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Abstract 43 

We report a systematic analysis of the biological and clinical implications of DNA 44 

methylation variability in five categories of B-cell tumors derived from B cells spanning 45 

the entire maturation spectrum. We used 2056 primary samples including training and 46 

validation series and show that 88% of the human DNA methylome is dynamically 47 

modulated under normal and neoplastic conditions. B-cell tumors display both 48 

epigenetic imprints of their cellular origin and de novo, disease-specific epigenetic 49 

alterations that in part are related to differential transcription factor binding. These 50 

differential methylation patterns were used by a machine-learning approach to create 51 

a diagnostic algorithm that accurately classifies 14 B-cell tumor entities and subtypes 52 

with different clinical management. Beyond this, we identified extensive patient-53 

specific epigenetic variability targeting constitutively silenced chromatin regions, a 54 

phenomenon we could relate to the proliferative history of normal and neoplastic B 55 

cells. We observed that, depending on the maturation stage of the tumor cell of origin, 56 

mitotic activity leaves different imprints into the DNA methylome. Subsequently, we 57 

constructed a novel DNA methylation-based mitotic clock called epiCMIT 58 

(epigenetically-determined Cumulative MIToses), whose lapse magnitude represents a 59 

strong independent prognostic variable within specific B-cell tumor subtypes and is 60 

associated with particular driver genetic alterations. Our findings reveal DNA 61 

methylation as a holistic tracker of B-cell tumor developmental history, with 62 

implications in the differential diagnosis and prediction of the outcome of the patients. 63 

 64 

 65 

 66 
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Introduction 67 

The process of neoplastic transformation implies a dramatic alteration of cellular 68 

identity 1. However, cancer cells partially maintain molecular imprints of the cellular 69 

lineage and maturation stage from which they originate 2. B-cell neoplasms are a 70 

paradigmatic model of this phenomenon, as the maturation stage of different B-cell 71 

neoplasms is the main principle behind the World Health Organization classification of 72 

these tumors 3. Recent studies have focused on the analysis of the DNA methylome, a 73 

bona fide epigenetic mark related to cellular identity and gene regulation 4,5, during 74 

the entire B-cell maturation program 6 and in various B-cell neoplasms spanning the 75 

entire maturation spectrum. These include B-cell acute lymphoblastic leukemia (ALL) 76 

7,8 derived from precursor B cells, mantle cell lymphoma (MCL) 9 and chronic 77 

lymphocytic leukemia 10,11(CLL) derived from pre- and post-germinal center mature B 78 

cells, diffuse large B-cell lymphoma (DLBCL) 12,13 derived from germinal center B cells, 79 

and multiple myeloma (MM) 14,15 derived from terminally-differentiated plasma cells. 80 

These studies have revealed a dynamic DNA methylome during B-cell maturation as 81 

well as novel insights into the cellular origin, pathogenic mechanisms and clinical 82 

behavior of B-cell neoplasms reviewed in 16. However, a global analysis of the entire 83 

normal cell differentiation program and derived neoplasms is neither available for B 84 

cells nor for any other human cell lineage. Thus, we herein exploit both previously 85 

generated DNA methylation datasets as well newly generated data to systematically 86 

decipher the sources of DNA methylation variability across B-cell neoplasms. This 87 

comprehensive approach using over 2000 samples reveals previously hidden biological 88 

insights and clinical associations. In particular, de novo disease-specific 89 

hypomethylation in active regulatory regions is associated with differential 90 
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transcription factor binding and targets genes important for disease-specific 91 

pathogenesis. From the clinical perspective, we define a set of epigenetic biomarkers 92 

that can accurately classify B-cell neoplasms requiring differential clinical management 93 

and construct a DNA methylation-based mitotic clock called epiCMIT as a personalized 94 

predictor of clinical behavior within each B-cell neoplasm. 95 

 96 

Results 97 

Shared DNA methylation dynamics in normal and neoplastic B cells 98 

We analyzed previously published DNA methylation profiles of samples from normal 99 

and neoplastic B cells spanning the entire B-cell differentiation spectrum, all generated 100 

with the 450k microarray platform from Illumina. These included 10 normal B cell 101 

subpopulations 6 as well as the five common categories of B-cell neoplasms, i.e. ALL 7,8, 102 

MCL 9, CLL 10,17, DLBCL (own unpublished series) and MM 14 (Fig. 1a and Supplementary 103 

Table 1). Following the guidelines of the TCGA Consortium, we selected samples 104 

containing a tumor-cell content more than 60% https://www.cancer.gov/about-105 

nci/organization/ccg/blog/2018/bcr-tips. This proportion of tumor cells was estimated 106 

by flow cytometry 6,9,10,14,17, genetic data 18 and/or lineage-specific DNA methylation 107 

patterns (Supplementary Table 2). To validate that 60% was an appropriate threshold 108 

for B-cell tumors, we analyzed 5 MCLs and 3 CLLs in which we had DNA extracted both 109 

from sorted (minimum purity of 86%) and unsorted tumor cells (purity between 48% 110 

and 77%). Unsupervised analyses showed that samples tightly clustered according to 111 

patient number and not based on their tumor cell content (Extended Data Fig. 1a). In 112 

fact, tumor cell content in these paired samples was reflected in a minor component 113 

accounting for only 2% of the total variability, and therefore was considered negligible 114 
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(data not shown). Tumor cell content estimated by any of the three methods was in 115 

general highly correlated (Extended Data Fig. 1b) and in most of the cases, we used 116 

DNA methylation data to estimate tumor purity. However, MM samples showed that 117 

DNA methylation-based estimation of tumor cell content was far lower than that 118 

estimated by flow cytometry (Extended Data Fig. 1c). This result is congruent with 119 

previous DNA methylation data indicating that MM losses the B cell identity 14. 120 

Unexpectedly, some DLBCL samples also showed a similar effect (Extended Fig. 1c), 121 

and therefore in MM and DLBCL, tumor cell content was estimated by flow cytometry 122 

and genetic data, respectively. After all filtering criteria (Methods), we generated a 123 

curated data matrix containing 1595 high quality samples (Fig. 1a and Supplementary 124 

Table 1) with DNA methylation values for 437182 CpGs, which was used in all 125 

downstream analyses. 126 

This large comprehensive dataset offered an exceptional opportunity to step-127 

wise dissect the DNA methylation variability of normal and neoplastic B cells at 128 

different magnitude levels, including cancer-specific, tumor entity-specific, tumor 129 

subentity-specific and individual-specific variability (Fig. 1b). Before studying such DNA 130 

methylation dynamics, we identified that only 12% of the studied CpGs show stable 131 

DNA methylation levels in normal and neoplastic B cells (Fig. 1C and Supplementary 132 

Table 3). We characterized these CpGs based on genetic location, CpG content and 133 

chromatin states from primary samples from the Blueprint consortium 19. We 134 

identified that stably methylated regions were located at gene-bodies of actively 135 

transcribed genes whereas stably unmethylated sites were prevalent in CpG islands of 136 

promoter regions showing active chromatin marks (Fig. 1d, e). Stably methylated and 137 

unmethylated CpGs mainly converged into the same genes (Fig. 1e and Extended Data 138 
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Fig. 1e), which are highly expressed in normal and neoplastic B cells (Fig. 1f) and are 139 

involved in cellular functions such as cell cycle, RNA processing and energy metabolism 140 

(Extended Data Fig. 1g). These results indicate, on the one hand, that the stable 141 

fraction of the DNA methylome affects genes involved in fundamental cellular 142 

functions showing an epigenetic signature of expressed genes (Extended Data Fig. 1g). 143 

On the other hand, they show that the great majority of the DNA methylome (88%) is 144 

labile during normal B cell differentiation and neoplastic transformation.  145 

We next wondered whether all B-cell tumors, regardless the entity, share a 146 

unifying DNA methylation signature related to their neoplastic nature. As 25% of the 147 

