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Abstract (180 words) 11 

Deciphering the genetic basis of phenotypic plasticity and genotype x environment 12 

interaction (GxE) is of primary importance for plant breeding in the context of global climate 13 

change. Tomato is a widely cultivated crop that can grow in different geographical habitats 14 

and which evinces a great capacity of expressing phenotypic plasticity. We used a multi-15 

parental advanced generation intercross (MAGIC) tomato population to explore GxE and 16 

plasticity for multiple traits measured in a multi-environment trial (MET) design comprising 17 

optimal cultural conditions and water deficit, salinity and heat stress over 12 environments. 18 

Substantial GxE was observed for all the traits measured. Different plasticity parameters 19 

were estimated through the Finlay-Wilkinson and factorial regression models and used 20 

together with the genotypic means for quantitative trait loci (QTL) mapping analyses. Mixed 21 

linear models were further used to investigate the presence of interactive QTLs (QEI). The 22 

results highlighted a complex genetic architecture of tomato plasticity and GxE. Candidate 23 

genes that might be involved in the occurrence of GxE were proposed, paving the way for 24 

functional characterization of stress response genes in tomato and breeding for climate-25 

adapted crop. 26 

 27 

 28 

Keywords: Tomato, MAGIC population, phenotypic plasticity, genotype x environment 29 
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INTRODUCTION 31 

Plants are sessile organisms which have to cope with environmental fluctuations to ensure 32 

species reproduction for persistence in nature. For a given genotype, the expression of 33 

different phenotypes according to the growing environment is commonly called phenotypic 34 

plasticity (PP) (Bradshaw, 1965). It offers the possibility to plants to adapt to new 35 

environments, notably new locations, changes in climatic conditions or seasonal variations. 36 

In agriculture, the range of environmental variation for crop cultivation may also include 37 

different cultural practices or growing conditions, leading to the expression of PP on 38 

agronomic traits and unstable performance. When different genotypes/accessions are 39 

examined for PP within a species, inter-individual variations in their responses usually lead to 40 

the common phenomenon of genotype-environment (GxE) interaction (El-Soda et al., 2014). 41 

Understanding the genetic mechanisms driving PP and GxE in plants is a crucial step for 42 

being able to predict yield performance of crop cultivars and to adapt breeding strategies 43 

according to the targeted environments. 44 

In plants, the genetic basis of PP has been investigated to assess whether PP has its own 45 

genetic regulation and thus could be directly selected. Three main genetic models, widely 46 

known as the over-dominance, allelic-sensitivity and gene-regulatory models were proposed 47 

in the literature as underlying plant PP (Scheiner, 1993; Via et al., 1995). The over-48 

dominance model suggests that PP is negatively correlated to the number of heterozygous 49 

loci (Gillespie and Turelli, 1989). The heterozygous status is favored by allele’s 50 

complementarity in this case. Allelic-sensitivity and gene-regulatory models are assumed to 51 

arise from the differential expression of an allele according to the environment and epistatic 52 

interactions between structural and regulatory alleles, respectively. The latter assumes an 53 

independent genetic control of mean phenotype and plasticity of a trait. Using a wide range 54 

of environmental conditions, the prevalence of the allelic-sensitivity or gene-regulatory 55 

model in explaining the genetic architecture of PP was explored in different crop species 56 

including barley (Lacaze et al. 2009), maize (Gage et al., 2017; Kusmec et al., 2017), soybean 57 

(Xavier et al., 2018) and sunflower (Mangin et al., 2017). 58 

Quantification of PP is however a common question when analyzing the genetic architecture 59 

of plasticity since different parameters for PP estimation are available as reviewed by 60 

Valladares et al. (2006). At a population level, when multiple genotypes are screened in 61 
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different environments, different approaches can be used to assess plasticity (Laitinen and 62 

Nikoloski, 2019). The most common of these approaches is the joint regression model (Finlay 63 

and Wilkinson, 1963) that uses the average performance of the set of tested genotypes in 64 

each environment as an index on which the individual phenotypes are regressed. This 65 

model, commonly known as the Finlay-Wilkinson regression model, allows to estimate linear 66 

(slopes) and non-linear plasticity parameters (from the residual errors) that presumably have 67 

different genetic basis (Kusmec et al., 2017). If the detailed description of the environments 68 

is available, the environmental index used in the Finlay-Wilkinson regression model can be 69 

replaced by environmental covariates such as stress indexes through factorial regression 70 

models (Malosetti et al. 2013). Thus plasticity could be estimated as the degree of sensitivity 71 

to a given stress continuum (Mangin et al., 2017).  72 

Climate change is predicted to increase the frequency and intensity of abiotic stresses with a 73 

high and negative impact on crop yield (Zhao et al., 2017). Plants respond to abiotic stresses 74 

by altering their morphology and physiology, reallocating the energy for growth to defense 75 

against stress (Munns and Gilliham, 2015). Consequences on agronomic performances are 76 

apparent and detrimental to productivity. The most common abiotic stresses studied across 77 

species are water deficit (WD), salinity stress (SS) and high temperature stress (HT). The 78 

negative impact of these stresses on yield have been underlined for major cultivated crops; 79 

however, positive effects of WD and SS on fruit quality have been observed in fruit trees and 80 

some vegetables notably in tomato (Costa et al. 2007; Mitchell et al. 1991; Ripoll et al. 2014).  81 

Tomato is an economically important crop and a plant model species which led to numerous 82 

studies that contributed much in understanding the genetic architecture of the crop and its 83 

response to environmental variation. However, most of the studies that addressed the 84 

genetic architecture of tomato response to environment were conducted on experimental 85 

populations exposed to two conditions (i.e. control vs stress). Albert et al. (2018) for 86 

example identified different WD-response quantitative trait loci (QTL) in a bi-parental 87 

population derived from a cross of large and cherry tomato accessions. Tomato heat-88 

response QTLs were also identified in different experimental populations including 89 

interspecific and intraspecific populations (Grilli et al., 2007; Xu et al., 2017a; Driedonks et 90 

al., 2018). These studies investigated heat-response QTLs using mostly reproductive traits 91 

screened under heat stress condition. Villalta et al. (2007) and Diouf et al. (2018) 92 
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investigated the genetic architecture of tomato response to SS and identified  different QTLs 93 

for physiological and agronomic traits, involved in salinity tolerance. However, no QTL study 94 

has yet been conducted on tomato plasticity assessed under a multiple stress design, 95 

although the coincidence of different stresses is a more realistic scenario in crop cultivation, 96 

especially with the climate change.  97 

Tomato benefits of a large panel of genetic resources that have been used in multiple 98 

genetic mapping analyses (Grandillo et al. 2013). Bi-parental populations were first used in 99 

