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Abstract 
Many proteins are classified as ‘undruggable,’ especially those that engage in protein-
protein and protein-nucleic acid interactions. Discovering ‘cryptic’ pockets that are 
absent in available structures but open due to protein dynamics could provide new 
druggable sites. Here, we integrate atomically-detailed simulations and biophysical 
experiments to search for cryptic pockets in viral protein 35 (VP35) from the highly lethal 
Ebola virus. VP35 plays multiple essential roles in Ebola’s replication cycle, including 
binding the viral RNA genome to block a host’s innate immunity. However, VP35 has so 
far proved undruggable. Using adaptive sampling simulations and allosteric network 
detection algorithms, we uncover a cryptic pocket that is allosterically coupled to VP35’s 
key RNA-binding interface. Experimental tests corroborate the predicted pocket and 
confirm that stabilizing the open form allosterically disrupts RNA binding. These results 
demonstrate simulations’ power to characterize hidden conformations and dynamics, 
uncovering cryptic pockets and allostery that present new therapeutic opportunities. 
 
Introduction 
Many proteins have proved so difficult to target with small molecule drugs that they are 
often classified as undruggable, greatly limiting the scope of drug design efforts. In fact, 
up to 85% of human proteins have been classified as undruggable because their folds 
are thought to lack binding pockets where small molecules can bind with the affinity and 
specificity required for drug design.1 Many undruggable proteins predominantly 
participate in protein-protein interactions (PPIs) and protein-nucleic acid interactions 
(PNIs).2,3 In contrast to the binding pockets that many enzymes and receptors use to 
bind their small molecule ligands, the large flat interfaces involved in PPIs and PNIs do 
not lend themselves to forming many favorable interactions with small drug-like 
molecules. As a result, PPIs and PNIs are often considered intractable targets even 
when there is strong evidence that disrupting these interactions would be of great 
therapeutic value. 
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Cryptic pockets could provide new opportunities to target undruggable proteins,4,5 but 
realizing this potential remains challenging. Such pockets are absent in available 
experimental structures because they only form in a subset of excited states that arise 
due to protein dynamics. Cryptic sites can serve as valuable drug targets if they 
coincide with key functional sites, as can cryptic allosteric sites that are coupled to 
distant functional sites. However, identifying cryptic pockets remains difficult. Most 
known cryptic sites were only identified after the serendipitous discovery of a small 
molecule that binds and stabilizes the open form of the pocket.5,6 Experimental 
techniques for intentionally identifying and targeting cryptic pockets show great 
promise,7-9 but they still leverage the simultaneous discovery of ligands that bind and 
stabilize the open pocket. To overcome this limitation, a number of computational 
methods have been developed to identify cryptic pockets without requiring the 
simultaneous discovery of small molecules that bind them.10-17 These methods have 
proved capable of retrodicting a number of previously identified cryptic pockets. More 
importantly, applications to a variety of established drug targets and other enzymes 
have successfully identified novel cryptic pockets that have been corroborated by 
subsequent experiments.11,18,19 In light of these successes, it is interesting to further 
investigate whether such approaches can reveal cryptic pockets in proteins that are 
currently considered undruggable, particularly proteins that primarily engage in PPIs 
and PNIs. 
 
Here, we integrate atomically-detailed computer simulations and biophysical 
experiments to search for cryptic pockets in a target that has so far proved undruggable: 
the interferon inhibitory domain (IID) of Ebola viral protein 35 (VP35). Ebola virus 
causes a hemorrhagic fever that is often lethal, with case fatality rates approaching 90% 
in past outbreaks.20,21 While recent progress in vaccine development and use of 
biologics, such as antibodies, for therapeutic and prophylactic purposes show 
promise,22 small molecule drugs still offer many advantages, including ease of delivery, 
lower cost, and longer shelf life. The ~120 residue IID of VP35 is a particularly 
appealing drug target for combating Ebola and other viruses in the Filoviridae family 
given that it has a well-conserved sequence and plays multiple essential roles in the 
viral lifecycle.23 One of its primary functions is to antagonize a host’s innate immunity, 
particularly RIG-I-like receptor (RLR)-mediated detection of viral nucleic acids, to 
prevent an interferon (IFN) response and signaling of neighboring cells to heighten their 
antiviral defenses.24-26 Crystal structures have provided a foundation for understanding 
much about the mechanism of VP35-mediated IFN antagonism.27,28 For example, they 
have revealed that VP35’s IID binds both the blunt ends and backbone of double-
stranded RNA (dsRNA), and that there is a PPI between these dsRNA-binding modes 
(Fig. 1).28 Disrupting any of these interactions could potentially render Ebola susceptible 
to a host’s innate immunity. In particular, binding to dsRNA blunt ends plays a dominant 
role in IFN suppression by Ebola.29 Indeed, mutations that reduce the IID’s affinity for 
dsRNA blunt ends are sufficient to mitigate IFN antagonism, ultimately attenuating 
Ebola’s pathogenicity.29-32 So, disrupting this single binding mode could dramatically 
reduce the impact of an Ebola infection on the host and potentially reduce deleterious 
effects, including lethality. However, both dsRNA-binding interfaces are large flat 
surfaces that are difficult for small molecules to bind tightly (Fig. 1). As a result, attempts 
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to rationally design small molecules that bind these interfaces have not yielded 
sufficiently strong leads to warrant clinical development.33,34 The discovery of cryptic 
pockets in VP35 could provide new opportunities for drugging this essential viral 
component. 
 