DNA methylome is modulated during normal B cell differentiation 6,11, we took the 148 

remaining stable 75% and compared the methylomes of normal and neoplastic B cells. 149 

This analysis did not identify any consistent de novo DNA methylation signature that is 150 

shared by all B-cell neoplasms under study. Instead, DNA methylation variability is 151 

related to differences among B-cell tumor entities and subtypes as well as patient-152 

specific variability, as will be shown in the following sections. 153 

 154 

Disease-specific hypomethylation targeting regulatory regions is associated with 155 

specific transcription factor bindings and differential gene expression 156 

We next aimed at studying whether disease-specific DNA methylation patterns may 157 

unravel differential pathogenic mechanisms underlying each B-cell neoplasm. Overall, 158 

a principal component analysis (PCA) showed that different B-cell neoplasms form 159 

distinct clusters (Fig. 2a). A further analysis indicated that the first nine components 160 

contained information regarding specific B-cell neoplasms and allowed us to distil the 161 

main biological sources of DNA methylation variability (Extended Data Fig 2a). The first 162 
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component was related to B-cell development, separating neoplasms according to the 163 

maturation stage of their cellular origin, i.e. ALL together with pre-germinal center B 164 

cells and mature B cell neoplasms together with germinal center B cells, memory B 165 

cells and plasma cells. The remaining components showed tumor-specific patterns, 166 

such as PC3, PC7 and PC9 related to MM, DLBCL and MCL-specific variability, 167 

respectively. Next, in order to identify DNA methylation signatures specifically 168 

associated with malignant transformation, we focused our next analysis on the 169 

genome fraction with stable (i.e. B-cell independent) DNA methylation levels across B-170 

cell differentiation 6 (Fig. 2b). We showed varying numbers of tumor-specific DNA 171 

methylation (tsDNAm) changes, ranging from 616 in CLL to 49279 in MM (Fig. 2b, 172 

Supplementary Tables 4 and 5). Remarkably, we observed that DNA methylation 173 

changes manifested differently in distinct neoplasms. Overall, hypermethylation was 174 

enriched at CpG islands and promoter related regions, whereas hypomethylation at 175 

low CpG content regions such as open sea, shore and shelfs (Extended Data Fig. 2c). 176 

ALL and DLBCL showed more tumor-specific DNA hypermethylation (tsDNAm-hyper) 177 

whereas MCL, CLL and MM acquired more tumor-specific DNA hypomethylation 178 

(tsDNAm-hypo), being this skew towards hypomethylation remarkable in MM (Fig. 2b-179 

c and Extended Data Fig. 2b). To shed light into the potential causes of this 180 

phenomenon, we analyzed the expression levels of DNA methyltransferases (DNMTs) 181 

during normal B-cell maturation 6. We identified that DNMT1, which has been linked 182 

both to DNA methylation maintenance and DNA hypermethylation of CpG islands 183 

marked by polycomb 20, shows the highest expression levels in precursor B cells and 184 

germinal center B cells, the respective cells of origin of the mostly hypermethylated 185 

ALL and DLBCL. Conversely, bone marrow plasma cells, the cell of origin of the mostly 186 
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hypomethylated MM, showed the lowest levels of DNMT1 expression (Extended Data 187 

Fig. 2d).  Although the precise mechanisms remain to be elucidated, the level of 188 

expression of DNMTs of the respective cells of origin may influence how DNA 189 

methylation changes are manifested in distinct B-cell neoplasms. 190 

Transcription factors (TFs) have been reported to affect DNA methylation levels 191 

of regulatory regions upon their binding to the DNA 21,22. Therefore, we performed TFs 192 

binding site prediction analysis in active regulatory elements (i.e. marked by H3K27ac) 193 

containing tsDNAm-hypo CpG (Fig. 2d and Methods). Interestingly, the entities in 194 

which tsDNAm-hypo was predominantly located in H3K27ac regions (Fig. 2c) showed 195 

enrichments for binding sites of TFs expressed in each respective entity (Extended 196 

Data Fig. 2e and Supplementary Table 6) and with a previously reported implication in 197 

their pathogenesis, such as SPI1/SPIB and EBF1 in ALL, TCF/ZEB in MCL, and NFAT in 198 

CLL (Fig. 2d) 23–25. In the case of DLBCL and MM, their associated tsDNAm-hypo CpGs 199 

were actually depleted of regulatory elements (Fig. 2c), suggesting that TF binding may 200 

not be a major factor leading to their tumor-specific DNA methylation signatures. 201 

However, focusing only on the underrepresented H3K27ac-containing tsDNAm-hypo 202 

CpGs, we could also detect significant relationships with TFs potentially involved in the 203 

respective diseases, such as FOX family in DLBCL 26, and NRL (a member of the 204 

oncogenic MAF family), ISL1, TEAD, and YY1 in MM 27–30. 205 

Beyond the potential role of TFs in shaping tumor-specific DNA methylation 206 

signatures, we also investigated the downstream transcriptional consequences of 207 

tsDNAm-hypo signatures. An analysis of transcriptional profiles of cases from all five 208 

diseases revealed a total of 94 genes associated with tsDNAm-hypo genes expressed in 209 

a disease-specific manner (Fig. 2e). Although some of the identified genes have been 210 
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shown to be specifically expressed in a particular disease, such as CTLA4 and KSR2 in 211 

CLL 31, this comprehensive analysis provides a rich resource of novel epigenetically-212 

regulated candidate oncogenes for mechanistic studies in each B-cell neoplasm entity. 213 

 214 

Accurate classification of 14 clinico-biological subtypes of B cell neoplasms using 215 

epigenetic biomarkers 216 

The B-cell neoplasms shown in Fig. 1a represent broad categories which are further 217 

classified into subtypes with different clinico-biological features based on genetic, 218 

transcriptional or epigenetic features 3. These include high-hyperdiploid (HeH), 219 

11q23/MLL, t(12;21), t(1;19), t(9;22) and dic(9;20) ALLs 7; C1 (conventional; germinal 220 

center-inexperienced) and C2 (leukemic non-nodal; germinal center-experienced) 221 

MCLs 9; naïve-like/low-programmed, intermediate/intermediate-programmed and 222 

memory-like/high-programmed CLLs 10,11, and finally germinal center B cell (GCB) and 223 

activated B cell (ABC) DLBCLs 32. In MM, a previous report did not show methylation 224 

differences among the distinct cytogenetic subtypes 14 and thus MM subgrouping was 225 

not included in our analyses. Here, we focused on the identification of epigenetic 226 

biomarkers that may allow a comprehensive diagnosis of B-cell tumors entities and 227 

subtypes. We devised a strategy to construct a classifier algorithm that yielded 56 228 

CpGs as the optimal number distributed along 5 predictors (Extended Data Fig. 3a-e 229 

and Supplementary Table 7, Methods) to accurately discriminate the main B-cell tumor 230 

entities as a first step (predictor 1), and subsequently B-cell tumor subtypes as a 231 

second step (predictors 2, 3, 4 or 5) (Fig. 3a and Methods). The accuracy of the five 232 

predictors was evaluated using nested 10-fold stratified cross-validation in the training 233 

series (n=1345) and with external validation series (n=711) (Fig. 3b). Overall, we 234 
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obtained very high accuracies in the predictions in both main B-cell tumor entities 235 

(mean sensitivities for training series = 0.97 and validation series =0.99) and B-cell 236 

tumor subtypes (mean sensitivities for training series = 0.9 and validation series = 237 

