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ABSTRACT 15 
Purpose: Pathogenicity predictors are an integral part of genomic variant interpretation but, despite 16 
their widespread usage, an independent validation of performance using a clinically-relevant dataset 17 
has not been undertaken. 18 
 19 
Methods: We derive two validation datasets: an “open” dataset containing variants extracted from 20 
publicly-available databases, similar to those commonly applied in previous benchmarking exercises, 21 
and a “clinically-representative” dataset containing variants identified through research/diagnostic 22 
exome and diagnostic panel sequencing. Using these datasets, we evaluate the performance of 23 
three recently developed meta-predictors, REVEL, GAVIN and ClinPred, and compare their 24 
performance against two commonly used in silico tools, SIFT and PolyPhen-2. 25 
 26 
Results: Although the newer meta-predictors outperform the older tools, the performance of all 27 
pathogenicity predictors is substantially lower in the clinically-representative dataset. Using our 28 
clinically-relevant dataset, REVEL performed best with an area under the ROC of 0.81. Using a 29 
concordance-based approach based on a consensus of multiple tools reduces the performance due 30 
to both discordance between tools and false concordance where tools make common 31 
misclassification. Analysis of tool feature usage may give an insight into the tool performance and 32 
misclassification.  33 
 34 
Conclusion: Our results support the adoption of meta-predictors over traditional in silico tools, but 35 
do not support a consensus-based approach as recommended by current variant classification 36 
guidelines.  37 
 38 
 39 
 40 
 41 
 42 
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1. INTRODUCTION 45 
As the scale of genomic sequencing continues to increase, the classification of rare genomic variants 46 
is becoming the primary bottle-neck in the diagnosis of rare monogenic disorder. Guidelines 47 
published by the American College of Medical Genetics (ACMG) in 20161 have helped bring 48 
consistency to variant classification and have been followed by a number of regional and disorder-49 
specific publications2–4. Common to all guidelines is the recommendation of the use of in silico 50 
prediction tools to aid in the classification of missense variants. In silico prediction tools are 51 
algorithms designed to predict the functional impact of variation, usually missense changes caused 52 
by single nucleotide variants (SNVs). Though originally designed for the prioritisation of research 53 
variants5, the tools are used routinely in clinical diagnostics during variant classification. The tools 54 
integrate a number of features in order assess the impact of a variant on protein function6. Initially, 55 
inter-species conservation formed the bulk of the predictions, with some additional functional 56 
information, such as substitution matrices of physicochemical distances of amino acids (such as 57 
Grantham7 or PAM8), and data derived from a limited number of available X-ray crystallographic 58 
structures9. Since the development of the first in silico prediction tools over a decade ago5,9, large-59 
scale experiments such as the ENCODE project10 have generated huge amounts of functional data, 60 
and we now also have access to large-scale databases of clinical and neutral variation11–13. These 61 
additional sources of data have led to an explosion of new in silico prediction algorithms14–16 that 62 
purport to increase accuracy.  63 
 64 
However, the large increase in the number of predictors integrated into classification algorithms has 65 
raised concerns about overfitting17,18. Overfitting occurs when the prediction algorithm is trained on 66 
superfluous data or features that are irrelevant to the prediction outcome18. While it may appear 67 
that an increasingly large feature list leads to improvements in prediction, random variability within 68 
the training dataset may actually result in decreased accuracy when applied to a novel dataset. 69 
Overfitting can be mitigated through the use of increasingly large training datasets, and the usage of 70 
online variant databases, such as the genome aggregation database (gnomAD)19 and ClinVar12, 71 
allows for sufficiently large training datasets. Additionally, reliance on additional information – such 72 
as protein functional data and allele frequency data such as from gnomAD19 – may be contrary to the 73 
standard assumptions of variant classification methodology, namely that each dataset is 74 
