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Abstract 15 

Predictive coding provides a computational paradigm for modelling perceptual processing 16 

as the construction of representations accounting for causes of sensory inputs. Here, we 17 

develop a scalable, deep predictive coding network that is trained using a Hebbian learning 18 

rule. Without a priori constraints that would force model neurons to respond like biological 19 

neurons, the model exhibits properties similar to those reported in experimental studies. 20 

We analyze low- and high-level properties such as orientation selectivity, object selectivity 21 

and sparseness of neuronal populations in the model. As reported experimentally, image 22 

selectivity increases systematically across ascending areas in the model hierarchy. A further 23 

emergent network property is that representations for different object classes become 24 

more distinguishable from lower to higher areas. Thus, deep predictive coding networks can 25 

be effectively trained using biologically plausible principles and exhibit emergent properties 26 

that have been experimentally identified along the visual cortical hierarchy. 27 

 28 

Significance Statement 29 

Understanding brain mechanisms of perception requires a computational approach based 30 

on neurobiological principles. Many deep learning architectures are trained by supervised 31 

learning from large sets of labeled data, whereas biological brains must learn from 32 

unlabeled sensory inputs. We developed a Predictive Coding methodology for building 33 

scalable networks that mimic deep sensory cortical hierarchies, perform inference on the 34 

causes of sensory inputs and are trained by unsupervised, Hebbian learning. The network 35 

models are well-behaved in that they faithfully reproduce visual images based on high-level, 36 

latent representations. When ascending the sensory hierarchy, we find increasing image 37 

selectivity, sparseness and generalizability for object classification. These models show how 38 
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a complex neuronal phenomenology emerges from biologically plausible, deep networks for 39 

unsupervised perceptual representation. 40 

 41 

Introduction 42 

According to classical neurophysiology, perception is thought to be based on sensory 43 

neurons which extract knowledge from the world by detecting objects and features, and 44 

report these to the motor apparatus for behavioral responding (Barlow, 1953; Lettvin et al., 45 

1959; Riesenhuber and Poggio, 1999). This doctrine is radically modified by the proposal 46 

that percepts of objects and their features are representations constructed by the brain in 47 

attempting to account for the causes of the sensory inputs it receives (Friston, 2005; 48 

Gregory, 1980; Helmholtz, 1867; Helmholtz and Southall, 2005; Kant, 1998; Mumford, 1992; 49 

Pennartz, 2015). This constructivist view is supported, amongst others, by the perceptual 50 

psychology of illusions (Gregory, 1980; Grosof et al., 1993), but also by the uniform nature 51 

of action potentials conveying sensory information to the brain, unlabeled in terms of 52 

peripheral origin or modality (Pennartz, 2015, 2009). A promising computational paradigm 53 

for generating internal world models is predictive coding (Dayan, Hinton, Neal, & Zemel, 54 

1995; Friston, 2005; Rao & Ballard, 1999; Srinivasan, Laughlin, & Dubs, 1982; cf. Lee & 55 

Mumford, 2003). Predictive coding posits that higher areas of a sensory cortical hierarchy 56 

generate predictions about the causes of the sensory inputs they receive, and transmit 57 

these predictions via feedback projections to lower areas, which compute the errors 58 

between predictions and actual sensory input. These errors are transmitted to higher areas 59 

via feedforward projections and are used both for updating the inferential representations 60 

of causes and for learning by modifications of synaptic weights (Rao and Ballard, 1999). 61 
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In addition to being aligned with the feedforward and feedback architecture of sensory 62 

cortical hierarchies (Felleman and Van Essen, 1991; Markov et al., 2014), the occurrence of 63 

some form of predictive coding in the brain is supported by accumulating experimental 64 

evidence. Neurons in the superficial layers of area V1 in mice navigating in virtual reality 65 

were shown to code error signals when visual inputs were not matched by concurrent 66 

motor predictions (Keller et al., 2012; Keller and Mrsic-Flogel, 2018; Leinweber et al., 2017). 67 

As expected for predictive coding, indications for a bottom-up/top-down loop structure 68 

with retinotopic matching were found by Marques et. al., 2018 for a lower (V1) and higher 69 

(LM) area in the mouse brain. In monkeys, evidence for coding of predictions and errors has 70 

been reported for the face-processing area ML (Schwiedrzik and Freiwald, 2017). In humans, 71 

predictive coding is supported by reports of spatially occluded scene information in V1 72 

(Smith and Muckli, 2010) and suppressed sensory responses to predictable stimuli along the 73 

visual hierarchy (Richter et al., 2018). 74 

While foundational work has been done in the computational modeling of predictive coding, 75 

there is a strong need to investigate how these early models - which were often hand-76 

crafted and limited to only one or two processing layers (Rao and Ballard, 1999; Spratling, 77 

2012a, 2008; Wacongne et al., 2012) - can be expanded to larger and deeper networks in a 78 

neurobiologically plausible manner. For instance, previous models studying attentional 79 

modulation or genesis of low-level response properties of V1 neurons (such as orientation 80 

selectivity) were limited to only a few units (Spratling, 2008) or to one processing layer 81 

devoid of top-down input (Spratling, 2010; Wacongne et al., 2012). 82 

Thus we set out, first, to develop a class of predictive coding models guided by 83 

computational principles that allow architectures to be extended to many layers (i.e. 84 

hierarchically stacked brain areas) with essentially arbitrarily large numbers of neurons and 85 
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synapses. Second, learning in these models was required to be based on neurobiological 86 

principles, which led us to use unsupervised, Hebbian learning instead of back-propagation 87 

(Rumelhart et al., 1986) or other AI training methods (Lillicrap et al., 2016; Salimans et al., 88 

2017) incompatible with physiological principles. 89 

Third, we aimed to investigate which neuronal response properties evolve emergently in 90 

both low and high-level areas, i.e. without being explicitly imposed a priori by network 91 

design constraints. We paid attention to both low-level visual cortical properties such as 92 

orientation selectivity (Hubel and Wiesel, 1961) as well as high-level properties such as 93 

selectivity for whole images or objects found in e.g. inferotemporal cortex (Desimone et al., 94 

1984; Gross et al., 1972; Perrett et al., 1985). 95 

 96 

Materials & Methods 97 

Architecture of the Model with Receptive Fields 98 

It is known that Receptive Field (RF) size increases from low to high-level areas in the ventral stream 99 

(V1, V2, V4 and inferotemporal cortex (IT)) of the visual system (Kobatake and Tanaka, 1994). To 100 

incorporate this characteristic, neurons in the lowermost area of our network (e.g. V1) respond to a 101 

small region of visual space. Similarly, neurons in the next area (e.g. secondary visual cortex (V2)) are 102 

recurrently connected to a small number of neurons in V1 so that their small RFs jointly represent 103 

the larger RF of a V2 neuron. This architectural property is used in all areas of the network, resulting 104 

in a model with increasing RF size from lower-level to higher-level areas. Furthermore, there can be 105 

multiple neurons in each area having identical RFs (i.e., neurons that respond to the same region in 106 

visual space). This property is commonly associated with neurons within cortical microcolumns 107 

(Jones, 2000). 108 

The model variants described in this paper receive natural images in RGB color model as sensory 109 

input of which the size is described by two dimensions representing the height and width of an 110 
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image. Similarly, RFs of neurons in visual cortical areas extend horizontally as well as vertically. To 111 

simplify the explanation below, we will assume that the input to the network is one-dimensional and 112 

correspondingly neurons in the model also have receptive fields that can be expressed using a single 113 

dimension. Later, we will extend the description to two-dimensional sensory input. 114 

Figure 1 shows the architecture of the network. Consider a network with (𝑁 + 1) layers which are 115 

numbered from 0 to 𝑁. The layers 1 to 𝑁 in the network correspond to visual cortical areas; layer 1 116 

represents the lowest area (e.g. primary visual cortex (V1)) and layer 𝑁 the highest cortical area (e.g. 117 

area IT). Layer 0 presents sensory inputs to the network. Below, we will use the term “area” to refer 118 

to a distinct layer in the model in line with the correspondence highlighted above. Each area is 119 

recurrently connected to the area below it. Information propagating from a lower-level to a higher-120 

level area constitutes feedforward flow of information (also termed bottom-up input) and feedback 121 

