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S u m m a r y

B o t h t h e r i g h t i n f e r i o r f r o n t a l g y r u s ( r I F G ) a n d t h e p r e - s u p p l e m e n t a r y m o t o r

a r e a ( p r e - S M A ) a r e c r u c i a l f o r s u c c e s s f u l r e s p o n s e i n h i b i t i o n . H o w e v e r , t h e

p a r t i c u l a r f u n c t i o n a l r o l e s o f t h o s e t w o r e g i o n s h a v e b e e n c o n t r o v e r s i a l l y

d e b a t e d f o r m o r e t h a n a d e c a d e n o w . I t i s u n c l e a r w h e t h e r t h e r I F G d i r e c t l y

i n i t i a t e s s t o p p i n g o r s e r v e s a n a t t e n t i o n a l f u n c t i o n , w h e r e a s t h e s t o p p i n g i s

t r i g g e r e d b y t h e p r e - S M A . T h e c u r r e n t m u l t i m o d a l M E G / f M R I s t u d y s o u g h t

t o c l a r i f y t h e r o l e a n d t e m p o r a l a c t i v a t i o n o r d e r o f b o t h r e g i o n s i n r e s p o n s e

i n h i b i t i o n u s i n g a s e l e c t i v e s t o p p i n g t a s k . T h i s t a s k d i s s o c i a t e s i n h i b i t o r y

f r o m a t t e n t i o n a l p r o c e s s e s . O u r r e s u l t s r e l i a b l y r e v e a l a t e m p o r a l p r e c e d e n c e

o f r I F G o v e r p r e - S M A . M o r e o v e r , c o n n e c t i v i t y d u r i n g r e s p o n s e i n h i b i t i o n i s

d i r e c t e d f r o m r I F G t o p r e - S M A a n d p r e d i c t s s t o p p i n g p e r f o r m a n c e . R e s p o n s e

i n h i b i t i o n i s i m p l e m e n t e d v i a b e t a - b a n d o s c i l l a t i o n s . O u r f i n d i n g s s u p p o r t

t h e h y p o t h e s i s t h a t r e s p o n s e i n h i b i t i o n i s i n i t i a t e d b y t h e r I F G a s a f o r m o f

a t t e n t i o n - i n d e p e n d e n t t o p - d o w n c o n t r o l .
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I n t r o d u c t i o n

Response inhibition is an essential component of cognitive control. Many
neuropsychiatric disorders like attention deficit hyperactivity disorder (ADHD),
obsessive-compulsive disorder (OCD), and Parkinson’s disease (PD) demonstrate
the severe impact of impaired response inhibition (Schachar and Logan, 1990;
De Wit et al., 2012; Voon and Dalley, 2011) on mental health. The classical
stop-signal task (SST) has been used to operationalize response inhibition in
many studies, thereby playing a major role in defining research on cognitive
control (Verbruggen et al., 2019). In the go trials of this task, participants
have to respond to a go signal by executing an immediate motor response,
e.g. performing a button press. In less frequent stop trials, the go signal is
followed by a stop signal after a variable delay and participants have to cancel
the planned or ongoing motor response. A well-developed theoretical framework
describing the cognitive processes underlying response inhibition relies on a
so-called independent race model, which assumes the independence of go and
stop processes (Logan et al., 1984; Verbruggen et al., 2019). Depending on
which process finishes first, the stop process, which is initiated after the variable
stop-signal delay, or the go process, which has been started already before, the
response can be inhibited successfully or not. Based on this framework, the
length of the stopping process can be estimated by subtracting the mean stop
signal delay from the mean go RT. This length is also called stop signal reaction
time (SSRT), which represents a behavioral measure for response inhibition in
the absence of a motor reaction.

So far, numerous studies using the SST provided consistent evidence that
response inhibition crucially depends on two cortical regions: the inferior frontal
cortex (IFC) and the pre-supplementary motor area (pre-SMA) (Wessel and
Aron, 2017). The particular functional roles of those two regions within response
inhibition has been controversially debated for more than a decade now (Aron
et al., 2004, 2014; Hampshire and Sharp, 2015a; Aron et al., 2015; Hampshire
and Sharp, 2015b). While a range of studies on response inhibition point towards
a single inhibitory module within the IFC that directly initiates stopping (Aron
et al., 2003, 2014), other studies assign this role to pre-SMA (Li et al., 2006;
Nachev et al., 2007). As an alternative, some authors suggest that the functional
role of IFC within response inhibition is either the encoding of context-specific
task rules or simply the attentional detection of the need for response inhibition,
whereas its initiation is triggered by the pre-SMA (Duann et al., 2009; Sharp
et al., 2010; Rae et al., 2015; Xu et al., 2017). A more critical view questions
the behavioural construct of motor response inhibition in general. Hampshire
and Sharp (2015a) suggest that there is no unitary response inhibition module
and claim that the IFC is part of a domain-general control network (see also
Erika-Florence et al., 2014). However, in the attempts to experimentally define
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the differential roles of IFC and pre-SMA, the temporal activation order of
those regions has become a decisive, yet unresolved question in the field (Allen
et al., 2018; Swann et al., 2012).

Two methodological issues may explain why this topic has so far remained
unresolved. One is a lack of temporal resolution in many respective studies,
the other the specific design of the standard SST. The majority of studies used
fMRI, while only few studies in humans have addressed the temporal activation
order of IFC and pre-SMA using techniques providing both, high spatial and
high temporal resolution at the same time. One study used electrocorticography
(ECoG) in a single patient and concluded that pre-SMA precedes the IFC
activation (Swann et al., 2012). In contrast, two recent MEG studies suggest
that both regions may be simultaneously active and that there is no temporal
or functional primacy (Allen et al., 2018; Jha et al., 2015). However, the latter
two studies may be limited by the design of the standard SST, which does
not allow to disentangle attentional from inhibitory processes, and hence, to
unequivocally define the functional roles of IFC and pre-SMA. To specifically
control for the attentional load involved in the SST, Sharp et al. (2010) used a
selective stopping task. This task comprises additionally attentional capture
go trials that are identical to stop trials in terms of timing and frequency, but
participants have to continue with their already prepared go response (Figure 1).
Contrasting both conditions (stop vs. attentional capture go trials) not only
allows to separate the two cognitive processes (attentional processing and
response inhibition; Sebastian et al., 2016), but more importantly also enables
direct temporal comparison of stop and go processes in terms of the onset of
the related processes which is a prerequisite of high temporal resolution studies.
So far, to our best knowledge, only three studies used a selective stopping task
with an attentional capture go (“continue”) condition in connection with a
high temporal resolution technique. Swann et al. (2012) used ECoG in a single
patient, and Wessel et al. (2013) in four patients, respectively, but Wessel et al.
(2013) could only cover the rIFC region, not pre-SMA. Sánchez-Carmona et al.
(2016) used EEG, but did not analyze the temporal activation order of both
regions. However, the majority of studies providing high temporal resolution
relied on a standard SST (Allen et al., 2018; Bartoli et al., 2018; Fonken et al.,
2016; Jha et al., 2015).

The current study aims to answer long-standing unresolved questions concerning
the roles and timing of IFC and pre-SMA during response inhibition, i. e.,
which region initiates inhibitory control and which region exerts a putative
causal influence on the other. We therefore used a selective stopping task in
combination with high temporal resolution MEG recordings. To validate MEG
source reconstruction we used the high spatial resolution of fMRI scans in a
multimodal imaging approach. Based on previous findings, we hypothezised
a predominant role of beta-band activity in both regions during the time of
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stopping (Kühn et al. (2004); Swann et al. (2009, 2012); Fonken et al. (2016)),
and aimed to define the temporal activation order and connectivity of IFC and
pre-SMA during response inhibition.

