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Abstract

With the development of single-cell RNA sequencing (scRNA-seq)
technology, it has become possible to perform large-scale transcript
profiling for tens of thousands of cells in a single experiment. Many
analysis pipelines have been developed for data generated from differ-
ent high-throughput scRNA-seq platforms, bringing a new challenge to
users to choose a proper workflow that is efficient, robust and reliable
for a specific sequencing platform. Moreover, as the amount of public
scRNA-seq data has increased rapidly, integrated analysis of scRNA-
seq data from different sources has become increasingly popular. How-
ever, it remains unclear whether such integrated analysis would be
biased if the data were processed by different upstream pipelines. In
this study, we encapsulated seven existing high-throughput scRNA-seq
data processing pipelines with Nextflow, a general integrative workflow
management framework, and evaluated their performances in terms of
running time, computational resource consumption, and data process-
ing consistency using nine public datasets generated from five differ-
ent high-throughput scRNA-seq platforms. Our work provides a use-
ful guideline for the selection of scRNA-seq data processing pipelines
based on their performances on different real datasets. In addition,
these guidelines can serve as a performance evaluation framework for
future developments in high-throughput scRNA-seq data processing.
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1 Introduction

Since the emergence of the first single-cell RNA sequencing (scRNA-seq)
platform [1], many research achievements have been made at the cellular and
subcellular levels with unprecedented resolutions with the aid of this tech-
nology. Recent advances in microfluidics and next generation sequencing
(NGS) have further increased the efficiency and throughput of scRNA-seq,
enabling more cells to be identified and the expression information of more
genes for each cell to be quantified simultaneously [2, 3, 4]. From micro-
capillary pipettes in 2012 [5, 6] and nanoliter droplet-based microfluidic chips
in 2015 [7, 8] to the latest liquid barcoding combined with split-pool meth-
ods [9], the number of cells analysed in parallel has increased from several to
tens of thousands [10], bringing new challenges for the processing of a large
amount of barcoded NGS data for efficient and accurate quantification of the
transcript information of single cells.

To meet the needs of high-throughput scRNA-seq data processing, several
pipelines that integrate multiple functions have been developed. As one of
the first high-throughput scRNA-seq platforms, Drop-seq [7] was introduced
in 2015. Moreover, Drop-seq-tools in combination with Picard tools were
introduced and provided a user-friendly Application Programming Interface
(API) to process the data from Drop-seq. Later in 2017, three additional
pipelines were published including Cell Ranger [11], umis [12] and UMI-
tools [13]. Cell Ranger [11] was developed along with the widely adopted 10X
Genomics platform which can process multiple biological samples separated
by sample barcodes in parallel. For fair comparison of different scRNA-seq
platforms, umis [12] was developed as a versatile pipeline to analyse data
produced by over 15 sequencing platforms. Using this uniform pipeline, ac-
curacy, sensitivity and other critical metrics were calculated using the Exter-
nal RNA Controls Consortium (ERCC) samples to establish a performance
benchmark of the scRNA-seq platforms. UMI-tools [13] systematically mod-
elled the UMI errors occurring in scRNA-seq data and used a directional
network UMI correction strategy to achieve more accurate quantification re-
sults both on simulated and real data. More recently, three flexible and com-
prehensive pipelines were published, namely, dropEst [14], scPipe [15] and
zUMIs [16, 17]. DropEst was specifically designed to process data acquired
from high-throughput droplet-based scRNA-seq platforms. ScPipe imple-
ments the upstream data processing pipeline as a Bioconductor R package,
with additional APIs for subsequent downstream analysis. ZUMIs integrates
almost all available data formats with or without UMI and can be applied
to data from 21 different sequencing platforms (version 2.4.5b). Moreover,
this all-in-one pipeline considers intron-mapping reads to improve transcript
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counting.
The progression of various high-throughput scRNA-seq data processing

pipelines has empowered end-users, including biologists, chemists and devel-
opers of novel scRNA-seq platforms, to process their data conveniently and
challenged them to select a proper pipeline for their data in hand. Recently,
several studies have been published to evaluate scRNA-seq data analysis
strategies [18, 19, 20, 21, 22, 23, 24, 25, 26]. These studies mainly focused
on downstream analysis algorithms including normalization, data imputa-
tion, clustering, and differential expression. For upstream analysis, namely,
analysis performed by data processing pipelines, the performance of three
different genome aligners was investigated [27]. However, comparison of the
performance of whole scRNA-seq data processing pipelines that integrate
multiple functions and procedures on real datasets remains to be conducted.