QTL mapping and permitted the characterization of plenty of QTLs related to yield, disease 100 

resistance and fruit quality. In the genomic era, new experimental populations were 101 

developed offering higher power and advantages for QTL detection. These include mutant 102 

collections, BIL-populations and multi-parent advanced generation intercross (MAGIC) as 103 

described in Rothan et al. (2019). The first tomato MAGIC population was developed at 104 

INRA-Avignon in France and is composed of about 400 lines derived from an 8-way cross 105 

(Pascual et al. 2015). This population showed a wide intra-specific genetic variation under 106 

control and stress environments and is highly suitable for mapping QTLs (Diouf et al., 2018).  107 

In the present study, we used the 8-way tomato MAGIC population described above and 108 

evaluated its response in a multi-environment trial (MET) design. The population was grown 109 

in 12 environments including control and several stress conditions (WD, SS and HT), and 110 

agronomic traits related to yield, fruit quality, plant growth and phenology were measured. 111 

Different plasticity parameters were computed and used together with mean phenotypes to 112 

decipher the genetic control of response to environmental variation. Multi-environment QTL 113 

analysis was performed in addition to detection of interactive QTLs (QEI) along with QTL 114 

mapping for plasticity traits.  115 

 116 

MATERIALS AND METHODS 117 

Plant material and phenotyping 118 

The MAGIC population was derived from a cross between eight parental lines that belong to 119 

Solanum. lycopersicum and Solanum lycopersicum cerasiforme groups. More details about 120 

the population development can be found in Pascual et al. (2015). Briefly, the population 121 
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was composed of about 400 8-way MAGIC lines that underwent three generations of selfing 122 

before greenhouse evaluations were carried out. In this study, a subset of 241 to 397 lines 123 

was grown in each environment (Supplemental Table 1).  124 

The full genome of each parental line was re-sequenced and their comparison with the 125 

reference tomato genome (‘Heinz 1706’) yielded 4 millions SNPs (Causse et al., 2013). From 126 

these polymorphisms, a genetic map of 1345 discriminant SNPs was developed (Pascual et 127 

al., 2015) and used in the present study for the QTL analysis.  128 

Experimental design 129 

The MAGIC population was grown in three different geographical regions (France, Israel and 130 

Morocco) and four specific stress treatments were applied. Trials were conducted in order 131 

that in a given trial any stress treatment was applied aside a control trial (Supplemental 132 

Table 1). Treatments consisted in water deficit (WD), two levels of salinity – considered here 133 

as low salinity (LS) and high salinity (HS) – and high temperature (HT) stress. Water deficit 134 

was applied by reducing the water irrigation of about 70% and 30% according to the 135 

reference evapotranspiration in Israel in 2014 and 2015, respectively and by 50% in Morocco 136 

in 2015. Salinity treatment was managed as described in Diouf et al. (2018) and the average 137 

electrical conductivity of the substrate (Ec) in Morocco 2016 was 3.76 and 6.50 dS.m-1 for LS 138 

and HS, respectively; while the Ec in the control condition in Morocco 2015 was about 1.79 139 

dS.m-1. For HT stress, plants were sown during the late spring and phenotyped in the 140 

summer 2014 in Israel (HIs14) and summer 2017 in France (HAvi17). During HT treatments, 141 

greenhouse vent opening was managed all along the entire growing season, with opening 142 

the vent only when temperatures rose up to 25°C. Average mean (respectively maximal) 143 

temperatures calculated on daily (24 hours) measurements were of 26°C (respectively 34°C) 144 

for HAvi17 and 33°C (respectively 48°C) for HIs14. Besides stress treatments, local 145 

conventional cultural conditions were applied for control treatments as described in Diouf et 146 

al., (2018).     147 

Environments were considered as any combination of a geographical region, a year of trial 148 

and an applied treatment (Supplemental Table 1). Climatic sensors were installed in the 149 

greenhouses and climatic parameters recorded hourly in all environments. From the climatic 150 

parameters, seven environmental covariates were defined (Supplemental Figure 1) including 151 
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temperature parameters (mean, minimal and maximal daily temperatures and thermal 152 

amplitude), the sum of degree-day (SDD), the vapour-pressure-deficit (Vpd in kPa) and the 153 

relative humidity (RH) within the greenhouse. To characterize the environments, every 154 

covariate was calculated during the period covering flowering time of the population on the 155 

fourth truss. Indeed, phenotypic data analyzed here were mostly recorded on the fourth and 156 

fifth trusses (Supplemental Table 2). Hierarchical clustering was performed with 157 

‘FactoMineR’ R package (Lê et al., 2008) using the environmental parameters to group 158 

environments according to their similarity regarding the within-greenhouse climatic 159 

conditions.  160 

The MAGIC population, the eight parental lines and the four first generation hybrids (one 161 

hybrid per two-way cross) were evaluated for fruit weight (FW) by measuring the average 162 

FW of the third and/or fourth plant truss in each environment. Phenotypic data were 163 

recorded across the different environments for nine supplemental traits related to fruit 164 

quality – fruit fruit firmness (firm) and soluble solid content (SSC); plant phenology – 165 

flowering time (flw), number of flowers (nflw) and fruit setting (fset); plant development – 166 

stem diameter (diam), leaf length (leaf) and plant height (height) and fruit number (nfr). 167 

Details about the phenotyping measurements are in Supplemental Table 2. At least two 168 

plants per MAGIC line were replicated in each environment except in Avi17 (control 169 

condition) where the average phenotype was recorded from single plant measurements. 170 