independent and applied only once during classification.  75 
 76 
Current ACMG guidelines recommend the use of a concordance-based approach, where a number of 77 
prediction algorithms are used, and evidence is applied only when there is agreement between 78 
tools. There is no guidance on which in silico tools should be used, how many, or on what constitutes 79 
a consensus, and this ambiguity allows for inconsistencies in the application of this piece of evidence 80 
across clinical laboratories. Studies have previously identified the limitations of applying a strict 81 
binary consensus-based approach20. In response, multiple groups14–16 have created meta-predictors; 82 
tools which integrate information from a large number of sources into a machine-learning algorithm. 83 
These tools thereby adhere to the principle of the consensus-based model suggested by ACMG 84 
without the onerous task of determining tool concordance, and reduce discordance when 85 
increasingly large numbers of tools are utilised. Unlike a manual consensus-based model, where 86 
tools are weighted equally, meta-predictors are able to apply weighting to features in order to 87 
maximise accuracy.  88 
 89 
In order to evaluate the accuracy of in silico prediction tools, precompiled variant datasets such as 90 
VariBench21 have been designed to aid in training and benchmarking of pathogenicity predictors. 91 
However, the use of standardised datasets may introduce inherent biases into prediction algorithms, 92 
resulting in false concordance. Typically, prediction software is trained using machine-learning 93 
algorithms, and assessed using variants available from large online public databases 5,6,9,10,14–16,22 such 94 
as ExAC/gnomAD, ClinVar12, and SwissProt23. It has been previously shown that prediction algorithms 95 
have variable performance when applied to different datasets6,22,24,25, and therefore the use of 96 
variant datasets derived from online public databases may not be representative of the performance 97 
of tools when applied in a clinical setting. While studies emphasise the use of 'neutral' variation, the 98 
output from a modern next-generation sequencing pipeline is generally far from neutral, and 99 
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includes a large number of variant filtering steps in order to reduce the burden of manual variant 100 
assessment26.  101 
 102 
Here we evaluate and compare the performance of two traditional in silico pathogenicity prediction 103 
tools commonly used for clinical variant interpretation (SIFT5 and PolyPhen-29), and three meta-104 
predictors (REVEL14, GAVIN15 and ClinPred16) using a publicly available (‘open’) variant dataset and a 105 
clinically-relevant ('clinical') variant dataset. We show that the tools' performance is heavily affected 106 
by the test dataset, and that all tools may perform worse than expected when classifying novel 107 
missense variants. By assessing the effect of a consensus-based approach, our results support the 108 
use of a single classifier when performing variant classification.  109 
 110 
2. MATERIALS AND METHODS 111 
2.1 Open Dataset (n=8795, see Figure S1A) represents the typical training and validation dataset 112 
used during in silico predictor design and benchmarking. Positive (‘pathogenic’) variants were 113 
downloaded from ClinVar12 on 13th November 2017 and subscription-based HGMD28 Professional 114 
release 2017.3; neutral (‘benign’) variants in OMIM27 morbid genes were downloaded from the 115 
gnomAD11 database (exomes only data v2.0.1). ClinVar criteria: Stringent criteria were used to 116 
increase the likelihood of selected variants being truly pathogenic. Missense SNVs with either 117 
'pathogenic' and/or 'likely pathogenic' classification, multiple submitters and no conflicting 118 
submissions were included; variants with any assertions of 'uncertain', 'likely benign' or 'benign' 119 
were excluded. HGMD Pro criteria: Single nucleotide missense variants marked as disease-causing 120 
('DM') were taken from HGMD Professional release 2017.3. gnomAD criteria: Missense SNVs with an 121 
overall minor allele frequency (MAF) between 1% and 5% were selected. These variants were 122 
deemed too common to be disease-causing but are not necessarily filtered out by next-generation 123 
sequencing pipelines depending on the MAF thresholds used. Chromosomal locations with more 124 
than one variant (multiallelic sites) were excluded. Any variants found to be present in the 125 
'pathogenic' and 'neutral' datasets were removed from the both.  126 
 127 