Here, we focused on the evaluation of seven existing high-throughput
scRNA-seq data processing pipelines. To facilitate our study, we encap-
sulated all seven scRNA-seq data processing pipelines using Nextflow [28],
which provided not only a user-friendly tool for large-scale project manage-
ment but also an integrated package for rapid deployment and convenient
utilization of different pipelines. After that, we compared the performances
of these pipelines in terms of their computational efficiency and consistency
of their biological analyses on various real datasets. The results of our study
could serve as a valuable reference for researchers to select proper pipelines
for their applications. The software and example data used in this study
are made publicly available at https://github.com/xmuyulab/scRNAseq_

pipelines to further enable users to perform benchmarking studies on their
own data.

2 Methods

2.1 Datasets and software

2.1.1 Datasets

The following datasets were used in our experiments.

• Drop-HM dataset: Drop-seq 50 cells per microliter human (HEK)
and mouse (3T3) mixed dataset (GEO: GSE63269)

• Drop-ERCC dataset: Drop-seq ERCC dataset (GEO: GSE66694)

• Seq-Well-PBMC dataset: Seq-Well PBMC dataset (GEO: GSE92495)
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• Quartz-SVF dataset: Quartz-seq2 mouse stromal vascular fraction
(SVF) dataset (GEO: GSE99866)

• inDrop-ERCC dataset: inDrop v1 ERCC dataset (GEO: GSE65525)

• 10X-PBMC-10k dataset: 10X Genomics v3 10k peripheral blood
mononuclear cell (PBMC) from a healthy donor (https://support.
10xgenomics.com)

• 10X-PBMC-5k dataset: 10X Genomics v3 5k peripheral blood mononu-
clear cell (PBMC) from a healthy donor (https://support.10xgenomics.
com)

• 10X-HM dataset: 10X Genomics v3 1k 1:1 human (HEK) and mouse
(3T3) mixture (https://support.10xgenomics.com)

• 10X-ERCC dataset: 10X Genomics 1k ERCC dataset (https://
support.10xgenomics.com)

2.1.2 Software packages evaluated

The versions and source urls of the seven pipelines that we evaluated are
listed below.

• Drop-seq-tools version-2.3.0 (https://github.com/broadinstitute/
Drop-seq/releases)

• Cell Ranger version-3.0.2 (https://github.com/10XGenomics/cellranger)

• scPipe version-1.4.1 (https://github.com/LuyiTian/scPipe)

• zUMIs version-2.4.5b (https://github.com/sdparekh/zUMIs)

• UMI-tools version-1.0.0 (https://github.com/CGATOxford/UMI-tools)

• umis version-1.0.3 (https://github.com/vals/umis)

• dropEst version-0.8.6 (https://github.com/hms-dbmi/dropEst)

2.1.3 Auxiliary software tools used in experiments

In addition, we used the following data processing and alignment tools.

• Picard tools version-2.18.14 (http://broadinstitute.github.io/
picard)
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• STAR version-2.7.0f (https://github.com/alexdobin/STAR) [29]

• Rapmap version-0.6.0 (https://github.com/COMBINE-lab/RapMap)
[30]

• SAMtools version-1.9 (https://github.com/samtools/samtools) [31]

• Nextflow version-19.04.1 (https://www.nextflow.io)

2.2 Overview of data processing pipelines

High-throughput scRNA-seq data processing pipelines typically implement
multiple steps, including sequencing data demultiplexing, alignment and
transcript quantification, to transform raw NGS data in BCL or fastq file for-
mats to expression matrices for further downstream analysis [32] (Figure 1).
In a high-throughput scRNA-seq experiment, transcripts from tens of thou-
sands of cells can be collected in a single sequencing library. Transcripts from
different cells are then converted to complement DNA (cDNA) via reverse
transcription and labelled with cell barcodes and UMIs [33, 34, 35] for the
isolation of cells and molecules, respectively. In the processing pipelines, de-
multiplexing is first performed on raw reads from the sequencer to extract
their cell barcodes to retrieve single cell information, as illustrated in Fig-
ure 1. The processing of cell barcodes and UMIs affects not only the accuracy
of transcript quantification of each cell but also the compatibility of the data
processing pipeline on different scRNA-seq platforms.

After demultiplexing, quality control (QC) was performed on the raw
reads. Pipelines except umis and dropEst directly discard reads with one
or more low-quality bases of cell barcodes and UMIs to avoid adverse ef-
fects from sequencing error, since cell barcodes and UMIs contain essential
read information and cannot be trimmed as cDNA sequences. For umis and
dropEst, only reads with low-quality cell barcodes are discarded. Moreover,
Drop-seq-tools suggests trimming adapters and other interfering sequences,
such as poly-A of cDNA reads, while the other pipelines do not perform
quality-based cDNA pretrimming by default.