 
Figure 1. Crystal structure of two copies of VP35’s IID (dark gray) bound to dsRNA (light 
gray) via two flat interfaces (PDB ID 3L25). The backbone-binding interface (blue) and 
blunt end-binding interface (orange) are shown as spheres to highlight that they lack 
deep pockets amenable to binding small molecules. 
 
Results 
Computer simulations reveal a potentially druggable cryptic pocket. 
We applied our fluctuation amplification of specific traits (FAST) simulation algorithm35 
to enhance sampling of structures with large pocket volumes that may harbor cryptic 
pockets. FAST is a goal-oriented adaptive sampling algorithm that exploits Markov state 
model (MSM) methods to focus computational resources on exploring regions of 
conformational space with user-specified structural features. An MSM is a network 
model of a protein’s energy landscape which consists of a set of structural states the 
protein adopts and the rates of hopping between them.36,37 Adaptive sampling 
algorithms enable efficient construction of MSMs by iteratively 1) running a batch of 
simulations, 2) building an MSM, and 3) selecting a subset of the states that have been 
identified so far as starting points for the next batch of simulations to maximize the 
chances of improving the model.38,39 FAST selects which states to further simulate in a 
manner that balances exploration/exploitation tradeoffs by considering 1) how well each 
state optimizes a user defined structural criterion (in this case maximizing the total 
pocket volume) and 2) the likelihood of discovering new conformational states.35 After 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.940510doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940510
http://creativecommons.org/licenses/by-nc-nd/4.0/


running FAST, we gathered additional statistics by running simulations from each state 
on the Folding@home distributed computing environment, which brings together the 
computing resources of tens of thousands of citizen scientists who volunteer to run 
simulations on their personal computers. Our final model has 11,891 conformational 
states, providing a detailed characterization of the different structures the IID adopts but 
making manual interpretation of the model difficult. 
 
To identify cryptic pockets within the large ensemble captured by our MSM, we applied 
our exposons analysis pipeline.11 An exposon is a cluster of residues that undergo 
cooperative changes in their solvent exposure. Coupling between the solvent exposure 
of every pair of residues is quantified using a mutual information metric, as described in 
Methods. Exposons are often associated with cryptic sites because the opening/closing 
of such pockets gives rise to cooperative increases/decreases in the solvent exposure 
of surrounding residues. Importantly, once an exposon has been identified, our MSM 
framework provides a facile means to identify the conformational changes that give rise 
to that exposon. 
 
The IID has two significant exposons, one of which corresponds to a large cryptic 
pocket. The blue exposon (Fig. 2A and 2B) consists of a set of strongly-coupled 
residues in helix 7 and adjacent loops and secondary structure elements. Visualizing 
the conformational change that gives rise to this exposon reveals a substantial 
displacement of helix 7, creating a large cryptic pocket between it and the helical 
domain (Fig. 2C, Supplementary Movie 1). A number of residues that are displaced 
along with helix 7 (i.e. A306, K309, and S310) make Van der Waals contacts with the 
dsRNA backbone in the dsRNA-bound crystal structure,28 so targeting this cryptic 
pocket could directly disrupt this binding mode. Retrospective analysis of other validated 
drug targets suggests cryptic sites created by the movement of secondary structure 
elements, such as the displacement of helix 7, are often druggable.40 The potential 
druggability of this cryptic site is also supported by application of the FTMap 
algorithm,41,42 which predicts a number of hotspots within the pocket where small 
molecules could form a variety of energetically-favorable interactions (Supplementary 
Fig. 1). Unfortunately, disrupting backbone binding is of less therapeutic utility than 
disrupting blunt end binding and it is unknown whether the contacts between A306, 
K309, and S310 are essential for backbone binding. Therefore, it is unclear from this 
analysis alone whether drugging this newly discovered cryptic pocket would be useful. 
 