Parents and hybrids had more replicates per genotype (at least two) and served as control 171 

lines to measure within-environment heterogeneity.  172 

Evaluation of GxE and heritability  173 

Data were first analyzed separately in each environment to remove outliers and correct for 174 

spatial heterogeneity within the environment. The model (1) below was applied to test for 175 

micro-environmental variation within the greenhouse where �����  represents the phenotype 176 

of the individual i, located in row j and position k in the greenhouse; � is the overall mean; ��  177 

and �� represent the  fixed effect of control lines and the random effect of the MAGIC lines, 178 

respectively. In this model, ��  is an index of 0 or 1, defined to distinguish between control 179 

and MAGIC lines; ���� is the random residual error. 180 

����� �  � 	 �� . �� 	  �� . �1  ��� 	 �� 	 �� 	 ����        (1) 181 
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For every trait where row (��) and/or position (��) effects were significant, required 182 

corrections were applied by removing the BLUP of the significant effects from the raw data. 183 

Corrected data were gathered and used in model (2) in order to estimate the broad-sense 184 

heritability (��) and the proportion of variance associated to the GxE (����. ��
���). 185 

��� �  � 	 �� 	 �� . �� 	 �����. �� 	 �� . �1  ��� 	  ����� . �1  ��� 	  ���         186 

(2) 187 

In model (2), ���  represents the phenotype of the individual i, in environment j; �, �� , ��  and 188 

the ��  index are as described in model (1); �����  and �����  are the fixed control lines x 189 

environment interaction effect and the random MAGIC lines x environment interaction 190 

effect, respectively. Within a given environment, random residuals error terms were 191 

assumed to be independent and identically distributed with a variance specific to each 192 

environment. From this model, the proportion of the total genotypic and GxE variance 193 

explained by the model was calculated as the following formula: ����. ��
��� �194 

 ��
��� ���

� 	 ��
����⁄ . The significance of GxE was tested with a likelihood ratio test (at 5% 195 

level) between the models with and without GxE. The broad-sense heritability at the whole 196 

design level (��) was derived from variance components of model (2) and calculated as the 197 

following:  �� �  ��
� ���

�
	

	����


�.�
	  

	��


�.
� �, where ��

� and ��
���  are the variance 198 

components associated to the MAGIC lines and MAGIC lines x environment interaction 199 

effects, respectively. Here ��. � and ��. � represent the number of environments (e.g. 12 200 

for FW) and the average number of replicates over the whole design; ��
�  is the average 201 

environmental variance (i.e. ∑ ��
��/ ��. �).  202 

Phenotypic plasticity 203 

Three different parameters of plasticity were estimated using the Finlay-Wilkinson 204 

regression (3) and a factorial regression (4) models. 205 

In model (3), ��� is the phenotype (average values per environment and genotype) and � the 206 

general intercept. �� and ��  are the effects of the MAGIC line i and environment j, 207 

respectively and  �  represents the regression coefficient of the model. It measures individual 208 

genotypic sensitivity to the environment.  209 
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��� �  � 	 �� 	  ���� 	 ���         (3) 210 

Environments are described here as an index that represents the ‘quality’ of the 211 

environment (i.e. the average performance of all genotypes in a given environment). The ��� 212 

are the error terms including the GxE and ���  ~ N (0, σ2R). From model (3), three parameters 213 

were estimated:  (i) the genotypic means that is equivalent to the sum (� 	 ��) representing 214 

the average performance of a genotype considering all environments; (ii) he  �  terms (slope), 215 

corresponding to genotypic responses to the environments and the variance (VAR) of the ��� 216 

terms that is a measurement of non-linear plasticity (Kusmec et al., 2017). All these 217 

parameters were used then to characterize the genotypes according to their individual 218 

performance and their stability in the MAGIC-MET design. For every trait, reaction norms 219 

were then computed from the model (3).  220 

The factorial regression model (4) was further applied to describe the GxE through the 221 

genotypic response to the different environmental covariates (Tmin°, Tmax°, Tm°, Amp.Th°, 222 

Vpd, RH and SDD). The environmental covariates defined from the daily recorded climatic 223 

variables in the greenhouses were used for this purpose. For each trait, the most significant 224 

environmental covariate (p-value significant at α = 5%) was first identified – by testing 225 

successively the significance of each single covariate – and used as an explanatory variable 226 

represented by �!� in model (4). 227 

��� �  � 	 �� 	 �� 	 "���!� 	 ���      (4) 228 

The "�  terms of the model were extracted and considered as a third plasticity parameter 229 

(SCv). They represent genotypic sensitivities to the most impacting environmental covariate 230 

for each trait. This measurement of plasticity is of interest as it allows identifying the 231 

direction and the intensity of each MAGIC line’s sensitivity to a meaningful environmental 232 

covariate. Throughout the rest of the document, the ‘slope’ and ‘VAR’ estimated from the 233 

Finlay-Wilkinson model and the ‘SCv’ from the factorial regression model will be considered 234 

as plasticity phenotypes – all of these parameters being trait-specific.   235 

Linkage mapping on the genotypic mean and plasticity phenotypes 236 

Linkage mapping was carried out with a set of 1345 SNP markers selected from the genome 237 

resequencing of the eight parental lines. All the MAGIC lines were genotyped for those SNPs 238 
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and at each SNP position, the founder haplotype probability was predicted with the function 239 

calc_genoprob from R/qtl2 package (Broman et al., 2019). Founder probabilities were then 240 

used with the Haley-Knott regression model implemented in R/qtl2 for QTL detection. The 241 

response variables were the genotypic means, slope, VAR and SCv for each trait. To attest 242 

for significance, the threshold for all phenotypes was set to a LOD threshold of -log10 243 

(α/number of SNPs) where α was fixed at 5% risk level. The VAR plasticity parameter was log 244 

transformed for all traits except fset (sqrt transformation) to meet normality assumption 245 

before QTL analysis. The function find_peaks () of R/qtl2 package was used to detect all 246 

peaks exceeding the defined threshold and the LOD score was dropped of two and one units 247 

to separate two significant peaks as distinct QTLs and to define the confidence interval of 248 

the QTLs, respectively.   249 

Multi-environment QTL analysis (QEI)  250 

The strength of QTL dependence on the environment was tested afterward in a second step 251 

by identifying QTLs that significantly interact with the environment (QEI). Two multi-252 

environment forward-backward models (5 & 6) were used to test at each marker position 253 

the effect of the marker x environment interaction.  254 

��� �  � 	 �� 	 ∑ "�� # ���� �
��� 	 ∑ β

���
# ����

�
��� 	 �� 	 ε��            (5) 255 

��� �  � 	 �� 	 ∑ β
���

# ����
�
��� 	 �� 	  ε��           (6) 256 

For model (5) and (6), ��� represents the phenotype (mean value per genotype and per 257 

environment), ��  reflects the fixed environment effect; "��  and β
���

 represent the main and 258 

interactive parental allelic effects (p)at marker k and in environment j for β
���

; ���� is the 259 

probability of the parental allele’s origin for the MAGIC line i; �� stands for a random 260 

genotype effect and the residual errors including a part of the GxE that is not explained by 261 

the detected QTLs are specific to each environment, ε�� ~ N (0, σ2
Rj). 262 

Significant QEI were declared in a two-step procedure. First, the main QTL and the QEI 263 

effects were tested separately in model (5). The QTL detection process was adapted from 264 

the script proposed by Giraud et al., (2017). Every marker showing a significant main QTL or 265 

QEI was added as a fixed cofactor and the significance of the remaining markers tested again 266 
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until no more significant marker was found. All markers selected as cofactors were then 267 

jointly tested in the backward procedure and only significant QEI after the backward 268 

selection are reported. The second procedure used in model (6) to declare QEI consisted in a 269 

slight modification of model (5) where β
���

 represents this time the global (main + 270 

interactive) effect of the marker. It allowed the detection of markers that had a main QTL 271 

effect or QEI just below the threshold detection but whose global effect is significant when 272 

the two components are jointly tested. To determine the threshold level for QEI detection, 273 

permutation test were performed 1000 times on the adjusted means with the function 274 

sim.sightr of mpMap 2.0 R package (Huang and George, 2011). 275 

Data availability: 276 

The phenotypic data, average climatic parameters and genotypic information described in 277 

the present study are available at https://doi.org/10.15454/UVZTAV. The custom scripts 278 

used for the two-stage analysis and QEI modelling are also provided. 279 

 280 

RESULTS 281 

Environment description 282 

The 12 environmental conditions were described by the daily climatic parameters recorded 283 

until the end of flowering of the 4th truss. Seven environmental covariates were selected, 284 

and the environments clustered according to these covariates in four groups (Figure 1). The 285 

first group included all trials from Morocco that were characterized by high thermal 286 

amplitude and low Vpd. The control environments in France (Avi12 and Avi17) clustered 287 

together in the 2nd group, defined by low maximal temperatures and high relative humidity. 288 

HIs14 clustered alone in the 4th group and formed the most extreme environment showing 289 

very high temperatures and dry climate with low relative humidity. The remaining 290 

environments clustered together in the 3rd and most disparate group.  291 

Phenotypic distributions were plotted for each trait regarding the environments where it 292 

was evaluated (Supplemental Figure 2) showing a distribution in accordance with the 293 

clustering of the environments for some traits (firm, height, nflw and leaf). Other traits such 294 
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as FW, nfr, SSC and fset showed a distribution pattern with relatively high within-group 295 

variability, notably for environments clustering in group 1 from Morocco.  296 

GxE in the MAGIC population 297 

Genotype x environment interaction analysis was carried out after correcting data for micro-298 

environmental heterogeneity and removing outliers. As a first step, variance analysis was 299 

conducted with ASReml-R package and the variance components from model (2) used to 300 

estimate the proportion of GxE variance (����. ��
���) and heritability at the whole design 301 

level (��). Significant GxE was found for every trait and the ����. ��
��� varied from 0.15 302 

(for nflw) to 0.68 (for leaf). Although GxE was significant, seven out of the ten measured 303 

traits showed a higher proportion of genotypic variance compared to GxE (Supplemental 304 

Table 3). The broad-sense heritability of the whole design �� was largely variable according 305 

to the trait, varying from 0.18 (nfr) to 0.77 (flw). Its calculation took into account the residual 306 

environment-specific variance which showed different range according to the trait, lowering 307 

heritability of traits such as nfr and fset (Supplemental Table 3). Furthermore, �� at the 308 

whole design level was lower than the heritability computed in single environment 309 

(Supplemental Figure 3).  310 

Afterwards, the proportion of the GxE that could be predicted by the environmental 311 

covariates was assessed following the factorial regression model (4). Across traits, different 312 

environmental covariates significantly explained the GxE #(Supplemental Figure 4). 313 

Considering only the most significant covariate, from 18% (FW) to 47% (fset) of the GxE 314 

(proportion of the sum of squares) could be reliably attributed to the responses of 315 

genotypes to climatic parameters measured within the greenhouses. To perform the 316 

factorial regression model (4), the most important environmental covariate was first 317 

identified for each trait (Supplemental Figure 4). Growth traits, height and leaf were for 318 

example mostly affected by the thermal amplitude and maximal temperature, respectively, 319 

while yield component traits, FW and nfr were particularly sensitive to the sum of degree 320 

day. The vapour pressure deficit (Vpd, kPa) was the most important environmental factor 321 

affecting firm, fset and SSC. Flowering time (flw) and nflw were mostly affected by minimal 322 

temperatures and relative humidity, respectively. Stem diameter was the only trait for which 323 

none of the environmental covariates significantly affected the trait. 324 
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Phenotypic plasticity 325 

Three different parameters were used to quantify phenotypic plasticity in the MAGIC-MET 326 

design. For each trait, the slope and VAR from the Finlay-Wilkinson regression model and the 327 

genotypic sensitivity to the most important environmental covariate (SCv) from the factorial 328 

regression model were extracted. A large genetic variability was observed for plasticity of all 329 

traits (Supplemental Figure 5 and Supplemental Figure 6). Besides, significant correlations 330 

were found between the mean phenotypes and plasticity parameters (Figure 2) for most of 331 

the traits. The best average-performing genotypes were usually the most responsive to 332 

environmental variation as highlighted by the positive correlation between the genotypic 333 

means and slope from the Finlay-Wilkinson regression model. The majority of the MAGIC 334 

lines responded in the same direction to the environmental quality and only a few genotypes 335 

(none in the case of height) showed negative reaction norms; however, more divergent 336 

shapes of reaction norms were observed from the factorial regression model (Supplemental 337 