(also known as top-down input) comprises information propagating in the other direction. 122 

Conventionally, the term “receptive field” of a neuron describes a group of neurons that send 123 

afferent projections to this neuron. In other words, a receptive field characterizes the direction of 124 

connectivity between a group of neurons and a “reference” neuron. Here, the term receptive field is 125 

used to characterize the hierarchical location of a group of neurons with respect to a reference 126 

neuron. Specifically, the receptive field of a neuron  represents a group of neurons in a lower-level 127 

area that are recurrently connected to the higher-level neuron 𝑥. Similarly, the group of cells that 128 

receive projections from a given neuron represents the projective field of that neuron. In the current 129 

paper the term “projective field” of a neuron 𝑥 describes a group of higher-level neurons that are 130 

recurrently connected to the lower-level neuron 𝑥. 131 

Neurons in the 𝑙𝑡ℎ  area are organized in populations of 𝑛𝑙 neurons having identical receptive and 132 

projective fields. Populations having an equal number of neurons are used to reduce computational 133 

overhead. The activity of the 𝑘𝑡ℎ population in the 𝑙𝑡ℎ  area, referred to as 𝑝𝑘𝑙
, is a (𝑛𝑙 𝑏𝑦 1) vector 134 

denoted by 𝒚𝒌𝒍
. To reduce computational complexity, we assume that the receptive fields of all 135 

neurons in the 𝑙𝑡ℎ  area are of equal size, denoted by 𝑠𝑙, and the receptive fields of two consecutive 136 
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populations have an overlap of (𝑠𝑙 − 1). The population 𝑝𝑘𝑙
 is reciprocally connected with 137 

populations 𝑝𝑘𝑙−1
 through 𝑝(𝑘+𝑠𝑙−1)𝑙−1

 (Figure 1). Thus, the number of populations (with distinct 138 

receptive fields) in the 𝑙𝑡ℎ  area is (𝑠𝑙 − 1) less than the number of populations in the (𝑙 − 1)𝑡ℎ  area. 139 

The synaptic strengths of connections between the populations 𝑝𝑘𝑙
 and 𝑝𝑘𝑙−1

is a (𝑛𝑙−1 by 𝑛𝑙) matrix 140 

denoted by 𝑾𝒌𝒍−𝟏𝒌𝒍
. We assume that the neuronal populations 𝑝𝑘𝑙

 and 𝑝𝑘𝑙−1
 are connected by 141 

symmetric weights, i.e. feedforward and feedback projections between these populations have 142 

equal synaptic strengths. The top-down information transmitted by population 𝑝𝑘𝑙
 to 𝑝𝑘𝑙−1

 is 143 

denoted by �̂�𝒌𝒍−𝟏

𝒌𝒍  and is given by 144 

 �̂�𝒌𝒍−𝟏

𝒌𝒍 = 𝜙(𝑾𝒌𝒍−𝟏𝒌𝒍
𝒚𝒌𝒍

) (1) 

where 𝜙 is the activation function of a neuron. Predictions (see section “Learning and inference 145 

rule”) about activities of the population 𝑝𝑘𝑙−1
 are denoted by �̂�𝒌𝒍−𝟏

𝒌𝒍 . Neuronal activity is described in 146 

terms of firing rate, which by definition can never be negative. Therefore, we used a Rectified Linear 147 

Unit (ReLU) as an activation function which is defined as 148 

 𝜙(𝑥) = max(𝑥, 0) (2) 

which results in values that are positive or zero. To extend the architecture described above for 149 

handling natural images, the populations in each area can be visualized as a two-dimensional grid 150 

(Figure 1B). Here, each population has receptive fields that extend both horizontally as well as 151 

vertically. 152 

Learning and Inference Rule 153 

The learning rule presented in this section is inspired by the approach of predictive coding in (Rao 154 

and Ballard, 1999). Each area of the model infers causes that are used to generate predictions about 155 

causes inferred at the level below. These predictions are sent by a higher-level area to a lower-level 156 

area via feedback connections. The lower-level area computes an error in the received predictions, 157 

as compared to its bottom-up input, and transmits this error to the higher-level area via feedforward 158 

pathways. The information received by an area is used to infer better causes, which is termed the 159 
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inference step of predictive coding, and also to build the brain’s internal model of the external 160 

environment, which is termed the learning step. 161 

Figure 2 shows a possible neural implementation of predictive coding for a one-dimensional sensory 162 

input. For a given sensory input, the neuronal activities ([𝒚𝟏𝒍
, … , 𝒚𝒌𝒍

, … ]) of all neurons in the 𝑙𝑡ℎ  163 

area collectively denote the causes of the sensory input inferred in this area. Based on these causes, 164 

the prediction of causes inferred in the (𝑙 − 1)𝑡ℎ  area is estimated according to Equation 1. Note 165 

that a given neuronal population in the 𝑙𝑡ℎ  area will generate predictions only about the neuronal 166 

populations within its receptive field (Figure 2). Therefore, neuronal populations in the 𝑙𝑡ℎ  area 167 

receive bottom-up errors via feedforward connections only from lower-level populations within 168 

their receptive field. Relative to area 𝑙, the bottom-up error (𝜷𝒌𝒍

𝒌𝒍−𝟏) based on the prediction 169 

generated by 𝑝𝑘𝑙
 about the activity of 𝑝𝑘𝑙−1

 is computed as: 170 

 𝜷𝒌𝒍

𝒌𝒍−𝟏 = (𝒚𝒌𝒍−𝟏
− �̂�𝒌𝒍−𝟏

𝒌𝒍 ) (3) 

The computation of this bottom-up error occurs in the (𝑙 − 1)𝑡ℎ area (Figure 2) and is transmitted to 171 

the 𝑙𝑡ℎ  area via feedforward projections. The simulations in this paper use a summation of squared 172 

bottom-up errors (𝑒𝑘𝑙

𝛽
) received from populations in the receptive fields of 𝑝𝑘𝑙

, which is given as 173 

 𝑒𝑘𝑙

𝛽
= ∑ (𝜷𝒌𝒍

𝒋𝒍−𝟏)
2

𝑘+𝑠𝑙−1

𝑗=𝑘

 (4) 

In general, other biologically plausible functions of bottom-up errors can also be used in simulations. 174 

Along with bottom-up errors, neurons in the 𝑙𝑡ℎ  area also receive a top-down prediction from 175 

neurons in the (𝑙 + 1)𝑡ℎ  area. Due to an overlap of (𝑠𝑙+1 − 1) between two consecutive receptive 176 

fields in area (𝑙 + 1), populations in the 𝑙𝑡ℎ  area will be present in the projective fields of 𝑠𝑙+1 177 

populations in the (𝑙 + 1)𝑡ℎ area (Figure 1A). Populations in the 𝑙𝑡ℎ  area whose receptive fields are 178 

closer to the boundary of the visual space are an exception to this property as these neurons will be 179 

present in the projective fields of fewer than 𝑠𝑙+1 populations. Here, we will focus on the general 180 

case. The population 𝑝𝑘𝑙
 will receive top-down predictions from neuronal populations 𝑝(𝑘−𝑠𝑙+1+1)𝑙+1

 181 
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through 𝑝𝑘𝑙+1
. The error based on the top-down prediction of the neuronal activity of the population 182 

𝑝𝑘𝑙
 generated by the population 𝑝𝑘𝑙+1

 is computed as 183 

 𝜷𝒌𝒍+𝟏

𝒌𝒍 = (𝒚𝒌𝒍
− �̂�𝒌𝒍

𝒌𝒍+𝟏) (5) 