The second exposon (orange in Fig. 2) encompasses portions of both dsRNA-binding 
interfaces, but it does not correspond to a cryptic pocket. This exposon includes 
residues that bind dsRNA’s backbone (i.e. S272) and residues that interact with both 
the blunt ends and backbone of dsRNA (i.e. F239, Q274, and I340).28 Therefore, 
altering the conformational preferences of the second exposon could potentially disrupt 
the blunt end-binding mode and its crucial role in Ebola’s ability to evade an immune 
response. However, the largest conformational change involved in the formation of this 
exposon is a displacement of the loop between helices 3 and 4 (Fig. 2D, Supplementary 
Movie 2). This rearrangement does not create a cryptic pocket that is large enough to 
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accommodate drug-like molecules, so it is not obvious how to directly manipulate the 
orange exposon. 
 

 
Figure 2. Exposons identify a large cryptic pocket and suggest potential allosteric 
coupling. A) Structure of VP35’s IID highlighting residues in two exposons (blue and 
orange), the N-terminus (N-term), and C-terminus (I340). B) Network representation of 
the coupling between the solvent exposure of residues in the two exposons. The edge 
width between residues is proportional to the mutual information between them. C) 
Structure highlighting the opening of a cryptic pocket via the displacement of helix 7 that 
gives rise to the blue exposon. D) Structure highlighting the conformational change that 
gives rise to the orange exposon overlaid on the crystal structure (gray) to highlight that 
the rearrangements are subtler than in the blue exposon. 
 
The cryptic pocket is allosterically coupled to the blunt end-binding interface. 
Even though the cryptic pocket does not coincide with the interface of VP35’s IID that 
binds dsRNA blunt ends, it could still serve as a cryptic allosteric site that allosterically 
controls RNA binding. Indeed, the physical proximity of the two exposons and the 
coupling between them both hint at the possibility for allosteric coupling. Furthermore, 
our exposons analysis could easily underestimate this coupling given that it focuses on 
correlated transitions of residues between solvent exposed and completely buried 
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states, leaving it blind to more subtle conformational fluctuations and the coupling of 
residues that are always buried (or always exposed).  
 
To explore the potential for a broader allosteric network, we applied the correlation of all 
rotameric and dynamical states (CARDS) algorithm.43 CARDS classifies each dihedral 
in each snapshot of a simulation as being in one of three rotameric states (gauche+, 
gauche-, or trans) and one of two dynamical states (ordered or disordered). A dihedral 
is said to be disordered if it is rapidly hopping between different structural states, and it 
is classified as ordered if it appears to be locked into a single rotameric state for a 
prolonged time. The mutual information metric is then used to quantify how strongly 
coupled the structural and dynamical states of each pair of dihedrals are, enabling 
CARDS to capture the roles of both concerted structural changes and conformational 
entropy in allosteric communication. Importantly, CARDS accounts for the potential role 
of residues that are always buried or always exposed to solvent and subtle 
conformational changes that do not alter the solvent exposure of residues. 
 
CARDS reveals a broader allosteric network than that identified by our exposons 
analysis and suggests strong coupling between the cryptic pocket and blunt end-binding 
interface (Fig. 3). This network consists of five communities of strongly coupled 
residues, four of which coincide with large portions of the two dsRNA-binding interfaces. 
One of these communities (orange) is a hub in the network, having significant coupling 
to all the other communities. It encompasses part of the orange exposon, particularly 
residues around the loop between helices 3 and 4. The orange CARDS community and 
exposon both capture Q274, which engages in both dsRNA-binding interfaces, and 
S272, which contacts the backbone.28 However, the CARDS community includes many 
additional residues not captured by exposons analysis. Examples include I278, which 
engages in both dsRNA-binding interfaces, and D271, which is part of the PPI between 
the two binding modes.28 One of the orange community’s strongest allosteric 
connections is to the green community. This community encompasses the rest of the 
residues in the orange exposon, including F239 and I340, which are part of both 
dsRNA-binding interfaces.28 The green community also captures additional residues, 
reaching deep into the helical domain. The orange community is also strongly coupled 
to the blue community, which includes much of helix 7 and nearby residues that move to 
give rise to the cryptic pocket that was captured by the blue exposon. Notably, the 
orange and blue communities are both coupled to a cyan cluster that was not hinted at 
by our exposons analysis because the residues involved are always solvent exposed. It 
includes R322, which is part of the blunt end-binding interface and the PPI between the 
two binding modes, and K282, which also contacts dsRNA blunt ends.28 In addition, this 
community includes K339, which is an important determinant of the electrostatic 
favorability of dsRNA binding.28 Together, these results suggest that opening of the 
cryptic pocket could strongly impact residues involved in both dsRNA-binding interfaces, 
as well as the PPI between the two binding modes. 
 