Figure 5). 338 

QTL mapping  339 

We used genotypic means and plasticity measurements for every trait as input phenotypes 340 

to decipher the genetic architecture of tomato response to abiotic stresses. Considering the 341 

10 traits evaluated, a total of 104 unique QTLs were identified for genotypic means and the 342 

plasticity parameters (Supplemental Table 4). The proportion of QTLs shared between mean 343 

and plasticity was about 21%, lower than QTLs that were plasticity or mean specific (79%). 344 

Considering only the 63 plasticity QTLs, 11 and 7 QTLs were specifically detected with the 345 

SCv and VAR plasticity parameters. Plasticity QTLs were detected on every chromosome 346 

(Figure 3); however, the chromosome 1 showed the highest number with 12 plasticity QTLs. 347 

In this chromosome, plasticity QTLs were detected at least once for every trait. The 348 

chromosome 11 carried a total of 11 plasticity QTLs and interestingly all these QTL (except 349 

ppnflw11.1) co-localized in a short region of the chromosome between 52 and 55 Mbp. The 350 

chromosomes 5, 6 and 10 showed the lowest number (only 3) of plasticity QTLs. For QTLs 351 

detected on genotypic means, the number of QTLs per chromosome varied from 2 QTLs on 352 

chromosomes 6 and 10 to one QTL on chromosome 1.  353 

QTL-by-environment analysis (QEI) 354 
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Multi-environment forward-backward models were used to assess the significance and the 355 

strength of the QTL effects across environments. The QEI analysis was conducted in two 356 

steps using the same set of 1345 SNP markers that were also used for linkage mapping 357 

analysis. This analysis yielded 28 QEI (only those showing significant interaction) for the 10 358 

traits (Supplemental Table 4). The number of QEI varied from 0 QEI for nfr to 6 QEI for flw. 359 

These two traits also demonstrated the lowest and highest ��.  360 

All QEI identified in this step were confronted to the plasticity and genotypic means QTLs 361 

using the physical positions of the QTLs and their confidence intervals. Interestingly, this 362 

comparison revealed that all the detected QEI were also identified using either genotypic 363 

means or plasticity parameters, in the linkage mapping analysis, except two QEI located on 364 

the same region of chromosome 6 (flw6.1 and firm6.1). Among the 106 unique QTLs 365 

identified on genotypic means, PP and QEI, a notable number of QTLs were specific 366 

representing 30 and 32% for plasticity and genotypic means, respectively (Figure 4).  Eight 367 

QTLs involving five different traits (flw1.1, fw2.1, fw2.2, fw11.2, leaf6.1, nflw11.2, SSC1.2 and 368 

SSC9.1) were identified with all the three approaches highlighting their robustness and 369 

susceptibility to environmental variation. 370 

Genetic location of the MAGIC-MET QTLs  371 

The physical positions based on the SL2.50 version of the reference genome, were used to 372 

compare the position of the different QTL category (genotypic means, plasticity or QEI). 373 

Indeed, a recent study has identified different tomato regions (Sweep regions) that were 374 

selected during domestication and improvement events (Zhu et al., 2018). These regions 375 

were cross checked against the positions of our QTLs. Some QTLs detected in the MAGIC-376 

MET design were located in large regions thus colocating with a high number of Sweep 377 

regions (Figure 5 & Supplemental Figure 7). Thus, considering only the QTLs with CI lower 378 

than 2Mbp intervals and all QEI, a total of 61 QTLs were selected and compared with the 379 

Sweep regions. Plasticity QTLs appeared to be in majority located within the Sweep regions 380 

and only 6% of the selected plasticity QTLs were outside the domestication/improvement 381 

selective sweeps (Supplemental Figure 8). Interestingly, the Sweep region SW75 located in 382 

chromosome 3 (between 64.76 and 65.01 Mbp) carried a total of five QTLs (ht3.1, fset3.1, 383 

flw3.2, leaf3.1, fset3.1). The Supplemental Table 5 presents all the Sweep regions holding at 384 
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least one MAGIC-MET QTL. Chromosome 11 was highlighted as holding a number of 385 

plasticity QTLs for different traits (Figure 3). Indeed, seven different QTLs all identified with 386 

plasticity parameters, were located within the Sweep regions SW254 and SW255, from 53.81 387 

– 55.62 Mbp on chromosome 11 (Supplemental Figure 9). Among the ten QTLs that were 388 

outside the Sweep regions, one QTL was identified for mean FW and located on 389 

chromosome 5 (fw5.1) in position 4.52 Mbp. This QTL was mapped in a region holding other 390 

QTLs segregating in the MAGIC population for fruit size, fruit width and fruit length 391 

(Supplemental Table 6; data from the experiment in Pascual et al. (2015)).  392 

Candidate genes  393 

Confidence intervals (CI) of the MAGIC-MET QTLs varied from 0.45Mbp to 87Mbp including a 394 

variable number of genes. We thus focused on QTLs presenting CI regions smaller than 395 

2Mbp for CG screening. From 49 (nflw12.1) to 256 (diam4.1) genes were within the regions 396 

of the selected QTLs. Taking advantage of the parental allelic effect, the CG were narrowed 397 

for each QTL by contrasting the allelic effect of the eight parental lines. The selected 398 

candidates after the filtering procedure are presented in Supplemental Table 7, highlighting 399 

interesting candidates for further studies. Flowering time QTLs for instance included some 400 

CG with consistent matching regarding their functional annotation. For example, the CI of 401 

the QTL ppflw11.1 on chromosome 11 included two CG: Solyc11g070100 and 402 

Solyc11g071250 corresponding to “Early flowering protein” (ELF) and “EMBYO FLOWERING 403 

1-like protein” (EMF1), respectively. Among other potential flowering candidates, we noticed 404 

Solyc12g010490 (AP2-like ERF) for the QTL flw12.1 and Solyc03g114890 and Solyc03g114900 405 

(COBRA-like proteins) for the QTL flw3.2. Aside flowering time, the selected candidate genes 406 

for the QTLs diam4.1 and ppSSC1.1 included the Solyc04g081870 (annotated as an Expansin 407 

gene) and Solyc01g006740 (annotated as Sucrose phosphate phosphatase) genes, 408 

respectively.  409 

We could identify some plasticity QTLs showing sensitivity to the environmental conditions, 410 

notably the QTLs detected using the Scv plasticity parameter. Candidate genes were 411 

screened for some QTLs falling into this category. The ppfw9.1 QTL CI for example, showing 412 

susceptibility to the sum of degree day (SDD), carried a chaperone candidate 413 

(solyc09g091180) which might be involved in regulating fruit weight depending on the SDD 414 
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variation. Similarly, the QTL ppleaf11.1 is affected by the maximal temperature 415 