4

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.940841doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940841


I n t r o d u c t i o n

A

+
baseline

baseline
+

+

GO trial

STOP trial

ACGO trial

B

tROI

temporal ROI (tROI for latency 
and connectivity analyses

GO

STOP

ACGO

RTGO

RTACGO

SSRT100ms

variable 
ACSD 

0ms SSRTmax100ms

variable 
SSD 

SSRTmax

+
baseline

task

task

100ms

100ms signal
onset

F i g u r e 1 : E x p e r i m e n t a l d e s i g n o f t h e s e l e c t i v e s t o p p i n g t a s k a n d t r i a l d e f i n i t i o n u s e d

i n t h i s s t u d y . A , T h e t a s k c o m p r i s e d t h r e e c o n d i t i o n s : a G O c o n d i t i o n ( 5 0 % o f a l l

t r i a l s ) , a S T O P c o n d i t i o n ( 2 5 % o f a l l t r i a l s ) , a n d a n a t t e n t i o n a l c a p t u r e G O ( A C - G O )

c o n d i t i o n ( 2 5 % o f a l l t r i a l s ) . T h e v a r i a b l e s t o p s i g n a l d e l a y ( S S D ) w a s a d a p t e d t o

t h e p a r t i c i p a n t s ’ p e r f o r m a n c e t o y i e l d a p r o b a b i l i t y o f 5 0 % o f s u c c e s s f u l r e s p o n s e

i n h i b i t i o n s p e r b l o c k . T a s k s e g m e n t s o f t h e t r i a l s w e r e a l i g n e d t o t h e S T O P / A C - G O

s i g n a l ( s t o p t r i a l s i n b l u e , A C - G O t r i a l s i n g r e e n ) . B a s e l i n e s e g m e n t s ( g r e y ) a r e

a l i g n e d t o e n d 1 0 0 m s b e f o r e G O s i g n a l o n s e t . T o r e d u c e c o n t a m i n a t i o n w i t h

b u t t o n - p r e s s r e l a t e d m o t o r a c t i v i t y w i t h i n t h e t e m p o r a l r e g i o n o f i n t e r e s t , s e l e c t i v e

f i l t e r i n g w a s a p p l i e d o n A C - G O t r i a l s b y e x c l u d i n g t r i a l s w i t h R T
A C - G O

< S S R T

( m e d i a n S S R T a c r o s s p a r t i c i p a n t s , 2 3 7 m s ) . B , T e m p o r a l r e g i o n o f i n t e r e s t ( v i o l e t )

f o r l a t e n c y a n d c o n n e c t i v i t y a n a l y s i s s t a r t s a t 1 0 0 m s , w h e r e e a r l y v i s u a l p r o c e s s i n g

i s l i k e l y c o m p l e t e a n d e n d s a t S S R T m a x ( m a x i m a l S S R T a c r o s s p a r t i c i p a n t s , 3 5 0 m s ) .

R T r e a c t i o n t i m e , S S R T s t o p - s i g n a l r e a c t i o n t i m e , S S D s t o p - s i g n a l d e l a y , A C S D

a t t e n t i o n a l c a p t u r e s i g n a l d e l a y .
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B e h a v i o r a l R e s u l t s Healthy participants (n = 62; three were excluded from
further analysis, see Methods) performed a selective stopping task with an
additional attentional control condition (Figure 1). Depending on different
signal colors, participants were instructed to respond with a button press, to
try to inhibit or to continue their already initiated go response. The mean stop
signal delay (SSD) was 299.1± 132.6ms (mean ± sd) and led to a probability
of responding on a STOP trial close to 50% (48.1% ± 3.5%) proving the
adherence of subjects to the task rules and the successful operation of the
staircase procedure. While for successful STOP trials (sSTOP) the mean
SSD was 288.2 ± 124.7ms, it was 312.7 ± 128.8ms for unsuccessful STOP
(uSTOP) trials. The mean attentional capture signal delay (ACSD) for correct
attentional capture GO (cAC-GO) trials was 302.0 ± 124.2ms. A repeated-
measures ANOVA based on RT revealed a main effect of condition (F = 467.1,
p < 0.001). Bonferroni-corrected post hoc comparisons revealed that mean RT
in cAC-GO trials (588.2± 13.5ms, group mean ± standard error of the mean)
was significantly longer as compared to GO trials (550.1± 14.0ms) and uSTOP
trials (503.7± 13.1ms). Mean RT in uSTOP trials was significantly shorter as
compared to GO trials (p < 0.001 for all post hoc tests; Figure 2). Participants
performed accurately as indicated by low omission error rates in GO (2.3±2.8%,
mean ± sd) and AC-GO trials (1.2± 1.4%). All these behavioral results of the
MEG study are in line with the ones of the fMRI study (Sebastian et al., 2016).

SSRT was calculated by the mean and integration method (see Methods). While
the integration method tends to underestimate SSRT, the mean method tends
to overestimate it (Verbruggen et al., 2013). Therefore we averaged the values
of both methods as suggested by Jha et al. (2015), resulting in a median SSRT
of 237.4± 39.2ms. The maximal SSRT across participants (SSRTmax), based
on these averaged SSRT values, was 349.9ms.

To exclude an effect of signal color, the experiment was designed in a cross-
balanced manner, i. e., the attribution of signal color for stopping (blue/green)
to trial type (STOP/AC-GO) was balanced across subjects. A two-sample
t-test with signal color as between factor revealed that the stopping latency as
measured by the SSRT did not differ significantly between groups (t = 0.376,
p = 0.708). A mixed-design ANOVA with signal color as between factor and
reaction time (RT; GO vs. AC-GO) as within factor further revealed no influence
of attribution of color to trial type, as no interaction of these two factors was
present (F = 1.745, p = 0.192).

S o u r c e a c t i v a t i o n To analyze the dynamics and connectivity of response inhi-
bition, we first identified a set of cortical sources involved in successful stopping.
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F i g u r e 2 : B e h a v i o r a l r e s u l t s f o r t h e s t o p s i g n a l t a s k ( m e a n ± s t a n d a r d e r r o r o f
t h e m e a n ) . R e a c t i o n t i m e ( R T ) i n c o r r e c t G O ( c G O ) , c o r r e c t a t t e n t i o n a l c a p t u r e

G O ( c A C - G O ) , a n d u n s u c c e s s f u l s t o p t r i a l s ( u S T O P ) . * * * p < 0 . 0 0 1 b a s e d o n

B o n f e r r o n i - c o r r e c t e d p o s t h o c c o m p a r i s o n s o f a r e p e a t e d - m e a s u r e s A N O V A .

Importantly, we aimed to identify sources that are actually active in the acquired
data and not only motivated by literature (Gross et al., 2013). First, to find
appropriate parameters for source reconstruction using a beamformer method,
the spectral power at sensor level was analyzed for both conditions pooled,
sSTOP and cAC-GO trials. We a-priori defined a temporal region of interest
(tROI) starting after the presumed completion of early visual processing and
ending with SSRTmax (100 to 350ms, see Methods). We compared spectral
power between tROI and an equally long baseline epoch (see Supplemental
Information, Figure S1). The cluster-based permutation test revealed one cluster
with significant power decrease (12.0 to 31.9Hz, beta band) and one cluster with
significant power increase (63.8 to 87.7Hz, gamma band). Second, to reveal
effects related to response inhibition, the reconstructed source power during the
tROI was contrasted between both conditions (sSTOP and cAC-GO) for each
of those two frequency bands. The contrast revealed that beta-band power was
increased in sSTOP compared to cAC-GO trials in a network of pre-motor and
pre-frontal areas (Figure 3A). One main cluster of increased beta-band power
was located in the right inferior frontal cortex with its maximum in the rIFG
pars opercularis. Increased beta-band power was also present in the pre-SMA,
l-MFG, and bilateral premotor regions (Table 1, Figure 3A). The same analysis
performed for the gamma band did not reveal a significant cluster. To further
validate the MEG source reconstruction, a subset of participants in the MEG
experiment (n = 31) plus 45 additional participants were recorded using fMRI
(resulting in n = 76). Here, the contrast sSTOP > AC-GO revealed activation
in two rIFG subregions (p. triangularis, BA45, x = 52, y = 22, z = 4, t = 10.96;
p. opercularis, BA44, x = 52, y = 18, z = 14, t = 9.42) and pre-SMA (x = 16,
y = 14, z = 64, t = 9.45) as sub-maxima in the biggest cluster obtained (13438
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voxels, see Figure 3B). A smaller cluster (85 voxels) also showed pre-SMA
related activation (x = –14, y = 18, z = 66, t = 5.63). The peak coordinates
obtained by the MEG source construction in the beta band were closely located
to the peak voxels identified fMRI, i. e., the minimal distance between MEG
and fMRI sources was 6.6mm for the rIFG areas and 15.4mm for the pre-SMA
areas.

rIFG

rIFG

l-IFG

l-IFG

pre-SMA

pre-SMA
pre-SMA

lPMC

rPMClMFG
lAIns

A

t-value MEG

420–2–4

B

t-value fMRI

1086420 12 14

F i g u r e 3 : S o u r c e s i n v o l v e d i n s u c c e s s f u l s t o p p i n g . A , S o u r c e r e c o n s t r u c t i o n o f

M E G d a t a i n t h e b e t a b a n d ( 1 2 – 3 2 H z , 1 0 0 – 3 7 3 m s a f t e r S T O P / A C - G O s i g n a l o n s e t ) .

