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Abstract 

The glioblastoma (GBM) recurrence rate is high, despite multimodal treatment 

including surgery, radiotherapy, chemotherapy, and immunotherapy. Most recurrences 

occur at the resection margin that is located outside the GBM contrast-enhancing 

region (C region) of magnetic resonance imaging. However, the nature of the GBM 

cells that lie outside the C region is unclear. We used single-cell RNA sequencing 

(scRNA-seq) to compare 12 samples taken from inside and outside the C region from 

four patients with GBM and identified a cluster of GBM cells outside the C region 

that exhibited fragmented CNVs in chromosomes such as 1, 10, 12 and 19 (herein 

termed CNV 4). A transcription factor–transcription cofactor interaction network was 
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constructed to uncover the transcriptional regulatory mechanism of these CNV 4 

GBM cells that had prognostic significance (p < 0.05). Furthermore, a sub-cluster of 

these CNV 4 GBM cells possessed stem cell-like properties and had tumorigenic 

potential. In parallel, we analyzed peripheral blood mononuclear cells (PBMCs) from 

four patients with GBM, three patients with epilepsy and three healthy volunteers by 

scRNA-seq. We identified a novel subtype of proliferative immune cells only in 

patients with GBM. Overall, our findings indicate that CNV 4 cells might contribute 

to GBM recurrence and proliferative circulating immune cells are specific to patients 

with GBM. This study sheds light on a neglected aspect of GBM, and opens new 

avenues to explore GBM recurrence and immunotherapy. 

Significance 

We show that a subset of GBM cells outside the C region possess the properties of 

stem cell and tumorigenesis potential, which might be responsible for cancer 

recurrence. Besides, proliferative lymphocytes are specific to the PBMCs of patients 

with GBM, which could help to develop novel immunotherapy. 
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Introduction 

Glioblastoma (GBM) is the most common and lethal brain malignancy in adults (1,2). 

GBM is characterized by contrast enhancement in T1 gadolinium-enhanced magnetic 

resonance imaging (MRI) with a surrounding non-enhancing region of abnormal 

T2/fluid-attenuated inversion recovery (FLAIR) signal (3-5). The former region 

represents the dense cellular GBM core, with neovascularization and blood-brain 

barrier (BBB) disruption, and the latter region constitutes edematous tissue with 

infiltrating GBM cells. 

Treatment of GBM primarily consists of surgical resection. The contrast-enhancing 

region (C region) is always resected as much as possible during surgery (5), whereas 

the non-enhancing region is often left behind after surgery and is the target of 

postoperative treatment (5). Extensive investigations of primary GBM cells in the C 

region have thoroughly dissected GBM from the genetic and epigenetic perspective 

(6-12). However, the conclusions derived from these cells may not be generalizable to 

the GBM cells outside the C region, as many studies have revealed great differences 

between them, such as their responses to irradiation, temozolomide, and lomustine 

(3,4,7,8,13). The highly heterogeneous and infiltrative nature of this cancer means 

that multimodal treatment including radiotherapy, chemotherapy, and immunotherapy 

is often unsuccessful (14-18), and the tumors subsequently recur. 

Ninety percent of GBM recurrences occur at the resection margin, even after total 
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resection of the contrast-enhancing region (19); and indeed, numerous studies have 

confirmed that the extent of resection is positively associated with superior outcomes 

in patients with GBM. For instance, Li et al. showed that additional resection of the 

surrounding T2/FLAIR abnormality beyond the C region prolonged the median 

survival time of patients by 5.2 months (20). Lobectomy of GBM in non-eloquent 

areas also benefits patients in terms of overall survival (OS) and progression-free 

survival (PFS) (21). These results suggest that a lower number of GBM cells outside 

the C region is preferable in terms of improving patient outcomes, and emphasize the 

prognostic and therapeutic value to understanding the nature of residual GBM cells in 

more detail.  

GBM cells outside the C region were first identified by Silbergeld et al. in 1997 (22); 

since then, an increasing number of investigators have focused on this field and aimed 

to elucidate the features specific to these cells. However, these studies have yielded 

conflicting findings regarding the properties of GBM cells outside and inside the C 

region. For instance, Silbergeld et al. found no difference in motility between GBM 

cells isolated from the C region and outside the C region (22), while others 

demonstrated more invasive features of GBM cells outside the C region than inside 

the C region (13,23). Similarly, some researchers have shown that GBM cells outside 

the C region proliferate faster than those derived from the C region (13,22), whereas 

others have reported the opposite (24,25). These seemingly contradictory results 

might be partially explained by the heterogeneity of GBM cells, which has been 
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extensively revealed by multiomics studies (6,8-11,26). Furthermore, these results 

indicate that our current understanding of GBM cells outside the C region is 

incomplete, which might impede the efficacy of postoperative treatment. 

In this study, we aimed to investigate the genetic characterization of GBM cells both 

inside and outside the C region. To do so, we performed single-cell RNA sequencing 

(scRNA-seq) on samples from the C region, peri-enhancement edematous region (P 

region), and peri-edema normal region (N region) from four patients with GBM. We 

found a unique subset of GBM cells with the properties of cancer stem cell in the P 

and N regions that might be responsible for recurrence after surgery. To explore 

whether GBM cells exist in the circulation and to characterize the systemic immune 

response to GBM, we sampled peripheral blood mononuclear cells (PBMCs) from the 

four patients with GBM, three patients with epilepsy and three healthy volunteers and 

analyzed the cells by scRNA-seq. Remarkably, proliferative immune cells were 

discovered in the PBMCs of patients with GBM but not in patients with epilepsy or in 

healthy volunteers. Our findings suggest that a specific subset of GBM cells within 

the resection margin could be targeted for treatment to prevent tumor recurrence. 

 

RESULTS 

GBM cells show high heterogeneity with respect to copy number variations 

(CNVs) and a subset of them possess atypical pattern 
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To investigate the characteristics of primary GBM cells located inside and outside the 

C region, we collected samples of the C, P, and N regions from four patients with 

GBM, under MRI guidance (Figure 1A, Supplementary Table S1). Hematoxylin and 

eosin (HE) staining and immunohistochemistry (IHC) showed that the C region 

contained the histological hallmarks of GBM in terms of the extent of 

microvasculature, proliferation and tissue necrosis, as well as a high ratio of 

KI67-positive cells. Conversely, the P and N regions showed no typical GBM features 

but resembled, to some extent, normal brain tissue (Figure S1A, B). After preparing a 

single-cell suspension for each sample, we profiled these twelve GBM samples and 

four corresponding PBMC samples from four patients with GBM mentioned above on 

a 10× Chromium 3’ Single Cell Platform to determine their transcriptome status. In 

total, 72,620 cells passed our quality control filters, including 48,770 cells from GBM 

samples and 23,850 cells from PBMC samples (Figure 1B, C). 