0.97). In some tumor subtypes, we obtained lower accuracy in the predictions mostly 238 

due to small sample sizes. The script to easily implement the classifier is provided as 239 

supplementary information (SI1). This epigenetic classifier may represent the basis for 240 

a simple and accurate diagnostic tool for main B-cell tumors and B-cell tumor subtypes 241 

with more complicated diagnosis such as subtypes of MCL or CLL. 242 

 243 

Patient-specific DNA methylation changes are associated with silent chromatin 244 

without an impact on gene expression 245 

After having characterized entity-based sources of DNA methylation variability, we 246 

next aimed at studying patient-specific changes within each tumor subtype (Fig. 1b, 247 

level 4). To that end, we computed the total number and the number of hyper- and 248 

hypomethylation changes in every single patient within each B-cell tumor subtype as 249 

compared to HPC (Fig. 4a). As each B-cell tumor entity is derived from a distinct 250 

cellular origin, this approach has the advantage of fixing a reference point for all B-cell 251 

tumors, and the changes observed can be subsequently dissected into those 252 

modulated in normal B-cell maturation and those taking place exclusively in the 253 

context of neoplastic transformation (i.e. B-cell independent changes). Overall, we 254 

found large differences in the numbers of DNA methylation changes per patient (Fig. 255 

4a and Supplementary Table 8). To analyze whether some B-cell neoplasms show an 256 

intrinsically more variable epigenome, we studied the degree of DNA methylation 257 

variability in each group, but no differences were observed (Extended Data Fig. 4a). 258 
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The total number of altered CpGs per case was classified into four categories, 259 

depending whether DNA methylation was gained or lost and whether it was 260 

modulated or not during normal B cell development 6 (Fig. 2b and Fig. 4a). Regardless 261 

of the cellular origin of each B-cell tumor entity, this analysis uncovered striking 262 

correlations between the degree of B-cell related and B-cell independent DNA 263 

methylation changes, a finding that was maintained when hypermethylation and 264 

hypomethylation were studied separately (Fig. 4b and Extended Data Fig. 4b). This 265 

association suggests that the overall DNA methylation burden of the tumor in each 266 

individual patient may be shaped by a similar underlying phenomenon, which is 267 

manifested in all four CpG categories. This statement is further supported by a 268 

thorough annotation of the CpGs sites. Patient-specific CpGs that undergo 269 

hypomethylation in the B-cell related and B-cell independent fractions are consistently 270 

located in low CpG-content (open sea) low-signal heterochromatin, and the associated 271 

genes are constitutively silent both in normal and neoplastic B cells (Fig. 4c-e and 272 

Extended Data Fig. 4c-f). In the case of patient-specific hypermethylation, CpGs in both 273 

fractions are located in promoter regions and CpG islands (CGIs) with H3K27me3-274 

repressed and poised-promoter chromatin states, and affect genes that remain silent 275 

across normal differentiation and neoplastic transformation of B cells (Fig. 4f-h, 276 

Extended Data Fig. 4c, g-i ). These findings indicate that most DNA methylation 277 

changes in B-cell tumor patients occur in silent chromatin regions in the absence of 278 

concurrent phenotypic changes, suggesting that a mechanism independent from gene 279 

regulation may underlie their overall DNA methylation landscape.  280 

Beyond the classical role of DNA methylation as gene regulator, an accumulated body 281 

of published evidence supports the concept that DNA methylation changes accumulate 282 
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during cell division (Fig. 4i) 33–39. Studies in fibroblasts and hematopoietic stem cells 283 

have reported that DNA methylation loss in late-replication heterochromatic regions 284 

and DNA methylation gain of polycomb targets increase as cells proliferate without an 285 

apparent impact on gene expression 33–35. Furthermore, DNA methylation loss in 286 

heterochromatic, late-replicating domains has been recently associated with mitotic 287 

cell division in cancer 39. Additionally, early studies detected preferential methylation 288 

of CGI marked by H3K27me3 in cancer 40–42, and DNA methylation changes in regions 289 

marked by H3K27me3 in embryonic stem cells have been recently related to mitotic 290 

cell division in cancer 38.  291 

In order to explore whether DNA methylation changes in silent regions reflect 292 

the proliferative history of primary human B cells, we used DNA methylation data of an 293 

in vitro differentiation model of primary NBCs into plasma cells (Fig. 4j) 43. At days 4 294 

and 6, different B cells were separated based on their proliferation history measured 295 

by CFSE dilution. We evaluated the DNA methylation profile in repressed regions at 296 

these time points and we detected the presence of hypermethylation at repressed 297 

H3K27me3-containing regions and hypomethyation of low signal/H3K9me3-containing 298 

heterochomatic regions in cells that have proliferated (Fig. 4k). This finding was 299 

particularly marked at day 6, in which the gradual accumulation of DNA methylation 300 

changes in silent regions was directly associated with their proliferative history (from 301 

less divided P3 to highly divided P1). The genes associated to the measured CpGs did 302 

not show any change of expression levels regardless of their methylation status, and 303 

thus were unlikely to be related to the phenotype of the cells (Fig. 4l). 304 

Collectively, all these data indicate that a great fraction of the patient-specific DNA 305 

methylation changes in B-cell tumors accumulate at H3K27me3 and low 306 
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signal/H3K9me3 regions during cell division without affecting gene expression levels, a 307 

finding that is consistent with an epigenetic mitotic clock. 308 

 309 

Development and validation of an epigenetic mitotic clock reflecting the proliferative 310 

history of normal and neoplastic B cells 311 

We performed a step-wise selection of CpGs whose methylation status would reflect 312 

the cell mitotic activity regardless of its normal or neoplastic nature (Methods). Using 313 

this strategy, we finally retained 184 CpGs in stable polycomb regions that tend to gain 314 

DNA methylation and 1,164 CpGs in constitutive heterochromatin that tend to lose 315 

DNA methylation during normal B-cell maturation and neoplastic transformation (Fig. 316 

5a, Supplementary Table 9 and SI2). We next constructed two scores, one for 317 

hypermethylation and one for hypomethylation, which we respectively named 318 

epiCMIT-hyper and epiCMIT-hypo, ranging from 0 to 1 depending on low or high 319 

proliferative histories, respectively (Methods). Remarkably, epiCMIT-hypo contained a 320 

significant proportion of solo-WCGW CpGs, which have been recently associated with 321 

human mitotic cell division (N=1e5 permutations, pval<0.0001) 39. As normal B cell 322 

differentiation entails cell division, we initially evaluated both scores in normal B cells 323 

and observed an expected but strikingly high correlation (R=0.96, pval<0.001), with B-324 

cell subpopulations distributed according to their maturation state (and thus according 325 

to their accumulated proliferative history during B-cell differentiation) (Fig. 5b, left 326 

panel). This finding suggests that mitotic cell division in normal B cells leaves both 327 

hyper- and hypomethylated imprints. This high correlation between the two scores 328 

was also observed for MCL, CLL and DLBCL (Fig. 5b) but not for ALL and MM. The 329 

epiCMIT-hyper was greater than the epiCMIT-hypo in ALL samples, and the opposite 330 
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scenario was observed in MM. As these two neoplasias originate from B cells at the 331 

two extremes of the maturation spectrum, our data suggests that the impact of cell 332 

division onto the DNA methylome may be different depending on the maturation state 333 

of the cellular origin. Upon neoplastic transformation, dividing precursor B cells do not 334 

seem to acquire broad hypomethylation in heterochromatin but rather 335 

hypermethylation in polycomb-repressed regions. In contrast, neoplastic plasma cells 336 

acquire widespread hypomethylation in heterochromatin and virtually lack 337 

hypermethylation of polycomb-repressed regions. As previously shown in Extended 338 

Data Fig. 2d, this phenomenon may be related to the differential expression of DNMTs 339 

of the respective cells of origin of ALL and MM. We then took into consideration both 340 

scores to derive a unique epiCMIT score (Fig. 5c). The epiCMIT reflects the relative 341 

accumulation of mitotic cell divisions of a particular sample and is able to capture 342 

different tendencies in gaining or losing DNA methylation during mitotic cell division, 343 

as it respectively happens in ALL and MM patients (Fig. 5b). Finally, epiCMIT cannot be 344 

affected by different distribution of cell cycle phases in tumor samples, since the DNA 345 

methylome remains rather stable during the whole cell cycle 44. 346 

The applicability of the epiCMIT as mitotic clock was validated through several 347 

perspectives. First, we compared it with two previously reported hypermethylation-348 

based mitotic clocks called epiTOC and MiAge 38,45 (Supplementary Table 8). The 349 

epiCMIT showed excellent correlations with these clocks in B-cell neoplasms that tend 350 

to acquire polycomb-related hypermethylation (e.g. mostly ALL, but also DLBCL and 351 

