbalanced population scenario, with 1,173 genes 212 

(see Supplemental Data). Inflated type I errors were also observed (0.0026 for 𝛼 = 0.1% and 213 
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0.0687 for 𝛼 = 5%), although the inflation less striking. Adjustment for principal components 214 

(0.0013 for 𝛼 = 0.1% and 0.0548 for 𝛼 = 5%) resulted in values similar to those for a situation 215 

without PS (Table 3 and Table S4). Thus, provided that the search space was limited to pairs 216 

of genes far enough apart to avoid LD and adjustment for PCs was applied when required, our 217 

case-only test yielded reasonable type I error rates, similar to those for the analogous case-218 

control approach. 219 

Power analyses 220 

Average power scenario. Power studies were conducted on an enlarged European 221 

population consisting of 1,735 individuals from the four European 1000G populations (IBS, 222 

TSI, GBR, FIN) and 1,331 individuals from the in-house HGID database (see Supplemental 223 

Data). We first estimated an “average” power by testing all possible pairs of genes (scheme 224 

A, Table 4), each with at least 15% carriers and separated by at least 2 Mb. In total, 370,530 225 

tests were performed in 10 replicates (see Supplemental Data). Fig. 1 displays the results 226 

obtained for scenarios including one or no main genetic effect, corresponding to the most 227 

pertinent situations in which to search for a gene x gene interaction. Adjusted and non-228 

adjusted curves were superimposed, indicating that this analysis, in a European population, 229 

was not affected by PS. In all situations, power was always greater for the case-only test than 230 

for the case-control test. For example, a power of 65% at 𝛼 = 0.1% was obtained when 231 

𝑂𝑅𝐼 = 5 and no main effects were considered, whereas a power of only 40% was obtained for 232 

the corresponding case-control test in the same conditions. Similar trends were observed 233 

when one main effect was present (Fig. 1 and SI Appendix, Fig. S5) and for assessments of 234 

power at 𝛼 = 5% (data not shown).  235 

Two-gene power scenarios. We then focused on two specific pairs of genes, without 236 

(AHNAK, PKHD1L1, scheme 2G, see Table 4) and with (ARPP21, MACF1, scheme 2GS, see 237 
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Table 4) PS (see Supplemental Data). In the analysis of scheme 2G, the case-only test 238 

performed better, overall, in terms of power (Fig. 2 and SI Appendix, Fig. S6, top figures). In 239 

the absence of main effects, with 𝑂𝑅𝐼 = 3 and α = 0.1%, a power value of 62% was obtained 240 

for the case-only test, versus only 27% for the case-control test.  241 

For scheme 2GS, the power curves for the adjusted and non-adjusted case-only tests 242 

were not superimposed, indicating an effect of PS (Fig. 2 and SI Appendix, Fig. S6, bottom 243 

figures). We therefore used only the adjusted case-only test for comparison. As expected, the 244 

case-control test was not affected by PS (0.0009 for 𝛼 = 0.1%) and had type I error values 245 

similar to those for the adjusted case-only test (0.0011 for 𝛼 = 0.1%). The adjusted case-only 246 

test clearly outperformed the case-control test, by reaching a power of 90% when 𝑂𝑅𝐼 = 5 247 

without main effects, for example, whereas the corresponding power for the case-control test 248 

was only 60%. Finally, we also considered another specific pair of genes, including one 249 

“common” (26% carriers) and one “rare” (5% carriers) gene (scheme 2GR, see Table 4). The 250 

case-only test was again more powerful than the corresponding case-control test (Fig. 3 and 251 