We first classified the cells as being either malignant or nonmalignant cells as follows. 

First, we divided the cells into 23 clusters according to the Seurat “FindClusters” 

function, each of which represented a transcriptome-distinct cell group (Figure 1B, C). 

Then, we identified the differentially expressed genes (DEGs) for each cluster by 

comparing to the remaining clusters. We used these cell type-specific DEGs to infer 

the cell identities, and then performed a Gene Ontology (GO) enrichment analysis as 

confirmation. We identified oligodendrocytes, macrophages, T cells and putative 

GBM cells in the GBM samples (Figure 1B), and T cells, B cells, and monocytes in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.01.06.895987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.895987
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

the PBMC samples (Figure 1C).  

For the 6,715 putative GBM cells that could not be classified as any known cell type, 

we inferred the CNVs from transcriptomic information using the moving average 

method(6,10,27,28). Using this algorithm, we identified large-scale amplifications 

and deletions in putative GBM cells, such as chromosome 7 gain and chromosome 10 

loss, which are genetic hallmarks of most GBM cells (Figure 1D). We observed a high 

degree of heterogeneity with respect to the CNVs among the GBM cells, which is 

consistent with previous reports (6,10,27). Based on the CNV profile, we could 

classify the GBM cells into four CNV patterns (Figure 1D). GBM cells of CNV 

pattern 1 had typical CNV hallmarks of chromosome 7 amplification and 

chromosome 10 deletion, as well as variations in chromosomes 1, 6, 11, 12 and 19. 

GBM cells of CNV pattern 2 featured the regional loss of chromosomes 6, 10, 13, 14, 

16, 19 and 22, while those of CNV pattern 3 showed amplifications of chromosomes 

7, 12, 15 and 18. GBM cells of CNV pattern 4 had fragmentary variations in 

chromosomes 1, 6, 10, 11, 12, 13 and 19, but these were not as typical as the former 

three patterns. Notably, most GBM cells of CNV patterns 1, 2 and 3 (77.44%, 95.73%, 

and 98.90%, respectively), whose CNVs were similar to classical GBM hallmarks, 

were derived from the C region, whereas GBM cells of CNV pattern 4 were found 

mainly in the P and N regions (59.43% and 35.05%, respectively) (chi-square test, P < 

0.0001) (Figure 1E). These data suggest that GBM cells in C region and outside of C 

region have different CNV patterns, which might be employed by GBM cells for 
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malignant transformation and infiltrative progression. 

 

CNV patterns contribute to the transcriptomic status of GBM cells 

Next, we divided GBM cells into 11 transcriptomic sub-clusters by the Seurat 

“FindClusters” function (Figure 2A). Interestingly, sub-cluster 3 accounted for 93.93% 

of CNV pattern 3, and sub-cluster 5 accounted for 94.31% of CNV pattern 2, while 

CNV patterns 1 and 4 were comprised of diverse sub-clusters in relatively balanced 

proportions (Figure 2B). From another perspective, we found that most transcriptomic 

sub-clusters were derived from multiple CNV patterns (Figure S2A, B). In other 

words, there was no strict correspondence between CNV patterns and transcriptomic 

sub-clusters, and GBM cells with different CNV patterns tended to resemble each 

other at the transcriptome level to a certain extent. To understand the relationship 

among GBM cells with different CNV patterns, we analyzed the developmental 

trajectory of these GBM cells. By Monocle2 algorithm, which is designed for 

inferring the developmental relationship of cells (29,30), GBM cells were divided into 

three states, representing three major transcriptomic statuses (Figure 2C). We found 

that the GBM cells of CNV patterns 1 and 4 were located across three states, while 

GBM cells of CNV patterns 2 and 3 were mainly isolated in state 2 (Figure 2C). 

Interestingly, the pseudotime analysis results of Monocle2 algorithm suggested 

potential transitions from CNV pattern 4 to CNV patterns 1, 2, and 3 or from CNV 
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pattern 1 to CNV patterns 2 and 3 (Figure 2C, Figure S2C). 

Pathway enrichment analysis of the DEGs among different states revealed 

disturbances in many pathways involved in gene expression regulation, such as the 

AP1 pathway, glial cell differentiation, the regulation of mitotic nuclear division, and 

the canonical Wnt signaling pathway (Figure 2D). Notably, 23% of the top 100 DEGs, 

including SOX2, SOX4, SOX11, ETV1, and CBX3, were transcription factors (TFs) 

and transcription cofactors (TCFs) with known roles in GBM (31-37) (Figure S2D 

and Supplementary Table S2). In addition, an intersection analysis of the DEGs of the 

four CNV patterns showed that only 11 genes were commonly upregulated. Most of 

the other DEGs were CNV pattern-specific (Figure 2E). Consistent with these 

findings, the pathway enrichment analysis of CNV pattern 1-specific DEGs and CNV 

pattern 4-specific DEGs indicated differences in the transcriptional regulation of gene 

expression (Figure S2E, F). Taken together, these findings suggest that CNV patterns 

and transcriptional regulation cooperate to shape GBM transcriptomic states. 

 

Transcriptional regulatory networks orchestrate the GBM cell transcriptome 

and correlate with patient outcomes 

To investigate how GBM cells are transcriptionally regulated, we focused on the TFs 

and TCFs identified as described above. We first established a strategy to construct 

the TF–TCF interaction network for the four patterns (Figure 3A). Briefly, we 
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selected TFs and TCFs in the DEGs of the four CNV patterns. TFs and TCFs 

cooperate to exert their functions; therefore, we examined their interactions according 

to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. 

To obtain confident interactions, we only considered those derived from curated 

databases and experiments and with combined scores >0.9 (Figures S3, S4, S5, and 

S6). After sorting by the interaction degree of each TF, we chose the top three TFs as 

hub TFs to further analyze the differentially expressed target genes and to construct 

the TF–TCF-target regulatory networks (Figure 3B, Figures S7, S8, S9, and S10). We 

found that JUN was implicated in all four CNV patterns, MYC was involved in CNV 

patterns 2 and 4, TP53 and E2F1 were specific to CNV pattern 1, SMAD2 was 

specific to CNV pattern 3, and FOS was specific to CNV pattern 4 (Figure 3B, C). 

Additionally, we identified differentially expressed TFs and TCFs with fold changes 

(FCs) >2 compared to normal cells. 

By combining TFs and TCFs with high interaction degrees and variations, we defined 

the core TF and TCF gene sets for the four CNV patterns (Figure 3C, Figure S11A). 