The processed reads are further aligned to a reference genome or tran-
scriptome. Many aligners developed for bulk RNA-seq can also be ap-
plied to scRNA-seq data [36]. Umis utilizes pseudo-alignment tools such
as Kallisto [37] and Rapmap [30]. ScPipe uses Subread [38] by default. The
other pipelines included in this study use STAR [29] as a default option
for alignment. Furthermore, some pipelines, such as UMI-tools, zUMIs and
scPipe, are compatible with multiple aligners.
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GCTAGCTAGTGC TAGCTGAG
Cell barcode UMI gene

A4GALT
GCTAGCTAGTGC TACGTCGG CD79B
AGTAGCTCATGC GGGCTTAA CD79B
CCCATGGTTGGA CGTAGGTA ABR

……

TTGACCGCAGTG TACGTCGG BBC3

Step 3: alignment

GCTAGCTAGTGC CCCATGGTTGGA

A4GALT

CD79B

ABR

BBC3

1 0

0 0

0 0

3 18

……

……

expression matrix

Step 4: transcript 
quantification

@READ1_NAME1
CGATGCATGTCGACGATGCT
+
A<AA# FFFF FF FF FF FF F FF
@READ1_NAME2
GCTAGCTAGTGCTAGCTGAG
+
F FFFF FFF FFFFF FF FF F F F

@READ2_NAME1
GACTTCGTACTAGTCTAGCATGCTAGCTA
+
F FFFFFFFFFFFFFFFF F F FFFF FF F FFF
@READ2_NAME2
GCTAGCTAGTGCTAGCTGAGCTAGTCTAT
+
F FFF F FFF FFF FFF F FF F F FF FFF F FF##

Cell barcode UMI cDNA

fastq file 1 fastq file 2 Low quality

Step 1: demultiplexing

@CGATGCATGTCG#ACGATGCT#READ2_NAME1
GACTTCGTACTAGTCTAGCATGCTAGCTA
+
F FFFFFFFFFFFFFFFF F F FFFF FF F FFF
@GCTAGCTAGTGC#TAGCTGAG#READ2_NAME2
GCTAGCTAGTGCTAGCTGAGCTAGTCTAT
+
F FFF F FFF FFF FFF F FF F F FF FFF F FF##

merged fastq file

@GCTAGCTAGTGC#TAGCTGAG#READ2_NAME2
GCTAGCTAGTGCTAGCTGAGCTAGTCT
+
F FFF F FFF FFF FFF F FF F F FF FFF F FF

Step 2: sequence QC

filtered fastq file

Figure 1: The major steps of high-throughput scRNA-seq data processing
pipelines, namely, demultiplexing, sequence QC, alignment, and transcript
quantification, that are applied to generate an expression matrix representing
the gene expression of single cells from sequencing reads.

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.09.940221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940221
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finally, aligned reads are assigned to their corresponding cell barcodes,
and the expression matrices can be constructed by counting the unique reads
with the same cell barcode, UMI and gene. PCR duplicates, which are in-
dicated by reads with identical cell barcodes and UMIs, are not counted.
To address possible barcode synthesis errors and sequencing errors, different
error handling and correction strategies are used in different pipelines. For
Drop-seq-tools, umis, zUMIs and scPipe, cell numbers can be decided with
prior knowledge of the experimental design, heuristic elbow plots of cumu-
lative read counts of each cell or predefined whitelists of cell barcodes. Cell
barcodes with an inadequate number of reads or not on the whitelist will
be discarded directly without any correction. Other pipelines choose more
aggressive approaches. UMI-tools do not correct any cell barcodes by de-
fault, while users can add the --error-correct-cell parameter to merge
cell barcodes within a 1-Hamming distance. Cell Ranger considers cell bar-
codes that are within a 1-Hamming distance to predesigned cell barcodes
based on the posterior probability calculated from base qualities of observed
cell barcodes. For dropEst, UMI-gene composition similarity is modelled by
Poisson distribution to determine whether cell barcodes within a 2-Hamming
distance should be merged, and this method outperforms simply filtering cell
barcodes with whitelists or the number of reads by analysing Drop-seq and
10X data.

Similarly, different UMI collapsing strategies have been adopted in dif-
ferent pipelines. Drop-seq-tools, zUMIs and scPipe collapse UMIs based on
their Hamming distances, with cut-off values that can be specified by users.
Cell Ranger corrects UMI errors based on the base quality of UMIs. UMI-
tools systematically models UMI errors both on simulated data and real data
to verify that the directional graph-based collapsing algorithm behaves bet-
ter than other methods. DropEst designs a Bayesian approach for UMI error
correction, where the posterior probability of error occurrence is estimated
from factors including the prior UMI distribution, base quality, and gene
expression.

A detailed comparison of these pipelines is included in Supplementary
Table S1. Note that as different pipelines have different processing steps,
we decided not to compare the performance of each individual step of dif-
ferent pipelines in this review. Instead, we will only focus on the overall
performances of pipelines that are relevant to scRNA-seq studies.