S u r f a c e p l o t s s h o w t - v a l u e s o f s i g n i f i c a n t c l u s t e r s w h e n c o n t r a s t i n g s S T O P a n d

c A C - G O t r i a l s ( α
c l u s t e r

= 0 . 0 5 , t w o - t a i l e d t e s t ) . P e a k v o x e l s ( l o c a l e x t r e m a ) o f t h e s e

c l u s t e r s a r e h i g h l i g h t e d a n d l a b e l l e d ( M N I c o o r d i n a t e s a r e s h o w n i n T a b l e 1 ) . B , f M R I

a c t i v a t i o n m a p s f o r t h e c o n t r a s t s s S T O P > A C - G O ; m a p t h r e s h o l d e d p
F W E

< 0 . 0 5 ,

c l u s t e r e x t e n t k = 5 v o x e l s ) . D a t a a r e t a k e n f r o m S e b a s t i a n e t a l . ( 2 0 1 7 ) .

T e m p o r a l p r e c e d e n c e o f r I F G o v e r p r e - S M A a c t i v a t i o n To test our main hy-
pothesis concerning the initiation of response inhibition, we analyzed the tempo-
ral development of beta-band power across the sources obtained by contrasting
z-transformed sSTOP with cAC-GO trials. The rIFG was the source that
showed the earliest beta-band power difference compared to all other sources
(Figure 4A). According to our hypothesis, we tested if the beta-band power
difference occurred earlier or later at the rIFG than at the pre-SMA. Since
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T a b l e 1 : M E G s o u r c e r e c o n s t r u c t i o n i n t h e b e t a b a n d . M N I c o o r d i n a t e s o b t a i n e d

a s p e a k v o x e l s w h e n c o n t r a s t i n g s S T O P v e r s u s c A C - G O t r i a l s .

Region MNI [mm] t-value Abbr.x y z
Inferior Frontal Gyrus BA44/45 R 50 20 20 3.654 rIFG
Inferior Frontal Gyrus BA44/45 L –50 10 20 2.820 l-IFG
Anterior Insula / left IFG –40 30 0 2.894 lAIns

Pre-supplemental motor area 0 20 60 3.878 pre-SMA

Middle Frontal Gyrus –40 0 50 3.360 lMFG

Premotor cortex BA6 R 10 –10 50 4.015 rPMC
Premotor cortex BA6 L –20 –10 60 3.571 lPMC

Fornix 0 0 10 3.740 Fornix

cluster-based permutation tests do not establish significance of latency differ-
ences between conditions (Sassenhagen and Draschkow, 2019), we tested the
temporal lead of rIFG activity onset by subtracting z-transformed cAC-GO
trials from sSTOP trials (Figure 4B, group level). Onsets were defined by using
a percentage threshold of the range between zero power and the first local
power maximum found in the tROI (Figure 4C). These onsets were then used as
input for a permutation test that revealed a significant latency onset difference
between both sources (p = 0.0240, two-tailed test, mean onset latency rIFG:
137± 46ms, and pre-SMA: 159± 52ms. This difference refers to a 25% onset
threshold, but it was significant for 10%, 30%, and 50% thresholds, too. For
this test, seven subjects had to be excluded because no positive peak could be
found within the tROI.

B e t a - b a n d s o u r c e p o w e r c o r r e l a t e s w i t h i n h i b i t o r y p e r f o m a n c e On the basis
of the remaining participants, we correlated source power with SSRT to test
behavioral significance of beta-band (12–32Hz) power differences during the
tROI. To this end, power differences between z-transformed sSTOP and cAC-
GO trials were averaged over trials for each participant at the peak voxel of
rIFG and pre-SMA sources according to our hypothesis. Each of both peak
voxels was identified as local extremum within a signficant cluster at group level
(see Methods). The maximal power difference found in the beta band within
the tROI was negatively correlated with SSRT values for the rIFG (ρ = –0.246,
p = 0.043, Spearman, one-sided test), but not for pre-SMA (ρ = –0.121,
p = 0.200, Figure 5; two outliers above three standard deviations were excluded
from both regressions, n = 50). t

To further ensure that the earlier onset latency of rIFG compared to pre-SMA
does not rely on the specific time-frequency transformation method used and the
parameters applied for onset latency definition, we used an orthogonal approach
to define the onset latency of both regions. Here, we used broadband signal time
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Max. Power  z(sSTOP) – z(cAC-GO)

rIFG

pre-SMA
𝜚 = –0.246, p = 0.043

𝜚 = –0.121, p = 0.200

F i g u r e 5 : T h e m a x i m u m ( z - t r a n s f o r m e d ) p o w e r f o u n d i n t h e b e t a b a n d ( 1 2 – 3 2 H z )

w i t h i n t h e t R O I ( 1 0 0 – 3 5 0 m s ) w a s n e g a t i v e l y c o r r e l a t e d a c r o s s s u b j e c t s w i t h S S R T

v a l u e s f o r r I F G , b u t n o t f o r p r e S M A .

courses instead of a frequency-specific analysis. We performed a time-resolved
support-vector-machine (SVM) analysis in order to classify sSTOP versus cAC-
GO trials and to identify the discriminability onset between both conditions,
separately for rIFG and pre-SMA. This SVM-based approach revealed a robust
above-chance classification starting from 137ms (p = 0.0001) after STOP/AC-
GO signal onset for the rIFG source and from 157ms (p = 0.0001) for the pre-
SMA source (Figure 6). To statistically compare individual classification onsets
for the two sources, we performed an onset analysis of the final classification
time series. This analysis showed a significantly earlier rIFG onset (mean onset
185ms) compared to pre-SMA (mean onset 207ms) at a threshold of 25%
(p = 0.002; 13 subjects were excluded because they did not meet inclusion
criteria, see Methods). This result was not biased by the selected threshold
since all other thresholds gave similar results. The SVM results indicate that
the rIFG source contained information to distinguish sSTOP and cAC-GO
trials at an earlier time point than the pre-SMA. Overall, the analysis of time
domain data corroborates the significantly earlier activation of rIFG in the
beta-band power analysis, suggesting that this area plays a leading role in
initiating response inhibition.

r I F G i s t h e d o m i n a n t s e n d e r o f i n f o r m a t i o n d u r i n g r e s p o n s e i n h i b i t i o n To fur-
ther characterize the functional role of rIFG and pre-SMA during response
inhibition, we analyzed their connectivity pattern using nonparametric condi-
tional Granger causality (cGC). We contrasted spectral cGC of sSTOP and
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R o b u s t a b o v e - c h a n c e c l a s s i f i c a t i o n w a s t e s t e d b e t w e e n 0 – 3 5 0 m s . S i g n i f i c a n t

t i m e w i n d o w s w i t h i n t h i s r a n g e f o r r I F G a n d p r e - S M A a r e h i g h l i g h t e d b y c o l o r e d

b a r s . A s t a t i s t i c a l t e s t f o r i n d i v i d u a l d i f f e r e n c e s i n o n s e t l a t e n c y b e t w e e n b o t h

r e g i o n s r e v e a l e d t h a t s S T O P a n d c A C - G O t r i a l s c o u l d b e d i s c r i m i n a t e d 2 2 m s

e a r l i e r i n r I F G ( m e a n o n s e t 1 8 5 m s ) t h a n i n p r e - S M A ( m e a n o n s e t 2 0 7 m s ) a t a 2 5 %

t h r e s h o l d .

cAC-GO trials in the tROI. Therefore, we computed the cGC from rIFG to
pre-SMA and vice versa, conditional on all other five active cortical sources
as obtained by the source reconstruction contrast. The cluster-based permu-
tation test (see Methods) revealed statistical differences between sSTOP and
cAC-GO conditions in the direction rIFG to pre-SMA within the (high) beta
band (pcluster = 0.0074, corrected for the two links tested), but not vice-versa
(Figure 7A).