The subnetworks of the core gene sets comprised 61.54%, 41.41%, 56.95%, and 

58.56% of the TF–TCF interaction networks for CNV patterns 1, 2, 3 and 4, 

respectively (Figures S3, S4, S5, and S6). These CNV-specific core gene sets were, 

however, derived from the scRNA-seq analysis of only four patients with GBM. 

Therefore, to determine whether they were applicable in a larger cohort, we analyzed 

data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression 
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(GTEx) databases and found that these gene sets were also more highly expressed in 

GBM tissue than in normal brain tissue (Figure 3D, Figure S11B, C, D, E, F, G, H). 

Interestingly, the CNV pattern 4–specific TFs JUNB and FOS showed the opposite 

expression patterns to CNV pattern 1 (Figure 3C, Figure S12A, B, C, D). Besides, we 

found that these TFs have different roles depending on the cancer context. For 

example, both JUNB and FOS are upregulated in GBM, acute myelocytic leukemia 

(LAML), and pancreatic adenocarcinoma (PAAD), but are downregulated in some 

other malignancies, such as bladder urothelial carcinoma (BLCA), lung 

adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV) (Figure 

S12A, B, C, and D). These results indicated that TFs might play different roles in 

different GBM cells. 

We next used the CNV gene sets to analyze survival in the TCGA GBM cohort. 

Interestingly, only the core gene set of CNV pattern 4 was negatively correlated with 

both OS and disease-free survival (DFS), while the core gene sets of other CNV 

patterns showed little discernible correlation (Figure 3E, Figure S13A, B). We thus 

compared the expression of the CNV pattern 4 core gene set between primary GBM 

and recurrent GBM to gain a genetic perspective on the potential mechanisms 

underlying GBM recurrence. We found that JUNB, ATF3, ACTN1, CEBPB, EGR1, 

and NFKBIA were significantly highly expressed in recurrent GBM and positively 

associated with each other (Figure S13C, D). As expected, these recurrence-related 

genes (RRGs) were negatively associated with DFS (Figure 3F). These results 
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suggested that CNV pattern 4 GBM cells might play a vital role in cancer recurrence. 

 

A subset of CNV pattern 4 GBM cells possess stem-cell properties 

Much research has revealed that GBM recurrence after surgery often initiates at the 

peri-tumoral regions (P and N regions). Earlier analysis showed that the core gene set 

of CNV 4 GBM cells was closely associated with cancer recurrence in patients with 

GBM. Therefore, we aimed to determine whether CNV 4 GBM cells in the P and N 

regions have gliomagenesis ability. An analysis of the CNV compositions of each 

GBM sample showed that >94% of GBM cells in the P and N regions of two patients 

with GBM (recorded as GBM-3 and GBM-4 in this study) belonged to CNV pattern 4 

(Figure 4A, Figure S14A). Notably, 100% of GBM cells in the N region of GBM-3 

were clustered into CNV pattern 4 (Figure 4A). We then established sphere cultures of 

the primary GBM cells derived from samples of C, P and N regions of GBM-3 to test 

their potential of tumorigenesis. As expected, GBM cells from the C, P and N regions 

formed spheres and expressed the stem cell marker CD133 (Figure 4B), indicating 

that CNV 4 GBM cells have tumorigenic potential (31,38-40). 

To characterize the properties of CNV 4 GBM cells in more detail, we furtherly 

analyzed their sub-clusters. As shown in figure 4C, altogether 1,612 GBM cells of 

CNV 4 were divided into nine sub-clusters (Figure 4C). Interestingly, GO enrichment 

analysis of the sub-cluster DEGs revealed that the cells comprising sub-cluster 3 were 
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involved in neurogenesis, gliogenesis, and stem cell differentiation (Figure 4D, Figure 

S14B) and were mainly located in the P region (166/173) (Figure 4E). The GBM 

stem-like cell marker SOX2 was highly expressed in this sub-cluster (Figure 4D), and 

IHC confirmed that SOX2-positive and Nestin-positive cells existed in both the P and 

N regions (Figure S15A). Consistent with our earlier analysis (Supplementary Figure 

2F), some of the other sub-cluster DEGs were enriched in the biological processes 

associated with angiogenesis and muscle structure development.  

These results brought to mind the GBM stem cells (GCSs) and vasculogenic mimicry 

(VM) that could be formed by CD133-positive GCSs (41,42). We then evaluated the 

resemblance of sub-clusters to endothelial cells, pericytes, and other central nervous 

system cell types, including astrocytes, oligodendrocytes, oligodendrocyte progenitor 

cells (OPCs), neurons, and neural progenitor cells (NPCs) (the cell type-specific gene 

sets are listed in Supplementary Table S3) (43,44). As expected, sub-cluster 3 

expressed markers of astrocytes, oligodendrocytes, OPCs and NPCs simultaneously 

(11.97%, 5.36%, 24.24%, and 8.03%, respectively), while the other sub-cluster DEGs 

overlapped with endothelial cell or pericyte marker genes to different extents (from 0% 

to 21.57% and from 0% to 23.44%, respectively) (Figure 4F). We also established 

stemness, endothelial cell and pericyte scores according to the average expression of 

the relevant marker genes to estimate the properties of CNV pattern 4 GBM cells. 

These three scores revealed continuums rather than separate distributions of stemness 

and differentiations towards endothelial cells or pericytes (Figure S14C). Next, we 
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performed a pseudotime analysis using the Monocle2 algorithm to draw the 

developmental trajectories of CNV pattern 4 GBM cells based on their transcriptomic 

similarities (29,30). Consistent with the former result, sub-cluster 3 cells were located 

at the initial state, and the other sub-clusters were distributed along the later states 

(Figure 4G, Figure S14D). Collectively, these results revealed that the sub-cluster 3 of 

CNV 4 GBM cells possessed stemness properties and might be able to differentiate 

into endothelial cells and/or pericytes. 

 

Sub-clusters of intracranial immune cells and PBMCs from patients with GBM 

show abnormal gene-expression pattern 

Previous study showed that the changes of immune microenvironment were involved 

in the gene-expression pattern, treatment resistance, and recurrence of GBM (8). 

Therefore, we additionally analyzed the intracranial immune cells, which constitute 

the largest proportion of sequenced cells in GBM tissue samples. CNV analysis 

demonstrated that these cells had a uniform expression pattern but possessed no 

known hallmarks of GBM cells (Figure 5A). Sub-clusters 12 and 17 interested us, as 

they exhibited peculiar gene-expression pattern (Figure 5B, Figure S16A). Both of 

these sub-clusters expressed the marker genes of microglia/macrophages, namely 

CSF1R, CD14, CD68, AIF1, and HLA-DRB1 (Figure 5B). Moreover, sub-cluster 12 

showed simultaneously high expression of EGFR, PTPRZ1, SOX2, SLC35E3, and 
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MDM2, known GBM-associated genes, while sub-cluster 17 was characterized by the 

expression of the proliferation markers KIAA0101, BIRC5, MKI67, NUSAP1, and 

TOP2A (Figure 5B). Interestingly, GO enrichment analysis of the DEGs indicated that 

sub-cluster 12 was associated with nervous system development (Figure 5C), and 

sub-cluster 17 was enriched in the biological processes of the cell cycle (Figure 5D). 