(Supplemental Table 4). Three CG (Solyc11g071830, Solyc11g071930 and Solyc11g071710) 416 

belonging to the Chaperone J-domain family, were retained after the filtering procedure in 417 

the region of this QTL. Interestingly, the DnaJ-like zinc-finger gene (Solyc11g071710) was 418 

among the candidates corresponding to several plasticity QTL including ppflw11.1, 419 

ppleaf11.1, ppnflw11.1, ppht11.1 and ppdiam11.2. This gene presented a total of 122 420 

polymorphisms across the eight parental lines among which 35 and 68 are in the up-stream 421 

and down-stream gene region. Further investigation regarding this gene is needed to state 422 

its potential pleiotropic effect. 423 

 424 

DISCUSSION 425 

Genetic variability in tomato response to environmental variation 426 

Genotype x environment interaction is a long-standing challenge for breeders and the 427 

predicted climate change has encouraged plant geneticists to devote more attention into 428 

understanding its genetic basis. Tomato is a widely cultivated crop adapted to a variety of 429 

environmental conditions (Rothan et al. 2019). However, important incidences of abiotic 430 

stress in the final productivity, fruit quality and reproductive performance have been noticed 431 

(Albert et al. 2016; Estañ et al. 2009; Mitchell et al. 1991; Xu et al. 2017). We quantified the 432 

level of GxE and the subjacent phenotypic plasticity in a multi-environment and multi-stress 433 

trial – involving induced water-deficit, salinity and heat stresses – in a highly recombinant 434 

tomato population. An important genetic variability was observed for the plasticity traits 435 

related to yield, fruit quality, plant growth and phenology (Supplemental Figure 6). This 436 

highlights the interest of the MAGIC population as a valuable resource for tomato breeding 437 

in dynamic changing environments. Tomato wild species have been also characterized as an 438 

important reservoir for abiotic stress tolerance genes (Foolad, 2007). However, their 439 

effective use in breeding programs could be difficult due to undesirable linkage drag, notably 440 

for fruit quality. Unlikely, the MAGIC population characterized here is an intra-specific 441 

population with high diversity regarding fruit quality components, which provides a great 442 

advantage as a breeding resource compared to wild populations.  443 

Several statistical models are available to explore, describe and predict GxE in plants (Yan et 444 
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al., 2007; Malosetti et al., 2013). Factorial regression model is among the most attractive as 445 

it allows to describe the observed GxE regarding relevant environmental information. We 446 

used the factorial regression model with different environmental covariates that are readily 447 

accessible from year to year, which allowed us to predict a variable proportion of the 448 

observed GxE (Supplemental Figure 4). Besides, each MAGIC line was characterized for its 449 

sensitivity to the growing climatic conditions opening avenues to effectively select the most 450 

interesting genotypes for further evaluation in breeding programs targeting stressful 451 

environments. 452 

Interestingly we found significant correlation between the genotypic sensitivities to the 453 

different environmental covariates and slopes from the Finlay-Wilkinson regression model 454 

(Supplemental Figure 10). This emphasizes the adequacy of the selected environmental 455 

covariates to explain differences observed in the average performance of the genotypes 456 

across environments. Conversely, slope and VAR showed less significant correlations, 457 

although they were both correlated to mean phenotypes in the same direction – except for 458 

SSC (Figure 2). This may be induced by distinct genetic regulation of these two plasticity 459 

parameters which reflect different types of agronomic stability (Lin et al. 1986). Indeed, we 460 

identified 7 and 14 plasticity QTLs that were specific to VAR and slope, respectively 461 

(Supplemental Table 4). The correlation pattern of the different plasticity parameters evokes 462 

a complex regulation of plasticity which besides is seemingly trait specific.  463 

Significant correlation at phenotypic level might result from the action of pleiotropic genes. 464 

The Figure 2 displays the correlations between genotypic means and plasticity which were 465 

significant for almost every trait at variable degree. These correlations were reflected at the 466 

genetic level by 22 QTLs overlapping between genotypic mean and plasticity parameters, 467 

representing about 21% of all identified QTLs. However, a high proportion of the QTLs were 468 

specific either to genotypic means or plasticity parameters (Supplemental Figure 11), hence 469 

suggesting the action of both common and distinct genetic loci in the control of mean 470 

phenotype and plasticity variation in tomato.  471 

Genomic location of the MAGIC-MET QTLs 472 

The availability of substantial genomic information in tomato enabled the identification of 473 

different genomic regions which have undergone selective sweeps which were strongly 474 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.07.938456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.938456


18 

 

selected during the domestication and improvement process (Lin et al. 2014; Zhu et al. 475 

2018). When projected on the physical positions of the tomato reference genome (SL2.50 476 

version), most of the plasticity QTLs we identified were located within the sweep regions 477 

defined by Zhu et al. (2018). It therefore suggests that plasticity might have been selected 478 

together with other interesting agronomic traits during tomato domestication and 479 

improvement. For instance, this is corroborated by the positive correlation between slope 480 

(from the Finlay-Wilkinson regression model) and mean fruit weight variation. Indeed, 481 

genotypes with higher FW slope are characterized by good adaptability in high quality 482 

environments and will likely be intended to selection. Co-selection of allelic variants leading 483 

to higher performance in optimal condition together with plasticity alleles is a realistic 484 

assumption that would explain the significant correlation that we observed between the 485 

genotypic means and plasticity. In rice for instance, GhD7 has been described as a key high-486 

yield gene simultaneously involved in the regulation of plasticity of panicle and tiller 487 

branching and involved in abiotic stress response (Herath 2019). This example highlights a 488 

gene carrying different allelic variants affecting together plasticity and mean phenotypes. 489 