MCL); a moderate correlation in the case of CLL, which acquires more hypo- than 352 

hypermethylation (Fig. 4a and Extended Data Fig. 4b), and a total lack of correlation in 353 

the case of MM, which mostly loses DNA methylation (Fig. 5d and Extended Data Fig. 354 
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5a). Identical observations were obtained comparing the epiCMIT and the widely-355 

reported CpG island methylator phenotype (CIMP) in human cancer 46 calculated as 356 

previously proposed 47 (Supplementary Table 8). Therefore, our analysis also reveals 357 

that the classical CIMP score in reality may represent a measure of the mitotic history 358 

of the cells. A potentially confusing aspect related to epiCMIT is the fact that DNA 359 

methylation has mainly been used to measure the chronological age of an individual 360 

48,49. In order to study the relationship between mitotic and aging DNA methylation 361 

clocks, we first compared the epiCMIT in naïve B cells from infant, adults and elderly 362 

donors and showed that epiCMIT was stable in all age ranges regardless of donor’s age 363 

(Extended Data Fig. 5b). We next applied the most popular chronological age clock 364 

proposed by Horvath 50 and showed that the age of donors was predicted with high 365 

accuracy. This result indicates that, although both Horvath and epiCMIT scores are 366 

based on DNA methylation, they measure distinct biological phenomena (Extended 367 

Data Fig. 5b). Furthermore, the epiCMIT was highly variable in pediatric ALL samples 368 

with a minimum age range (Extended Data Fig. 5c). Collectively, these analyses 369 

indicate that the epiCMIT is a more universal mitotic clock than hypermethylation-370 

based clocks since it captures the proliferative history of neoplasms regardless of their 371 

tendency of gaining or losing DNA methylation during mitotic cell division. 372 

Second, the epiCMIT was validated using the in vitro B-cell differentiation 373 

model shown in Fig. 4j, in which we observed that epiCMIT increases with the 374 

proliferative history of the cells without altering gene expression levels of the epiCMIT-375 

associated genes (Fig. 5e). Third, using WGS data from 138 CLL patients from our 376 

cohort 10,17,51,52, we observed that the epiCMIT was highly correlated with the total 377 

number of somatic mutations (Extended Data Fig. 5d). We next extracted mutational 378 
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signatures as recently described 53 (Extended Data Fig. 5e) and observed significant 379 

correlations with mutational signatures SBS1 and SBS5 (Fig. 5f), that have been 380 

recently described as mitotic-like mutational processes 54. We also identified a 381 

significant link between the epiCMIT and the non-canonical AID signature (SBS9) (Fig. 382 

5f) 52,55 in IGHV mutated CLL, possibly reflecting rounds of cell divisions in germinal 383 

center B cells before differentiation into memory B cells and malignant transformation. 384 

Fourth, although the epiCMIT reflects the proliferative history of the cell rather than 385 

the actual proliferative status of the samples (e.g, bmPC have high epiCMIT and do not 386 

proliferate, Fig. 5c), a relationship between epiCMIT and cell proliferation is expected 387 

(more proliferative history implies overall more proliferation, although also depends 388 

on time). Accordingly, MCL cases showing higher Ki-67 (a proliferation marker) also 389 

had higher epiCMIT than cases with moderate Ki-67 expression (Extended Data Fig 5f). 390 

Furthermore, GSEA analyses in ALL and CLL cases with high and low epiCMIT revealed 391 

that cases with high epiCMIT showed higher expression of genes related with cell 392 

proliferation (Extended Data Fig. 5g, h). Thus, these data suggest that cases with higher 393 

proliferative history also seem to have higher proliferation at the time of sampling. 394 

Collectively, the four lines of evidence presented above support that the epiCMIT may 395 

represent a bona fide measure of the relative number of cumulative mitotic cell 396 

divisions that normal and neoplastic B cells have undergone since the uncommitted 397 

hematopoietic cell stage. 398 

 399 

 400 

 401 
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The epiCMIT is a strong independent variable predicting clinical behavior in B-cell 402 

tumors 403 

In normal B-cell maturation, the epiCMIT gradually augments as B cells proliferate 404 

during cell differentiation, an increase that is particularly marked in proliferative GC B 405 

cells (Fig. 5c). In neoplastic B cells, however, the interpretation of the epiCMIT is less 406 

trivial and must be divided into two components: the epiCMIT of the cell of origin and 407 

the epiCMIT acquired in the course of the neoplastic transformation and progression 408 

(Extended Data Fig. 6a). Therefore, the relative epiCMIT must be compared among 409 

patients from entities arising from the same B-cell maturation stage and should be a 410 

dynamic variable during cancer progression. Thus, we compared the epiCMIT in two 411 

paradigmatic transitions between precursor conditions and overt cancer, i.e. 412 

monoclonal gammopathy of undetermined significance (MGUS) and MM, as well as 413 

monoclonal B cell lymphocytosis (MBL) and CLL categorized according to their cellular 414 

origin. This analysis showed an overall lower epiCMIT in precursor lesions compared 415 

with overt cancer (Fig. 6a, upper panels), as would be expected due to their increased 416 

leukemia-specific proliferative history. In line with this finding, the epiCMIT increased 417 

in paired CLLs at diagnosis and progression before treatment as well as in sequential 418 

ALL samples at diagnosis, first relapse and second relapse (Fig. 6a, lower panels). These 419 

results suggest that the epiCMIT evolves together with clinical progression. 420 

Based on our previous observations, we next wondered whether the epiCMIT 421 

could be useful to predict the clinical behavior of B-cell neoplasms. We analyzed the 422 

relationship of the epiCMIT with clinical outcome in specific B-cell tumor subtypes 423 

based on their shared cytogenetics (i.e. ALL) or cell of origin (i.e. MCL, CLL and DLBCL), 424 

and thus having a similar ground state B-cell specific proliferative history (Extended 425 
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Data Fig. 6a). In ALL, high epiCMIT was consistently associated with longer relapse-free 426 

and overall survival (Fig. 6b and Extended Data Fig. 6b) of the patients within each 427 

cytogenetic subtype, and thus better clinical outcome. Next, we additionally showed 428 

epiCMIT as significant variable in a multivariate regression Cox model with epiCMIT as 429 

continuous variable together with cytogenetic subtypes (Fig. 6b). This observation is in 430 

line with published evidence showing that a higher CIMP, which is highly correlated 431 

with the epiCMIT in ALL (Fig. 5d), is a good prognosis factor in this disease 56,57. In 432 

contrast to ALL, the opposite clinical scenario was observed in mature B-cell 433 

neoplasms. In each of the CLL subtypes, a high epiCMIT was strongly associated with a 434 

worse prognosis using time to treatment (TTT) as end-point variable, both from 435 

sampling time (Fig. 6c, left panel) and in cases whose sample was obtained close to 436 

diagnosis (Extended Data Fig. 6c, left panel). Additionally, a multivariate Cox regression 437 

model for TTT revealed that epiCMIT as continuous variable was a highly significant 438 

variable conferring dismal prognosis together with age, number of driver genetic 439 

alterations 17,58 and epigenetic subgroups 10,11,59 (Fig. 6c right panel and Extened Data 440 

Fig. 6c). The epiCMIT maintained its independent prognostic value using overall 441 

survival as end-point variable, although its effect was moderate (Extended Data Fig. 442 