2.2 Clinical Dataset (n=1766, see Figure S1B and Supplemental Table S1) more accurately reflects 128 
variants that might require classification in a clinical diagnostics laboratory following identification in 129 
an exome or genome sequencing pipeline. Variants were selected from three sources. Group 1 130 
('DDD') consists of  pathogenic (n=687) and benign (n=533) missense variants identified from 13,462 131 
families in the Deciphering Developmental Disorders (DDD) study that have been through multiple 132 
rounds of variant filtering and clinical evaluation26,29. Variants were identified through exome 133 
sequencing and were reported to the patients’ referring clinicians for interpretation and 134 
confirmation in accredited UK diagnostic laboratories. All benign variants from this list were assessed 135 
as having no contribution towards the patient's phenotype, and were present in either as 136 
heterozygotes in monoallelic genes or homozygotes in biallelic genes classified according to the 137 
Developmental Disorder Genotype-2-Phenotype database (DDG2P)30 (data accessed 17/10/2019). 138 
Group 2 ('Diagnostic') consisted of pathogenic (n = 322) and benign (n=23) missense variants 139 
identified through Sanger sequencing, next-generation sequencing panel analysis or single gene 140 
testing in an accredited clinical diagnostic laboratory. Variants were manually classified according to 141 
the ACMG guidelines on variant interpretation1 on a 5-point scale (data accessed 23/04/2019). 142 
Group 3 ('Amish') consisted of benign missense variants (n = 53) identified through a Community 143 
Genomics research study of 220 Amish individuals. Variants were identified through singleton exome 144 
sequencing and were classified as benign based on population frequencies and zygosity within this 145 
study. Two subgroups were manually selected and annotated based on inheritance pattern and 146 
disease penetrance; subgroup (i) consisted of variants in genes that cause a dominantly-inherited 147 
disorder with complete penetrance in childhood, for which the individual was clinically unaffected; 148 
this list was curated by a consultant in clinical genetics; subgroup (ii) consisted of variants in all other 149 
OMIM morbid genes (including those with incompletely penetrant dominant disorders and recessive 150 
and X-linked inheritance), with MAF>5% in the Amish cohort and MAF≤0.01% in gnomAD (data 151 
accessed 18/10/2019). 152 
 153 
 154 
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 155 
2.3 Transcript selection and variant annotation 156 
For the open dataset, the canonical transcript was selected for each variant using the Variant Effect 157 
Predictor (VEP)31. For the clinical dataset, the HGMD Professional RefSeq transcript was used, unless 158 
absent from the database, in which case the MANE primary transcript was selected. Variants were 159 
annotated with variant cDNA and protein nomenclature in reference to the selected transcript. 160 
PolyPhen-2 and SIFT scores were annotated using VEP. REVEL and ClinPred scores were annotated 161 
using flat files containing precomputed scores for all possible single nucleotide substitutions, and in 162 
both cases, the combination of nucleotide position, nucleotide change and amino acid change was 163 
sufficiently unique to identify a single record, i.e. transcript selection did not affect the scores. 164 
GAVIN scores were generated through a batch submission to the GAVIN server.  165 
 166 
2.4 Tool benchmarking 167 
The performance of each of the tools was determined for both datasets. For SIFT, PolyPhen-2, REVEL 168 
and ClinPred, the output of the analysis was a numerical score between 0 and 1. Initially, all tools 169 
were analysed according to the criteria defined in their original publications, with the thresholds for 170 
pathogenicity being ≤0.05 for SIFT, ≥0.9 for PolyPhen-2 and ≥0.5 for ClinPred. For REVEL, where no 171 
threshold is recommended, a threshold of ≥0.5 was used. The categorical classification of GAVIN was 172 
used directly (“Benign”, “Pathogenic”; variants of uncertain significance (“VOUS”) were removed). A 173 
supplementary analysis was done for those tools with a numerical output (SIFT, PolyPhen-2, REVEL 174 
and ClinPred), to more accurately compare their performance. A unique threshold was selected for 175 
each tool to calculate the specificity when sensitivity was set to 0.9. In order to include GAVIN in this 176 
analysis, a third analysis was performed, whereby each tool's specificity was measured when the 177 
threshold was adjusted to set the sensitivity identical to that of GAVIN.  178 
 179 