SI Appendix, Fig. S7), particularly in the absence of main effects, giving an absolute 252 

difference in power of almost 30% when 𝑂𝑅𝐼 = 10. Situations with a lower cumulative 253 

frequency of rare variants and a stronger OR might fit a Mendelian-like disorder hypothesis 254 

better and would be of particular interest concerning the application of this approach to real 255 

data presented below. 256 

Real data analysis: craniosynostosis 257 

Background. We first applied our test to the dataset that led to the discovery of the 258 

first case of DI of non-syndromic midline craniosynostosis (MIM: 617439) (20). The original 259 

study showed a strong enrichment in rare heterozygous SMAD6 mutations predicted to be 260 

damaging among cases (13 carriers among the 191 probands). Incomplete penetrance was 261 
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observed in relatives of the carriers. The role of the common variant rs1884302 (MAF=0.33 262 

in European populations), located close to the BMP2 gene and previously associated with 263 

craniosynostosis through GWAS (19), was therefore investigated, and this variant was found 264 

to account for almost all the observed phenotypic variation. Eleven of the 13 SMAD6 265 

probands were also carriers of rs1884302, whereas none of the healthy SMAD6 carriers 266 

carried this variant. We used these data to determine whether our unbiased case-only test 267 

could detect this digenic association in the context of a GW search (i.e. without prior 268 

knowledge of the role of the SMAD6 and BMP2 variants). 269 

Genome-wide search. In total, 285,216 tests (83 genes and 8,102 variants) were 270 

conducted on the WES data for 191 patients after the application of quality control and other 271 

filters to the variants and genes (see Supplemental Data). The resulting QQ-plot shows no 272 

deviation from the expected distribution, with only one significant result over the expected p-273 

value line (Fig. 4). This result (p = 1.5810
-6

, OR = 30.95) corresponds to the digenic 274 

combination of SMAD6 and rs1884302, and is one order of magnitude higher than the second 275 

result (p = 1.0410
-5

), which is close to the expected line. The 2x2 contingency table for the 276 

top result is shown in Table S5, and corresponds to the distribution found in the original paper 277 

(20). Thus, the two-locus genome-wide analysis focusing on genes harboring rare variants 278 

together with the potential contribution of a common modifier variant was able to detect the 279 

previously reported DI for craniosynostosis (20). This analysis provides proof-of-concept that 280 

our statistical test can detect DI without the need for biological assumptions concerning the 281 

disease studied, even when the disease is very rare. 282 

 283 

DISCUSSION 284 
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There is increasing evidence to suggest that DI plays an important role in the genetic 285 

architecture of many conditions. The three previously reported approaches searching for gene 286 

x gene interactions in the general context of rare variant association studies are based on case-287 

control designs (26–28). Moreover, these tests were assessed in limited simulation studies 288 

involving short genomic sequences of less than 500 variants (n=1) or only 20 variants (n=2), 289 

and were not based on WES-based simulated data. None was reported to have detected two 290 

genetic lesions at the GW level. Indeed, all previously successful DI studies relied on 291 

candidate gene approaches to overcome the lack of appropriate statistical resources to search 292 

for DI at the GW level (17). DI studies and statistical interaction approaches have thus been 293 

following separate paths. We show here, through both extensive simulation studies on real 294 

WES datasets and application to the example of craniosynostosis, that our method is robust 295 

and powerful for the identification of digenic lesions at the GW level. Our unbiased genetic 296 

confirmation of the reported digenic lesions in the craniosynostosis dataset composed only of 297 

exome data from cases, a common feature of real datasets for rare disorders, justifies the 298 

choice of a case-only test based on the aggregation of rare variants. Further strong support for 299 

this approach is provided by the higher overall power for the case-only approach than for the 300 

corresponding case-control test, as shown here, for the same number of cases. We present 301 

here the results for cohorts of at least 200 cases. We recommend using at least 100 cases to 302 

ensure sufficient statistical power, but this is not an absolute requirement as it depends on the 303 

proportion of double carriers among cases (strength of the genetic association). 304 