6d). These findings were widely confirmed in an additional series of 136 CLLs treated 443 

with chemo-immunotherapy (Fig. 6d and Extended Data Fig. 6c, d right panels). In the 444 

case of MCL, the epiCMIT showed an independent poor prognostic impact in the two 445 

cell-of-origin subtypes (C1 and C2), an observation that was confirmed in an extended 446 

series in the more aggressive and prevalent C1 group (Fig. 6e, f). Lastly, although the 447 

sample size was limited and requires further studies, our data suggest that high 448 

epiCMIT could also represent a poor prognostic variable within the two cell-of-origin 449 
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DLBCL subtypes (Extended Data Fig. 6e). Overall, these results suggest that an 450 

increased proliferative history of the neoplastic clone in precursor B-cell neoplasms at 451 

diagnosis predicts for a better disease-free survival, as previously published in studies 452 

analyzing the CIMP score 56,57. In sharp contrast, in mature B-cell neoplasms, which are 453 

overall less proliferative than ALL, neoplastic clones with high proliferation history 454 

seem to predict for future proliferative capacity and consistently show worse clinical 455 

outcomes. 456 

 457 

epiCMIT is associated with specific genetic driver alterations in CLL 458 

We next sought to assess which CLL driver alterations may confer a proliferative 459 

advantage to neoplastic cells, and subsequently a higher epiCMIT. To that end, we 460 

exploited 477 CLL samples in which we had DNA methylation data and whole exome 461 

sequencing (WES) (Fig. 7a). We initially depicted all driver genetic changes in each CLL 462 

subtype divided in high and low epiCMIT (Extended Data Fig. 7a). Next, we 463 

interrogated the levels of epiCMIT in patients with each driver genetic alteration (with 464 

at least 4 mutated patients). We performed the analyses in all CLL patients (showed as 465 

Global in Fig. 7b) and then within each epigenetic subgroup separately (Fig. 7b, 466 

Extended Data Fig. 7b and Methods). We showed significant and positive associations 467 

of epiCMIT with 24 genetic driver alterations affecting the main signaling pathways 468 

altered in CLL (Fig. 7b,c) 17,58. The majority of these genetic alterations have been 469 

previously linked to an adverse clinical behavior of patients, such as NOTCH1, TP53, 470 

SF3B1, ATM, BIRC3 or EGR2. Interestingly, epiCMIT showed a clear association with a 471 

new and recently identified non-coding genetic driver in CLL, the U1 spliceosomal RNA, 472 

a finding that may help in explaining its suggested poor prognostic impact 60. 473 
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Remarkably, the presence of some genetic alterations was associated with high 474 

epiCMIT indistinctly in all patients, such as TP53, while others were particularly 475 

associated with epiCMIT within CLL subgroups, such as NOTCH1 in n-CLL and i-CLL, 476 

SF3B1 in i-CLL, and del(13q) and tri12 in m-CLL.  477 

Collectively, these results suggest that the well-established clinical impact of genetic 478 

alterations in CLL may be explained by their association with a high proliferative 479 

potential, being this association different for certain genetic alterations depending on 480 

the maturation state of the cellular origin. 481 

 482 

Discussion 483 

In this study, we have followed a systematic approach to dissect the sources of DNA 484 

methylation variability of B-cell neoplasms in the context of the normal B-cell 485 

differentiation program. Overall, we found that the methylation levels of 88% of all 486 

CpGs are modulated in normal and/or neoplastic B cells, suggesting that the human 487 

DNA methylome is even more dynamic than previously appreciated 6,61,62. The 488 

extensive DNA methylation variability among different B-cell neoplasms is in part 489 

related to imprints of normal B-cell development. This phenomenon has been 490 

previously observed and has led to a more accurate classification not only of B-cell 491 

neoplasms 9–11,59, but also of solid tumors 2,63,64. In addition to this epigenetic link to 492 

normal cell maturation, each B-cell neoplasm also shows disease-specific hyper- and 493 

hypomethylation. Of particular interest are the disease-specific de novo 494 

hypomethylation signatures in active regulatory regions, which were associated with 495 

binding of TFs involved in the pathogenesis of each respective B-cell tumor. This 496 

phenomenon was particularly marked in ALL, MCL and CLL, whose de novo 497 
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hypomethylation was enriched in regulatory elements 23–25. Unexpectedly, although 498 

DLBCL and MM pathogenesis has been linked to TFs, de novo hypomethylation was 499 

depleted in regulatory elements containing TF binding sites. In these two malignancies, 500 

we detected few binding sites of TFs with potential involvement in the diseases. 501 

However, we did not detect classical TFs such as BCL6 in DLBCL or IRF4 in MM, possibly 502 

because they are key players during B-cell differentiation and their binding sites may 503 

already be hypomethylated in the normal B-cell counterparts of DLBCL and MM. 504 

In spite of the importance of DNA methylation in regulatory regions, we 505 

identified that the majority of DNA methylation changes in B-cell neoplasms, and 506 

especially those related to inter-patient variability within each B-cell tumor subtype, 507 

are located in inactive chromatin. The magnitude of this inter-patient variability 508 

affecting normal B-cell related and -independent regions is highly correlated, 509 

suggesting that the cause of these DNA methylation changes is a phenomenon that 510 

takes place both in normal and neoplastic B cells. Compelling published evidence as 511 

well as new data presented in our study support the notion that mitotic cell division 512 

leaves transcriptionally-inert epigenetic imprints onto the DNA. These take place in the 513 

form of hypomethylation of heterochromatin and hypermethylation of polycomb-514 

repressed regions. This knowledge has recently led to the concept of using DNA 515 

methylation as a mitotic clock 38,45, and has been recently used by single cell DNA 516 

methylation data to track the evolutionary trajectory of CLL 65. Notably, methylation-517 

based mitotic clocks seem to capture different biological information from aging clocks 518 

(Extended Data Fig. 5b) 48. As far as we are aware, there are two published mitotic 519 

clocks 38,45 and both are hypermethylation-based. Furthermore, our analyses suggest 520 

that the classical CIMP phenomenon in cancer 46 may indeed represent another 521 
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hypermethylation-based mitotic clock. However, only using hypermethylation to 522 

determine the mitotic clock is insufficient to capture the mitotic activity of the cells, as 523 

some neoplasms may not acquire hypermethylation upon cell division but rather 524 

hypomethylation. For instance, neoplastic plasma cells in MM do not tend to acquire 525 

polycomb-related hypermethylation. Thus, using hypermethylation to determine the 526 

mitotic history of MM cells would incongruently lead to the conclusion that they have 527 

not proliferated beyond their cellular origin (Fig. 5d and Extended Data Fig. 5a). 528 

Therefore, to circumvent possible misleading interpretations, we generated a more 529 

broadly applicable mitotic clock (called epiCMIT) that takes into consideration both 530 

hyper- and hypomethylation. Importantly, epiCMIT aims at capturing the entire mitotic 531 

history of cells, including cell division associated both with normal development as well 532 

as neoplastic transformation and progression (Extended Data Fig. 6a). Thus, the 533 

epiCMIT must not be compared among tumors arising from different normal 534 

counterparts but its relative magnitude must be studied in those arising from a 535 

particular maturation stage. Within each of these subgroups, the relative epiCMIT has 536 

a profound independent prognostic value from other well-established clinical 537 

variables. Increased epiCMIT is associated with worse clinical outcome within CLL and 538 

MCL subgroups, thus indicating that superior proliferative history before treatment 539 

seems to determine future proliferative capacity and is thus associated with worse 540 

clinical outcome. Strikingly, we consistently found the opposite pattern in precursor 541 

ALL subgroups, a finding in line with recent reports showing that the presence of CIMP 542 

(a hypermethylation-based mitotic clock) is associated with better clinical outcome 543 

56,57. These results suggest that children having more proliferative ALL cells at diagnosis 544 
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(and thus a larger proliferative history) are more prone to be cured with high intensive 545 

chemotherapy regimens, 66, which cannot be administrated in elderly patients. 546 