2.3 Nextflow pipeline design and features

Nextflow [28] is an integrative workflow management framework using Apache
Groovy script language. It has been widely used to build bioinformat-
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A B

C D

1 hour

10 hours

1 day

compatibility

memory parallelization

complexity

Figure 2: Comparison of the computational performances of the pipelines.
(A) Running time without alignment steps, (B) maximum CPU usage, (C)
maximum memory consumption, and (D) radar chart of the summary of the
performances of different pipelines on a full 10X-PBMC-10k dataset with 640
million reads, where parallelization stands for the maximum of the CPU cores
used, and algorithm complexity corresponds to running time×parallelization.
The compatibility is indicated by four discrete levels including a single plat-
form, droplet-based platforms, UMI-based platforms and almost all platforms
(Supplementary Table S1).

ics data analysis workflow with flexibility, extensibility and reproducibil-
ity [39, 40, 41, 42, 43, 44]. Herein, we used Nextflow to encapsulate the seven
data processing pipelines so that users can directly call different pipelines
through a uniform set of APIs. In addition, the developed Nextflow script
also allows users to customize parameters or assign computing resources to
individual steps of the pipelines. The entire workflow is further packed as a
docker image with an Anaconda virtual environment so that it can be read-
ily deployed to different platforms without laborious software compiling and
running environment setups. All of the encapsulated pipelines are available
online.
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2.4 Data processing

2.4.1 Evaluation of computational performance

We used the 10X-PBMC-10k dataset, which contains 640 million reads in
total, to evaluate the computational performances of the pipelines. To test
the performances under different input file sizes, we randomly sampled the
dataset to construct reduced databases of different sizes from 0.5 million
to 100 million reads. In our experiments, Rapmap was used in umis, while
STAR was used in the other pipelines for alignment. The cell number was set
to 10000 for the pipelines without automatic cell number determination algo-
rithms (Supplementary Table S1). All the other parameters of the pipelines
were set to their default values. All testing programs were run on Ubuntu
16.04 with a CPU of 64 cores and 256 Gb of memory. We made all CPU re-
sources available on the testing machine during the test. Program execution
information was collected from the Nextflow tracing and visualization API.

2.4.2 Evaluation of transcript quantification performance

ERCC datasets from three different scRNA-seq platforms (Drop-ERCC, inDrop-
ERCC and 10X-ERCC) were used to evaluate the transcript quantification
performance of the pipelines. For the Drop-ERCC and 10X-ERCC datasets,
we quantified the gene expression of 84 and 1015 common cells produced
from all compatible pipelines. For the inDrop-ERCC dataset, since different
pipelines (dropEst, umis and UMI-tools) produced different cell barcodes as
the exact length of the cell barcodes in inDrop v1 data was unspecified [8],
it was difficult to identify the common cells from them. Therefore, for this
dataset, we compared the gene expression of 900 cells with the top UMI
counts from the respective pipelines. To compare the gene expression levels,
a linear regression model was built between the logarithmic expression counts
and the logarithmic actual RNA-molecule concentrations (ground truthed)
for each cell. R2 values were used to evaluate the transcript quantification
accuracy of the pipelines.

We further tested these pipelines on two human and mouse mixed datasets
(Drop-HM and 10X-HM) to evaluate their demultiplexing and transcript
quantification performances. For the 10X-HM dataset, all seven pipelines
were tested. For the Drop-HM dataset, however, six pipelines, not includ-
ing Cell Ranger, were tested due to compatibility issues. Herein, we aligned
the reads to the hg19 and mm10 mixed reference genome. After the expres-
sion matrices were generated, we discarded cells that were either multiplets,
empty cells or noise. We classified cells with more than 80000 transcripts as
multiplets and those with fewer than 5000 transcripts as empty cells or noise
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for the Drop-HM dataset, and the corresponding cut-off values for the 10X-
HM dataset were set to 140000 and 2500 transcripts, respectively. Cells with
species-specific transcript rates higher than 95% were annotated as human
cells or mouse cells and mixed cells or vice versa. Other parameters passed
to the pipelines were set to default values.