 180 
Figure 1. In silico pathogenicity predictor feature usage and source. Shading indicates that a category of 181 
evidence is utilised by the tool. Codes within each box indicate that the feature is inherited from another 182 
tool. Feature lists were taken from the tools' original publications, supplementary materials and available 183 
online material. C – CADD; D – DANN; F – FATHMM; MP – MutPred; MT – MutationTaster; P – PolyPhen-2; S 184 
– SIFT; V – VEST; An extended version is shown in Supplemental Figure S2.   185 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.937169doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937169
http://creativecommons.org/licenses/by/4.0/


5 
 

3. RESULTS 186 
3.1 Classification of variant sources 187 
We compared the feature list of all tools benchmarked in this study (PolyPhen-2, SIFT, REVEL, GAVIN 188 
and ClinPred) and, in the case of the meta-predictors, the tools that they use as part of their 189 
algorithm (MPC32, MutPred33, VEST34, CADD35, DANN36, SNPEff37, FATHMM38, FitCons39 and 190 
MutationTaster40). Features were split into five broad categories: Conservation, Genetic variation, 191 
Functional evidence (nucleotide), Functional evidence (protein) and Amino acid properties (see 192 
Figure 1 and Supplemental Figure S2). In general, the meta-predictors employ a wider variety of 193 
sources, and are less heavily reliant on conservation alone. CADD/DANN and FitCons, and by 194 
extension GAVIN and ClinPred, are the only predictors with features within the Functional 195 
(nucleotide) category and are therefore able to predict the pathogenicity of a variant in the context 196 
of its nucleotide change, regardless of whether there is a resultant amino acid change. 197 

 198 
 199 
3.2 Benchmarking predictor performance for in the open and clinical datasets 200 
Initially, each of the tools was benchmarked according to the threshold provided by the tools' 201 
authors. This analysis involved a dichotomisation of scores with no intermediate range, see Table 1.  202 
 203 

 204 
Table 1. Results of variant classification for individual tool, and two consensus-based combinations, for 205 
datasets A, B and C. For consensus-based results non-concordant, where tools disagree on the 206 
classification, were considered incorrect. 207 
 208 
Matthews correlation coefficient (MCC) was calculated as follows: 209 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

 210 
TP = True Positives; FP = False Positives; TN = True Negatives; FN = False Negatives;  211 

 212 
 213 
The distribution of scores from SIFT, PolyPhen-2, REVEL and ClinPred is shown in Figure 2 and ROC 214 
curves are shown in Figure 3. Of the tools with numerical outputs, ClinPred has the highest 215 
discriminatory power for the open dataset with an area under the ROC curve (AUC) of 0.993, while 216 
REVEL has the highest AUC for the clinical dataset (0.808). The two meta-predictors outperformed 217 
SIFT and PolyPhen-2 in both datasets. In agreement with tool author benchmarking14–16 the meta-218 
predictors REVEL, ClinPred and GAVIN were highly proficient at classifying the variants in the open 219 
dataset, achieving sensitivities of 0.87, 0.90 and 0.95, and specificities of 0.95, 1.00 and 0.98, 220 
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respectively. For variants in the clinical dataset, although the sensitivity each tool remained largely 221 
constant, the specificity of all tools dropped considerably. For REVEL, ClinPred and GAVIN, specificity 222 
is reduced to 0.62, 0.28 and 0.25, respectively [Table 1]. 223 
 224 
 225 

 226 
Figure 2. Violin plot showing variant scores for SIFT, PolyPhen-2, REVEL and ClinPred using two datasets. 227 
Open dataset – blue; clinical dataset – red; pathogenic variants – filled; benign variants – unfilled. Plot was 228 
generated in R using the 'vioplot' function in the 'vioplot' library. For ease of comparison, SIFT scores have 229 
been inverted. 230 
 231 
 232 