Finally, in order to identify the genetic lesions associated with higher 547 

proliferative history in CLL, we exploited our thorough genetic characterization of our 548 

cases to study the relationship between driver genetic alterations and epiCMIT. We 549 

identified 24 driver genetic alterations that may confer a higher proliferative capacity 550 

and thus are associated with higher epiCMIT or methylation evolution 67. These genetic 551 

alterations were distributed throughout the main altered signaling pathways in CLL 552 

and were manifested differently in distinct CLL subgroups based on their cellular origin 553 

(Fig. 7b, c). This finding suggests that specific mutations may predispose to a higher 554 

proliferative advantage depending on the maturation stage and (epi)genetic makeup 555 

of the cellular origin. 556 

In summary, our comprehensive epigenetic evaluation of normal and neoplastic 557 

B cells at different maturation stages uncovers multiple new insights into the biological 558 

roles of DNA methylation in cancer, an analytic approach that may also benefit our 559 

understanding of other cancers. From a clinical perspective, DNA methylation may 560 

provide a holistic diagnostic and prognostic approach to B-cell neoplasms. Particularly, 561 

we defined an accurate and easy-to-implement pan-B-cell tumor diagnostic tool and 562 

generated a mitotic clock reflecting the proliferative history of the neoplastic cells of 563 

each patient to estimate their clinical risk, which shall represent a valuable asset in the 564 

precision medicine era. 565 

566 
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 775 
Figure legends 776 

Fig. 1: Shared DNA methylation dynamics in B-cell tumors.  777 

a, Number of normal and neoplastic B-cells included in the study with tumor cell 778 

content of at least 60% (additional samples for validations are used in Fig. 3 and Fig. 6, 779 

which are later detailed). HPC, hematopoietic precursor cells; pre-B, precursor B-cell 780 

and immature B cells; NBC, naïve B cells; GC, germinal center B cells; MBC, memory B 781 

cells; tPC, tonsillar plasma cells; bmPC, bone-marrow plasma cells; ALL, acute 782 

lymphoblastic leukemia; MCL, mantle cell lymphoma; CLL, chronic lymphocytic 783 

leukemia; DLBCL, Diffuse large B cell lymphoma; MM, multiple myeloma; BM, bone 784 

marrow; PB, peripheral blood; LN, lymph node. 785 

b, Different levels of DNA methylation variability addressed in the study. 786 

c, Heatmaps showing shared DNA hyper- (top) and hypomethylation (bootm) in B-cell 787 

tumors. 788 

d, Chromatin state enrichments of regions sharing DNA hyper- and hypomethylation 789 

(all CpGs of 450k array were used as background). ActProm, Active promoter; 790 

WkProm, Weak promoter; StrEnh1, Strong enhancer 1 (promoter-related); StrEnh2, 791 

Strong enhancer 2; WkEnh, Weak enhancer; TxnTrans, Transcription transition; 792 

TxnElong, Transcription elongation; WkTxn, Weak transcription; PoisProm, Poised 793 

promoter; H3K27me3, Polycomb-repressed region; H3K9me3, H3K9me3 794 

heterochromatin; Het;LowSign, Het;LowSign heterochtomatin. 795 

e, Overlap of the target genes of stably methylated and unmethylated CpGs. 796 

f, Gene expression percentile within each sample of genes showing stable hyper- and 797 

hypomethylation. 798 
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 799 

Fig. 2: Disease-specific hypomethylation at H3K27ac regions is associated with 800 

specific transcription factor bindings and differential gene expression. 801 

a, Principal component analysis of normal and neoplastic B-cells, including ALL, MCL, 802 

CLL, DLBCL and MM. ALL, acute lymphoblastic leukemia; MCL, mantle cell lymphoma; 803 

CLL, chronic lymphocytic leukemia; DLBCL, Diffuse large B cell lymphoma; MM, 804 

multiple myeloma. 805 

b, Number of de novo DNA methylation changes in each B-cell tumor entity. 806 

c, Heatmap showing entity-specific hypomethylation and the number of CpGs falling at 807 

regulatory regions. Per each B-cell tumor, the same number of de novo CpGs was 808 

randomly chosen from the 450K array and interrogated the percentage falling at 809 

regulatory regions. 810 

d, Transcription factor binding site predictions for de novo hypomethylated CpGs 811 

falling at regulatory regions in c, for each B-cell tumor. 812 

e, Differential gene expression percentiles among B-cell tumors for genes showing 813 

specific-hypomethylation at regulatory regions. 814 

 815 

Fig. 3: Accurate classification of 14 clinico-biological subtypes of B cell neoplasms 816 

using epigenetic biomarkers. 817 

a, Heatmaps for the CpGs used for the pan B-cell cancer classifier. The classifier 818 

consists of two steps: in the first step (1) an unknown B-cell tumor can be predicted 819 

into ALL, MCL, CLL, DLBCL or MM, and subsequently (second step, using one of the 820 

predictors (2), (3), (4) or (5)) to any B-cell tumor subtype, namely HeH, 11q23/MLL, 821 

t(1;19), t(9;22), dic(9;20) for ALL, C1 and C2 for MCL, n-CLL, i-CLL and m-CLL for CLL, 822 
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and finally GCB or ABC for DLBCLs. ALL, acute lymphoblastic leukemia; MCL, mantle cell 823 

lymphoma; CLL, chronic lymphocytic leukemia; DLBCL, Diffuse large B cell lymphoma; 824 

MM, multiple myeloma. 825 

b, Accuracy for the pan-B-cell cancer diagnostic classifier (formed by the 5 predictors in 826 

Fig. 3a) for training and validation series. Sensitivity is represented as black circles or 827 

triangles for training or validation series, respectively (sensitivity in the training series 828 

was evaluated using 10-fold stratified cross-validation). The total number of samples 829 

used for both training and validation is shown. 830 

 831 

Fig. 4: Patient-specific DNA methylation changes are associated with silent chromatin 832 

without an impact on gene expression. 833 

a, Circos plot representing the number of DNA methylation changes with respect to 834 

heamatopoietic precursor cells (HPC) in individual patients for normal and neoplastic B 835 

cells (each bar represents one patient). Total number of DNA methylation changes, 836 

hypomethylation changes and hypermethylation changes are depicted at outer, 837 

middle and inner tracks, respectively. Changes are further classified and color-coded as 838 

B-cell related or B-cell independent if they occur or not during normal B-cell 839 

differentiation, respectively. 840 

b, Number of B-cell related changes against B-cell independent changes in normal and 841 

neoplastic B-cells. Fitted regression lines are shown at bottom per each B-cell tumor 842 

subtype. 843 

c, B-cell related CpGs losing DNA methylation in B-cell tumors and the percentages in 844 

each chromatin state in normal and neoplastic B-cells. 845 

d, Example CpGs from c in normal and neoplastic B-cells. 846 
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e, Density of genes distributed along gene expression percentiles of genes associated 847 

with B-cell related CpGs losing DNA methylation in B-cell tumors in each B-cell tumor 848 

subtype. Expressed genes are displayed at right as control (with presence of 849 

H3K36me3). Means within each B-cell subpopulation as well as B-cell tumors are 850 

represented. 851 

f, B-cell related CpGs gaining DNA methylation in B-cell tumors and the percentages in 852 

each chromatin state in normal and neoplastic B-cells. 853 

g, Example CpGs from f in normal and neoplastic B-cells. 854 

h, Density of genes distributed along gene expression percentiles of genes associated 855 

with B-cell related CpGs gaining DNA methylation in B-cell tumors in each B-cell tumor 856 

subtype. Expressed genes are displayed at right as control (with presence of 857 

H3K36me3). Means within each B-cell subpopulation as well as B-cell tumors are 858 

represented. 859 

i, Model for DNA methylation changes occurring at repressed regions during mitotic 860 

cell division. 861 

j, In vitro model for plasma blast differentiation from human primary naïve B cells. 862 

Primary naïve B cells are labeled with CFSE at day 0. DNA methylation profiles are 863 

obtained at day 0 (primary naïve B cells) day 4 (CFSE-high and CFSE-low) and day 6 (P1-864 