The computation of this top-down error occurs in the 𝑙𝑡ℎ  area (Figure 2). In turn, this error will also 184 

constitute the bottom-up error for the population 𝑝𝑘𝑙+1
. Thus, whether an error signal is labeled 185 

bottom-up or top-down is defined relative to the area under scrutiny. The superscript and subscript 186 

in 𝜷𝒌𝒍+𝟏

𝒌𝒍  do not indicate a direction of signal propagation. The summation of squared errors due to 187 

the top-down predictions received by 𝑝𝑘𝑙
 from 𝑝(𝑘−𝑠𝑙+1+1)𝑙+1

 through 𝑝𝑘𝑙+1
 is denoted by 𝑒𝑘𝑙

τ  and is 188 

given as 189 

 𝑒𝑘𝑙

𝜏 = 𝜂 ( ∑ (𝜷𝒊𝒍+𝟏

𝒌𝒍 )
2

𝑘

𝑖=𝑘−𝑠𝑙+1+1

) (6) 

where 𝜂 was set to one for all models unless specified otherwise (see Discussion). In addition, we 190 

employ 𝐿1-regularization to prevent high neuronal activities. The error due to regularization (which 191 

is symbolized by 𝜌) is given as: 192 

 𝑒𝒚𝒌𝒍

𝜌
= |𝒚𝒌𝒍

| (7) 

The neuronal activity of a given population is estimated by performing gradient descent on the sum 193 

of errors computed in Equations 4, 6 and 7. This results in the following update rule for inferred 194 

causes: 195 

 𝚫𝒚𝒌𝒍
= −𝛾𝑦 ( ∑ 𝜷𝒊𝒍+𝟏

𝒌𝒍

𝑘

𝑖=𝑘−𝑠𝑙+1+1

+ ∑ (𝜷𝒌𝒍

𝒋𝒍−𝟏)
𝑇

𝑘+𝑠𝑙−1

𝑗=𝑘

𝑾𝒋𝒌𝒍
+ 𝛼𝑦ℓ′ (𝑒𝒚𝒌𝒍

𝜌
)) (8) 

where 𝛾𝑦 denotes the update rate for neuronal activities and 𝛼𝑦 denotes the factor which controls 196 

how strongly the regularization penalty is imposed in comparison to other errors. ℓ′(. ) denotes the 197 

partial derivative of the regularization term. The update rule in Equation 8 constitutes the inference 198 

step of predictive coding. It results in causes that better match with top-down predictions and result 199 

in lower bottom-up errors. Higher-level areas thus influence the representations inferred in lower-200 
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level areas through top-down predictions. Similarly, lower-level areas affect the representations 201 

inferred in higher-level areas via bottom-up errors. To ensure that the neuronal activities do not 202 

become negative after updating, we rectify the neuronal activities after every inference step using 203 

the rectifier function (Equation 2). Note that 𝚫𝒚𝒌𝒍
 depends on the activities of neuronal populations 204 

that represent errors in the (𝑙 − 1)𝑡ℎ and 𝑙𝑡ℎ  areas and the synaptic strengths of the projections 205 

between populations in these two areas (Figure 2). All of this information is available locally to the 206 

population 𝑝𝑘𝑙
. 207 

Moreover, the strengths of the synapses between populations in any two areas are also updated 208 

using gradient descent. As described above, an 𝐿1-regularization is imposed to avoid 209 

indiscriminately high values of synaptic strengths. The error due to this regularization is given as: 210 

 𝑒𝑾𝒌𝒍−𝟏𝒌𝒍

𝜌
= |𝑾𝒌𝒍−𝟏𝒌𝒍

| (9) 

 Based on the errors defined in Equations 4 and 9, the update rule for the synaptic strengths is given 211 

by 212 

 𝚫𝑾𝒌𝒍−𝟏𝒌𝒍
= −𝛾𝑤 (𝜷𝒌𝒍

𝒌𝒍−𝟏(𝒚𝒌𝒍
)

𝑇
+ 𝛼𝑤ℓ′ (𝑒𝑾𝒌𝒍−𝟏𝒌𝒍

𝜌
) ) (10) 

where 𝛾𝑤 denotes the learning rate (governing synaptic weight changes) and 𝛼𝑤 is the factor which 213 

determines how strongly regularization is imposed relative to other errors. The learning rule of 214 

Equation 10 constitutes the learning step of predictive coding. Note that 𝚫𝑾𝒌𝒍−𝟏𝒌𝒍
 depends on the 215 

activity of the population that represents bottom-up errors and the activity of 𝑝𝑘𝑙
 and that these 216 

two groups are postsynaptic and presynaptic relative to each other, respectively (Figure 2). In this 217 

regard, the learning rule in Equation 10 conforms to Hebbian plasticity. 218 

Architecture of the Model without Receptive Fields 219 

In the generative model described above, the inferred representations are optimized to generate an 220 

accurate prediction about causes inferred in the area below. In turn, this prediction can be used to 221 

generate a prediction about causes inferred at the next lower level. This process can be repeated 222 

until a prediction is generated about the sensory input in the lowest area. Using this method, it is 223 
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possible to obtain a reconstruction of the sensory input using representations inferred in any area of 224 

the model. This functionality is shared with autoencoders (Hinton and Zemel, 1994). Here we use 225 

these reconstructions to qualitatively study the fidelity with which information about the sensory 226 

input is preserved in different areas. Our main goal is to study neural response properties in a 227 

cortex-like architecture with feedforward and feedback processing between areas, which deviates 228 

from the structure of autoencoders. Due to presence of overlapping receptive fields, neurons in 229 

each area generate multiple reconstructions of a single sensory input at the lowest level. This makes 230 

it harder to compare the reconstructions obtained using representations inferred in different areas 231 

of the model. To avert this problem, we built a network without receptive fields that is trained by 232 

the same method used for the network with receptive fields. In the network without receptive 233 

fields, each neuron in a given area is recurrently connected to each neuron in the areas below and 234 

above it. This fully connected network contained the same number of layers as the network with 235 

receptive fields and corresponding layers of the two networks contained equal number of neurons. 236 

A single reconstruction of each sensory input was obtained using the representations inferred in 237 

different areas of the network without RFs. Examples of these reconstructions are shown in the 238 

section “Reconstruction of sensory inputs”. Besides the reconstructed sensory inputs, all other 239 

results reported here are based on the results obtained with the network having RFs. 240 

Details of Training 241 

The model was trained using 2000 images of airplanes and automobiles as sensory input and these 242 

were taken from the CIFAR-10 dataset. Each image has a height and width of 32 pixels. Table 1 243 

shows the values of different hyperparameters associated with the architecture and learning rule. 244 

During training, stimuli were presented to the network in batches of 100. For each stimulus in a 245 

batch, the inference step (Equation 8) was executed 20 times in parallel in all areas and then the 246 

learning step (Equation 10) was executed once. Biologically, this corresponds to inferring 247 

representations of a sensory input on a faster time scale and updating the synapses of the 248 
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underlying model on a longer time scale. At the beginning of training, the activity of all neurons in 249 

the network was initialized to 0.1 and the model was trained for 25000 iterations. 250 

      Because the visual input is of equal height and width, populations in areas 1 to 4 can be 251 

visualized in a two-dimensional square grid of, for instance, sizes 26, 20, 14 and 8, respectively. Thus, 252 

areas 1 to 4 consist of 676, 400, 196 and 64 populations, respectively resulting in a total of 5408, 253 

6400, 6272 and 4096 neurons (number of populations times population size), respectively. However, 254 

due to regularization and the rectification of causes after the inference step, some of the neurons 255 

remain inactive for all sensory inputs. These neurons have been excluded from the analysis 256 

conducted in this paper, as they would not be detected by electrophysiological methods. At the end 257 

of a typical training session for a network with the neuron counts given above, 5393, 1280, 694 and 258 

871 neurons were active in areas 1 to 4 of the network, respectively. 259 

      To compute the number of synapses in the network, note that for every feedback synapse that 260 

transmits a prediction, there is a corresponding feedforward synapse that transmits an error (Figure 261 

1C). Thus, the number of feedforward and feedback synapses in the network is equal. The number of 262 

feedback synapses from a population (neurons with identical receptive fields) is equal to the product 263 

of the population size in higher-level and lower-level areas and the receptive field size in the higher 264 

level area. For example, populations in areas 1 and 2 consist of 8 and 16 neurons (Table 1), 265 

respectively, and populations in area 2 have projective fields that extend by 7 units horizontally and 266 

vertically. This results in 6272 (7 ∗ 7 ∗ 8 ∗ 16) feedback synapses from a given population in area 2. 267 

Thus, the total number of synapses between two areas is equal to 794976 (area 0 and 1), 2508800 268 

(area 1 and 2), 4917248 (area 2 and 3) and 6422528 (area 3 and 4; the number of populations times 269 

number of feedback synapses per population), respectively. 270 

 271 

Hyperparameter Meaning Value (with RFs) Value (without RFs) 

𝑁 Number of layers 4 4 
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𝑠𝑙, ∀𝑙 ∈ {1,2,3,4} Size of receptive fields 7 Fully connected 

𝑛1 Number of neurons in a 

population in area 1 

8 5408 

𝑛2 Number of neurons in a 

population in area 2 

16 6400 

𝑛3 Number of neurons in a 

population in area 3 

32 6272 

𝑛4 Number of neurons in a 

population in area 4 

64 4096 

𝛾𝑦 Update rate for inference 0.05 0.0005 

𝛾𝑤 Learning rate  

for synapses 

0.05 0.0005 

𝛼𝑦 Regularization for causes 0.001 0.0001 

𝛼𝑤 Regularization for weights 0.001 0.001 

 

Table 1. Hyperparameter settings used for training the network with and without receptive fields. 