 233 
 234 

Figure 3. Receiver operating characteristic (ROC) curves for SIFT, PolyPhen-2, REVEL and ClinPred using 235 
two datasets. Open dataset – blue; clinical dataset – red. Generated in R using the 'roc' and 'plot.roc' 236 
functions in the 'pROC' library. Area under the ROC curve (AUC) was calculated in R using the 'roc' 237 
function. For ease of comparison, SIFT scores have been inverted. 238 
 239 
 240 
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It was apparent that the threshold suggested by the tools' authors was not well-suited to both 241 
datasets, given the tools' very high sensitivity but low specificity in the clinical dataset. In order to 242 
correct for this we performed a supplementary analysis for those predictors which gave a numerical 243 
output (SIFT, PolyPhen-2, REVEL and ClinPred). Here, a variable threshold was allowed for each tool 244 
to give a common sensitivity of 0.9 (i.e. pathogenic variation is called correctly 90% of the time). The 245 
threshold required to give a sensitivity of 0.9 in each tools is shown in Table S2. The specificity of 246 
each tool at the determined threshold is shown in Figure S3. When allowed a variable threshold the 247 
tools' specificity increased significantly, with PolyPhen-2, SIFT, REVEL and ClinPred achieving a 248 
specificity of 0.67, 0.63, 0.93 and 0.99 for the open dataset, and 0.34, 0.33, 0.52 and 0.52 for the 249 
clinical dataset, respectively. In order to include GAVIN in this analysis, a third analysis was 250 
performed in which each tool was given a threshold to match the sensitivity achieved by GAVIN in 251 
each of the datasets. The specificity of all five tools is shown in Figure S4, and the sensitivity and 252 
threshold for each tool is shown in Table S3.  253 
 254 

 255 
Figure 4. Concordance between tools separated by dataset and classification (pathogenic and benign). 256 
Open dataset – blue; clinical dataset – red; pathogenic variants – top graph; benign variants – bottom 257 
graph. True concordance indicates that the tools agree, and were correct. False concordance indicates 258 
that the tools agree but were incorrect. Discordance indicates that the tools disagreed on the 259 
classification. 260 