To assess if the connectivity between rIFG and pre-SMA was correlated with
SSRT, we used the directed influence asymmetry index (DAI; Bastos et al.,
2015) that captures the predominant direction of cGC. Normalization allows
comparison of DAIs across frequencies (Michalareas et al., 2016). We correlated
the DAI of the sSTOP condition with SSRT in the significant frequency range
identified (in steps of 2Hz, in the range from 30 to 40Hz, resulting in six
discrete frequencies; Figure 7A). Using a bootstrap method (Bastos et al., 2015),
we found a significant negative correlation between DAI and SSRT at 34Hz
(r = –0.328, within a 99.17% confidence interval [–0.573; –0.030]). Hence, the
better subjects were able to inhibit their response, i. e., the faster their SSRT
was, the higher, positive DAI values they had, indicating a stronger connectivity
from rIFG to pre-SMA, whereas slower inhibiting subjects showed the reverse
pattern (negative DAI, stronger connectivity from pre-SMA to rIFG, Figure 7B).
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This demonstrated that the dominant direction of communication between rIFG
and pre-SMA affects the stopping process significantly.

Finally, to test whether rIFG to pre-SMA connectivity was specific to the
tROI of response inhibition, we tested the temporal evolution of the cGC
contrast between sSTOP and cAC-GO trials. Therefore, we performed a sliding
window analysis, moving backward and forward from the main tROI (100
to 350ms) in steps of 100ms (Figure 7C). This post hoc analysis revealed
a decrease in rIFG to pre-SMA connectivity from 200 to 450ms. Only the
flanks of the beta band showed a difference in cGC between conditions, but
this effect was not significant after the correction for multiple comparisons of
six time windows times and of each direction tested (p(lower cluster) = 0.0052,
p(upper cluster) = 0.0207, both uncorrected). However, in a later window (300
to 550ms), the upper flank of this band showed a significant difference between
conditions (p(upper cluster) = 0.0384, corrected, and p(lower cluster) = 0.0064,
uncorrected). No significant differences were found in any time window before
the tROI and after 550ms, nor in the direction of pre-SMA to rIFG. These
findings suggest that response inhibition is initiated within a crucial time range
by specific rIFG to pre-SMA connectivity, the strength of which correlates with
behavioral performance.

To exclude that these results were biased by the cAC-GO trial selection (only
including trials with RTAC-GO > SSRT), we performed all analyses on randomly
selected cAC-GO trials. Overall, these results were comparable to the reported
ones.
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r I F G t o p r e - S M A a r e t h e b e t t e r i n h i b i t o r s ( f a s t e r S S R T ) . C , T e m p o r a l e v o l u t i o n

o f c G C w a s a n a l y z e d p o s t h o c b e t w e e n r I F G t o p r e - S M A ( t o p ) a n d p r e - S M A t o

r I F G ( b o t t o m ) . A s l i d i n g w i n d o w w a s s h i f t e d w i t h 1 0 0 m s s t e p s a r o u n d t h e t R O I .

c G C f r o m r I F G t o p r e - S M A ( b u t n o t v i c e - v e r s a ) w a s s i g n i f i c a n t l y h i g h e r f o r s S T O P
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H e r e , w e c o r r e c t e d f o r t e s t i n g s i x t i m e w i n d o w s a n d f o r t e s t i n g i n t w o d i r e c t i o n s

( r I F G t o p r e - S M A a n d v i c e - v e r s a ) . S a m e f o r m a t t i n g a s i n A .
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D i s c u s s i o n

The neural network mechanisms of response inhibition are central to the under-
standing of the neurobiology of cognitive control and have been the matter of a
long-standing debate. Here, we tested which of the two main regions proposed
as the cortical initiator of response inhibition, rIFG and pre-SMA, respectively,
is activated first and which exerts a putative causal influence on the other.

Our study, using the high temporal resolution of MEG and a relatively large
cohort of subjects, is the first to show a significantly earlier activation in the
rIFG compared to the pre-SMA. In particular, rIFG beta-band activity precedes
pre-SMA activity by approximately 22ms – as independently verified by a
latency and a time-resolved SVM analysis. Connectivity analysis showed that
rIFG sends information in the beta band for successful stopping to pre-SMA
but not vice versa. The behavioral significance of beta-band power as well as
connectivity from rIFG to pre-SMA in the beta band was demonstrated by their
correlation with stopping performance.

r I F G i n i t i a t e s r e s p o n s e i n h i b i t i o n So far, the temporal activation order of rIFG
and pre-SMA in response inhibition has been investigated at source level with
high temporal resolution (MEG or ECoG) by only a limited number of previous
studies using a stop signal task (Allen et al., 2018; Jha et al., 2015; Swann
et al., 2012). Allen et al. (2018) and Jha et al. (2015) both found that the
pre-SMA and rIFG were simultaneously activated in the time window between
STOP signal and SSRT. In contrast to these MEG studies, one ECoG study in
a single patient concluded that pre-SMA precedes the IFC activation (Swann
et al., 2012). There may be three reasons for these diverse findings. First, these
previous studies rely on a comparably small sample sizes (n = 19, n = 9, n = 1,
respectively) compared to the current study (n = 59). A second reason is the
use of different SST paradigms, i. e. non-selective (standard) SST (Allen et al.,
2018; Jha et al., 2015) versus a selective stopping task (Swann et al., 2012,
and current study). Contrasting sSTOP trials with uSTOP or GO trials in
non-selective SSTs entails several issues (see discussion below, Selective stopping
task suggests that rIFG does not serve an attentional role). A third reason is
that results may depend on the way onset latencies are defined (see discussion
of limitations by Bartoli et al., 2018). We therefore validated our findings based
on time-frequency representations (TFR) by a second, orthogonal approach.
Here, sSTOP and cAC-GO trials were classified using a time-resolved SVM.
The differences between sSTOP and cAC-GO trials could be detected 22ms
earlier in rIFG than in pre-SMA in the SVM analysis, independently replicating
our result on latency differences in the TFR analysis. Since the temporal onset
of discriminability between conditions was found already before the SSRT, this
suggests that rIFG activity is indeed pivotal for initiating stopping.

1 5

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.940841doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940841


D i s c u s s i o n

B e t a - b a n d p o w e r i n r I F G r e l a t e s t o i n h i b i t o r y p e r f o r m a n c e We further hypoth-
esized that if activity in the rIFG is a neural correlate for response inhibition,
there should be a correlation with inhibitory performance at behavioral level,
i. e., SSRT. Indeed, the power maximum in the beta band correlated negatively
with SSRT in the rIFG only, but not in the pre-SMA. This is in line with several
fMRI studies (Aron, 2006; Aron et al., 2007; Rubia et al., 2007), suggesting
that subjects with greater activation in rIFG inhibited more quickly (shorter
SSRT). This finding additionally supports the dominant role of the rIFG for
initiating stopping.