However, when compared to GBM cells, these cells exhibited the characteristics of 

immune cells (Figure 5E, Figure S16B). 

We noticed that leukocyte-associated processes were common to both sub-clusters 12 

and 17 (Figure 5E, Figure S16B); therefore, we wanted to determine whether these 

cells were derived from the peripheral blood. Besides, we wanted to understand 

whether the CNV pattern 4 GBM cells outside the C region would existed in the 

circulation of patients with GBM. As such, we analyzed PBMC samples obtained 

from these four patients with GBM before surgery by scRNA-seq. Interestingly, we 

detected a cluster of proliferative cells (cluster 10, 125/23850) in their PBMCs 

(Figure 1F, Figure 5F, G). However, we did not find cells simultaneously expressing 

both monocyte markers and GBM-associated markers (Figure S16D, E). These 

proliferative cells were composed of T cells and B cells, but not monocytes (Figure 5F, 

Figure S16E). When compared to GBM cells, these cells also showed an involvement 

in immune system-related processes (Figure S16F). Notably, we found that the 

proliferative T cells simultaneously expressed perforin and granzyme-related genes 

such as PRF1, GZMA, GZMB, GZMM, and GNLY, while proliferative B cells 
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showed the upregulated expression of immunoglobulin-related genes such as IGKC, 

IGKV1-12, and JCHAIN, indicative of plasma cells (Figure S16F). These 

transcriptomic profiles suggested that they were highly responsive to GBM. 

To investigate whether these cells also exist in non-tumor patients or healthy ones, we 

also examined PBMC samples collected from three healthy volunteers and three 

non-tumor patients (patients with epilepsy) by scRNA-seq. We did not detect any 

clusters of cells highly expressing proliferation markers in the PBMCs of healthy 

volunteers or patients with epilepsy (Figure S16G, H), suggesting that these 

proliferative lymphocytes were specific to the PBMCs from patients with GBM. 

 

DISCUSSION 

In this study, we identified four CNV patterns in twelve GBM samples by scRNA-seq. 

CNV pattern 4 showed a lower degree of CNVs than the other three patterns. 

Interestingly, > 90% of CNV pattern 4 GBM cells were distributed in the P and N 

regions of four patients with GBM, while the other CNV pattern GBM cells were 

found mainly in the C region of particular patients, consistent with previous studies 

(10,24). Furthermore, pseudotime analysis revealed a transitional trend from CNV 

pattern 4 to other CNV patterns. The homogeneous distribution and moderate CNV 

state of CNV pattern 4 GBM cells suggest the common mechanism of infiltration 

among highly heterogeneous GBM cells and the possibility of CNV pattern 4 as the 
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prodromal and transitional status of fully transformed malignant cells. 

There is likely a complicated course of evolution leading from a normal diploid 

karyotype to the diverse CNVs detected in the present study, and from normal 

precursor cells to full-fledged malignant cells. Some researchers have proposed that 

GBM is derived from the malignant transformation of NPCs/neural stem cells (NSCs) 

(45-47). GBM precursors are normal diploid cells, whereas GBM cells are 

characterized by trisomy 7 and monosomy 10, as well as other notable CNVs 

(amplification of EGFR, PDGFRA, and MET and deletion of CNKN2A, PTEN, etc.) 

(48). Neftel et al. inferred heterogeneous CNV patterns of GBM cells based on 

transcriptomes (both intertumoral and intratumoral) (6). Notably, the GBM hallmarks 

of chromosome 7 amplification and chromosome 10 deletion were not detected in the 

GBM cells of some adult and most pediatric patients (6,27). Distinct from most 

typical GBM cells, there are fewer CNVs in these GBM cells identified by Neftel et al. 

Another study revealed that aneuploid cells were found in only 68% and 32% of 

samples of the C and P regions, respectively, and they comprised 3% to 84% of all 

cells (4). Recurrent GBM cells develop novel genetic variations compared to primary 

GBM cells under the selective pressure of radiotherapy and chemotherapy (7,8,49,50). 

However, further research is needed to elucidate the dynamic changes in CNV 

occurrence and progression, as well as the underlying regulatory mechanism. 

Although the generation of CNVs is a pivotal mechanism used by cancer cells to 
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regulate gene expression, the transcriptome is orchestrated by multiple factors. Only 

40-60% of the amplified genes in cancer cells correspond to RNA transcripts (51). 

Therefore, our inferred CNVs based on scRNA-seq contained information on both 

CNVs and other regulatory mechanisms of the transcriptome and omitted some CNVs 

inconsistent with the corresponding RNA transcript. Our data revealed that GBM cells 

of different CNV patterns were also controlled by different transcriptional regulatory 

networks. Despite prominent heterogeneity, we identified some common TFs among 

the four CNV patterns, such as JUN and MYC, which were also identified as central 

TFs by a recently published study using multiomics to construct a kinase-TF centered 

network in HGG (52). These common TFs might have essential roles in GBM cells. 

Notably, the core TF–TCF gene set of CNV pattern 4 was negatively correlated with 

both the OS and PFS of patients with GBM, indicative of CNV pattern 4 GBM cell as 

a promising prognostic marker and therapeutic target. 

Bulk transcriptomic profile analyses have classified GBM cells into three molecular 

subtypes: the classical, mesenchymal, and proneural subtypes (8,11). To simplify this 

model, Wang et al. focused on the glioma stem-like cells (GSCs) of the mesenchymal, 

proneural, and classical subtypes (mGSC, pGSC, and cGSC, respectively) (53), and 

found that the cellular states of GSCs ranged from mesenchymal root to proneural 

terminal, between which was an intermediate population. Interestingly, three TFs 

specific to this intermediate population, ATF3, JUNB, and JUN, were also found in 

the core TF–TCF gene set of CNV pattern 4. This consistency further supports our 
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hypothesis that CNV pattern 4 might be a shared transitional state of heterogeneous 

GBM cells. We also learned from published studies that ATF3 is a bidirectional switch 

that regulates the treatment responses of GBM cells. On the one hand, ATF3 is 

involved in resistance to temozolomide (TMZ), cisplatin, and ultraviolet light (54,55), 

but on the other hand, it serves as a key mediator in proteasome inhibitor-induced 

GSC-selective apoptosis (56). In addition, another two CNV pattern 4-specific core 

TFs, FOS and JUNB, have been shown to confer GBM cells with TMZ resistance 

(57). These reports underscore the intrinsic resistance of CNV pattern 4 GBM cells to 

chemotherapy, as well as the necessity of more research to overcome this obstacle. 