2.4.3 Downstream analysis with Seurat

We used Seurat [45] for downstream analysis, including data normaliza-
tion, feature selection, clustering, dimension reduction, and differential ex-
pression [46]. For each dataset, expression matrices produced by differ-
ent pipelines were built into Seurat objects. Subsequently, cells were fil-
tered according to the distributions of transcript counts and mitochondrial
gene counts. For fairness, we only extracted common cells identified by all
pipelines for subsequent analysis. Then, logarithmic standardization was per-
formed with a constant scale factor (scale.factor=10000). Genes with high
variation were selected by the FindVariableFeatures function (nfeatures=2000),
and principal component analysis (PCA) was applied to these 2000 genes to
extract 20 principal components (PCs). Subsequently, unsupervised cluster-
ing and nonlinear dimension reduction were performed on the 20 PCs of each
cell. Cell identities were manually annotated by canonical markers for the
resulting clusters. Differentially expressed genes were found by the FindAll-
Markers function (min.pct=0.25, logfc.threshold=0.25) for each anno-
tated cell type. Then, genes with adjusted p-values (Bonferroni correction)
less than 0.05 were retained for further comparison. Imputation algorithms
were not used in the analyses here to avoid potential bias introduced by other
factors.

2.4.4 Supervised cell type identification with SuperCT

In addition to manual cell type identification, we also used the results from
SuperCT [47], a neural network-based supervised learning model, to evalu-
ate the performances of different pipelines. In our experiment, we simply
fed the expression matrices produced by all the pipelines to the SuperCT
web application (https://sct.lifegen.com/) to identify the cell types au-
tomatically. Then, pairwise confusion matrices were used to evaluate the
consistency of cell types identified by the different pipelines.
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3 Results and discussion

3.1 Computational performance

We evaluated the computational performance of the seven pipelines in terms
of running time, CPU usage and memory consumption. As shown in Fig-
ure 2A, the running time increases roughly linearly with the number of reads
being processed in all pipelines except for umis, which has a significant con-
stant overhead in the running time for small datasets. Among the seven
pipelines, dropEst and scPipe showed the highest efficiency for small datasets
with less than 100 million reads. For larger datasets, Cell Ranger and scPipe
had the highest efficiency. umis was the slowest pipeline for small datasets
due to its significant overhead. Further investigation of the individual steps
of umis (Supplementary Figure S1) shows that its transcript quantification
step accounts for most of the computational time and was irrelevant to the
number of reads being processed. For large datasets, Drop-seq-tools was the
slowest, requiring more than 24 hours to complete analysis of a dataset with
640 million reads.

Figure 2B compares the maximum CPU usage of the pipelines. As both
Rapmap and STAR allow for manual setting of the number of CPU cores, we
compared only the CPU usage of the remaining steps. Note that the peak
CPU usage of Cell Ranger, zUMIs and UMI-tools increases with increasing
amounts of reads. Among the pipelines evaluated, Cell Ranger demonstrated
the highest level of parallelization when dealing with large datasets.

The maximum memory consumption of each pipeline was also investi-
gated. As shown in Figure 2C, Cell Ranger required less memory than the
other pipelines when processing small datasets with less than 10 million reads,
while its memory usage drastically increased when the amount of data in-
creased. The other pipelines showed relatively stable memory consumption,
except for dropEst and zUMIs, which required more memory for processing
datasets of 640 million reads.

Figure 2D provides a summary of three aspects of computational perfor-
mance and compatibility for all pipelines based on their performance on a
large dataset (640 million reads). Among them, Cell Ranger had the highest
level of parallelization and algorithmic complexity, which make it favourable
for high-speed processing of a large amount of data at the cost of high CPU
and memory usages. scPipe, umis and zUMIs demonstrated lower algorithm
complexity, which makes them favourable for large-scale scRNA-seq data
analyses when computational resources are limited. In terms of platform
compatibility, Cell Ranger only supports 10X data, while scPipe, umis and
zUMIs are compatible with a wider range of platforms and hence are more
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suitable for large-scale integration studies.

3.2 Demultiplexing and transcript quantification

For high-throughput scRNA-seq, transcript quantification-based downstream
analysis is currently the primary application due to the 3’-bias in library
preparation [36, 48]. To evaluate the transcript quantification performances
of different pipelines, we first used the ERCC datasets from three high-
throughput scRNA-seq platforms. The ERCC standard spike-in mixture
consists of 92 different RNA species with various predesigned lengths and
concentrations [49], and has been used to evaluate bulk RNA-seq proto-
cols [50, 51] as well as scRNA-seq platforms [12, 52]. Herein, we compared the
linear relationship between the quantification results from different pipelines
and input RNA-molecule concentrations of individual cells. As shown in Fig-
ure 3, the results of all pipelines were highly consistent for the 10X-ERCC
dataset. For the other two datasets, differences between pipelines were more
obvious, and UMI-tools achieved the best performance on both datasets with
the highest mean accuracy and the lowest deviation among individual cells.