The proposed methodology is simple to apply and flexible. It requires only the 305 

definition of a set of variants for testing, with filters based on features including MAF, variant 306 

annotations, and genetic models, defined before the analysis. It can, of course, be used at the 307 

gene level for the two loci studied. It can also directly assess the role of common variants as 308 

potential modifiers of a known monogenic defect. This assessment is achieved by simply 309 
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replacing the gene by the variant as the unit of analysis, as illustrated in the craniosynostosis 310 

example. Our result also provide proof-of-concept that incomplete penetrance in disorders 311 

considered to be monogenic can be explained by a unique digenic combination. The 312 

frequency of carriers considered in our simulation studies may appear to be too high, but two 313 

important points must be taken into account when studying a rare disorder. First, these 314 

thresholds correspond to a cumulative frequency of the variants potentially contributing to the 315 

disease. The frequency of each individual allele may be much lower. Second, enrichment in 316 

the true disease-causing alleles would be expected in patients. For example, in the 317 

craniosynostosis dataset, the cumulative frequency of carriers of rare damaging SMAD6 318 

mutations is 6.8% (13 of 191), whereas the maximum frequency of carriers of these variants 319 

in gnomAD, which includes data from more than 50,000 individuals, is 0.01%. The proposed 320 

case-only test thus already appears to be a novel, powerful, and timely tool for detecting DI 321 

based on NGS data at the GW level in disorders that are not explained or only partly 322 

explained by a monogenic lesion.   323 
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FIGURE TITLES AND LEGENDS 

Fig. 1. Power of the case-only and case-control tests for the analysis of all pairs of genes 

(scheme A). 

Power values are presented as a % for a type I error of 0.1%, as a function of the odds ratio 

for interaction (ORI), for the case-only (dark curves) and case-control (light curves) tests with 

(dotted lines with symbols) or without (solid lines without symbols) adjustment for the first 

three principal components. The left panel is obtained when no main gene effects are present, 

whereas the right panel shows results with a main effect of the second gene (OR=2). Note that 

the results with and without adjustment are very similar and the strong superimposition of the 

corresponding curves. 

Fig. 2. Power of the case-only and case-control tests for the analysis of two specific pairs 

of genes in the absence (scheme 2G) or presence (scheme 2GS) of population 

stratification. 

Power values are presented as in Figure 1. Results are shown for the analysis of A) the two 

non-stratified genes PKHD1L1 and AHNAK (scheme 2G, top figure), and  B) the two 

stratified genes ARPP21 and MACF1 (scheme 2GS, bottom figure). The left panel is obtained 

when no main gene effects are present whereas the right panel shows results with a main 

effect (OR=2) of the second gene, i.e. AHNAK and MACF1 respectively. 

Fig. 3. Power of the case-only and case-control tests for analyzing a pair of genes with 

different proportions of variant carriers (scheme 2GR). 

Power curves are presented as in Figure 1. Results are shown for the analysis of one 

“common” (AHNAK) and one “rare” gene (MPC1) (scheme 2GR). The left panel is obtained 
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when no main effects are present, whereas the right pannel shows results with a main effect 

(OR=2) of the second gene, i.e. MPC1. 

Fig. 4. QQ-plot for the genome-wide case-only test conducted on the 191 

craniosynostosis probands. 

QQ-plot for a genome-wide analysis under a dominant mode of inheritance, adjusted for the 

first three principal components, and considering pairs of genes and variants at least 2 Mb 

apart with  > 5% carriers of rare variants a world-wide frequency > 10% for the variant (n = 

285,216 pairs).  
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TABLES 

Table 1. Contingency table of carriers of rare variants for a given pair of genes k and j 

for affected and unaffected individuals.  