The size of receptive field in the network with receptive fields is equal in both image dimensions. 

Note that the term receptive field (RF) has been used in this table in line with its conventional 

definition. For the network without RFs, 𝑛1, 𝑛2, 𝑛3 and 𝑛4 are equal to the total number of 

neurons in each area. 

 272 

Analysis of Neural Properties 273 

Kurtosis is a statistical measure of the “tailedness” of a distribution. It is more sensitive to infrequent 274 

events in comparison to frequent events in the distribution. A commonly used definition of kurtosis, 275 

termed “excess kurtosis”, involves computing it for a given distribution with respect to the normal 276 

distribution. Under this definition, 3 (i.e., the kurtosis value of the normal distribution) is subtracted 277 
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from the corresponding value of a given distribution. Given a set of observations (𝑥1, … , 𝑥𝑖 , … , 𝑥𝑁), 278 

excess kurtosis, henceforth referred to simply as kurtosis, is computed using the following equation: 279 

 𝜅 =
∑ (𝑥𝑖 − �̅�)4𝑁

𝑖=1

𝑁𝑠4
− 3 (11) 

where �̅� and 𝑠 denote the mean and standard deviation of the observations (𝑁 in total). Based upon 280 

the use of kurtosis as a measure of neuronal selectivity (Lehky et al., 2005) and sparseness (Lehky 281 

and Sereno, 2007) in experimental neuroscience, we employ it as a measure of these properties in 282 

our model. An estimate of kurtosis obtained from responses of a single neuron to all stimuli is used 283 

as an estimate of selectivity. While computing selectivity, 𝑁 will be equal to the number of stimuli. 284 

Similarly, its value obtained from the responses of all neurons to a single stimulus provides an 285 

estimate of sparseness. In this case, 𝑁 will be equal to the number of neurons. 286 

 287 

Results 288 

In this study we worked with two types of Deep Hebbian Predictive Coding networks (DHPC).  The 289 

first type is a model without receptive fields, whereas the second model does have receptive fields. 290 

Below we will first present results from the model without receptive fields. The aim of this first 291 

modelling effort was to examine if the network is well-behaved in the sense that latent 292 

representations of causes generated in higher areas can be effectively used to regenerate the 293 

sensory input patterns in lower areas, as originally evoked by input images. Following this section we 294 

will continue with DHPC networks with receptive fields, because this type of model is better suited 295 

to examine response properties of neurons across the respective areas along the visual processing 296 

hierarchy. 297 

Reconstruction of sensory inputs in networks without receptive fields 298 

For the DHPC networks without receptive fields, we used a model that was trained on an image set 299 

𝑋 to infer causes for an image set 𝑌 that was never presented to the network during training. Set 𝑋 300 

contains images of objects from two classes, i.e. airplanes and automobiles, and set 𝑌 consists of 301 
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images of ten object classes namely airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, 302 

ships and trucks. Note that images of airplanes and automobiles in set 𝑌 were different from images 303 

of these object classes in set 𝑋. For a given stimulus in 𝑌, a separate reconstruction of this stimulus 304 

is obtained using the causes inferred from each area of the model. For a given area, the inferred 305 

causes transmit a prediction along the feedback pathways to the level below. This process is 306 

repeated throughout the hierarchy until a predicted sensory input is obtained at the lowest level. 307 

Figure 3 shows examples of reconstructions of novel stimuli obtained using the causes inferred in 308 

each area of the model, along with the original sensory input. The first three exemplars are of 309 

airplanes and an automobile which belong to object classes that were used to train the model. The 310 

other exemplars are reconstructions of a frog, a bird, a horse and a ship, which were never 311 

presented to the network during training, neither as exemplar nor as object class. We conclude that 312 

the reconstructions become somewhat blurrier if the generative process is initiated from higher, as 313 

opposed to lower, areas of the model, but also that the natural image statistics are captured 314 

reasonably well. This is remarkable because these inputs had never been presented to the network 315 

before.  316 

Orientation selectivity in a lower area of the network with receptive fields 317 

Neurons in V1 respond selectively to sensory input consisting of edges oriented at specific angles in 318 

their receptive fields (Hubel and Wiesel, 1959). The neurons in layer 1 of the model with receptive 319 

fields also exhibited this property. Importantly, this orientation selectivity was not hand-crafted or 320 

built into the network a priori, but emerged as a consequence of training the network on inputs 321 

conveying naturalistic image statistics. After training, the strengths of feedback synaptic connections 322 

between area 1 and 0 of the model resembled Gabor-like filters. Figure 4 shows plots of strengths of 323 

synapses onto a given neuron as representative examples for area 1 of the model (Figure 1C). These 324 

plots were obtained by normalizing the feedback weights of a representation neuron in area 1 to the 325 

interval [0, 1]. Each image is obtained by rendering the normalized weights of a single 326 

representation neuron in area 1 as pixel intensities where each pixel corresponds to a specific 327 
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neuron in area 0 in the receptive field of this representation neuron. Conventionally, orientation 328 

selectivity is viewed as a property of feedforward projections to V1. The model described here uses 329 

symmetric feedforward and feedback weights (apart for their difference in sign, fig. 2), therefore the 330 

orientation selectivity illustrated here is applicable to both feedforward and feedback connections 331 

between areas 0 and 1.  332 

Image Selectivity 333 

Neurons in different brain areas situated along the sensory processing pathways exhibit tuning to 334 

features of increasing complexity. Whereas neurons in the primary visual cortex (V1) respond to 335 

edges of different orientations (see above) neurons in V4 respond selectively to e.g. textures and 336 

colors (Okazawa et al., 2015) and neurons in IT show selectivity to particular faces or other objects 337 

(Gross et al., 1972; Logothetis and Pauls, 1995; Perrett et al., 1992; Tanaka et al., 1991). This 338 

property is manifested by differences in neuronal selectivity across areas of the visual cortical 339 

hierarchy with later stages exhibiting higher selectivity in comparison to earlier stages. For our 340 

model, we asked whether analysis of area-wise neuronal activity would also reveal increasing 341 

selectivity from the lowest to highest areas. 342 

     Figure 5 shows the distribution of image selectivity for neurons in each area of the model. The 343 

kurtosis was computed for each neuron based on its responses to all stimuli presented to the model 344 

(Equation 11) and used as a measure of image selectivity for a single neuron (Lehky et al., 2005). The 345 

figure shows that the mean image selectivity increases from the lowest to the highest area in the 346 

model. We compared the average selectivity in a given area with every other area in the model using 347 