We further evaluated the pipelines with a human and mouse mixed dataset
(Drop-HM dataset) created by mixing a human cell line (HEK) and a mouse
cell line (3T3), which is commonly used in evaluating the single cell isola-
tion fidelity of high-throughput scRNA-seq platforms [7, 53, 54, 55]. Ide-
ally, the quantification result of a single cell should only contain transcripts
from either species, but not both. However, due to errors introduced in
either sequencing and/or scRNA-seq data processing, it is possible that er-
roneous cells that contain transcripts of both species are present in the final
expression matrices. First, the results show that the majority of the cells
(953 out of 1350) generated by these pipelines were common, demonstrat-
ing high consistency in cell recovery among the six pipelines (Supplemen-
tary Figure S2A). Pairwise Pearson correlations of gene expression of the
953 common cells further showed that the results from Drop-seq-tools, UMI-
tools and scPipe were highly similar (Figure 4), which was expected because
these three pipelines share a very similar data processing strategy including
aligner used and exon-only mapping and no cell barcode correction. More-
over, cells from umis showed different gene expression distributions compared
with those from other pipelines. Supplementary Figure S3A shows that most
cells from Drop-seq-tools and UMI-tools were located on either the X or Y
axis, indicating that the major cells from these two pipelines were free of
transcript contamination. The quantification results of scPipe also shared a
similar pattern to those of Drop-seq-tools and UMI-tools, with slightly more
cells with mixed transcripts at the regions of low transcript counts. In con-
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Figure 3: R2 values of the linear relationship between the quantification
results from different pipelines and the input RNA-molecule concentrations.
Note that some pipelines could not process the Drop-ERCC and/or inDrop-
ERCC datasets due to compatibility issues.

trast, more off-axis cells were observed in the results for zUMIs and dropEst,
suggesting that these two pipelines may introduce more transcript contam-
ination than the pipelines mentioned above. Cells with relatively higher
cross-species transcript contamination can also be observed in the results
from umis, but to a lesser extent.

To further investigate the cross-species contamination effects of zUMIs
and dropEst, we extracted mixed cells with more than 30000 mouse tran-
scripts and fewer than 10000 human transcripts, resulting in 17 and 15 cells
from these two pipelines, respectively. We then compared their transcript
counts with those of the corresponding cells from Drop-seq-tools. The re-
sults show that both zUMIs and dropEst produced higher human and mouse
transcript counts than Drop-seq-tools (Supplementary Figure S3B and Fig-
ure S3C), suggesting higher sensitivity of these two pipelines in transcript
quantification. This may be explained by their relatively aggressive cell bar-
code and UMI correction algorithms. Note that the high sensitivity of these
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two pipelines may introduce adverse effects, such as cross-species transcript
contamination, as illustrated in the mixed species experiment above.

dropEst UMI-toolsDrop-seq-tools

dropEst

UMI-tools

zUMIs

zUMIs

umis

scPipe

umis

Figure 4: Pairwise Pearson correlation boxplots of the gene expression of 953
shared cells across seven pipelines for the Drop-HM dataset.

We also performed the same experiment on the 10X-HM dataset to in-
clude Cell Ranger in the comparison, which was designed specifically for
10X data. The results showed that 924 cells out of 992 were shared by the
seven pipelines (Supplementary Figure S2B). The cell barcode purity and
Pearson correlation of different pipelines on the 10X-HM dataset are shown
in Supplementary Figures S4 and S5, respectively. We observed that most
pipelines produce relatively similar results compared to those from the Drop-
HM dataset, which could possibly be due to the lower noise level of the pre-
designed barcode of the 10X platform. However, the results from zUMIs and
umis showed gene expression patterns that were slightly but not significantly
different from those of the other pipelines.
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Finally, the number of genes of single cells detected by different pipelines
was compared with the Drop-HM dataset and 10X-HM dataset. ZUMIs
and dropEst demonstrated higher sensitivity in transcript quantification by
detecting more genes than the other pipelines, whereas umis detected the
lowest number of genes in both datasets (Supplementary Figure S6).

3.3 Clustering and cell type identification

High-throughput scRNA-seq provides expression information for thousands
of genes from a large number of cells per test, and it has long been chal-
lenging to identify cell types with such high dimensional data. The widely
adopted approaches for cell type identification are mainly based on unsu-
pervised clustering to assign cells into distinct groups, and the cell type of
each group is further identified using canonical markers or differential genes
by manual annotation [56, 57, 58]. Supervised learning algorithms have also
been proposed to improve the efficiency and accuracy of cell type identifica-
tion [24, 47, 59, 60, 61, 62, 63]. To better understand the effect of scRNA-seq
data processing pipelines on cell type identification, we compared the per-
formance of the unsupervised clustering-based method and SuperCT [47], a
supervised learning-based method, using the expression matrices generated
by different pipelines.