In addition, we sought to clarify if the temporal precedence of rIFG over pre-
SMA and the correlation of beta-band power in rIFG with SSRT depend on the
outcome of the stopping process (successful vs. unsuccessful stop). Therefore,
both analyses were applied on the contrast between uSTOP and cAC-GO trials,
instead of the contrast between sSTOP and cAC-GO trials. The temporal
activation pattern, i. e. rIFG before pre-SMA, was nearly the same for both
contrasts (see Supplemental Information, Exploratory analysis of uSTOP trials).
However, the correlation of beta-band power with SSRT was only significant
for the difference between sSTOP and cAC-GO trials (Figure S2). Hence,
the temporal precedence of rIFG over pre-SMA may indeed be relevant for
stopping in general, while at the same time, the degree of control by the rIFG
is responsible for the success and the performance of stopping.

D o m i n a n c e o f r I F G d u r i n g r e s p o n s e i n h i b i t i o n s u p p o r t s i t s r o l e a s c o n t r o l l e r To
further elucidate the role of rIFG in response inhibition, we analyzed the
connectivity between rIFG and pre-SMA using spectrally-resolved conditional
Granger causality analysis (cGCA). This method measures directed information
transfer between two regions, i. e., it quantifies predictive relationships within
the network (Granger, 1969; Geweke, 1982). If the rIFG indeed has the function
of a top-down controller of response inhibition, then it should exert an ongoing
causal influence on the pre-SMA across the time-window of response inhibition.
Indeed, a significant difference between sSTOP and cAC-GO in cGC influence
from rIFG to pre-SMA was detected, but not vice-versa. In agreement with our
hypothesis, significant results were found within the beta band in particular. The
observed directionality is in line with cGCA in a comparably high-powered fMRI
study (n = 57, Duann et al., 2009), yet inconsistent with cGCA of a somewhat
lower powered MEG study (n = 19, Allen et al., 2018). Even more, the strength
of this directional asymmetry (DAI) was correlated to stopping performance as
measured by SSRT. In addition, a DCM analysis of an EEG study available
in preprint (Fine et al., 2019) showed that inhibitory connectivity from rIFG
to pre-SMA during STOP trials was also negatively related to SSRT when
transcranial focused ultrasound (tFUS) was applied. These findings suggest
that connectivity directed from rIFG to pre-SMA per se reflects a state in
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which rIFG is prepared to send a signal to pre-SMA to execute stopping, while
the strength of this directionality influences the performance of stopping. To
test whether the directionality from rIFG to pre-SMA was specific for response
inhibition, or just related to other processes, we analyzed connectivity between
rIFG and pre-SMA before and after the (a priori defined) temporal ROI (tROI,
100–350ms) using a sliding window approach. Thus, we could confirm that
beta-band related connectivity between rIFG and pre-SMA was specific to the
tROI and a subsequent time window, particularly only in the direction from
rIFG to pre-SMA. In sum, the results of the spectrally resolved cGCA further
support the leading role of rIFG in response inhibition, and the importance of
beta-band oscillations in this process. Since connectivity from rIFG to pre-SMA
was specifically established during the tROI and correlated with inhibitory
performance, rIFG may be characterized as a brake in response inhibition.

I n h i b i t o r y r o l e o f b e t a - b a n d o s c i l l a t i o n s Our results strongly support the in-
terpretation that the rIFG acts as the initiator of response inhibition and that
beta-band oscillations play an important role for its neural implementation. In
general, beta-band oscillations are thought to be related to the maintenance
of the current sensorimotor or cognitive state as hypothesized by a prominent
model (Engel and Fries, 2010). In contrast, desynchronization of beta-band
oscillations enables the transition into an active processing state (Miller et al.,
2012), e. g. pressing a button. Our TFR results can be explained within the
framework of this model, i. e., beta-band oscillations were less desynchronized in
sSTOP trials than in cAC-GO trials, resulting in a net beta-band power increase
(see Figure 4B). As soon as the stopping or motor response, respectively, is
completed, beta-band oscillations start to resynchronize (compare Fonken et al.,
2016). Notably, beta-band power in our study changed particularly before
SSRT, which is in line with other studies (Wessel et al., 2013; Castiglione et al.,
2019) and supports its inhibitory role.

S e l e c t i v e s t o p p i n g t a s k s u g g e s t s t h a t r I F G d o e s n o t s e r v e a n a t t e n t i o n a l r o l e

A limitation of most previous neuroimaging studies on response inhibition is
that sSTOP trials are usually contrasted with GO or uSTOP trials to identify
inhibitory processes, while we contrasted sSTOP with cAC-GO trials. All
three contrasts are indeed capable of removing basic perceptual activity due the
presentation of the stimuli (Aron, 2006; Sharp et al., 2010). However, contrasting
with uSTOP trials in turn involves error processing (Rubia et al., 2003) and an
early response in motor cortices that has the potential to obscure activity related
to the adjacent pre-SMA (Allen et al., 2018; Jerbi et al., 2007). Additionally,
this contrast was criticized as overly conservative, because it assumes that
inhibitory processes are also present in uSTOP trials (Boehler et al., 2010).
Contrasting sSTOP with GO trials instead also introduces two issues: First, a
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less frequent event like the STOP signal is perceptually more salient and causes
significant brain activation that is not directly based on inhibitory processing
alone (Sharp et al., 2010). Second, STOP signals are delayed compared to
the GO signals (i. e., SSD), hence directly contrasting both trial types entails
the comparison of different time points within the stopping process (Figure 1).
This is particularly important when high temporal resolution methods are used.
Additionally, attentional and discriminative processing of the STOP signal are
presumed to disturb the timing of go and stop processes compared to GO trials
(Sharp et al., 2010). Both issues can be resolved by contrasting sSTOP with
cAC-GO trials. First, we matched frequency and stimulus properties of sSTOP
and cAC-GO signals. For STOP and AC-GO signals, blue and green arrows
were used, respectively, and balanced across subjects. And indeed, the signal
color had no effect on SSRT or with respect to RTs, on trial type (GO vs.
AC-GO). Second, our behavioral data confirm the predicted increase in RTs
after the appearance of an AC-GO signal compared to simple GO trials. There
is independent evidence that the prolonged time required for the perceptual
processing of the AC-GO signal is approximately the same as for the STOP
signal compared to GO trials (Xu et al., 2017). The authors demonstrated
at least the behavioral similarity of both conditions by comparing SSRT and
“continue signal reaction time” (CSRT, i. e. approximately, the time between
AC-GO signal and response, a measure adopted from Mayse et al., 2014). Hence,
the contrast sSTOP vs. cAC-GO is the most appropriate to identify the neural
correlates of response inhibition, independent of attentional and error processing
(Sánchez-Carmona et al., 2016). The dissociation of inhibitory from attentional
processes by an appropriate task design suggests that the rIFG does not, at
least not primarily, serve an attentional role in response inhibition. However,
although the rIFG has often been regarded as candidate for an inhibitory
module and our results showed that response inhibition is indeed initiated by
the rIFG, the rIFG might still be part of a more domain general cognitive
control mechanism, implemented by frontoparietal networks (Erika-Florence
et al., 2014; Hampshire and Sharp, 2015a).

L i m i t a t i o n s One limitation of this study is that we could not analyze activity
of the subthalamic nucleus (STN) which is an important subcortical node within
the response inhibition network because of its direct relation to IFG (Aron
et al., 2007; Duann et al., 2009; Jahfari et al., 2011; Rae et al., 2015; Xu et al.,
2017). No STN activity was detected by our source reconstruction contrast,
most likely because MEG is less sensitive to subcortical compared to cortical
sources (Gross, 2019). Nonetheless, several studies with intracranial recordings
detected beta-band oscillations within the STN (Kühn et al., 2004; Ray et al.,
2012; Zavala et al., 2018; Fischer et al., 2018), also supporting the importance
of beta-band oscillations in response inhibition.
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C o n c l u s i o n Our findings corroborate the hypothesis that response inhibition is
initiated by the rIFG and implemented as a top-down control via synchronized
activity in the beta frequency range (Aron et al., 2014). This brake is turned
on in a time window around 100ms to 200ms after the STOP signal. Within
the framework of the race model, rIFG may promote stopping processes and
then signals to pre-SMA to proceed and execute the stopping process. Due to
our task design, i. e., contrasting sSTOP with cAC-GO trials, we could exclude
an primarily attentional role of the rIFG in stopping.
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P a r t i c i p a n t s

Sixty-two healthy subjects participated in the study (MEG experiment). The
conservative outlier criteria formulated by Congdon et al. (2012) were applied
on the behavioral data recorded during the MEG sessions. As a result, one
participant had to be excluded because its inhibition stop rate was below 40%.
A second subject had to be excluded because the mean RT of uSTOP trials
was higher than the mean RT of cGO trials, indicating that the assumptions
underlying the horse race model (Logan et al., 1984) were not fulfilled in this
participant. A third subject had to be excluded because no head model could
be obtained from the available anatomical MR image.