Mann-Whitney’s U test with Bonferroni correction for multiple comparisons. For all comparisons, 348 

the null hypothesis was rejected with 𝑝 < 5.10−15. Thus, image selectivity strongly increased when 349 

ascending in the visual cortical hierarchy. Importantly, this property was emergent in the sense that 350 

it was not preprogrammed in our algorithm. 351 

Sparseness 352 
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A feature related to neuronal selectivity is sparseness, reflecting how scarcely or redundantly a 353 

feature or object is coded across the population in a given area (Montijn et al., 2015; Perez-Orive et 354 

al., 2002; Vinje and Gallant, 2000; Willmore and Tolhurst, 2001). A high or low sparseness can easily 355 

arise in a population with large variations in average neuronal activity. For instance, consider a 356 

population in which a single neuron has an average firing rate of 100 spikes/sec and all other 357 

neurons have an average firing rate of 10 spikes/sec. In this population, the peak in the distribution 358 

of population activity due to the neuron with high average activity will result in high sparseness. To 359 

overcome this problem in the analysis, we normalized the activity of all model neurons using their 360 

average activity and an individual estimate of kurtosis was obtained for each stimulus across all 361 

neurons in each area based on this normalized activity. Figure 6 shows a distribution of sparseness in 362 

each area. We found that the average value of sparseness across all stimuli in each area increased 363 

systematically from the lowest to highest area. For validation, we conducted a pairwise comparison 364 

of sparseness values in different areas using Mann-Whitney’s U test with Bonferroni correction for 365 

multiple comparisons. For all comparisons between areas, the null hypothesis was rejected with 𝑝 <366 

5.10−34 in all cases. 367 

The relationship between the response magnitude of neurons, selectivity and sparseness 368 

We next studied the relationship between a neuron’s average response to all stimuli and its 369 

selectivity. Similarly, for each area of the model we also investigated the relationship between a 370 

population’s average response to a stimulus and its sparseness. The selectivity in different areas of 371 

the model exhibited wide variations. For the purpose of visualizing how the relationship between 372 

selectivity and mean neuronal activity evolves from lower to higher areas, we looked at the 373 

relationship between the log of selectivity and mean neuronal activity. We observed that, in all 374 

areas, there was a negative correlation between the selectivity and average neuronal activity, i.e. 375 

neurons with high selectivity had low average activity. Pearson correlation coefficients of -0.23, -376 

0.05, -0.55 and -0.42 were obtained between selectivity and mean responses in areas 1 to 4, 377 
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respectively. This has also been reported in experimental data (Lehky et al., 2011). Further, this 378 

negative correlation became stronger from lower to higher areas in the model. 379 

     We conducted a similar study on the relationship between sparseness and average population 380 

activity. It has been reported in experimental data that the average population response shows little 381 

variation for different values of sparseness (Lehky et al., 2011). This was also the case for all model 382 

areas as we observed only weak correlations between sparseness and average population 383 

responses. Pearson correlation coefficients of -0.18, 0.02, 0.23 and 0.18 were obtained between 384 

sparseness and mean responses in areas 1 to 4, respectively. These similarities between the 385 

statistical properties of model neurons and data from animal experiments arise without being 386 

imposed by network design or training procedure.  387 

Impact of neuronal selectivity and neuronal response range on sparseness 388 

Although selectivity and sparseness represent different aspects of neuronal activity, they are 389 

interconnected quantities, i.e. a population consisting of highly selective neurons will also exhibit 390 

sparseness in the population response to a single stimulus. However, it has also been observed in 391 

data recorded from macaque IT that the dynamic range of neuronal responses correlates more 392 

strongly with sparseness than selectivity (Lehky et al., 2011). Here, dynamic range was quantified 393 

using the interquartile range of neuronal responses, which is the difference between the 75th and 394 

25th percentiles of a neuron’s responses to the individual stimuli presented. We asked which of the 395 

two factors, selectivity or dynamic range, contributed to sparseness in the responses of model 396 

neurons in different areas.  397 

       To examine the interactions between these network parameters, we estimated sparseness in 398 

three different sets of neuronal populations that differed in terms of selectivity and dynamic range. 399 

Figure 7 shows the histogram of interquartile ranges for neurons in each area. It can be observed 400 

that the dynamic range gradually increased from lower to higher areas as more neurons shifted 401 

away from low range values. For each area, we considered a first subset, denoted by ‘SNR’ (i.e., 402 

Selective Neurons Removed), obtained by removing activities of the top 10% of neurons having the 403 
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highest selectivity in that area. To obtain the second subset of each area, denoted by ‘DNR’ (i.e. 404 

Dynamic range Neurons Removed), we eliminated the activities of the top 10% of neurons with the 405 

broadest interquartile ranges. Figure 8 also shows the distribution of sparseness of the third set, viz. 406 

including all neurons of an area (denoted by ‘All’) as well as for the two subsets described above. It 407 

can be clearly seen that sparseness is more dependent on neurons with high selectivity in 408 

comparison to neurons that exhibit a broad dynamic range. Thus, our model shows a strong 409 

influence of neuronal selectivity on sparseness. However, this behavior of the model was dependent 410 

on regularization (see Discussion). 411 

Object classification performance 412 

We next studied the ability of the model with RFs to infer causes that generalize across different 413 

exemplars of a given object class. The exemplars varied in terms of object identity, viewing angle, 414 

size, etc.  For this purpose, we trained separate Support Vector Machine (SVM) classifiers using 415 

latent representations of causes in each area of the model. Using a subset of the stimuli with which 416 

the model was trained, a linear SVM classifier was optimized to distinguish between representations 417 

of exemplars of two object classes, i.e. airplanes and automobiles. The remaining stimuli were used 418 

to estimate the performance of the SVM classifier which thus yields an estimate of the model's 419 

capacity to generalize across different exemplars of the same class. 420 

      To examine whether the representations in different areas exhibited better generalization 421 

progressively across ascending areas, we optimized a linear SVM classifier using representations for 422 

1500 stimuli randomly chosen from both classes and then computed its classification performance 423 

on the remaining 500 stimuli. This analysis was repeated 100 times by bootstrapping without 424 

replacement the samples selected for optimizing the linear SVM classifier. Figure 9B shows the 425 

classification performance of the SVM classifier for representations in different areas of the model. 426 

First, we observe a classification accuracy well above chance level in all areas (one sample t-test; p-427 

values are lower than 8.10−130 for all areas). Second, we observed a modest but systematic increase 428 

in the classification performance from the lowest to highest area of the model. This shows that 429 
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representations in higher areas can generalize better across unfamiliar exemplars than lower areas. 430 

To validate our results, we compared the accuracy in the topmost area with accuracy in other areas 431 

using Mann-Whitney’s U test with Bonferroni correction for multiple comparisons. The maximum p-432 

value of 0.0004 was obtained for the comparison between the accuracies of the topmost area and 433 

area 2. Based on these comparisons, the null hypothesis for all comparisons between areas was 434 

rejected at a significance level of at least 0.01. The maximum p-value of 0.0004 was obtained for the 435 

comparison between the accuracies of the topmost area and area 2.  436 

To ensure that this result was not dependent on the number of stimuli used, we repeated this 437 

analysis with different stimulus sets. For this purpose, we optimized the SVM classifier on stimulus 438 

sets containing 1000 to 1500 stimuli in steps of 100 and evaluated its performance on the remaining 439 

stimuli. Figure 9C shows the performance of the classifiers optimized using different numbers of 440 

stimuli for different areas of the model. The generalizing capacity of the inferential representations 441 

in higher areas of the model was better than in the lower areas irrespective of the number of stimuli 442 

used to optimize the SVM classifier. For all comparisons, the null hypothesis could be rejected at a 443 

significance level of at least 0.05. The lowest level of significance was obtained for the comparison 444 

between the accuracies of the top area and area 2 (𝑝 < 1.10−21). Again, this model behavior arose 445 

emergently as it was not pre-programmed or built a priori into the network design. 446 

 447 

Discussion  448 

First, we described a general method to build neurobiologically plausible deep predictive coding 449 

models for estimating representations of causes of sensory information. Different hyperparameters 450 

of the network can be modified to model various aspects of cortical sensory hierarchies; for 451 

instance, 𝑁 can be varied from 1 to 5 to study cortical hierarchies of increasing depth. This 452 

provides a mechanism to develop deep neural network models of information processing in the 453 

brain that can be used to simultaneously study properties of lower-level as well as higher-level brain 454 

areas. The models were trained using unsupervised, Hebbian learning and both the inference and 455 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.07.937292doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.937292
http://creativecommons.org/licenses/by/4.0/