To understand the potential impact of targeting the cryptic pocket on the blunt end-
binding mode, we performed a dimensionality reduction based on the orange 
community. Since this community is a hub in the allosteric network, we reasoned that 
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performing a dimensionality reduction based on the structural/dynamical preferences of 
this community and examining representative structures would report on what is 
happening throughout the protein. To determine the relative importance of the structural 
and dynamical preferences of this community, we compared the magnitudes of the 
structural and dynamical components of CARDS. This analysis revealed that concerted 
structural changes are the dominant mode of allosteric communication in the IID, rather 
than conformational entropy and dynamical allostery (Supplementary Fig. 2). Therefore, 
examining structures where the orange community undergoes large conformational 
changes might reveal the perturbations these motions induce elsewhere in the protein. 
To understand what sort of conformational changes are present, we performed a 
dimensionality reduction on our simulation dataset by applying principal component 
analysis (PCA) to the distances between the Cβ atoms of every pair of residues in the 
orange community. Projecting our MSM onto the first two principal components (PC1 
and PC2) reveals one dominant free energy minimum and a broad excited state (Fig. 
3C). 
 
Comparing representative structures for the orange community’s two dominant states 
suggests the cryptic pocket is indeed a cryptic allosteric site, targeting of which could 
allosterically disrupt binding of VP35’s IID to dsRNA blunt ends. Most importantly, 
conformational changes of the orange community are associated with opening of the 
cryptic pocket (Fig. 3D). Therefore, targeting the cryptic pocket could modulate the 
entire allosteric network in addition to its potential direct effect on the backbone-binding 
mode. Comparing the structures also reveals that the end of helix 4 frays and the 
preceding loop, which sits at the PPI between the two dsRNA-binding modes, is 
displaced. So, targeting the cryptic pocket could allosterically modulate this PPI. Finally, 
we note a substantial reshuffling of residues F239, H231, and P273 and modest 
displacements of R322 and K339. Previous work has demonstrated that F239A, R322A,  
and K339A substitutions are each sufficient to disrupt dsRNA binding and IFN 
suppression.28 CARDS analysis suggests targeting the cryptic pocket could allosterically 
alter the structures of these residues and have a similar impact on dsRNA binding. 
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Figure 3. Allosteric network revealed by the CARDS algorithm. A) Structure of VP35’s 
IID with residues in the allosteric network shown in sticks and colored according to 
which of five communities they belong to. Substitution of residues labeled in red with 
alanine disrupts binding to dsRNA blunt ends and results in a dramatic reduction in 
immune suppression. B) Network representation of the coupling between communities 
of residues, colored as in A. Node size is proportional to the strength of coupling 
between residues in the community, and edge widths are proportional to the strength of 
coupling between the communities. C) Free energy landscape of the orange exposon 
projected onto the first two principal components, PC1 and PC2, highlighting the 
centroid structures of the free energy minimum (gray circle) and excited state (orange 
circle). D) Structures of the centroids (colored as in panel C) capture opening of the 
cryptic pocket and rearrangements involving key residues for PPIs and PNIs. 
 