CFSE-low and CD38+, P2-CFSE-intermediate, CD38-, P3-CFSE-high CD38-). 865 

k, DNA methylation changes accumulate at repressed regions during mitotic cell 866 

division upon in vitro proliferation and differentiation of primary naïve B cells to 867 

plasma blasts. Hypermethylation takes place at H3K27me3 regions, whereas 868 

hypomethylation at heterochromatin and H3K9me3 regions. ChIP-seq data for primary 869 
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NBC and GC B cells was used. The mean of several biological replicates is represented 870 

(numbers are depicted at bottom of the heatmaps). 871 

l, Density of genes distributed in gene expression percentiles for genes with changes in 872 

DNA methylation in (K).  873 

 874 

Fig. 5: Development and validation of an epigenetic mitotic clock reflecting the 875 

proliferative history of normal and neoplastic B cells. 876 

a, Selection of CpGs gaining DNA methylation at H3K27me3 and losing DNA 877 

methylation in normal and neoplastic B cells to construct the epiCMIT-hyper and 878 

epiCMIT-hypo scores. epiCMIT, epigenetically-determined Cumulative MIToses. 879 

b, Correlation of epiCMIT-hyper and epiCMIT-hypo in normal and neoplastic B cells. 880 

c, epiCMIT in normal and neoplastic B cells. 881 

d, Correlation of epiCMIT with previously reported hypermethylation-based mitotic 882 

clocks, including epiTOC (epigenetic Timer for Cancer risk) and MiAge. Correlation with 883 

CIMP (CpG hypermethylator phenotype) is also shown, although it has not been 884 

formally presented as mitotic clock. 885 

e, epiCMIT score during the in vitro B-cell differentiation as well as gene expression of 886 

genes containing epiCMIT-CpGs. Expressed genes are also shown as control (presence 887 

of H3K36me3). 888 

f, Correlation of epiCMIT and mutational signatures related to proliferative history for 889 

138 CLL samples with available DNA methylation data and WGS. SBS1, SBS5 have been 890 

reported as clock-like mutational signatures. SBS9 is related to ncAID mutations.  891 

 892 
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Fig. 6: The epiCMIT is a strong independent variable predicting clinical behavior in B-893 

cell tumors. 894 

a, epiCMIT is a dynamic variable that reflects disease progression. Precursor conditions 895 

MGUS and MBL show significantly lower epiCMIT levels than their respective cancer 896 

conditions CLL and MM, respectively. epiCMIT increases from diagnosis to progression 897 

in paired CLL samples and in paired ALL at diagnosis, first relapse and second relapse. 898 

b, Kaplan-Meier curves for three ALL cytogenetic groups shown as example divided in 899 

low and high epiCMIT using maxstat rank statistics. Multivariate cox regression model 900 

for relapse-free survival with epiCMIT against cytogenetic groups. Hazard ratio for 901 

epiCMIT correspond to 0.1 increments. 902 

c, Kaplan-Meier curves for CLL epigenetic groups based on different cellular origin 903 

divided in low and high epiCMIT using maxstat rank statistics. Multivariate cox 904 

regression model for time to first treatment with epiCMIT against age, number of 905 

driver alterations and epigenetic groups based on different cellular origin. Validation 906 

series is shown in d. Hazard ratio for epiCMIT correspond to 0.1 increments. 907 

e, Kaplan-Meier curves for MCL epigenetic groups based on different cellular origin 908 

divided in low and high epiCMIT using maxstat rank statistics. Multivariate cox 909 

regression model for overall survival with epiCMIT against epigenetic groups based on 910 

different cellular origin. Hazard ratio for epiCMIT correspond to 0.1 increments. 911 

f, Validation series for C1 MCL. Hazard ratio for epiCMIT correspond to 0.1 increments. 912 

 913 

Fig. 7: epiCMIT is associated with specific genetic driver alterations in CLL 914 

a, Are there specific genetic alterations in CLL that may predispose a proliferative 915 

advantage to neoplastic cells? 916 
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b, Genetic driver alterations in CLL associated with higher epiCMIT grouped by 917 

signaling pathways reported. Analyses were done globally for all CLL samples (although 918 

adjusted by epigenetic groups) as well as within each epigenetic subgroup. Positive 919 

point estimates relate to positive associations with epiCMIT. 95% confidence intervals 920 

are shown with colors coding for FDR corrections. Number of patients with each 921 

genetic driver alteration is shown at right. 922 

c, Oncoprint showing genetic driver alterations associated with higher epiCMIT in CLL 923 

epigenetic groups separately. Other clinicobiological features including MBL or CLL, 924 

IGHV status, Age, Binet stage, epiCMIT subgroups based on Fig. 5c, need for treatment 925 

and patient status are shown. Cases are ordered within each CLL subgroup from lower 926 

to higher epiCMIT values. Distinct genetic driver alterations are depicted with different 927 

colors and shapes. The percentage of mutated patients as well as barplots showing the 928 

number of mutated patients for each alteration is shown at right. 929 

 930 

 931 

932 
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 933 

Supplementary figure legends 934 

 935 

Extended Data Fig.1 936 

a, Principal component analysis and hierarchical clustering of paired un/purified DNA 937 

methylation profiles obtained with EPIC array from MCL and CLL patients. Colors 938 

represent the same un/purified sample, with FACS-based purities highlighted in each 939 

sample. MCL, mantle cell lymphoma. CLL, chronic lymphocytic leukemia. 940 

b, Correlations and Passing Bablock regression fits of gold-standard methods for tumor 941 

purity prediction (FACS and genetic-based) against DNA methylation-based tumor 942 

purity prediction for MCL and CLL patients. 943 

c, Pearson correlations and Passing Bablock regression fits for gold-standard methods 944 

for tumor purity predictions (FACS and genetic-based) against DNA methylation-based 945 

tumor purity predictions for MM and DLBCL patients. MM, multiple myeloma. DLBCL, 946 

Diffuse large B cell lymphoma. 947 

d, Pan-B cell DNA methylation signature used to deconvolute DNA methylation and 948 

obtain B-cell tumor purities in DLBCL and MM. Bar plots representing DNA-methylation 949 

based predictions as well as gold standard-based predictions are represented at top 950 

the heatmaps. 951 

e, Genomic distribution of stably un/methylated CpGs in B-cell tumors. 952 

f, Example gene showing stably un/methylated CpGs. 953 

g, Gene ontology analysis of genes showing both stable un/methylated CpGs. 954 

 955 

 956 
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Extended Data Fig.2 957 

 a, Principal component analysis for normal and neoplastic B cells, including ALL, MCL, 958 

CLL, DLBCL and MM. Each component is resented separately (until the ninth 959 

component). ALL, acute lymphoblastic leukemia; MCL, mantle cell lymphoma; CLL, 960 

chronic lymphocytic leukemia; DLBCL, Diffuse large B cell lymphoma; MM, multiple 961 

myeloma. 962 

b, Heatmap showing B-cell tumor-specific hypermethylation and the number of CpGs 963 

falling at regulatory regions. Per each B-cell tumor, the same number of de novo CpGs 964 

was randomly chosen from the 450K array and interrogated the percentage falling at 965 

regulatory regions. 966 

c, Genomic distribution for de novo DNA methylation changes in B-cell tumors. 967 

d, Gene expression of DNA methyltransferases DNMT1, DNMT3A and DNMT3B 968 

throughout B cell differentiation. 969 

e, Gene expression percentile of TFs showing the most significant p-values and 970 

frequencies in de novo hypomethylation signatures in each B-cell tumor in Fig. 2d. 971 

 972 

Extended Data Fig. 3 973 

a, Sensitivity of the pan-B-cell diagnostic algorithm for the classification of an unknown 974 

B-cell tumor into ALL, MCL, CLL, DLBCL or MM while incrementing the number of CpGs 975 

used in the classifier algorithm (first step of Fig. 3A). The number of CpGs selected for 976 

the predictor is selected by maximizing the highest balanced accuracy and is indicated 977 

with a red circle. This strategy was applied also in the remaining 4 predictors to classify 978 