 21 

learning steps utilized only locally available information. Second, we found that several properties of 456 

neuronal and population responses emerge in the model without being imposed by network design 457 

or by the inference and learning steps. Image selectivity increased systematically from lower levels 458 

to higher levels and the average sparseness of inferred representations increased from lower levels 459 

to higher levels, which is in line with at least some experimental study (Okazawa et al., 2017). 460 

Hereby DHPC networks provide a biologically plausible solution to the problem of ‘combinatorial 461 

explosion’ which would arise if the occurrence of strongly object-selective (“grandmother cell”) 462 

responses has to be explained from the combination of individual, low-level features (Barlow, 1972; 463 

Riesenhuber and Poggio, 1999). 464 

Furthermore, we studied object classification properties of the causes inferred by the model. The 465 

classifiers optimized using representations in higher areas exhibited better performance in 466 

comparison to those using lower-area representations. Thus, predictive coding may provide a useful 467 

basis for the formation of semantic concepts in the brain, at least when combined with networks 468 

performing categorization (e.g. in the medial temporal lobe (Quiroga et al., 2005) or prefrontal 469 

cortex (Freedman et al., 2003)). 470 

Reproduction of experimental findings by the model 471 

The increase in image selectivity in ascending areas of DHPC networks has also been reported in 472 

experimental studies (Gross et al., 1972; Logothetis and Pauls, 1995; Tanaka et al., 1991).  This can 473 

be attributed to the property that neurons in each model area are strongly active when the neurons 474 

within their receptive field exhibit a particular pattern of activity. For example, neurons in the lowest 475 

area of the model develop Gabor-like filters that resemble oriented edges and have been shown to 476 

form a representation code for natural scenes that consists of statistically independent components 477 

(Bell and Sejnowski, 1997). These low-level neurons will be strongly active when a particularly 478 

oriented edge is present within its receptive field. Similarly, a neuron at the next level will be 479 

strongly active when neurons within its receptive field at the lower level exhibit a specific pattern of 480 

activity. This implies that a neuron at this higher level will only become active when a particular 481 
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configuration of edges (rather than a single edge) occurs at a specific location in visual space, 482 

resulting in increased in complexity of features detected by neurons at this level. This increase in 483 

feature complexity of features detected by neurons in successive model areas leads to a 484 

corresponding increase in the average neuronal selectivity when ascending the hierarchy. 485 

      It could be argued that regularization will automatically lead to an increase in average selectivity 486 

in neuronal responses across model areas. To examine this possibility, we also trained models with 487 

no regularization (neither for synaptic weights nor inferred causes) while all other hyperparameters 488 

remained unchanged. These models also exhibited an increase in average selectivity across model 489 

areas (data not shown). However, adding regularization did result in an overall increase in average 490 

selectivity in each of the model areas. By definition, the responses of a selective neuron will have a 491 

high interquartile range. Thus, the increasing selectivity across model areas also leads to an increase 492 

in the average interquartile range across ascending model areas (Figure 7). 493 

Unlike selectivity, there is no consensus in the literature on how sparseness varies along the cortical 494 

hierarchy due to a lack of consistency in experimental data. Responses of macaque V4 neurons were 495 

reported to exhibit higher sparseness in comparison to V2 neurons (Okazawa et al., 2017). In line 496 

with our results, these findings indicate that sparseness increases from lower-level to higher-level 497 

areas. In another study, however, it was shown that sparseness estimates based on responses of 498 

macaque V4 neurons did not differ significantly from estimates for IT neurons (Rust and DiCarlo, 499 

2012). Both of the above experimental studies quantified sparseness using the same two measures, 500 

namely the sparseness index described by (Vinje and Gallant, 2000) and entropy (Lehky et al., 2005). 501 

Although sparseness was quantified here using kurtosis, its estimates across different areas of the 502 

model exhibited the same relationship with one another when Vinje and Gallant’s (Vinje and Gallant, 503 

2000) index of sparseness was used (figure not shown).  504 

Regulation of sparseness 505 

Regularization had a strong influence on both average sparseness in each model area and on the 506 

relationship between average sparseness in different model areas. In the absence of any 507 
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regularization, average sparseness first increased and then decreased when ascending across areas 508 

(Figure S1). This can be attributed to the network property that all areas in the model infer causes 509 

that reconcile bottom-up and top-down information (Equation 4 and 6) received by an area, except 510 

for the top area where causes are determined only by bottom-up information. This lower constraint 511 

on the top area leads to a decrease in sparseness in areas farther away from the sensory input layer. 512 

Imposing regularization only on representations inferred in areas farther from the top to 513 

compensate for this lack of constraint did not alter this pattern of average sparseness across model 514 

areas (Figure S2). This is because sparse neuronal activity in higher areas induced by regularization 515 

results in sparse top-down predictions for lower areas which indirectly induce sparseness in 516 

representations inferred in lower areas. In this manner, sparseness induced in higher areas spreads 517 

throughout the network. Thus, regularization in higher areas leads to an increase in average 518 

sparseness in all model areas but does not alter the overall pattern of sparseness across different 519 

model areas. However, sparseness imposed by higher areas onto lower areas can be weakened by 520 

scaling down the errors due to top-down feedback, for example, using a value of 𝜂 < 1 in Equation 521 

6. Thus, sparseness depends strongly on multiple factors which include regularization, hierarchical 522 

position of an area, and the weights given to bottom-up and top-down errors. These results may 523 

provide an explanation for inconsistent results regarding sparseness observed in experimental data. 524 

In experiments, sparseness has been compared across two brain regions at most, and our model 525 

suggests that results obtained from such studies may not generalize to other brain regions. 526 

       Regularization was also a factor that affected whether high selectivity neurons or high dynamic 527 

range neurons contributed strongly towards sparseness in a given area (Figure 8). In the absence of 528 

regularization, sparseness in lower areas was determined by high selectivity neurons, but in higher 529 

areas sparseness was determined by high dynamic range neurons (Figure S3). This can be attributed 530 

to the network property that the bottom-up input to lower areas is more strongly driven by a fixed 531 

sensory input whereas in higher areas the bottom-up drive is based on constantly evolving 532 

representations. Stochastic fluctuations resulting from these evolving representations at the 533 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.07.937292doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.937292
http://creativecommons.org/licenses/by/4.0/


 24 

inference step in higher areas lead to higher dynamic response ranges in these very areas. As a 534 

result, sparseness is more strongly determined by high dynamic response range neurons in higher 535 

areas, which is in line with the experimental results of (Lehky et al., 2011). However, adding 536 

regularization to the top area in the model constrains neural activity throughout the model, thereby 537 

reducing the dynamic response range of neurons (Figure S4). Furthermore, high regularization leads 538 

to neurons that are active for a small number of images. When the activity of such neurons is 539 

normalized by their mean activity, this can result in very high (relative) activity for some of these 540 

images. An estimate of kurtosis obtained from normalized neuronal activity can thus lead to 541 

arbitrarily high estimates of sparseness (Figure 8). 542 

The relationship between statistical properties (selectivity and sparseness) of inferred 543 

representations is loosely consistent with the idea of ergodicity in experimental data. As defined in 544 

(Lehky et al., 2005), a neural system is termed ‘weakly ergodic’ if the average selectivity of individual 545 

neurons across multiple stimuli is equal to the average sparseness. Experimental evidence for 546 

ergodicity has been reported in multiple cortical areas (Kadohisa et al., 2005; Verhagen et al., 2004). 547 

The average selectivity and sparseness of representations inferred by the model do not satisfy this 548 

equality but there is a close relationship between these two properties, as removal of highly 549 

selective neurons strongly degrades sparseness (Figure 8). Possibly, equality of average selectivity 550 

and sparseness is only satisfied under certain hyperparameter settings. This would require detailed 551 

exploration of the hyperparameter space and will be subject to future research. 552 