Thiol labeling experiments corroborate the predicted cryptic pocket. 
One way to experimentally test our prediction of a cryptic pocket is to probe for solvent 
exposure of residues that are buried in available crystal structures but become exposed 
to solvent upon pocket opening. Cysteines are particularly appealing candidates for 
such experiments because 1) they have a low abundance and 2) their thiol groups are 
highly reactive, so it is straightforward to detect exposed cysteines by introducing 
labeling reagents that covalently bind accessible thiols. Fortuitously, VP35’s IID has two 
cysteines (C307 and C326) that are buried in available crystal structures but become 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.940510doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940510
http://creativecommons.org/licenses/by-nc-nd/4.0/


exposed to solvent when the cryptic pocket opens (Fig. 4A). There is also a cysteine 
(C275) that is on the surface of the apo crystal structure27 and a fourth cysteine (C247) 
that is buried in the helical bundle. C275 is typically solvent exposed in our simulations, 
as expected based on the crystallographic data. Examining the solvent exposure of 
C247 revealed it is sometimes exposed to solvent via an opening of helix 1 relative to 
the rest of the helical bundle (Supplementary Fig. 3), but FTMap did not identify any 
hotspots that are likely to bind drug-like molecules in this region. Therefore, we expect 
to observe labeling of all four cysteines on a timescale that is faster than global 
unfolding of the protein. 
 
To experimentally test our predicted pocket, we applied a thiol labeling technique that 
probes the solvent exposure of cysteine residues.44 For these experiments, 5,5’-
Dithiobis-(2-Nitrobenzoic Acid) (also known as DTNB or Ellman’s reagent, Fig. 4B) is 
added to a protein sample. Upon reaction with the thiol group of an exposed cysteine, 
DTNB breaks into two TNB molecules, one of which remains covalently bound to the 
cysteine while the other is released into solution. The accumulation of free TNB can be 
quantified based on the increased absorbance at 412 nm. We have previously applied 
this technique to test predicted pockets in β-lactamase enzymes.11,45 
 
As expected from our computational model, the observed signal from our thiol labeling 
experiments is consistent with opening of the cryptic pocket (Fig. 4C). Absorbance 
curves are best fit by four exponentials, each with an approximately equivalent 
amplitude that is consistent with expectations based on the extinction coefficient for 
DTNB (Supplementary Fig. 4). To assign these labeling rates to individual cysteines, we 
systematically mutated the cysteines to serines, performed thiol labeling experiments, 
and assessed which rates disappeared and which remained (Supplementary Table 1). 
For example, labeling of the C275S variant lacks the very fastest rate for wild-type, 
consistent with the intuition that a residue that is surfaced exposed in the crystal 
structure (i.e. C275) should label faster than residues that are generally buried. To test 
whether the observed labeling could be due to an alternative process, such as global 
unfolding, we determined the population of the unfolded state and unfolding rate of 
VP35’s IID under native conditions (Supplementary Table 2) and the intrinsic labeling 
rate for each cysteine (Supplementary Table 3). As shown in Fig. 4C, the observed 
labeling rates are all considerably faster than the expected labeling rate from the 
unfolded state at a range of DTNB concentrations. This result confirms that labeling of 
all four cysteines arises from fluctuations within the native state, consistent with our 
computational predictions. Furthermore, the exposure of C247 is far rarer than C307 or 
C326 (equilibrium constants for the exposure of C247 and C307 are 5.4 × 10−4 ±
8.1 × 10−6 and 8.5 × 10−2 ± 2.8 × 10−3, respectively).  Therefore, a ligand would have to 
pay a greater energetic cost to stabilize the conformational change that exposes C247 
than to stabilize the open state of the cryptic allosteric site created by the motion of helix 
7. 
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Figure 4. Thiol labeling supports the existence of the predicted cryptic pocket. A) 
Structure of VP35’s IID highlighting the locations of the four native cysteines (sticks). 
C307 and C326 are both buried and point into the proposed cryptic pocket. B) Structure 
of the DTNB labeling reagent. C) Observed labeling rates (circles) at a range of DTNB 
concentrations. Fits to the Linderstrøm-Lang model are shown in dashed colored lines 
and the expected labeling rate from the unfolded state is shown as black dotted lines. 
The mean and standard deviation from three replicates are shown but error bars are 
generally smaller than the symbols. Labeling for C275 is not shown because it is 
surface exposed in both the available crystal structures and our simulations, and it 
behaves as expected (labeling rate greater than 1 s-1 with a linear dependence on 
[DTNB]). 
 