  

Gene k 

  

Carriers 

 

Non carriers 

 

Gene j 
  

 

Carriers 

 

𝑛𝑘𝑗,11
𝑖  

 

𝑛𝑘𝑗,01
𝑖  

 

Non carriers 

 

𝑛𝑘𝑗,10
𝑖  

 

𝑛𝑘𝑗,00
𝑖  

         
a
 𝑖 = {𝑎, 𝑢}. When 𝑖 = 𝑎, 𝑛 stands for the number of affected individuals, when  𝑖 = 𝑢, 

𝑛 stands for the number of unaffected individuals. 
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Table 2. Empirical type I errors at a nominal value of α = 0.1% for the case-only and 

case-control tests in the absence of population stratification. 

 Model 

Design 𝑃𝑔0
a
 𝑃𝑔2

b
 𝑃𝑔2 + 3𝑃𝐶c

 𝑃𝑔2 + 𝐶25
d
 𝑃𝑔2 + 𝐶35

e
 

Case-only 

(IBS+TSI) 
0.00147 

[0.0009-0.00110]  

0.00121  
[0.0009-0.00110] 

0.00133  
[0.0009-0.00110] 

0.00109  
[0.0009-0.00113] 

0.00108 
[0.0009-0.00114]  

Case-control 

(IBS+TSI+GBR+FIN) 
0.00128  

[0.0009-0.00110] 

0.00128  
[0.0009-0.00110] 

0.00130 
[0.0009-0.00110] 

0.00107  
[0.0009-0.00113] 

 

0.00103 
[0.0009-0.00114] 

  

Note: Boundaries of the 95% confidence intervals are shown in brackets. Type I error values 

lying outside the 95% confidence interval’s boundaries are in italic.  

 

 
a
 All pairs of genes with >15% of carriers of variants with MAF<5%. 

 
b
 Pairs of genes as Pg0 but with genes apart by at least 2 Mb. 

 
c
 Pairs of genes as Pg2 with adjustment on the first three principal components. 

 
d
 Pairs of genes as Pg2 with >25% of carriers of variants with MAF<10%. 

 
e
 Pairs of genes as Pg2 with >35% of carriers of variants with MAF<15%. 
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Table 3. Empirical type I errors at a nominal value of α = 0.1% for the case-only and 

case-control tests in the presence of population stratification. 

 PC adjustment 

Design No adjustment 3𝑃𝐶 

Case-only
a
 

(IBS+CHS) 
0.01432 

[0.0009-0.00113]  

0.00135  
[0.0009-0.00113] 

Case-control 

Balanced 

(IBS+TSI+CHS+CDX) 

0.00132  
[0.0009-0.00113] 

0.00136  
[0.0009-0.00113] 

Case-control 

Unbalanced 

(IBS+TSI+CHS+CDX) 

0.00257 
[0.0009-0.00113] 

0.00126 
[0.0009-0.00113] 

Note: Boundaries of the 95% confidence intervals are shown in brackets. Type I error values 

lying outside the 95% confidence interval’s boundaries are in italic.  

 

 
a
 Using pairs of genes with genes apart by at least 2 Mb.  
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Table 4. Description of the schemes used in the Power section of the Results. 

 
 

Schemes 

 
 

𝐴 

 

2G 

 

2GS 

 

2GR 

 

Genes tested 

 

Genome-wide 

 

 

2 genes 

 

 

Genes 

characteristics 

 

 

All genes 

 

Both common 

and non-

stratified by 

population 

 

 

Both common 

and stratified by 

population 

 

 

One common 

and one rare 

non-stratified by 

population 

 

 

ORj
a
 

 

{1,2} 

 

 

{1,2} 

 

 

{1,2} 

 

 

{1,2} 

 

 

ORk
a
 

 

{1,2} 

 

 

{1,2} 

 

 

{1,2} 

 

 

{1,2} 

 

 

ORI
b
 

 

{1, … ,5} 

 

 

{1, … ,5} 

 

{1, … ,5} 

 

{1, … ,10} 

a ORj and ORk are the odds ratios for the main effect of the first and the second gene of each 

pair, respectively.  
b
 ORI is the odds ratio for the interaction term of Eq. 1.
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A : scheme 2G 

B : scheme 2GS 
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