Further investigations are needed to assess how domestication and breeding have affected 490 

plasticity in tomato and other crop species. 491 

An important genomic region involved in the genetic regulation of plasticity for six different 492 

traits was identified in chromosome 11 (Supplemental Figure 9). This region is obviously a 493 

regulatory hub carrying interesting plasticity genes. It remains to determine if the co-494 

localization of the different plasticity QTLs in this region is due to the action of a pleiotropic 495 

gene or different linked genes. Nevertheless, the chromosome 11 region highlighted here is 496 

an interesting target for breeding as well as for understanding the functional mechanisms of 497 

plasticity genes. 498 

Allelic-sensitivity vs gene-regulatory model  499 

Sixty-three plasticity QTLs were identified among which 22 (35%) were also identified when 500 

using the genotypic means; and 41 (65%) were specific to plasticity. Via et al. (1995) 501 

proposed two genetic models – the allelic-sensitivity and gene-regulatory models – among 502 

the mechanisms involved in the genetic control of phenotypic plasticity. These two models 503 

are distinguishable through QTL analysis (Ungerer et al., 2003) with the expectation that 504 
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allelic-sensitivity model will lead to co-localization of genotypic means and plasticity QTLs, 505 

while a distinct location of QTLs affecting mean and plasticity will likely correspond to the 506 

gene-regulatory model (Kusmec et al., 2017).  Regarding our results, both models are 507 

suspected to regulate tomato plasticity, even though the gene-regulatory model is 508 

predominant with 65% of the plasticity QTLs that did not co-localize with genotypic means 509 

QTLs for the same trait. In maize, using a larger number of environments and traits, Kusmec 510 

et al. (2017) found similar results and even a higher rate of distinct locations of plasticity and 511 

mean QTLs. Studying plasticity as a trait per se is therefore of a major interest since breeding 512 

in both direction (considering the mean phenotype and its plasticity) is achievable. Through 513 

transcriptomic analyses, Albert et al. (2018) observed that genotype x water deficit 514 

interaction was mostly associated to trans-acting genes which could be assimilated to the 515 

gene-regulatory model in agreement with our results.   516 

 Although the distinct location of QTLs detected on plasticity and genotypic means could be 517 

confidently assigned to the action of genes in interaction, their co-localization is not 518 

necessarily a case of allelic-sensitivity regulation, especially if the QTL is in a large region. 519 

Indeed, the allelic-sensitivity model assumes that a constitutive gene is directly sensitive to 520 

the environment regulating its expression across different environmental conditions, 521 

inducing hence phenotypic plasticity. This is a very strong hypothesis regarding the QTLs 522 

since the overlapping region between genotypic means and plasticity could carry different 523 

causal variants in strong linkage disequilibrium affecting either mean phenotype or plasticity. 524 

Thus, co-locating mean and plasticity QTLs should be not automatically imputed to the 525 

allelic-sensitivity model. We found a total of 22 constitutive QTLs between genotypic means 526 

and plasticity for all 10 measured traits (Supplemental Table 4). Considering the estimated 527 

QTL effects, the variation patterns of the eight parental allelic classes were compared 528 

between mean and PP QTL of the same trait. Only ten QTL showed consistent allelic effects 529 

(Spearman correlation significant at 0.05 threshold level) strengthening the hypothesis of 530 

the allelic-sensitivity model for these QTLs (Figure 6). Further studies should help to 531 

elucidate and validate the candidate plasticity genes and to clarify their functional 532 

mechanism.   533 

Complementary methods to identify environment-responsive QTLs 534 

Different approaches have been proposed in the literature to dissect GxE into its genetic 535 
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components (Malosetti et al., 2013; El-Soda et al., 2014). We used a mixed linear model with 536 

a random genetic effect accounting for the correlation structure of the MAGIC-MET design 537 

to identify the QEI. Extending the use of mixed linear models to MAGIC populations in the 538 

framework of MET analysis has been very rarely applied in crops. To our knowledge, only 539 

Verbyla et al., (2014) applied such approach in wheat and identified QEI for flowering time. 540 

Our model was adequate to account for the complex mating design of the MAGIC population 541 

by using the haplotype probabilities. Indeed, it allows estimating the QTL effect for each 542 

parental allelic class and for each environment at every SNP marker. Overall, 28 QEI were 543 

detected showing significant marker x environment interaction for ten traits. 544 

Methods using plasticity as a trait per se are also attractive to identify environmentally 545 

sensitive QTLs. This strategy was applied in maize, sunflower, barley and soybean to detect 546 

the loci governing GxE (Lacaze et al., 2009; Gage et al., 2017; Kusmec et al., 2017; Mangin et 547 

al., 2017; Xavier et al., 2018). With different plasticity parameters, we identified a total of 63 548 

plasticity QTLs and only 24% were also identified with the QEI models. Thus, both methods, 549 

using plasticity or mixed linear models, are complementary approaches to study the genetic 550 

component of GxE.  551 

Candidate genes 552 

Multi-parental populations are powerful for QTL mapping studies (Huang et al. 2012; Kover 553 

et al. 2009) and are besides interesting for fine mapping and candidate gene screening. 554 

Barrero et al. (2015) for instance considered the variation of the QTL effect estimated for the 555 

different parental lines, combined with transcriptomic analyses to efficiently identify 556 

candidate genes. Similarly, Septiani et al. (2019) narrowed candidate genes for Fusarium 557 

resistance in a maize MAGIC population using allelic effect of the MAGIC parents. 558 

A number of candidate genes were proposed in our study, affecting both genotypic means 559 

and plasticity variation. These candidate genes were selected based on the parental allelic 560 

effect and represent valuable targets for future studies attempting to characterize the 561 

molecular mechanisms underlying plasticity in tomato.  Indeed, relevant candidate genes 562 

were proposed for plasticity of flowering time including the Solyc11g071250 which 563 

corresponds to an “EMBYO FLOWERING 1-like protein” (EMF1). The implication of EMF1 in 564 

flowering time has been observed in Arabidopsis by  Aubert et al., (2001) who highlighted an 565 
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indirect effect of EMF1 on flowering time and inflorescence. More recently, Luo et al., (2018) 566 

outlined the role of EMF1 interacting with CONSTANS proteins in a complex pathway to 567 

regulate the expression of flowering time genes in Arabidopsis. Solyc11g070100 which is 568 

annotated as “Early flowering protein” (ELF) gene is also an interesting candidate for 569 

flowering time regulation. It was observed across species that a consistent expression of 570 