Stabilizing the open cryptic pocket allosterically disrupts binding to dsRNA blunt 
ends. 
We reasoned that covalent attachment of TNB to C307 and C326 would provide a 
means to capture the open pocket and assess the impact of stabilizing this state on 
dsRNA binding. Addition of TNB to these cysteines is sterically incompatible with the 
closed conformation of VP35’s IID that has been observed crystallographically. TNB’s 
mass of ~198 Da is also similar to many drug fragments used in screening campaigns, 
making it a reasonable surrogate for the type of effect one might achieve with a 
fragment hit. Given that we already know DTNB labels the IID’s cysteines, a TNB-
labeled sample is easily obtainable by waiting until the labeling reaction goes to 
completion. Finally, we have previously used this same strategy to identify cryptic 
pockets that exert allosteric control over the activity of β-lactamase enzymes.11,45 To 
ensure that we primarily capture the effect of labeling on pocket opening, we used a 
C247S/C275S variant of VP35’s IID that only has cysteines pointing into the cryptic 
pocket. As with the wild-type protein, thiol labeling of the C247S/C275S variant is 
consistent with the formation of the proposed cryptic pocket (Supplementary Fig. 5). 
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To measure the effect of TNB labeling on the IID’s interaction with dsRNA, we 
developed a fluorescence polarization (FP) assay for monitoring dsRNA binding. 
Paralleling our past work on VP35-peptide interactions,46 we added varying 
concentrations of C247S/C275S IID to a fixed concentration of 25-bp dsRNA with a 
fluorescein isothiocyanate (FITC) conjugation at one end (Supplementary Table 4). Free 
FITC-dsRNA emits depolarized light upon excitation with polarized light because of the 
molecule’s fast rotation. Binding of one or more VP35 molecules restricts the motion of 
FITC-dsRNA, resulting in greater emission of polarized light, which is best monitored by 
the change in anisotropy.47 
 
Monitoring the binding of unlabeled protein to 25-bp dsRNA with either blunt ends or 3’ 
overhangs demonstrates that our FP assay is sensitive to both dsRNA-binding modes 
and gives affinities that are consistent with past work. Past work using a dot-blot assay 
to measure binding reported an apparent dissociation constant (Kd) for blunt-ended 
dsRNA of 3.4±0.07 μM.29 Furthermore, sterically hindering binding of the IID to dsRNA 

blunt ends by adding 2-nucleotide overhangs to the 3’ of the RNA reduces the apparent 
dsRNA-binding affinity by 10-fold.48 This weaker interaction was attributed to the 
backbone-binding mode since it is still available to VP35’s IID even when the presence 
of an overhang inhibits blunt end binding. Similarly, our FP assay gives an apparent Kd 
of 3.6±0.34 μM for blunt-ended dsRNA (Fig. 5A). Addition of 3’ overhangs results in a 
strong rightwards shift of the binding curve, consistent with at least a 5-fold reduction in 
the apparent binding affinity (apparent Kd of 20.4±1.1 µM). However, an upper baseline 
could not be captured due to limitations in the protein’s solubility, so this apparent Kd is 
a lower bound. The data are also fit well assuming an apparent Kd of 30.1±7.2 µM that 
was reported previously.48 
 
Repeating our FP assay with TNB-labeled protein reveals that labeling allosterically 
reduces the affinity for blunt-ended dsRNA by at least 5-fold (Fig. 5A). Solubility 
limitations again prevented us from observing complete binding curves for labeled 
protein, but the data are sufficient to demonstrate that TNB-labeling has at least as 
strong an effect on binding as addition of a 3’ overhang. As a control to ensure that 
labeling does not disrupt binding by simply unfolding the protein, we measured the 
circular dichroism (CD) spectra of labeled and unlabeled protein. The similarity between 
the CD spectra (Fig. 5B) demonstrates that the IID’s overall fold is not grossly 
perturbed. Since the cryptic pocket does not coincide with the blunt end-binding 
interface, our results suggests the impact on dsRNA binding is allosteric. Furthermore, 
past work demonstrated that reducing the blunt end-binding affinity by as little as 3-fold 
is sufficient to allow a host to mount an effective immune response,28 so targeting our 
cryptic pocket could be of great therapeutic value. 
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Figure 5. Stabilizing the open cryptic pocket in VP35’s IID disrupts dsRNA binding. A) 
Binding of both TNB-labeled and unlabeled C247S/C275S variants of the IID to two 
different dsRNA constructs. This protein variant only has cysteines in the cryptic pocket. 
The RNA constructs both have a 25-bp double-stranded segment, and one has 2 
nucleotide overhangs on the 3’ ends. The anisotropy was measured via a fluorescence 
polarization assay and fit to a single-site binding model (black lines). The mean and 
standard deviation from three replicates are shown but error bars are generally smaller 
than the symbols. B) Circular dichroism (CD) spectra of labeled and unlabeled protein 
demonstrate that labeling does not unfold the protein. The opaque and semi-transparent 
lines represent the mean and standard deviation, respectively, from three replicates. 
 