All of the remaining fifty-nine participants (39 women; mean age, 25± 6 years,
ranging from 19 to 47) were right-handed according to the Edinburgh Handed-
ness Inventory scale (Oldfield, 1971), had normal or corrected-to-normal vision,
and were free of psychotropic medication. None of the participants had a his-
tory or current evidence of psychiatric or neurological disorders. All individual
participants included in the study were screened for factors contraindicating
MEG and MRI scanning and they provided written informed consent before
participation. The study was approved by the local ethics committees (Jo-
hann Wolfgang Goethe University, Frankfurt, Germany, and Medical Board
of Rhineland-Palatinate, Mainz, Germany), and participants were financially
compensated for their time.

B e h a v i o r a l

Stop signal reaction time (SSRT) was calculated by the mean and integration
method. While the integration method tends to underestimate SSRT, the
mean method tends to overestimate it (Verbruggen et al., 2013). Therefore we
averaged the values of both methods as suggested in Jha et al. (2015). The
maximal SSRT (SSRTmax), as used for the definition of the temporal region of
interest (tROI), refers to averaged SSRT values, too.

In the mean method, SSRT was estimated by subtracting the mean SSD
from mean RT on go trials. The mean SSD corresponds to the average SSD
obtained when using a stair-case procedure that ideally leads to the target
of p(respond|signal) = 0.50, which is assumed in the mean method. In the
integration method, SSRT was estimated by finding the point at which the
integral over the RT distribution equals the actual p(respond|signal) and then
subtracting the mean SSD. The integration approximately corresponds to the
nth RT of the distribution of GO trials (sorted by RT), multiplied by the actual
p(respond|signal). For instance, p(respond|signal) is 0.48 across 1000 GO trials
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acquired, then the nth RT is the 480th fastest GO RT. Then SSRT is calculated
by subtracting the mean SSD from the 480th RT. The distribution of GO trials
also includes incorrect GO trials (Verbruggen et al., 2019).

T a s k s a n d P r o c e d u r e

Participants performed a selective stopping task with an additional attentional
control condition, i. e. attentional capture go trials, Figure 1). The task and
procedure was the same as described in Sebastian et al. (2016). For stimulus
presentation, we used Presentation software (version 13.1, www.neurobs.com).

Before the acquisition session, participants had to read the instructions and
train the task on a laptop computer for approximately five minutes or until the
observed performance confirmed that the task was understood and performed
correctly. The acquisition session was split into ten blocks. Throughout the
acquisition, participants were asked to hold a response button box with both
hands and to respond to the stimuli by pressing a response button with the left
or right thumb (MEG) or index finger (fMRI), respectively.

The task comprised three conditions: a GO condition (50% of all trials), a
STOP condition (25% of all trials), and an attentional capture GO (AC-GO)
condition (25% of all trials). Trials of all conditions began with the presentation
of a white fixation cross in the center of the screen with a randomly varied
duration between 1,500 and 2,000ms in the MEG experiment and 500ms in
the fMRI experiment, respectively (Sebastian et al., 2016). Then, a white
arrow (GO signal) pointing to the left or right was displayed. Participants were
instructed to respond with a left button press to a left pointing arrow and with
a right button press for a right pointing arrow. In the GO condition, the white
arrow was displayed for 1,000ms (equivalent to the maximum permitted RT)
or until a button press was performed. In the STOP condition, the white arrow
was presented first, followed by a change of its color from white to blue after a
variable stop-signal delay (SSD). Participants were instructed to try to inhibit
their initiated button response after the GO signal. The SSD was adapted to the
participants’ performance to yield a probability of 50% of successful response
inhibitions per block. Therefore, a staircase procedure was implemented with
the following properties: The initial SSD was set to 210 ms. If the response was
not successfully inhibited (unsuccessful stop trial, uSTOP), the SSD in the next
STOP trial was decreased by 30ms with a minimum SSD of 40ms. If a response
was successfully inhibited (successful stop trial, sSTOP), the SSD in the next
STOP trial was increased by 30ms. The maximum SSD was limited by the
maximum permitted RT of 1,000ms. In the AC-GO condition, the white arrow
was presented first, followed by a change of its color from white to green after
a variable AC-GO signal delay (ACSD), and participants were instructed to
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continue their response. The ACSD was varied in accordance with the staircase
in the STOP condition.

The attribution of color (green/blue) to trial type (STOP/AC-GO) was coun-
terbalanced across participants. In case of an omission error (no button press)
in the GO or AC-GO condition, participants were given a short feedback
(“oops—no button press”, presented as text for 500ms) to maintain the partic-
ipants’ attention and to limit proactive slowing. The length of the intertrial
interval (presentation of a blank screen) was 700ms in the MEG experiment. In
the fMRI experiment, the length of the intertrial interval was varied randomly
between 2,500 and 3,500ms. One block consisted of 112 trials presented in a
randomized order, resulting in a duration of approximately six minutes (MEG
experiment).

f M R I e x p e r i m e n t

A n a t o m i c a l M R I a n d f M R I d a t a a c q u i s i t i o n A subset of 31 partipicants of the
MEG experiment and additional 45 participants performed the task recorded
with fMRI (n = 76), data are taken from Sebastian et al. (2017). For all
participants of the MEG experiment (n = 62) an anatomical MRI was recorded.
Images were acquired on a Magnetom Trio Syngo 3T system (Siemens Medical
Solutions) at two sites, equipped with an 8-channel head coil at site 1 and
a 32-channel head coil at site 2 for signal reception. Stimuli were projected
on a screen at the head end of the scanner bore and were viewed with the
aid of a mirror mounted on the head coil. Foam padding was used to limit
head motion within the coil. A high-resolution T1-weighted anatomical dataset
was obtained using a 3D magnetization-prepared rapid acquisition gradient
echo sequence for registration purposes (site 1: TR=2250ms, TE=2.6ms,
flip angle=9◦, FOV=256mm, 176 sagittal slices, voxel size=1× 1× 1mm3;
site 2: TR=1900ms, TE=2.52ms, flip angle=9◦, FOV=256mm, 176 sagittal
slices, voxel size=1 × 1 × 1mm3). fMRI images were obtained using T2*-
weighted echoplanar imaging sequence (both sites: TR=2500ms, TE=30 ms,
flip angle= 90◦, FOV=192mm, 36 slices, voxel size= 3× 3× 3mm3).

P r e p r o c e s s i n g o f f M R I d a t a SPM12 (www.fil.ion.ucl.ac.uk/spm/software/
spm12/) was used to conduct all image preprocessing and statistical analyses,
running with Matlab 2013b (MathWorks). Images were screened for motion
artifacts before data analysis. Next, images were manually reoriented to the T1
template of SPM. The first five functional images of each run were discarded to
allow for equilibrium effects. Then, several preprocessing steps were carried out
on the remaining functional images. First, images were realigned to the first
image of the first run, using a 6df rigid body transformation. The realigned
functional images were coregistered to the individual anatomical T1 image using
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affine transformations. Subsequently, the anatomical image was spatially nor-
malized (linear and nonlinear transformations) into the reference system of the
Montreal Neurological Institute (MNI) reference brain using standard templates,
and normalization parameters were applied to all functional images. Finally, the
normalized functional data were smoothed with a three-dimensional isotropic
Gaussian kernel (8mm full-width at half-maximum) to enhance signal-to-noise
ratio and to allow for residual differences in functional neuroanatomy between
subjects.