Object classification properties 553 

We showed that a binary SVM classifier optimized using higher-level representations performed 554 

better than a classifier trained on lower-level representations. This effect disappears when there is 555 

no regularization penalty (data not shown). Regularization of activity and synaptic strength forces 556 

the network to generate representations in which most neurons are inactive (or less active) and 557 

active neurons capture most of the information in the presented stimuli. This results in a 558 

representational code that allows better discrimination between object classes. Thus, regularization 559 
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helps improve the accuracy of the classifiers based on representations in each area significantly 560 

above chance level. In combination with increasing feature complexity in the network, this leads to a 561 

modest but systematic increase in classification performance from lower to higher-levels in the 562 

network. 563 

Comparison with previous models 564 

Most of the previously proposed predictive coding models utilized specific architectures targeting 565 

simulation of particular physiological phenomena (e.g. mismatch negativity (Wacongne et al., 2012)) 566 

or neuronal response properties (e.g. of V1 neurons (Rao and Ballard, 1999; Spratling, 2010)). (Rao 567 

and Ballard, 1999) proposed one of the first neural network models of predictive coding that was 568 

designed to study receptive field properties of V1 neurons such as Gabor filtering and end-stopping. 569 

With respect to their network, the specific advance of the current study is that it provides a 570 

methodology for building scalable, deep neural network models, e.g. to study neuronal properties of 571 

higher cortical areas. (Spratling, 2008) showed that predictive coding models can reproduce various 572 

effects associated with attention-like competition between spatial locations or stimulus features for 573 

processing. This study employed a network with two cortical regions, each having two to four 574 

neurons. A different study (Spratling, 2010) showed that predictive coding models can reproduce 575 

response properties of V1 neurons like orientation selectivity. These models consisted of a single 576 

cortical region corresponding to V1 and hence a top-down input was lacking. Both studies employed 577 

models with predefined synaptic strengths. In contrast, DHPC networks employ a Hebbian rule for 578 

adjusting synaptic strengths and estimating representations. They can be trained using images of 579 

essentially arbitrary dimensions. Further, DHPC networks not only showed basic properties like 580 

orientation selectivity at lower levels but simultaneously showed high stimulus selectivity and 581 

sparseness in higher areas, thus unifying these different phenomena in a single model. 582 

      (Spratling, 2012b) presented a predictive coding model in which synaptic strengths were adapted 583 

using rules that utilized locally available information. This study used models having one or two 584 

areas with specific, pre-set architectural parameters like receptive field size and size of image 585 
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patches. Using predictive coding (Wacongne et al., 2012) showed that a network model trained to 586 

perform an oddball paradigm can reproduce different physiological properties associated with 587 

mismatch negativity. This study simulated a network architecture with two cortical columns, each of 588 

which had a pre-established selectivity for specific auditory tones. Unlike these studies (Spratling, 589 

2012b; Wacongne et al., 2012), DHPC networks provide a mechanistic framework for developing 590 

predictive processing models with scalable architectural attributes corresponding to biological 591 

analogues like receptive field size and number of brain areas. In the current study, DHPC networks 592 

were scaled up to contain millions of synapses and thousands of neurons whereas most existing 593 

predictive coding models have simulated networks with up to hundreds of neurons and thousands 594 

of synapses. Furthermore, DHPC networks reproduce in the same architecture many attributes of 595 

neuronal responses without explicit a priori incorporation of these properties in the model. 596 

Probably, the approach closest to our work is by (Lotter et al., 2017) who employed networks 597 

consisting of stacked modules. This network was specifically designed to predict the next frame in 598 

videos and was trained using end-to-end error-backpropagation which is unlikely to be realized in 599 

the brain. However, an interesting aspect of this model is the use of recurrent representational units 600 

which allows the network to capture temporal dynamics of the input. This aspect will be an 601 

interesting direction of future research for the unsupervised Hebb-based models we proposed here.  602 

Anatomical substrate of predictive coding 603 

An intriguing question related to predictive coding is its potential neuroanatomical substrate in the 604 

brain. Several studies have looked at possible biological realizations of predictive coding based on 605 

physiological and anatomical evidence (Bastos et al., 2012; Keller & Mrsic-Flogel, 2018; Pennartz, et 606 

al., 2019). DHPC networks are well compatible with insights from several experimental studies on 607 

predictive coding and error signalling (Leinweber et al., 2017; Schwiedrzik and Freiwald, 2017) and 608 

cortical connectivity (Douglas and Martin, 2004; Rockland and Pandya, 1979). However, some 609 

aspects of predictive coding that were highlighted by experimental studies have not yet been 610 

explicitly modeled by the current DHPC networks. A combination of experimental and modelling 611 
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studies predicts that neurons coding inferential representations are present in superficial as well as 612 

deep layers of sensory cortical areas (Pennartz et al., 2019). Representation neurons in the deep 613 

layers are proposed to transmit top-down predictions to error neurons located in the superficial 614 

layers of the lower area they project to (Bastos et al., 2012; Pennartz et al., 2019). These error 615 

neurons also receive input from local representation neurons in superficial layers of the same area 616 

and transmit bottom-up errors to the granular layer of the higher area they project to. This 617 

anatomical configuration was not considered in the current DHPC networks because it requires 618 

explicitly modeling various cell types located in different neocortical layers and the interactions 619 

between them. This will be a direction of future research as it will help bridge the gap between 620 

theoretical models and biologically relevant aspects of cortical architectures implementing 621 

predictive coding. 622 
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 804 
 805 

Figure 1. Architecture of the deep predictive coding network with receptive fields. (A) A population 806 

of neurons having identical receptive fields is represented by three overlapping circles. 𝑝𝑘𝑙
 denotes 807 

the 𝑘𝑡ℎ population in the 𝑙𝑡ℎ  area and 𝑠𝑙 is the size of the receptive field of all populations in the 𝑙𝑡ℎ  808 

area. Both 𝑠𝑙 and 𝑠𝑙+1 have been set to 3 here. For this value of 𝑠𝑙, the populations 𝑝𝑘𝑙−1
 through 809 

𝑝(𝑘+2)𝑙−1
 constitute the receptive field of the population 𝑝𝑘𝑙

 (their connections are represented by 810 

black lines). Similarly, for this value of 𝑠𝑙+1, 𝑝𝑘𝑙
 will be present in the projective fields of populations 811 

𝑝(𝑘−2)𝑙+1
 through 𝑝𝑘𝑙+1

. The populations within the projective fields of 𝑝(𝑘−2)𝑙+1
, 𝑝(𝑘−1)𝑙+1

 and 𝑝𝑘𝑙+1
 812 

have been shown using red, blue and green arrows, respectively. Their connections with 𝑝𝑘𝑙
 are 813 

rendered in full color while other connections are shown in light colors. (B) For processing images, 814 

neuronal populations in each area can be visualized in a two-dimensional grid. Each population 815 

exhibits a two-dimensional receptive field (the receptive field of an example population in a higher-816 

level area is shown in green). As a result, the receptive fields of two different populations can exhibit 817 

different overlaps horizontally and vertically. The receptive fields of two horizontally adjacent 818 
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populations (black and blue) overlap completely in the vertical direction and partially in the 819 

horizontal direction. Similarly, the receptive fields of two vertically adjacent populations (black and 820 

brown) overlap completely in the horizontal direction and partially in the vertical direction. (C) An 821 

overview of the network with 𝑛𝑙 = 1 for all areas. Sensory input is presented to the network 822 

through Area 0. Activity of neurons in areas 1-4 is represented by tiles in grayscale colors.  The green 823 

square in a lower area denotes the receptive field of the population represented as a red tile in the 824 

higher area. 825 
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 827 

 828 

Figure 2. Biologically motivated realization of deep predictive coding. Each rectangle denotes a 829 

population of neurons that represents a specific signal, computed in predictive coding. The 830 

particular signal is denoted by the text inside the circle. The populations that compute errors are 831 

denoted by red blocks and the populations that represent inferred causes are denoted by blue 832 

blocks. Arrows represent excitatory connections and circles denote inhibitory connections (note that 833 

inhibitory interneurons were not explicitly modelled here). The connections that are conveying 834 

information that is required for the inference and learning steps of predictive coding are shown as 835 

black lines and other connections are shown in grey. See main text for explanation of symbols. 836 
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 838 
 839 

Figure 3. Examples of reconstructions obtained using causes inferred by the trained model 840 

without receptive fields. Each column represents an example of a sensory input. The three 841 

leftmost images represent novel stimuli from object classes used in training whereas other 842 

images are from object classes not used in training. The top row shows the novel sensory 843 

input that was presented to the network to allow it to construct latent representations 844 

across the areas. Rows 2 to 5 show the reconstructions of the sensory input obtained using 845 

the latent representations in the corresponding areas of the model. It can be observed that 846 

the reconstructed sensory input faithfully reproduces the novel originals, although the 847 

lower areas regenerate the inputs more sharply.  848 
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 849 
 850 