Discussion 
We have identified a cryptic allosteric site in the IID of the Ebola VP35 protein that 
provides a new opportunity to target this essential viral component. Past work identified 
several sites within the VP35 IID that are critical for immune evasion and viral 
replication,23,26,31,32 but structural snapshots captured crystallographically lacked 
druggable pockets.27,28 We used adaptive sampling simulations to access more of the 
ensemble of conformations that VP35 adopts, uncovering an unanticipated cryptic 
pocket. While the pocket directly coincides with the interface that binds the backbone of 
dsRNA, it was not clearly of therapeutic relevance since binding dsRNA’s blunt ends is 
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more important for Ebola’s immune evasion mechanism.29 However, our simulations 
also suggested the cryptic pocket is allosterically coupled to the blunt end-binding 
interface and, therefore, could modulate this biologically-important interaction. 
Subsequent experiments confirmed that fluctuations within the folded state of the IID 
expose two buried cysteines that line the proposed cryptic pocket to solvent. Moreover, 
covalently modifying these cysteines to stabilize the open form of the cryptic pocket 
allosterically disrupts binding to dsRNA blunt ends by at least 5-fold. Previous work 
demonstrated that reducing the binding affinity by as little as 3-fold is sufficient to allow 
a host to mount an effective immune response.28 Therefore, it may be possible to 
attenuate the impact of viral replication and restrict pathogenicity by designing small 
molecules to target the cryptic allosteric site we report here. 
 
More generally, our results speak to the power of simulations to provide simultaneous 
access to both hidden conformations and dynamics with atomic resolution. Such 
information is extremely difficult to obtain from single structural snapshots or powerful 
techniques that report on dynamics without directly yielding structures, such as NMR 
and hydrogen deuterium exchange. As a result, simulations are a powerful means to 
uncover unanticipated features of proteins’ conformational ensembles, such as cryptic 
pockets and allostery, providing a foundation for the design of further experiments. We 
anticipate such simulations will enable the discovery of cryptic pockets and cryptic 
allosteric sites in other proteins, particularly those that are currently considered 
undruggable. Furthermore, the detailed structural insight from simulations will facilitate 
the design of small molecule drugs that target these sites. 
 
Methods 
Molecular dynamics simulations and analysis 
Simulations were initiated from chain B of PDB 3L2528 and run with Gromacs49 using 
the amber03 force field50 and TIP3P explicit solvent51 at a temperature of 300 K and 1 
bar pressure, as described previously.52 We first applied our FAST-pockets algorithm35 
to balance 1) preferentially simulating structures with large pocket volumes that may 
harbor cryptic pockets with 2) broad exploration of conformational space. For FAST, we 
performed 10 rounds of simulations with 10 simulations/round and 80 ns/simulation. To 
acquire better statistics across the landscape, we performed an RMSD-based clustering 
using a hybrid k-centers/k-medoids algorithm53 implemented in Enspara54 to divide the 
data into 1,000 clusters. Then we ran three simulations initiated from each cluster 
center on the Folding@home distributed computing environment, resulting in an 
aggregate simulation time of 122 μs. 
 Exposons were identified using our previously described protocols,11 as 
implemented in Enspara.54 Briefly, the solvent accessible surface area (SASA) of each 
residue’s side-chain was calculated using the Shrake-Rupley algorithm55 implemented 
in MDTraj56 using a drug-sized probe (2.8 Å sphere). Conformations were clustered 
based on the SASA of each residue using a hybrid k-centers/k-medoids algorithm, using 
a 2.5 Å2 distance cutoff and 5 rounds of k-medoids updates. A Markov time of 6 ns was 
selected based on the implied timescales test (Supplementary Fig. 6). The center of 
each cluster was taken as an exemplar of that conformational state, and residues were 
classified as exposed if their SASA exceeded 2.0 Å2 and buried otherwise. The mutual 
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information between the burial/exposure of each pair of residues was then calculated 
based on the MSM (i.e. treating the centers as samples and weighting them by the 
equilibrium probability of the state they represent). Finally, exposons were identified by 
clustering the matrix of pairwise mutual information values using affinity propagation.57 
 The CARDS algorithm43 was applied to identify allosteric coupling using our 
established protocols,58 as implemented in Enspara.54 Briefly, each dihedral angle in 
each snapshot of the simulations was assigned to one of three rotameric states 
(gauche+, gauche-, or trans) and one of two dynamical states (ordered or disordered). 
The total coupling between each pair of dihedrals 𝑋 and 𝑌 was then calculated as 
𝐼(𝑋𝑅, 𝑌𝑅) + 𝐼(𝑋𝑅, 𝑌𝐷) + 𝐼(𝑋𝐷, 𝑌𝑅) + 𝐼(𝑋𝐷, 𝑌𝐷), where 𝐼 is the mutual information metric, 𝑋𝑅 
is the rotameric state of dihedral 𝑋, and 𝑋𝐷 is the dynamical state of dihedral 𝑋. The 
term 𝐼(𝑋𝑅, 𝑌𝑅) is the purely structural coupling, while the sum of the other three terms is 