First, we combined the expression matrices generated by the seven pipelines
for the 10X-PBMC-10k dataset and performed t-distributed stochastic neigh-
bour embedding (tSNE) on the combined matrix. Here, we considered only
cells common to all seven matrices, which gave us 9520 cells for each pipeline
in total. The tSNE plots are given in Figure 5, in which cells are coloured
by pipeline in Figure 5A and by cell type identified with SuperCT [47] in
Figure 5B. We can see that the cells were clustered into distinct groups by
pipeline rather than by cell type, except that cells from Drop-seq-tools and
Cell Ranger were grouped together. The same experiment was also per-
formed on the Seq-Well-PBMC dataset [54]. For this dataset, cells from
Drop-seq-tools, scPipe, dropEst and UMI-tools were grouped together; dif-
ferences among cells of different types can roughly be observed, but the
boundaries were not clear. Cells from umis and zUMIs were clustered into
distinct groups (Supplementary Figure S7). The results indicate that differ-
ent pipelines can introduce additional unwanted confounding factors akin to
the batch effect [64, 65, 66], which need to be considered when integrating
expression matrices from different studies to avoid introducing noise that
may mask true biological variation or create false positive results if the dis-
turbances introduced by different processing pipelines are directional.

Next, we compared the cell types identified by SuperCT using the ex-
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Figure 5: tSNE plots of the same cells from the 10X-PBMC-10k dataset
identified by different pipelines (A) coloured by pipelines, and (B) coloured
by cell types identified with SuperCT.

pression matrices from different pipelines. Cell types identified from Drop-
seq-tools, UMI-tools, dropEst, Cell Ranger and scPipe were highly consistent
for the 10X-PBMC-10k dataset, while the expression matrices from zUMIs
and umis resulted in more “unknown” cells, which could possibly be due
to differences in the distributions of expression matrices generated by zU-
MIs and umis compared to the data used to train the supervised learning
model (Figure 6 and Supplementary Figure S8). Therefore, more attention
should be paid to choosing data processing pipelines when supervised learn-
ing based cell type identification models are going to be used in downstream
analysis. A similar phenomenon can also be observed in the results from the
Seq-Well-PBMC dataset (Supplementary Figure S9 and Figure S10).

Furthermore, we conducted the same test using the widely adopted un-
supervised cell type identification method (Methods). Here, cell identities
were manually annotated based on canonical markers by three different re-
searchers independently. We only focused on major cell types with clearly
defined canonical marker genes. Majority voting was used to resolve in-
consistent annotations and reduce randomness brought by manual cell type
annotation. As shown in Supplementary Figures S11 and S12, cell types
annotated from different pipelines showed higher consistency on the 10X-
PBMC-10k dataset and Seq-Well-PBMC dataset than with the supervised
learning method. Among all the pipelines, the results from Drop-seq-tools,
scPipe and UMI-tools showed the highest level of consistency, which was sim-
ilar to the results of SuperCT above. Another dataset (Quartz-SVF dataset)
that contained cell subtypes that SuperCT was not able to identify was also
tested, and similar results were observed (Supplementary Figure S13).
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Figure 6: Confusion matrices of the cell types of the 10X-PBMC-10k dataset
identified with SuperCT for seven pipelines.

3.4 Differential expression

Another important step of high-throughput scRNA-seq data analysis is to
find differentially expressed genes (DEGs) across various cell populations [18].
Here, we compared the DEGs identified by Seurat using expression matrices
from different pipelines on 10X-PBMC-10k and Seq-Well-PBMC datasets.
The cell types were annotated by SuperCT in advance, and majority voting
was used if a cell was annotated to different cell types by different pipelines.
Only cells existing in all pipelines were considered.

As shown in Figure 7 and Supplementary Figure S14, the DEGs of each
cell type from different pipelines were highly consistent, with those from
zUMIs and umis tended to have slightly more unique genes than the other
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pipelines. We further checked the average logarithmic fold changes of sev-
eral commonly used canonical markers [58, 67, 68] of each cell type for the
different pipelines, which showed that zUMIs had lower average logarithmic
fold changes for most signature genes than the other pipelines (Figure 8).
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Figure 7: Venn diagrams of differentially expressed genes found by Seurat
with an adjusted p-value (Bonferroni correction) less than 0.05 in the 10X-
PBMC-10k dataset.

4 Conclusions

This study reports a comprehensive review of seven high-throughput scRNA-
seq data processing pipelines in terms of their computational and biological
analysis performances using nine real datasets from five high-throughput
scRNA-seq platforms.