Figure 4. Emergence of orientation selectivity in the lowermost area (area 1) of a trained model with 851 

receptive fields. Plots show normalized synaptic strengths for connections between area 1 and 0 (i.e. 852 

the input layer) of the model. Each box shows a symbolic representation of synaptic strengths from a 853 

randomly selected area 1 neuron to all area 0 neurons within its receptive field (right panel). Darker 854 

regions in the images correspond to synaptic strengths closer to zero and brighter regions in the 855 

images correspond to strengths closer to 1. It can be observed that receptive fields of many cells 856 

contain non-isotropic patches imposing orientation selectivity on neural responses in area 1. 857 
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Figure 5. Image selectivity of model neurons. (A-D) Distribution of image selectivity of 862 

neurons in each area of the model (top panels; A: lowest area/Area 1; D: highest area/Area 863 

4). The mean value of neuronal image selectivity for each area is shown in the top right 864 

corner of the corresponding plots. (Bottom panel) The activity of a randomly chosen neuron 865 

in each corresponding area has been sorted according to its response strength for all stimuli 866 

presented to the network. It can be observed that the average selectivity of neurons 867 

increases from lower to higher areas in line with experimental data. 868 
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 870 

Figure 6. Sparseness in neuronal activity across ascending areas of the model. Sparseness was 871 

measured as the kurtosis across all neuronal responses in a given area and given a single stimulus. 872 

The mean value of sparseness is computed by averaging these estimates of kurtosis across all 873 

stimuli. (A-D) Distribution of sparseness in each area. The mean value of sparseness for each area is 874 

shown in the top right corner of each plot. It can be noted that the average sparseness of all neurons 875 

in model areas increases from lower to higher areas in agreement with some of the experimental 876 

studies.  877 
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 878 
 879 

 880 

Figure 7. (A-D) Distribution of the dynamic range of neurons computed as the interquartile range of 881 

the neuronal responses in a given area across all stimuli. The mean value for each area is computed 882 

by averaging across interquartile ranges for all neurons in that area.  883 
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 885 
 886 

Figure 8. Effect of high selectivity and high dynamic response range neurons on sparseness. 887 

Histogram of sparseness for three different populations of neurons. The distribution of 888 

sparseness for all neurons is shown in blue. The population in which the top 10%  most 889 

selective neurons were removed (SNR) is shown in dark green and light brown color denotes 890 

the populations in which neurons with high dynamic response range were removed (DNR). 891 

Values represent the mean sparseness estimates for the different populations in 892 

corresponding colors. In all areas of the model (except area 1) it can be observed that the 893 

mean sparseness drops much more strongly on removal of highly selective neurons in 894 

comparison to removal of neurons with high dynamic range.  895 
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 896 

Figure 9. Object classification performance based on the representations of inferred causes across 897 

ascending areas. (A) Method used for computing the accuracy of a classifier based on causes, in this 898 

case, inferred in area 1. The inferred causes for a given stimulus are presented to a Support Vector 899 

Machine (SVM) classifier whose output is used to determine the predicted class (airplanes vs cars) of 900 

a given stimulus. This procedure is repeated for all areas. (B) Boxplot of classification performance in 901 

different areas using 1500 randomly selected samples for optimization. Horizontal lines of the boxes 902 

denote the first, second and third quartiles. Whiskers represent the entire range of data and circles 903 

denote outliers. The second quartile in all areas was significantly above chance level accuracy (one 904 

sample t-test, *𝑝 < 0.05). The performance of the classifier optimized using area 4 representations 905 

was significantly higher than the performance of classifiers of other areas (Mann-Whitney's U test 906 

with Bonferroni correction, *𝑝 < 0.05). (C) Boxplot of classification performance in different areas 907 
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using different numbers of samples for optimization. The number of samples did not affect the 908 

conclusions observed in (B) (Mann-Whitney's U test with Bonferroni correction, *𝑝 < 0.05). 909 
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Supplementary Figures 911 

 912 
 913 

Figure S1. Sparseness in neuronal activity across ascending areas in a linear model without 914 

regularization of weights and activity. Sparseness was measured as the kurtosis across all neuronal 915 

responses in a given area and given a single stimulus. The mean value of sparseness (top right 916 

corner) was computed by averaging these estimates of kurtosis across all stimuli. (A-D) Distribution 917 

of sparseness in each area.  We used models with a linear activation function as exemplars of 918 

models without regularization because ReLu enforces neural activity to be always positive, thereby 919 

requiring a strong regularization penalty. In the absence of regularization, the average sparseness in 920 

the model increased modestly from areas 1 and 2 and then decreased in areas 3 and 4. Despite its 921 

modest effect size, this pattern was observed across multiple models with a varying number of 922 

areas. This is attributed to the network property that all areas in the model (except the top area) 923 

infer causes that reconcile bottom-up and top-down information (Equation 4 and 6) whereas causes 924 

in the top area are only determined by bottom-up information. The lower constraint on the top area 925 
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leads to lower sparseness in this area. This effect was not limited to the top area alone; it was 926 

generally applicable to areas in the hierarchy that were farther away from the sensory input layer.  927 

 928 

 929 
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 931 
 932 

 933 

Figure S2. Sparseness in neuronal activity across ascending areas in a linear model with 934 

regularization only in the top area. Sparseness was quantified as in fig. S1. The mean sparseness (top 935 

right corner) was computed by averaging these estimates of kurtosis across all stimuli. (A-D) 936 

Distribution of sparseness in each area. Having regularization only in the top area presents an 937 

interesting case because this indirectly regularizes all other model areas. Regularization-induced 938 

sparseness in area 4 results in sparse top-down predictions propagating to area 3, which indirectly 939 

induces sparseness in area 3 representations. Compared to Figure S1, regularization results in an 940 

increase in sparseness in area 4 and indirectly leads to an increase in sparseness in areas lower than 941 

area 4. This effect is stronger in area 3 and becomes weaker as one moves away from the top area.  942 
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 944 

Figure S3. Effect of high selectivity and high dynamic response range neurons on sparseness 945 

in a linear model with no regularization. (A-D) Histogram of sparseness for three different 946 

populations of neurons. The distribution of sparseness for all neurons has been shown in 947 

blue. The population in which the top 10% of most selective neurons was removed (SNR) is 948 

shown in dark green and light brown color denotes the populations in which neurons with 949 

high dynamic response range were removed (DNR). Values in top right corner represent  950 

mean sparseness estimates for the different populations in corresponding colors. It can be 951 

observed that high-selectivity neurons contribute to sparseness in the lowest area (area 1) 952 

whereas in areas 2 and 3 the high dynamic range neurons contribute to sparseness. Despite 953 

modest effect sizes, this pattern was observed across multiple model variants. The effects 954 

are attributed to the network property that area 1 receives a bottom-up input based on a 955 

fixed visual image. Other areas in the network receive a bottom-up drive based on a 956 
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constantly evolving set of latent representations. This leads to higher dynamic ranges in 957 

areas 2 to 3 and, as a result, sparseness is strongly determined by the dynamic response 958 

range in these areas.  959 

 960 

  961 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.07.937292doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.937292
http://creativecommons.org/licenses/by/4.0/


 49 

 962 

 963 

Figure S4. Effect of high selectivity and high dynamic response range neurons on sparseness 964 

in a linear model with regularization only in the top area. (A-D) Histograms of sparseness for 965 

three different populations of neurons. The distribution of sparseness for all neurons is 966 

shown in blue. For plotting conventions, see figure S3. As a result of adding regularization to 967 

the top area, the contribution of high dynamic range neurons to sparseness is weakened in 968 

areas 2 and 3 (cf. Figure S3). This effect likely arises because regularization, by definition, 969 

reduces neuronal activity; via a top-down spreading effect this leads to lower dynamic 970 

ranges in areas 2 and 3. In turn, this reduces the contribution of high dynamic range 971 

neurons to sparseness in these areas. 972 
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