referred to as the disorder-mediated coupling. The dihedral level couplings were coarse-
grained into residue-level coupling by summing the total coupling between all the 
relevant dihedrals and the network was filtered to only retain significant edges.59 Finally, 
communities of coupled residues were identified by clustering the residue-level matrix of 
total couplings using affinity propagation.57 
 
Protein expression and purification 
All variants of VP35’s IID were purified from the cytoplasm of E. coli BL21(DE3) Gold 
cells (Agilent Technologies). Variants were generated using the site directed 
mutagenesis method and confirmed by DNA sequencing. Transformed cells were grown 
at 37°C until OD 0.3 then grown at 18°C until induction at OD 0.6 with 1 mM IPTG (Gold 
Biotechnology, Olivette, MO). Cells were grown for 15 hours then centrifuged after 
which the pellet was resuspended in 20 mM Sodium Phosphate pH 8, 1 M sodium 
chloride, with 5.1 mM 𝛽-mercaptoethanol. Resuspended cells were subjected to 
sonication at 4°C followed by centrifugation. The supernatant was then subjected to Ni-
NTA affinity, TEV digestion, cation exchange (BioRad UNOsphere Rapid S column), 
and size exclusion chromatography (BioRad Enrich SEC 70 column) into 10 mM Hepes 
pH 7, 150 mM NaCl, 1 mM MgCl2, 2 mM TCEP.  
 
Thiol labeling 
We monitored the change in absorbance over time of 5,5’-dithiobis-(2-nitrobenzoic acid) 
(DTNB, Ellman’s reagent, Thermo Fisher Scientific). Various concentrations of DTNB 
were added to protein and change in absorbance was measured in either an SX-20 
Stopped Flow instrument (Applied Photophysics, Leatherhead, UK), or an Agilent 
Cary60 UV-vis spectrophotometer at 412 nm until the reaction reached steady state 
(~300 s). Data were fit with a Linderstrøm-Lang model to extract the thermodynamics 
and/or kinetics of pocket opening, as described in detail previously.11 As a control, the 
equilibrium constant for folding and the unfolding rate were measured (Supplementary 
Table 2) and used to predict the expected labeling rate from the unfolded state. The 
equilibrium constant was inferred from a two-state fit to urea melts monitored by 
fluorescence and unfolding rates were inferred from single exponential fits to unfolding 
curves monitored by fluorescence after the addition of urea, as described 
previously.11,45,60 Fluorescence data were collected using a Photon Technology 
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International Quanta- Master 800 rapid excitation spectrofluorometer with Quantum 
Northwest Inc. TC-125 Peltier-controlled cuvette holder.  
 
Fluorescence polarization binding assay 
Binding affinities between variants of VP35’s IID and dsRNA were measured using 
fluorescence polarization in 10 mM Hepes pH 7, 150 mM NaCl, 1 mM MgCl2. A 25 base 
pair FITC-dsRNA (Integrated DNA Technologies) substrate with and without a 2 
nucleotide 3’ overhang was included at 100 nM. The sample was equilibrated for one 
hour before data collection. Data were collected on a BioTek Synergy2 Multi-Mode 
Reader as polarization and were converted to anisotropy as described previously.47 
TNB-labeled samples were generated by allowing DTNB and VP35’s IID to react for 3 
minutes and then removing excess DTNB with a Zeba spin desalting columns (Thermo 
Fisher Scientific). A single-site binding model was sufficient to fit the data. 
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