S i n g l e - s u b j e c t a n a l y s i s A linear regression model (general linear model) was
fitted to the fMRI data of each subject. All events were modeled as stick
functions at stimulus onset and convolved with a canonical hemodynamic
response function. The model included a high-pass filter with a cutoff period of
128 s to remove drifts or other low-frequency artifacts in the time series. After
convolution with a canonical hemodynamic response function, the following three
event types were modeled as regressors of interest: correct GO (cGO), successful
stop (sSTOP), and correct AC-GO (cAC-GO) trials. Incorrect reactions for
each condition and omission error feedback were modeled as regressors of no
interest. In addition, the six covariates containing the realignment parameters
capturing the participants’ movements during the experiment were included in
the model.

G r o u p a n a l y s i s We compared the neural activation patterns during outright
stopping (sSTOP > cAC-GO) by means of a one sample t-test. The scanning site
was entered as a covariate of no interest. Significant effects for each condition
were assessed using t-statistics. The results were thresholded at p < 0.05
corrected for multiple comparisons (familywise error (FWE), correction at peak
level) and k = 5 contiguous voxels. The SPM anatomy toolbox 2.0 (Eickhoff
et al., 2007) was used to allocate significant clusters of activation to anatomical
regions.

M E G e x p e r i m e n t

M E G d a t a a c q u i s i t i o n

MEG data acquisition was conducted in line with the good practice guidelines
for MEG recordings recommended by Gross et al. (2013). MEG signals were
recorded using a whole-head system (Omega 2005; VSM MedTech) with 275
channels. The signals were recorded at a sampling rate of 1200Hz in a third-
order synthetic gradiometer configuration and were filtered with fourth-order
Butterworth 300Hz low-pass and 0.1Hz high-pass filters. During the acquisition,
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subject’s head position relative to the MEG sensor array was recorded continu-
ously using three localization coils. To minimize head movements already during
data acquisition, we tried to reposition subjects to their individual reference
position before a new block if the deviation between the current and their
reference position exceeded 5mm.

For artifact detection of eye movements, the horizontal and vertical EOG was
recorded via four electrodes: two were placed distal to the outer canthi of
the left and right eye (horizontal eye movements) and the other two were
placed above and below the right eye (vertical eye movements and blinks). For
heart beat artifact detection, another pair of electrodes were placed on the
left and right clavicle (ECG). To ensure a sufficient signal to noise ratio of the
recorded artifacts, the impedance of each electrode was kept below 15 kΩ using
an electrode impedance meter (Astro-Med).

P r e p r o c e s s i n g o f M E G d a t a

For preprocessing the MEG data and subsequent data analysis, the open
source MATLAB toolbox FieldTrip (versions 20120812, 20160202, and 20181010,
Oostenveld et al., 2011) was used on the basis of MATLAB (MathWorks, versions
2012b, 2016b, and 2018b, respectively). Trial definition and selective filtering
was directed by our aim to identify neural networks related to response inhibition.
Specifically, we assumed that the time window in which response inhibition is
initiated does not start before the early perceptual processes that are induced by
the STOP signal are completed, i. e. 100ms after STOP signal onset (Amassian
et al., 1989). This start point is also motivated by the findings of Swann et al.
(2009) and the approach of a pre-registered MEG study (Allen et al., 2018).
The definition of the end of the response inhibition time window in sSTOP
trials should in principle be based on the SSRT – according to the horse race
model that we assumed here. However, we also wanted to directly contrast
sSTOP with cAC-GO trials to eliminate attentional processes from the analysis
of our selective stopping task. Therefore, we had to take into account that
cAC-GO trials might in turn involve button-press related motor activity that
is trivially not present in the sSTOP trials. Therefore, the definition of a
temporal region of interest (tROI) should preferably end before button-presses
in cAC-GO trials set in, but regarding sSTOP trials, the tROI should not
end before response inhibition is initiated and finished. To also account for
participants with longer SSRTs compared to the average SSRT, we additionally
sought to ensure that for these participants the inhibition response process is
still captured by the tROI, so we a-priori defined a tROI from 100ms to an
SSRTmax of 350ms relative to the STOP signal. To reduce the contamination
of our tROI with button-press related motor activity, we rejected cAC-GO trials
with an RTAC-GO < SSRT, where RTAC-GO is the “attentional capture GO

2 4

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.940841doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940841


M e t h o d s

RT’, defined as duration between AC-GO signal and button press. Median
SSRT was 237ms. More importantly, when contrasting sSTOP and cAC-GO
trials, these trials should be also matched in terms of the underlying distribution
of go and stop processes according to the independent horse-race model. This is
important because the neural correlates of response inhibition revealed by this
contrast should not rely on mere timing differences between the underlying go
and stop processes (Sánchez-Carmona et al., 2016). Although the distribution
of go and stop processes cannot be directly accessed, the horse-race model
implies that in sSTOP trials, the response can be successfully inhibited because
the go process is slower than the stop process. Thus, to reduce processing
speed differences to a minimum, it is necessary to select cAC-GO trials with
longer than average RTs, where the underlying distribution consists of slower
go processes, comparable with sSTOP trials. Thus, rejecting cAC-GO trials
with an RTAC-GO < SSRT additionally supports a close match between the
underlying distribution of go and stop processes in both trial types.

Since our analysis focused on the neural correlates of response inhibition, trials
were defined with respect to STOP/AC-GO signal onset (Figure 1). Each trial
consists of two segments: a task segment of 500ms duration that started after
STOP/AC-GO signal onset, and a baseline segment of the same duration that
ended 100ms before the initial GO signal, while data from intermediate delay
periods were discarded for further analysis. If not stated otherwise, only trials
with correct behavioral responses were taken into account for data analysis. All
analysis steps were based on an equal amount of sSTOP and cAC-GO trials
to prevent statistical bias caused by different numbers of trials. Due to the
design of the paradigm, the initial number of cAC-GO trials (25%) exceeded the
number of sSTOP trials (approximately 12.5%). However, RTAC-GO dependent
cAC-GO trial selection reduced the difference or even inverted this ratio. When
the trial number differed between both conditions for a subject, the minimal
amount of trials across both conditions was selected randomly from the condition
with more trials.

Trials containing sensor jump or muscle artifacts were rejected using automatic
artifact-detection functions provided by FieldTrip. Power line noise was reduced
using a discrete fourier transform filter at 50, 100, and 150Hz. In addition, to
remove EOG (horizontal and vertical eye movements) and heart beat related
artifacts, independent component analysis (ICA, Makeig et al., 1995) was
performed based on trials of all conditions (including GO, STOP and AC-GO),
with a duration of 900ms each, in order to provide a maximal amount of
artifacts as input for the ICA. Data was downsampled to 400Hz before the
extended infomax (runica/binica) algorithm was applied to decompose the data
(as provided by FieldTrip/EEGLAB). ICs were removed from the data if their
spatial topography corresponded with the artifact type (Fatima et al., 2013),
which was visually inspected and, when in doubt, correlation coefficients with
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EOG and ECG data were consulted. Typically, five ICs were rejected (average:
4.9, range: 2 to 8 ICs). Since minimization of head movement is crucial to MEG
data quality (Gross et al., 2013), trials were rejected when the head position
deviated more than 5mm from the mean head position over all blocks for each
participant.