Remarkably, a sub-cluster of CNV pattern 4 GBM cells expressed CD133 and showed 

the ability to form spheres, indicating stem cell-like properties and tumorigenic 

potential. Consistent with these results, Piccirillo et al. showed that GBM cells 

isolated from the P/N regions could form neoplasms in a mouse model, although they 

had lower expression levels of the stem cell markers Nestin, SOX2, and Notch2 

compared to those in the C region (25). In addition, CD133-positive and 

Nestin-positive invasive GBM cells have been detected in murine models and shown 

to exhibit self-renewal ability (58,59). CD133-positive GBM stem cells (GSCs) are 

the source of VM (41,42) that leads to a compromised effect of antiangiogenesis 

therapy in GBM (60). In this study, we found that a sub-cluster of CNV pattern 4 

GBM cells resembled (to varying degrees) endothelial cells and pericytes, which 

implies the possibility of CNV pattern 4 GBM cells participating in VM. Given that 
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VM might contribute to the resistance to antiangiogenesis therapy, this sub-cluster of 

CNV pattern 4 GBM cells would be an ideal target of postoperative treatment. 

Considering the infiltrative property of GBM cells and the disruption of BBB in GBM 

lesion, we also examined PBMCs from patients with GBM to explore whether GBM 

cells exist in circulation. We discovered a subset of proliferative cells that were 

initially regarded as malignant cells but were finally demonstrated to be lymphocytes. 

These proliferative lymphocytes were found in the PBMCs from patients with GBM 

but not in healthy volunteers or patients with epilepsy. In addition to being refractory 

to standard care, GBM is notorious for being highly immunosuppressive both locally 

and systemically (61,62), which makes immunotherapy difficult in GBM. These 

proliferative lymphocytes, although comprising <1% of PBMCs, might represent a 

nascent immune response to GBM and could help develop a new way to identify the 

potential of the immune system in GBM treatment. Besides, because these 

proliferative lymphocytes are specific to the PBMCs from patients with GBM, they 

could be suitable targets for monitoring recurrence in addition to MRI, which has 

limited efficiency in differentiating tumor recurrence and pseudoprogression (63). 

Therefore, the biological functions and mechanisms of these proliferative immune 

cells warrants future, detailed exploration. 

In conclusion, this study has identified an unusual GBM cell subset that is 

predominantly found in the P and N regions and is genomically distinct from GBM 
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cells in the C region. These cells have a fragmented, atypical CNV profile. However, 

these cells resemble GBM cells with typical CNVs at the transcriptomic level to a 

certain extent, and have the potential to transform into their respective cellular states. 

A sub-cluster of these cells possesses stem cell-like properties and might, therefore, 

participate in VM. Finally, yet importantly, the core signature of the transcriptional 

regulatory network of these cells negatively correlates with GBM patient outcomes. In 

parallel, we discovered proliferative immune cells that were highly responsive to 

GBM in both GBM tissue and PBMCs. The unusual CNV 4 GBM cells and 

proliferative immune cells from patients with GBM identified in this study might be 

ideal targets for GBM diagnosis, therapy and prognosis. 

 

METHODS 

Sample acquisition 

This study was approved by the Ethics Committee of Nanfang Hospital. Written 

informed consent was provided by all patients. Peripheral blood samples were 

obtained before surgery at Nanfang Hospital, Southern Medical University. GBM 

samples were obtained under MRI guidance during surgery. Normal brain samples 

were obtained during surgical treatment for ependymoma. The diagnosis of IDH1-wt 

GBM was confirmed by the Department of Pathology of Nanfang Hospital 

(Supplementary Table S1: Pathological diagnosis information of four patients with 
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GBM). 

 

HE and IHC staining 

HE and IHC staining assays were performed as previously reported (64,65). Briefly, 

specimen slices were cut from paraffin-embedded tissue blocks with a microtome 

(Leica, EG1150H, Wetlzar, Germany), deparaffinized and rehydrated. For HE staining, 

the slices were sequentially immersed in HE. For IHC staining, the slices were further 

processed, including antigen retrieval, the blocking of endogenous peroxidase, 

primary antibody incubation, secondary antibody incubation, and nuclear staining. 

Finally, the slices were sealed with mounting medium for imaging. The antibodies 

used in this study are listed in Supplementary Table S5. 

 

Primary GBM cell culture and immunocytochemistry (ICC) 

GBM samples were maintained on ice and sent to the laboratory within 1 h of 

isolation. Samples were minced with a scalpel and then enzymatically digested with a 

Tumor Dissociation Kit (Miltenyi Biotec, 130-095-929, Germany) on a gentleMACS 

Octo Dissociator with Heaters (Miltenyi Biotec, 130-096-427, Germany) according to 

the manufacturer’s instructions. To isolate stem-like GBM cells, primary GBM cells 

were cultured in DMEM/F-12 medium (Thermo Fisher Scientific, Gibco, #8117165, 
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Shanghai, China) supplemented with B27 (1×, Thermo Fisher Scientific, #17504044, 

Shanghai, China), EGF (20 ng/ml, Promokine, #C-60170, Guangzhou Jetway 

Biotechnology Company, Guangzhou, China), and FGF (20 ng/ml, Promokine, 

#C-60240, Guangzhou Jetway Biotechnology Company, Guangzhou, China), in 

which some GBM cells without stem cell-like properties would be degraded. ICC was 

performed as previously reported (64). 

 

Sample preparation and 10× Genomics scRNA-seq 

GBM tissue samples were washed twice with pre-cooled Hank’s balanced salt 

solution (HBSS, Thermo Fisher, 88284, USA), during which apparent vessels and pia 

matter were removed. Clean samples were dissociated mechanistically and 

enzymatically, as described above (Miltenyi Biotec, 130-095-929; gentleMACS Octo 

Dissociator with Heaters, 130-096-427, Germany). Peripheral blood samples from 

patients with GBM, patients with epilepsy, and healthy donors were collected into 

EDTA tubes. PBMCs were isolated with Ficoll-Plaque Premium (GE Healthcare, 

17544203-1, USA) according to the manufacturer’s protocol. First, 4 mL peripheral 

blood was slowly added to 3 mL Ficoll solution, which was then centrifuged at 400×g 

for 30 min at 18°C. Next, the PBMC layer was transferred to another tube, washed 

twice with PBS and centrifuged at 400×g for 15 min at 18°C. 