ELF3 can extend the rapid transition to flowering (Huang et al., 2017). ELF3 loss of function is 571 

therefore expected to trigger early flowering according to these authors. Interestingly, 572 

Solyc11g070100 was affected by 69 SNPs and 14 INDELs polymorphisms, among which only 573 

one SNP showed polymorphism variation in line with the estimated allelic effect for the eight 574 

parental lines at this QTL. This SNP was localized at the position 54,632,225 bp in 575 

chromosome 11, upstream the gene Solyc11g070100. The parent LA1420 carried the 576 

reference allele at this SNP while the remaining parents held the alternative allele. 577 

Considering the estimated allelic effects at this QTL, we could assume that the LA1420 allele 578 

variant might induce an early flowering phenotype comparatively to the other parents.  579 

Conclusion 580 

We aimed to dissect the genetic architecture of tomato response to different environments 581 

involving control and stress growing conditions. The MAGIC population demonstrated a large 582 

genetic variability in response to abiotic stresses which was reflected by the identification of 583 

63 plasticity QTLs. This was achieved through the use of different plasticity parameter 584 

highlighting the importance of plasticity quantification for deciphering its genetic basis. The 585 

plasticity QTLs were in majority (65% of the plasticity QTLs) located in distinct regions than 586 

the QTLs detected for the mean phenotypes, suggesting a specific genetic control of mean 587 

trait variation and plasticity at some extent. Using plasticity as a trait per se in mapping 588 

analysis turned out to be a good method for identifying genetic regions underlying GxE. 589 

Almost all the QEI were also identified for at least one of the plasticity parameters. Overall, 590 

this study presents the MAGIC population as a powerful resource for tomato breeding under 591 

abiotic stress conditions, as well as for understanding the genetic mechanisms regulating 592 

tomato response to environmental variation. 593 
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Legends of figures (GxE paper) 

Figure 1: Clustering environments according to seven environmental covariates, measured 

during the vegetative and flowering stage. 

Figure 2: Pearson’s correlation between mean and plasticity parameters. 

Figure 3: Representation of plasticity QTLs along the genome. Numbers above the square 

represent the different chromosomes and the colors distinguished the different traits. The x-

axis represents the physical distances in mega base pair (Mbp). 

Figure 4: Number of QTLs identified specifically on mean, plasticity or QEI and QTLs that 

were common to at least two of them. 

Figure 5: Physical positions of the MAGIC-MET QTLs for fruit weight and flowering time. The 

following circle with black bars represents the different domestication/ improvement sweep 

regions identified in (Zhu et al. 2018). The other circles plot the CI of QTLs identified on mean 

(green), plasticity (orange) or with QEI analysis (purple). 

Figure 6: Correlation of the estimated allelic effect for consistent QTLs between mean and 

plasticity phenotypes.  
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Supplemental files 

Supplemental Figure 1: Selection of 7 environmental covariates for the factorial regression 

model. Three periods – each of 20 days – were defined from planting to the end of flowering 

on the 4th truss. The period from 20 to 60 days after planting (DAP) covered vegetative 

growth and flowering on the 4th truss and the measured climatic variables averaged during 

this period. The different environmental covariates are described 

Supplemental Figure 2: Boxplot distribution of the traits across environments. The colors of 

the boxplot are according to the groups defined by clustering of the environments 

Supplemental Figure 3: Heritability in the MAGIC-MET design. For each trait, heritability was 

computed at every environment and plotted with heritability of the full design  $� (in green) 

Supplemental Figure 4: Proportion of the sum of square attributed to the different factors in 

the factorial regression model. For each trait, the orange and green stacked bars represent 

the proportion of the SSq explained by the Genotype and Environment factors in model (4). 

The remaining colors represent the effect part of the GxE that could be explained by the 

different environmental covariates. Only significant covariates were highlighted within the 

bars. 

Supplemental Figure 5: Reaction norms from the Finlay-Wilkinson regression model (A) and 

the factorial regression model (B). In figure 5 A, the blue and orange lines represent the 

positive and negative reaction norms. In Figure 5 B, the green and purple lines represent the 

positive and negative reaction norms 

Supplemental Figure 6: Histogram distribution of mean and all plasticity parameters for 

each trait 

Supplemental Figure 7: Physical positions of the MAGIC-MET QTLs for diam, leaf, height, 

fset, nflw, nfr, firm and SSC. The outer circle with gray font represents the known and cloned 

QTL/gene for each trait. The following circle with black bars represents the different 

domestication/improvement sweep regions identified in (Zhu et al. 2018). The other circles 

plot the CI of QTLs identified on mean (green), plasticity (orange) or with QEI analysis 

(purple) 

Supplemental Figure 8: Number of the MAGIC-MET QTLs identified within or outside the 

domesticated/improved regions. Only the MAGIC-MET QTLs within short CI (lower than 

2Mbp) were considered. The response specific category included QEI and plasticity specific 

QTLs; the common category correspond to QTLs that were commonly identified on mean, 

plasticity and QEI or at least two of them 

Supplemental Figure 9: Zoom plot on Chromosome 11 region from 53 -57 Mbp. Each color 

represents a different QTL located in this region and the top black bars are the Sweep 

regions SW254 and SW255 
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Supplemental Figure 10: Correlation between the genotypic sensitivities to environmental 

covariates from the factorial regression model and slopes from the Finlay-Wilkinson 

regression model 

Supplemental Figure 11: Venn diagram of the number of QTL specific or commonly detected 

with mean, PP or using the QEI models.  

 

 

 

Supplemental Table 1: Description of the MAGIC-MET design with the 12 environments and 

their respective names 

Supplemental Table 2: Description of the phenotypic traits evaluated in the MAGIC-MET 

design 

Supplemental Table 3: Estimates of the variance components from model (2) 

Supplemental Table 4: Results of QTL and QEI analysis in the MAGIC-MET design 

Supplemental Table 5: Genetic location of the MAGIC-MET QTLs overlapping with the Sweep 

(domestication/improvement) regions. 

Supplemental Table 6: QTLs identified for fruit size, fruit width and fruit length in the MAGIC 

population 

Supplemental Table 7: Selected candidate genes for all the mean and plasticity QTLs located 

within 2Mbp CI region 
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