 261 
3.3 Use of individual tools versus a consensus-based approach between multiple tools 262 
In accordance with current variant classification guidelines, we investigated the effect of performing 263 
a consensus-based analysis, using two commonly-used tools, SIFT and PolyPhen-2, and two meta-264 
predictors, REVEL and ClinPred, to determine whether this combined approach has improved 265 
sensitivity/specificity over the individual tools. Figure 4 shows the true concordance rate (variants 266 
classified correctly by both tools), false concordance rate (variants classified incorrectly by both 267 
tools) and discordance rate (variants for which the tools disagreed) for each of these tool pairings for 268 
the pathogenic and benign variants in both datasets. Within the clinically-relevant dataset, the tools 269 
are either falsely concordant or discordant for ~15% of pathogenic variants but ~77% of benign 270 
variants. The sensitivity and specificity of this approach is shown in Table 1. Use of a consensus-271 
based approach introduces a third "discordance" category to the classification where no in silico 272 
evidence can be used, which applied to 24% and 16% of variants when considering the concordance 273 
of PolyPhen-2 and SIFT, and 8% and 23% when considering the concordance between REVEL and 274 
ClinPred, for the open and clinical datasets, respectively.  275 
 276 
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4. DISCUSSION 277 
We have compared the performance of five in silico pathogenicity predictors – two tools used 278 
routinely in variant classification (SIFT and PolyPhen-2) and three recently developed meta-279 
predictors (REVEL, ClinPred and GAVIN) – using two variant datasets: an open dataset collated using 280 
the selection strategy commonly employed when benchmarking tool performance, and a clinically-281 
representative dataset composed of rare and novel variants identified through high-throughput 282 
research and clinical sequencing and manual classification. Overall, the data herein show that meta-283 
predictors have a greater sensitivity and specificity than the classic tools in both variant datasets. 284 
However, despite the increased accuracy of the meta-predictors, all tools performed substantially 285 
worse in the clinical dataset compared with the open dataset. This difference in tool performance 286 
illustrates the importance of considering the provenance of variants when benchmarking tools and 287 
how overfitting of a classifier to the training dataset can occur when increasingly large sets of variant 288 
features are utilised. Our analysis suggests that REVEL performs best when classifying rare variants 289 
routinely identified in clinical sequencing pipelines, with an AUC for our clinical dataset of 0.808, 290 
followed closely by ClinPred with an AUC of 0.796 [Figure 3] and with a higher specificity than GAVIN 291 
in a direct (albeit suboptimal)  comparison [Figure S4]. While the REVEL team does not suggest a 292 
strict threshold for categorisation, in our analysis for the clinical dataset, a threshold of 0.43 gave a 293 
sensitivity of 0.9, and a specificity of 0.52, which is comparable to previous studies’ threshold of 294 
0.516.  295 
 296 
Current guidelines on the classification of variants indicate that evidence should only apply when 297 
multiple tools are concordant1. However, the use of concordance introduces a third category to 298 
variants classification (discordance), where there is disagreement between tools and therefore the 299 
tools cannot be used as evidence to categorise the variant as either benign or pathogenic. Our data 300 
show that the use of concordance between multiple tools gives a lower sensitivity and specificity 301 
than the use of either of these tools in isolation, and furthermore that their performance is much 302 
below that of the meta-predictors.  303 
 304 
As with all similar studies, we were limited by the availability of novel variants not present in online 305 
databases such as gnomAD. The use of under-represented and genetically isolated populations, such 306 
as the Amish, allowed for the identification of a number of novel benign variants and suggests that 307 
such populations may be a rich source for future studies. We also identified a number of both 308 
pathogenic and benign variants in a clinical population through a translational research study (DDD). 309 
While steps were taken to ensure that the benign variants attained from this group were indeed 310 
benign (all variant were present within either monoallelic genes, or in biallelic genes in a 311 
homozygous state, and were annotated by the referring clinician as having no contribution towards 312 
the patient's clinical phenotype), nonetheless it cannot be guaranteed that the variants had no 313 
impact of protein function. The study highlights the need for improved data-sharing between clinical 314 
laboratories. While a number of online repositories exist for the sharing of rare pathogenic variants, 315 
no such resource is available for the sharing of rare benign variants. 316 
 317 
The study supports the adoption of in silico meta-predictors for use in variant classification according 318 
to the ACMG guidelines, but recommends the use of a single meta-predictor over the application of 319 
a consensus-based approach. Each of the tools utilises different though heavily overlapping data 320 
sources and the feature list utilised by a tool should be carefully considered before the tool is 321 
utilised. Our results also suggests that tools that utilise gnomAD data directly may have low 322 
specificity when classifying rare or novel variants and that care should be taken when utilising these 323 
tools in conjunction with the ACMG guidelines. Although use of a meta-predictor tools offers notable 324 
advantages to the use of the previously available and widely adopted in silico tools,  the remaining 325 
issues to be addressed before they can be used as more at a level greater than supporting evidence 326 
for clinical variant interpretation.  327 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.937169doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937169
http://creativecommons.org/licenses/by/4.0/


9 
 

Supplemental Materials: 328 

File S1: PDF file containing supplemental Figures S1, S2, S3, S5 and supplemental Tables S2 and S3.  329 
File S2: Microsoft Excel file containing Supplemental Table S1.  330 
 331 
 332 
 333 
 334 
Web Resources  335 
CADD:    https://cadd.gs.washington.edu/ 336 
dbSNFP:   https://sites.google.com/site/jpopgen/dbNSFP 337 
GAVIN:    https://molgenis20.gcc.rug.nl/menu/main/gavin-app 338 
gnomAD:   https://gnomad.broadinstitute.org/ 339 
HGMD Professional:  https://portal.biobase-international.com/hgmd/pro/start.php 340 
OMIM:    https://www.omim.org/ 341 
PolyPhen-2:   http://genetics.bwh.harvard.edu/pph2/ 342 
 343 
 344 
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