Subsequently, cells from GBM tissue samples or peripheral blood samples were 
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resuspended in DMEM (Thermo Fisher, 11320033, USA) containing 10% fetal 

bovine serum (FBS) (Thermo Fisher, 10099141, USA) and filtered through a 70-μm 

nylon filter (Corning Falcon, 431751, USA). The filtered cells were subjected to 1× 

Red Blood Cell Removal Solution (Biogems, 64010-00-100, USA) for 5 min to 

remove red blood cells, and then the cell debris was removed with Debris Removal 

Solution (Miltenyi, 130-109-398, Germany). Following two washes and resuspension 

in PBS solution containing 0.04% bull serum albumin (BSA) (Thermo Fisher, 

AM2616, USA), the cells were mixed with Trypan Blue (Thermo Fisher, T10282, 

USA) to assess their viability using a hemocytometer (Thermo Fisher, C10312, USA). 

Then, the appropriate volume for each sample was calculated for a target capture of 

6,000, cells according to the user guide of the Single Cell 3’ Reagent Kit v2 (10× 

Genomics company, 120237-16, USA). Single-cell droplet generation, reverse 

transcription, and cDNA library preparation were performed according to the 

manufacturer’s protocols. Finally, the libraries were sequenced on an Illumina 

NovaSeq 6000 with 150 bp paired-end sequencing. A median sequencing depth of 

50,000 reads/cell was targeted for each sample. 

 

scRNA-seq data processing and the identification of non-malignant cells 

Raw sequencing data (bcl files) were converted to fastq files with Illumina bcl2fastq, 

version 2.19.1 and aligned to the human genome reference sequence 
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(http://cf.10×genomics.com/supp/cell-exp/refdata-cellranger-GRCh38-1.2.0.tar.gz). 

The CellRanger 2.2.0 (10× Genomics) analysis pipeline was used to generate a digital 

gene expression matrix from these data according to its guidelines. The raw digital 

gene expression matrix (UMI counts per gene per cell) was filtered, normalized, and 

clustered using R 3.5.2 software (https://www.R-project.org/). Cell and gene filtering 

was performed as follows. For each detected cell, UMIs were less than the (1-doublet 

rate) to exclude multiplets. The multiplet rates were determined according to the user 

guide provided by 10× Genomics. The UMI was larger than the 8th percentile to 

exclude ambient bias (66). Mitochondrial RNA was less than the 90th percentile to 

exclude devitalized cells. For each sample, the number of detected cells was 

controlled within 6,000 by adjusting the baseline gene number. Then, normalization 

and centralization were performed according to the detected genes in each cell, and 

outlier cells with z-scores exceeding ±6 were excluded. We utilized the 

“NormalizeData” and “ScaleData” functions in the Seurat package to normalize and 

scale the single-cell gene expression data. The highly variable genes (HVGs) across 

the single cells in each sample were determined using the Seurat “FindVariableGenes” 

function. Canonical correlation analysis (CCA) was applied to correct for batch 

effects observed in the twelve GBM tissue samples and the four PBMC samples (67). 

For CCA, the union gene sets from the top 2,000 HVGs of each sample was used, and 

the combined data were aligned using the first 30 CC dimensions. Aligned cells were 

clustered with the Seurat “FindClusters” function using the first 20 aligned CC 
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dimensions at a resolution of 0.5. Clustering results were visualized using 

t-distributed stochastic neighbor embedding (t-SNE). The DEGs of each cluster were 

identified by comparison with the remainder of the other clusters. Cell type-specific 

markers and GO enrichment results were combined to classify the identity of each 

cluster. Using these approaches, oligodendrocytes, macrophages, T cells and putative 

GBM cells were identified in GBM samples. T cells, B cells, and monocytes were 

identified in PBMC samples. Data analysis was performed using standard packages, 

including Seurat 2.3.4 and Monocle 2.6.4, as well as website platforms such as GO: 

http://geneontology.org/) (68,69), Metascape 

(http://metascape.org/gp/index.html#/main/step1) (70), and Gene Expression Profiling 

Interactive Analysis (GEPIA2: http://gepia2.cancer-pku.cn/#index) (71). 

 

CNV inference from scRNA-seq data 

The CNVs of putative GBM cells were evaluated according to transcriptomic 

information by the moving average algorithm inferCNV (6,10,27,28,72,73). Briefly, 

all detected genes were sorted by their chromosomal location, and then the expression 

level of each gene in each cell was calculated based on an additional 100 neighboring 

genes (50 upstream and 50 downstream); this parameter was set as the sliding window 

for each chromosome. In this way, gene-specific expression patterns could be 

smoothed to a certain extent, and the effects of the CNVs on the transcriptome 
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became prominent. Considering that the cell lineages of GBM belong to the central 

nervous system, only oligodendrocytes were used as the normal karyotype reference. 

Hierarchical clustering was performed by “fastcluster 1.1.25” to identify CNV 

patterns (74). 

 

Construction of the TF-TCF-target regulatory network 

Gene lists of the TFs and TCFs were obtained from the Animal Transcription Factors 

Database (http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/) (75-77). Then, the gene 

lists of the TFs and TCFs were intersected with the DEGs of the four CNV patterns to 

identify CNV pattern-specific TFs and TCFs. Interactions between the selected TFs 

and TCFs were identified with the STRING database (https://string-db.org/) (78). To 

identify a solid interaction relationship, only interactions from experiments and 

databases with a minimum required interaction score of 0.9 were considered. TF–TCF 

interaction networks were constructed with Cytoscape software based on these 

confident interactions. Then, the interaction degree of each TF was calculated to 

identify the hub TFs for each CNV pattern. The top three TFs with the highest degrees 

of interaction were chosen for target gene analysis in Cistrome Data Browser 

(http://cistrome.org/db/#/) (79,80). The target gene lists were intersected with the 

DEGs of the four CNV patterns to select the differentially expressed target genes 

(DETGs). Finally, the hub TFs, their neighbors in the TF–TCF interaction network 
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and the DETGs were used to construct a simplified TF–TCF-target regulatory 

network for each CNV pattern in Cytoscape software. 

 

Data availability 

The scRNA-seq data described in this study are available upon reasonable request 

from the corresponding authors. 