First, for computational performance, Cell Ranger demonstrated the high-
est algorithm complexity if we count the total running time multiplied by the
number of CPU cores. However, as Cell Ranger also has the highest level of
algorithm parallelization, it is still able to achieve reasonable running time
performance compared to other pipelines if a high-performance computer is
available. On the other hand, scPipe, umis and zUMIs demonstrated lower
algorithm complexity and good compatibility for different scRNA-seq plat-
forms, suggesting their usability for large-scale scRNA-seq integration anal-
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Figure 8: Average log fold changes of signature genes of different cell types
from the 10X-PBMC-10k dataset. If a gene was not contained in the differ-
ential gene list, the average log fold change was set to zero.

ysis when computational resources are limited. Moreover, Drop-seq-tools,
scPipe and UMI-tools had the lowest levels of memory consumption.

Second, transcript quantification results from different pipelines were
tested on ERCC spike-in datasets and human/mouse mixed datasets. For
ERCC datasets, UMI-tools achieved the highest accuracy of transcript quan-
tification for the data from three different scRNA-seq platforms. For hu-
man/mouse mixed datasets, all of the pipelines were able to correctly provide
cells with low cross-contamination. ZUMIs and dropEst had higher sensitivi-
ties compared to the other pipelines as they tended to detect more genes and
produce higher transcript counts for each cell. However, such high sensitiv-
ity in transcript quantification may bring unwanted confounding factors for
subsequent analyses, as suggested in our human/mouse mixture experiment,
where these two pipelines produced more erroneous cells with cross-species
transcript contamination compared to other pipelines. Therefore, care should
be taken to better balance sensitivity and specificity in judging quantification
results from different analysis pipelines.

Third, the influence of pipelines on biological analysis was tested on cell
type identification and differential expression analysis. Our results show that
expression matrices generated by different pipelines cannot be directly inte-
grated for downstream analysis due to the variation caused by the pipelines.
For both supervised learning-based models and unsupervised clusetering-
based cell type identification methods, the results from Drop-seq-tools, scPipe
and UMI-tools show high consistency compared with those from the other
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pipelines. Specifically, zUMIs and umis showed relatively different distribu-
tions of identified cell types. Furthermore, zUMIs and umis also tended to
find more unique DEGs for each cell population than did the other pipelines.

In conclusion, a detailed comparison of the performance of seven high-
throughput scRNA-seq data processing pipelines was performed. Overall, dif-
ferent pipelines have their own characteristics in running time performance,
computational resource requirements, and data analysis quality. Thus, it
is important for researchers to understand these differences to make an in-
formed selection of the proper tools for their scRNA-seq studies.

Our evaluation study has limitations. First, since the ground truthing of
the real data was usually unknown or not reliable, biological analysis in many
cases was performed based on comparisons among different pipelines. For this
reason, some of the results in this study are not conclusive. Second, the bio-
logical analysis comparisons performed in this study were by no means com-
prehensive. Many other aspects of scRNA-seq studies, such as highly variable
gene identification, trajectory inference, and gene-gene interactions, were not
included in this study due to limitations in scope. Nevertheless, we made all
seven pipelines and the evaluation scripts used in this study, which have been
encapsulated within Nextflow and Docker for easy deployment, available on-
line at https://github.com/xmuyulab/scRNAseq_pipelines so that users
can deploy these tools for their own data analysis tasks and perform similar
comparisons on their own data to gain better insight into the performances
of the different pipelines.

References

[1] Fuchou Tang, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman,
Clarence Lee, Nanlan Xu, Xiaohui Wang, John Bodeau, Brian B Tuch,
Asim Siddiqui, Kaiqin Lao, and M Azim Surani. mRNA-Seq whole-
transcriptome analysis of a single cell. Nature Methods, 6(5):377–382,
2009.

[2] Christoph Ziegenhain, Beate Vieth, Swati Parekh, Bjorn Reinius, Amy
Guillaumet-Adkins, Martha Smets, Heinrich Leonhardt, Holger Heyn,
Ines Hellmann, and Wolfgang Enard. Comparative analysis of single-cell
RNA sequencing methods. Molecular Cell, 65(4):631–643, 2017.

[3] Xiannian Zhang, Tianqi Li, Feng Liu, Yaqi Chen, Jiacheng Yao, Zeyao
Li, Yanyi Huang, and Jianbin Wang. Comparative analysis of droplet-
based ultra-high throughput single-cell RNA-seq systems. Molecular
Cell, 73(1):130–142, 2019.

20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.09.940221doi: bioRxiv preprint 

https://github.com/xmuyulab/scRNAseq_pipelines
https://doi.org/10.1101/2020.02.09.940221
http://creativecommons.org/licenses/by-nc-nd/4.0/


[4] Raghd Rostom, Valentine Svensson, Sarah A Teichmann, and Gozde
Kar. Computational approaches for interpreting scRNA-seq data. FEBS
Letters, 591(15):2213–2225, 2017.

[5] Jillian J Goetz and Jeffrey M Trimarchi. Transcriptome sequencing of
single cells with Smart-Seq. Nature Biotechnology, 30(8):763–765, 2012.
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