B-cell tumor subtypes in panels b,, c,, d, and e, (second step of Fig. 3A). Each B-cell 979 

tumor is represented with different shapes and colors. ALL, acute lymphoblastic 980 
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leukemia; MCL, mantle cell lymphoma; CLL, chronic lymphocytic leukemia; DLBCL, 981 

Diffuse large B cell lymphoma; MM, multiple myeloma 982 

b, Sensitivity of predictor 2 for the pan-B-cell diagnostic algorithm (predictor 2 of Fig. 983 

3a) for the classification of ALL into the subtypes HeH, 11q23/MLL, t(12;21), t(1;19), 984 

t(9;22) and dic(9;20) while incrementing the number of CpGs. 985 

c, Sensitivity of predictor 3 of the pan-B-cell diagnostic algorithm (predictor 3 of Fig. 986 

3a) for the classification of MCL into the subtypes C1 or C2 while incrementing the 987 

number of CpGs. 988 

d, Sensitivity of predictor 4 of the pan-B-cell diagnostic algorithm (predictor 4 of Fig. 989 

3a) for the classification of CLL into the subtypes n-CLL, i-CLL or m-CLL while 990 

incrementing the number of CpGs. 991 

e, Sensitivity of predictor 5 of the pan-B-cell diagnostic algorithm (predictor 5 of Fig. 992 

3a) for the classification of DLBCL into the subtypes ABC and GCB while incrementing 993 

the number of CpGs. 994 

 995 

Extended Data Fig.4 996 

a, Variability of DNA methylation changes (IQR) in normal neoplastic B cells against the 997 

median number of DNA methylation changes. 998 

b, Correlations of B-cell independent DNA methylation changes in B-cell tumors 999 

against B-cell related changes for hypermethylation (top) and hypomethylation 1000 

(bottom). 1001 

c, Number of B-cell related or B-cell independent hyper- or hypomethylation in B-cell 1002 

tumors (Methods). 1003 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.937383doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937383


Duran-Ferrer M et al., submitted in February 2020 

41 
 

d, B-cell independent CpGs losing DNA methylation in B-cell tumors and the 1004 

percentages in each chromatin state in normal and neoplastic B-cells. 1005 

e, Example CpGs from d, in normal and neoplastic B-cells. 1006 

f, Density of genes distributed along gene expression percentiles of genes associated 1007 

with B-cell independent CpGs losing DNA methylation in B-cell tumors in each B-cell 1008 

tumor subtype. Expressed genes are displayed at right as control (with presence of 1009 

H3K36me3). Means within each B-cell subpopulation as well as B-cell tumors are 1010 

represented. 1011 

g, B-cell independent CpGs gaining DNA methylation in B-cell tumors and the 1012 

percentages in each chromatin state in normal and neoplastic B-cells. 1013 

h, Example CpGs from g, in normal and neoplastic B-cells. 1014 

i, Density of genes distributed along gene expression percentiles of genes associated 1015 

with B-cell independent CpGs gaining DNA methylation in B-cell tumors in each B-cell 1016 

tumor subtype. Expressed genes are displayed at right as control (with presence of 1017 

H3K36me3). Means within each B-cell subpopulation as well as B-cell tumors are 1018 

represented. 1019 

 1020 

Extended Data Fig.5. 1021 

a, Correlations between epiCMIT-hyper and epiCMIT-hypo with other 1022 

hypermethylation-based mitotic clocks including epiTOC (epigenetic Timer for Cancer 1023 

risk) and MiAge as well as the CIMP (CpG hypermethylator phenotype, not formally 1024 

conceived as mitotic clock). epiCMIT, epigenetically-determined Cumulative MIToses. 1025 
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b, Poor effect of age in epiCMIT in normal B cells. epiCMIT correlation with age in naïve 1026 

B cells from healthy infants, young-adults and older adults. Horvath model correctly 1027 

predicted the real age. epiCMIT and Horvath are poorly correlated. 1028 

c, Poor effect of age in epiCMIT in B-ALL. Wide epiCMIT spectrum in children with B-1029 

ALL. 1030 

d, Correlation between the number of mutations detected by WGS against epiCMIT in 1031 

CLL subtypes with different cellular origin (n-CLL, i-CLL and m-CLL). 1032 

e, Mutational signatures for 138 CLL samples with available WGS and DNA methylation 1033 

data divided into different subtypes of CLL with different cellular origin, namely n-CLL, 1034 

i-CLL and m-CLL. 1035 

f, Correlation of epiCMIT with Ki67 in nodal MCL patients. 1036 

g, Gene expression signatures resulting after GSEA analysis related to proliferation in 1037 

CLL samples with low and high epiCMIT. 1038 

h, Gene expression signatures resulting after GSEA analysis related to proliferation in 1039 

ALL samples with low and high epiCMIT. 1040 

 1041 

Extended Data Fig.6. 1042 

a, epiCMIT interpretation in normal and neoplastic B cells. Mitotic cell division occurs 1043 

in normal B cell development and DNA methylation changes accumulate at repressed 1044 

regions (blue component of the epiCMIT on the x axis). B-cell tumors arise from 1045 

different maturation stages, and thus they contain different baseline epiCMIT from the 1046 

cell of origin from which they originate (blue bar in B-cell tumors). When B-cell tumors 1047 

progress, they acquire additional DNA methylation changes at repressed regions 1048 

(shown as red component of the epiCMIT). Notably, these new DNA methylation 1049 
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changes occur in both axes, i.e. changes occurring in normal B cell maturation as well 1050 

as new B-cell independent changes. This concept is shown with real data at Fig. 4b. 1051 

b, Multivariate cox regression model for overall survival in ALL for epiCMIT against 1052 

cytogenetic groups. Hazard ratio for epiCMIT correspond to 0.1 increments. 1053 

c, Multivariate cox regression model for time to first treatment in CLL samples near 1054 

diagnosis (30 months) for epiCMIT against age, number of driver alterations and 1055 

epigenetic groups based on different cellular origin. At right is shown the multivariate 1056 

cox regression model for validation series. Hazard ratio for epiCMIT correspond to 0.1 1057 

increments. 1058 

d, Multivariate cox regression model in CLL for overall survival for epiCMIT against age, 1059 

number of driver alterations and epigenetic groups for the initial and validation series 1060 

(left and right, respectively). Treated and untreated patients were included in the 1061 

validation series. Hazard ratio for epiCMIT correspond to 0.1 increments. 1062 

e, Kaplan-Meyer curves for DLBCL separated by ABC and GCB groups and low and high 1063 

epiCMIT groups based on maxstat rank statistics. Multivariate cox regression model 1064 

treating epiCMIT as continuous variable is shown at bottom. Hazard ratio for epiCMIT 1065 

correspond to 0.1 increments. 1066 

 1067 

Extended Data Fig.7. 1068 

a, Oncoprint showing all genetic driver alterations considered in CLL grouped by 1069 

epigenetic subgroups and ordered according to increasing levels of epiCMIT (from left 1070 

to right within each epigenetic subgroup). Other clinicobiological features including 1071 

MBL or CLL, IGHV status, Age, Binet stage, epiCMIT subgroups based on Fig. 5C, need 1072 

for treatment and patient status are shown. Distinct genetic driver alterations are 1073 
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depicted with different colors and shapes. The percentage of mutated patients as well 1074 

as barplots showing the number of mutated patients for each alteration is shown at 1075 

right. 1076 

b, Driver genetic alterations without clear associations with epiCMIT. Analyses were 1077 

done globally for all CLL samples (although adjusted by epigenetic groups) as well as 1078 

within each epigenetic subgroup. Positive point estimates relate to positive 1079 

associations with epiCMIT. 95% confidence intervals are shown with colors coding for 1080 

FDR corrections. Number of patients with each genetic driver alteration is shown at 1081 

bottom. 1082 

 1083 
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