 

Statistics 

The statistical analyses were performed in SPSS statistical software, version 21.0 

(SPSS, Inc., Chicago, IL, USA). Survival analysis of the data from the TCGA GBM 

cohort was performed in the GEPIA2 platform, which used the log-rank test for the 

hypothesis test (71). A rank-sum test was performed for RRG comparisons between 

primary GBM and recurrent GBM in the China Glioma Genome Atlas (CGGA) 

database (http://www.cgga.org.cn/index.jsp) (Figure S13C). The Spearman correlation 

coefficient of the RRGs was calculated using the GBM cohort (190 patients) from 

CGGA (Figure S13D). Significance cut-off: *, P <0.05; **, P < 0.01; ***, P < 0.001; 

and ****, P < 0.0001. 
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Figure legends 

Figure 1. A, The study workflow. Samples from the central contrast-enhancing region 

(C region), peri-enhancement edematous region (P region), and peri-edema normal 

region (N region) were collected separately under the guidance of MRI. Then, these 

samples were used for the pathological examination, scRNA-seq analysis, and 

primary culture of GBM cells. PBMCs of the corresponding patients were also 

collected for scRNA-seq analysis. B, t-SNE plot of 48,770 cells from twelve tissue 

samples of four patients with GBM. The clustering results of these cells (left) and the 

sample origins of the different clusters (right) are shown. C, A t-SNE plot of the 

23,850 cells from four PBMC samples of the corresponding patients with GBM. The 

clustering results of these cells (left) and the sample origins of the different clusters 

(right) are shown. D, Classification of CNV patterns inferred from the transcriptomic 
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profiles of 6,715 GBM cells. CNV patterns 1, 2, and 3 were mainly patient-specific, 

while CNV pattern 4 contained GBM cells from four patients. E, Spatial distribution 

of GBM cells with different CNV patterns in the C, P and N regions. Chi-square test, 

P < 0.0001. 

 

Figure 2. A, A t-SNE plot of 6,715 GBM cells. B, The cumulative percentage of the 

different transcriptomic cluster compositions of the four CNV patterns. C, The 

developmental trajectory of all GBM cells inferred by the Monocle2 algorithm. D, 

Pathway enrichment results of the DEGs among the three states. The pathways 

involved in the regulation of gene expression are marked by red rectangles. E, Venn 

diagram showing the intersection of the DEGs of the four CNV patterns. 

 

Figure 3. A, The strategy used to construct the TF–TCF-target regulatory network. B, 

The top three TFs of the four CNV patterns with the highest interaction degrees 

(interacting neighbors). C, Heatmap of the core gene sets of the TF-TCF interaction 

networks of the four CNV patterns. The color gradation represents the log(FC) of the 

DEGs. The common TFs and TCFs in different CNV patterns and CNV 

pattern-specific TFs/TCFs are arranged from left to right. D, Expression analysis of 

the four CNV pattern core gene sets based on The Cancer Genome Atlas (TCGA) and 

the Genotype-Tissue Expression (GTEx) databases. E, Prognostic value of the CNV 
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pattern 4 core gene set in patients with GBM included in the TCGA database. The 

expression value of the gene set was defined as the average value of all the genes in 

the corresponding gene set. Patients with expression values exceeding the 75th 

percentile were grouped into the high signature group, and those with expression 

values less than the 25th percentile were grouped into the low signature group. F, The 

prognostic value of the recurrence-related gene set in patients with GBM from the 

TCGA database. 

 

Figure 4. A, The CNV pattern compositions of different samples from GBM-3 

patients. B, Immunofluorescent labeling of GBM spheres for glioma stem cell (GSC) 

marker CD133 expression. These GBM cells were derived from the C, P and N 

regions of GBM-3. C, t-SNE plot of 1,612 CNV pattern 4 GBM cells. D, Results of 

the GO enrichment analysis of sub-cluster 3 differentially expressed genes (DEGs). 

The DEGs are listed in rounded rectangles. The FCs of the DEGs are reflected by the 

color gradation. A larger FC corresponds to a deeper color. The top 10 enriched 

biological processes (BPs) with the lowest false discovery rates (FDRs) are listed 

from left to right in circles. A higher level of fold enrichment corresponds to a larger 

circle. The black lines depict connections between DEGs and BPs. E, The spatial 

distribution of sub-cluster 3 among 12 GBM samples. F, The extent of overlap 

between the DEGs of different sub-clusters and different cell types. G, The 
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developmental trajectory of CNV pattern 4 GBM cells inferred by the Monocle2 

algorithm. 

 

Figure 5. A, Genomic profiling data from 23,850 immune cells in 12 GBM tissue 

samples. B, Heatmaps showing markers of microglia/macrophages, malignant cells, 

and proliferative cells. C and D, The GO enrichment analysis of subcluster 12 and 17 

DEGs compared to the remainder of the other sub-clusters. E, The GO enrichment 

analysis of sub-cluster 12 DEGs compared to GBM cells. F, The expression of 

markers of proliferative cells, T cells, and B cells in the PBMCs of patients with GBM. 

G, The GO enrichment analysis of PBMC sub-cluster 10 DEGs compared to the 

remainder of the other sub-clusters. 

 

Supplementary figure legends 

Figure S1. A, HE staining and IHC of 12 samples from four patients with GBM. The 

C region was characterized by the histological hallmarks of GBM, including 

microvasculature proliferation and necrosis, as well as a high ratio of KI67-positive 

cells. The P and N regions resembled normal brain tissue to varying extents. B, HE 

and IHC stains of normal brain tissue obtained during the surgical approach to 

ependymoma. 
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Figure S2. A, The CNV pattern compositions of the different transcriptomic clusters. 

B, The connections between CNV patterns and transcriptomic clusters. The widths of 

the connecting lines correspond to the number of cells. C, The developmental 

trajectory of GBM cells inferred by the Monocle2 algorithm. The distributions of 

different groups along three state axes are shown separately. D, The top six DEGs 

among the three states. E, The pathway enrichment results of CNV pattern 1-specific 

DEGs. F, The pathway enrichment results of CNV pattern 4-specific DEGs. The 

pathways involved in the regulation of gene expression are marked in red rectangles. 

 

Figures S3. TF–TCF interaction networks of the four CNV patterns. TFs are listed in 

circles, and TCFs are listed in rounded rectangles. The sizes of the TFs and TCFs 

were determined by the number of their connecting neighbors, which was defined as 

the interaction degree. Upregulated TFs and TCFs are indicated in red, while 

downregulated TFs and TCFs are indicated in blue. A larger absolute FC value 

corresponds to a deeper color. The core gene sets of the TF-TCF interaction networks 

are listed on the right side, and the parameters are listed on the bottom. 

 

Figures S4. TF–TCF interaction networks of the four CNV patterns. TFs are listed in 
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circles, and TCFs are listed in rounded rectangles. The sizes of the TFs and TCFs 

were determined by the number of their connecting neighbors, which was defined as 

the interaction degree. Upregulated TFs and TCFs are indicated in red, while 

downregulated TFs and TCFs are indicated in blue. A larger absolute FC value 

corresponds to a deeper color. The core gene sets of the TF-TCF interaction networks 

are listed on the right side, and the parameters are listed on the bottom. 

 

Figure S5. TF–TCF interaction networks of the four CNV patterns. TFs are listed in 

circles, and TCFs are listed in rounded rectangles. The sizes of the TFs and TCFs 

were determined by the number of their connecting neighbors, which was defined as 

the interaction degree. Upregulated TFs and TCFs are indicated in red, while 

downregulated TFs and TCFs are indicated in blue. A larger absolute FC value 

corresponds to a deeper color. The core gene sets of the TF-TCF interaction networks 

are listed on the right side, and the parameters are listed on the bottom. 

 

Figure S6. TF–TCF interaction networks of the four CNV patterns. TFs are listed in 

circles, and TCFs are listed in rounded rectangles. The sizes of the TFs and TCFs 

were determined by the number of their connecting neighbors, which was defined as 

the interaction degree. Upregulated TFs and TCFs are indicated in red, while 

downregulated TFs and TCFs are indicated in blue. A larger absolute FC value 
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corresponds to a deeper color. The core gene sets of the TF-TCF interaction networks 

are listed on the right side, and the parameters are listed on the bottom. 

 

Figures S7. Simplified TF–TCF-target regulatory networks of the four CNV patterns. 

TFs are listed in the inner layer (circles), TCFs are listed in the second layer 

(diamond), and TF targets are listed in the outermost layer (rounded rectangles). 

Upregulated expression is indicated in red, while downregulated expression is 

indicated in blue. A larger absolute FC value corresponds to a deeper color. 

Interactions between TFs and TCFs are depicted by straight lines. TFs and their 

corresponding targets are connected by lines, with a single arrow pointing to the 

target. 

 

Figures S8. Simplified TF–TCF-target regulatory networks of the four CNV patterns. 

TFs are listed in the inner layer (circles), TCFs are listed in the second layer 

(diamond), and TF targets are listed in the outermost layer (rounded rectangles). 

Upregulated expression is indicated in red, while downregulated expression is 

indicated in blue. A larger absolute FC value corresponds to a deeper color. 

Interactions between TFs and TCFs are depicted by straight lines. TFs and their 

corresponding targets are connected by lines, with a single arrow pointing to the 

target. 
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Figures S9. Simplified TF–TCF-target regulatory networks of the four CNV patterns. 

TFs are listed in the inner layer (circles), TCFs are listed in the second layer 

(diamond), and TF targets are listed in the outermost layer (rounded rectangles). 

Upregulated expression is indicated in red, while downregulated expression is 

indicated in blue. A larger absolute FC value corresponds to a deeper color. 

Interactions between TFs and TCFs are depicted by straight lines. TFs and their 

corresponding targets are connected by lines, with a single arrow pointing to the 

target. 

 

Figures S10. Simplified TF–TCF-target regulatory networks of the four CNV patterns. 

TFs are listed in the inner layer (circles), TCFs are listed in the second layer 

(diamond), and TF targets are listed in the outermost layer (rounded rectangles). 

Upregulated expression is indicated in red, while downregulated expression is 

indicated in blue. A larger absolute FC value corresponds to a deeper color. 

Interactions between TFs and TCFs are depicted by straight lines. TFs and their 

corresponding targets are connected by lines, with a single arrow pointing to the 

target. 
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Figure S11. A, The core gene sets of the TF–TCF interaction networks of the four 

CNV patterns. The color gradation shows the interaction degrees of the DEGs. 

Common TFs and TCFs in different CNV patterns and CNV pattern-specific 

TFs/TCFs are arranged from left to right. B, An expression analysis of CNV 

pattern-specific TFs based on the TCGA and GTEx databases. C-H, Expression 

analysis of CNV pattern-specific TFs among the four molecular subtypes of GBM 

samples in the TCGA database.  

 

Figure S12. A-D, Expression analysis of CNV pattern 4-specific TFs, JUNB and FOS, 

in different types of malignancies included in the TCGA database. GBM, 

glioblastoma. LAML, acute myelocytic leukemia. PAAD, pancreatic adenocarcinoma. 

BLCA, bladder urothelial carcinoma. DLBC, lymphoid neoplasm diffuse large B-cell 

lymphoma. LUAD, lung adenocarcinoma. LUSC, lung squamous cell carcinoma. OV, 

ovarian serous cystadenocarcinoma. THYM, thymoma. LGG, low-grade glioma. ACC, 

adrenocortical carcinoma. BRCA, breast invasive carcinoma. HNSC, head and neck 

squamous cell carcinoma. KICH, kidney chromophobe. KIRP, kidney renal papillary 

cell carcinoma. LIHC, liver hepatocellular carcinoma. SKCM, skin cutaneous 

melanoma. 

 

Figure S13. A and B, The prognostic value of the CNV pattern core gene sets on the 
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OS (A) and DFS (B) of patients with GBM. C, The differential expression of CNV 

pattern 4-specific genes JUNB, ATF3, ACTN1, CEBPB, EGR1, and NFKBIA in 

primary and recurrent GBM samples included in the China Glioma Genome Atlas 

(CGGA) database. D, Spearman’s correlation analysis of RRGs of CNV pattern 4 

based on the GBM cohort from CGGA database. 

 

Figure S14. A, The CNV pattern compositions of different samples from GBM-4 

patients. B, Pathway enrichment results of the DEGs of sub-cluster 3. C, 

Three-dimensional coordinate diagram of the endothelial cell score (X-axis), pericyte 

score (Y-axis), and stemness score (Z-axis). GBM cells of CNV pattern 4 were scored 

in these three dimensions and then plotted in the coordinate frame. D, Developmental 

trajectory of CNV pattern 4 GBM cells inferred by the Monocle2 algorithm. 

Distributions of sub-clusters along the three state axes are presented separately. 

 

Figure S15. A, IHC staining of SOX2, Nestin, and GFAP in GBM samples from the 

C, P, and N regions. B, IHC staining of SOX2, Nestin, and GFAP in normal brain 

tissue obtained during the surgical approach to ependymoma. 

 

Figure S16. A, A t-SNE plot of 23,850 immune cells isolated from 12 GBM tissue 
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samples. B, GO enrichment analysis of intracranial immune cell sub-cluster 17 DEGs 

compared to GBM cells. C-E, The expression of markers of proliferative cells, 

malignant cells, and monocytes in the PBMCs of patients with GBM. F, GO 

enrichment analysis of PBMC sub-cluster 10 DEGs compared to GBM cells. G and 

H, The expression of proliferation-associated genes in the PBMCs of healthy 

volunteers and patients with epilepsy. 
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