S p e c t r a l a n a l y s i s a t s e n s o r l e v e l

There are many reasons to favor source-level statistics over statistics at the
sensor level; primarily, source level analysis is more sensitive than sensor level
analysis (Gross et al., 2013). Therefore, at the first block, the only statistics
performed at the sensor level was to define appropriate frequency bands as
beamformer parameters for subsequent source reconstruction. We therefore
compared the spectral power between 4 and 120Hz (based on Hanning tapers)
over averaged channels during the tROI (100 to 350ms) with the spectral power
of corresponding baseline segments for all participants. For this purpose we
used a dependent-samples permutation t-test and a cluster-based correction
method (Maris and Oostenveld, 2007) to account for multiple comparisons across
frequencies. Samples whose t-values exceeded a threshold of αcluster=0.05 were
considered as candidate members of clusters of spectrally adjacent samples.
The sum of t-values within every cluster, i. e. the “cluster size”, was calculated
as test statistics. These cluster sizes were then tested (two-sided) against the
distribution of cluster sizes obtained for 5000 partitions with randomly assigned
task and baseline data within each subject. Cluster values below the 2.5th or
above the 97.5th percentiles of the distribution of cluster sizes obtained for
the permuted datasets were considered significant. Since we aimed to contrast
neural power of sSTOP and cAC-GO trials on source level to obtain a set of
sources related to response inhibition, we had to use an (orthogonal) statistical
test at sensor level in order to avoid circularity (Kriegeskorte et al., 2009). We
therefore combined both conditions (sSTOP and cAC-GO trials) for analysis on
the sensor level and contrasted these “pooled” task segments with corresponding
baseline segments of both conditions.

S o u r c e I m a g i n g

The anatomical MRI of each participant was linearly transformed to a segmented
standard T1 template of the SPM8 toolbox (http://www.fil.ion.ucl.ac.uk/
spm/) in MNI space (Collins et al., 1994). This template was overlaid with a
regular dipole grid (spacing 1 cm), using an inward shift of –1.0 cm to the brain
surface for inside and outside separation. The negative inward shift results in an
outward shift that adds (not shifts) points to the “inside grid” with a location
up to 1.0 cm relative to the brain’s surface, i. e. points outside the brain, that
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can help to distinguish neural sources from muscle activity. The inverse of the
obtained linear transformation was then applied to this dipole grid and the lead
field matrix was computed for each of the grid points of the warped grid using
a single shell volume conductor model (Nolte, 2003). Since all grid locations of
each subject were aligned to the same anatomical brain compartments of the
template, corresponding brain locations could be statistically compared over all
subjects.

To reconstruct beta and gamma band reactive sources (according to the two
frequency clusters revealed by the spectral sensor analysis) a frequency domain
beamformer source analysis was performed by using the dynamic imaging of
coherent sources (DICS) algorithm (Gross et al., 2001) implemented in the
FieldTrip toolbox. Since our experimental setup did not contain any (coherent)
external reference, filter coefficients were constrained to be real-valued to restrict
our analysis to local source power. This can be done, because we assume that the
magnetic fields propagate instantaneously from source to sensor, and therefore,
no phase shifts can occur that would lead to complex coefficients (Nunez and
Srinivasan, 2006).

Beamformer analysis uses an adaptive spatial filter to estimate the power at
every specific (grid) location of the brain. The spatial filter was constructed
from the individual lead fields and the cross-spectral density matrix for each
subject. Cross-spectral density (CSD) matrices were computed for the task
period of 100–373ms after STOP/AC-GO signal onset and a baseline period of
same length, with an offset of –100ms relative to GO signal onset (see Figure 1
for time scale). To avoid spectral leakage, the length of the time-frequency
window should match an integer number of oscillatory cycles of the center
frequency of the frequency band width (Harris, 1978). Therefore the length of
the tROI and its baseline period was extended accordingly, i. e., ended at 373ms
instead of 350ms after the STOP/AC-GO signal onset. Frequency bands were
defined based on the statistical analysis of spectral power at the sensor level.
Thus, CSD matrices were computed in the beta band for 22Hz (±10Hz) and
the gamma band for 76Hz (±12Hz), where spectral smoothing is indicated in
brackets. Cross-spectral density matrix calculation was performed using the
Field-Trip toolbox with the multitaper method (Percival and Walden, 1993)
using four Slepian tapers (Slepian and Pollak, 1978) for the beta band and
five Slepian tapers for the gamma band, depending on the required spectral
smoothing.

S o u r c e s t a t i s t i c s

To reveal sources related to response inhibition at group level, we statistically
tested differences between source power of sSTOP and cAC-GO trials. First,
we calculated an activation-versus-baseline t-statistic at single-subject level
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by using an analytic dependent-samples within-trial t-test. The t-values ob-
tained from this activation-versus-baseline test were then used as input for a
cluster-based permutation test for contrasting (“baseline corrected”) sSTOP
and cAC-GO trials (dependent samples t-test, Monte Carlo estimate, Maris and
Oostenveld, 2007). Voxels whose t-values exceeded a threshold of αcluster=0.05
were considered as candidate members of clusters of adjacent voxels. The sum of
t-values within every cluster was calculated as test statistics. These cluster sizes
were then tested (two-sided) against the distribution of cluster sizes obtained
for 5000 partitions with randomly assigned sSTOP and cAC-GO labels for each
subject. Cluster values below the 2.5th or above the 97.5th percentile of the
distribution of cluster sizes obtained for the permuted datasets were considered
to be significant. In the clusters obtained by our permutation test, we searched
for local extrema to identify peak voxels. All of the peak voxels obtained were
reported, but for subsequent time-frequency representation (TFR) analysis,
only physiologically plausible voxels, i. e., voxels in grey matter according to
the Jülich Histological atlas provided by the FSL toolbox (FMRIB’s Software
Library, Smith et al., 2004), were used.

S o u r c e t i m e c o u r s e r e c o n s t r u c t i o n a n d l a t e n c y a n a l y s i s

T F R s o n v i r t u a l c h a n n e l t i m e c o u r s e s To get a picture of the temporal activa-
tion pattern of each peak voxel identified by contrasting sSTOP and cAC-GO
trials, we analyzed TFRs of these sources. Therefore time courses of these
sources were reconstructed as “virtual channels” using bandpass-filtered raw
data (2 to 150Hz). For time course reconstruction, a time-domain beamformer
was used (LCMV, linear constrained minimum variance; Van Veen et al., 1997),
based on common filters analog to the ones used in the frequency domain. In
contrast to the frequency domain, uSTOP trials were additionally included in
the common filter computation when a post hoc analysis with uSTOP trials
was performed. A principal component analysis on the three reconstructed time
courses in x, y, and z direction was performed for each grid point in order to
determine the dominant dipole orientation (direction with the largest variance).
The time course of the first principal component was used for subsequent TFR
analysis (8 to 44Hz, Hanning taper with a sliding time window of three cycles
were used).

We computed two different TFRs for each source: First, contrast of sSTOP
versus cAC-GO trials to reveal inhibition related power changes and second, the
difference between sSTOP and cAC-GO trials averaged over all subjects. For
both TFRs, as baseline correction, we z-transformed sSTOP and cAC-GO trials
of each participant separately by subtracting the mean of the corresponding
baseline and dividing by the standard deviation of combined (sSTOP and cAC-
GO) baseline trials. For the first TFR, representing a group statistics, we used
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a cluster-based permutation test as described for the spectral analysis at sensor
level, except for (time,frequency)-pairs serving as samples. For the second
TFR, we subtracted averaged z-transformed cAC-GO trials from averaged z-
transformed sSTOP trials. This absolute difference for each participant and
source was used for the onset latency analysis and power correlation.

T F R b a s e d l a t e n c y a n a l y s i s To answer the question of the temporal order
in which the two candidate sources, rIFG and pre-SMA, are activated, we
performed an onset latency analysis based on difference TFRs as described
above (z(sSTOP) – z(cAC-GO)). Source power was averaged over the beta band
(12 to 32Hz), smoothed and analyzed for peaks within the tROI. Onset latency
(for each participant and source) was defined as the time point at which the
averaged source power exceeded a threshold of 25% of the range between the
first positive peak within the tROI and the (positive) minimum found until this
peak (in most cases, zero). If there was no positive peak within the tROI for at
least one source, we excluded this subject for the TFR based latency analysis.
To test for differences between onset latencies of rIFG and pre-SMA at group
level, a permutation statistics was performed (50,000 permutations). Onset
latency differences were also tested with thresholds of 10%, 30%, 50%, 75%,
and 100%.

A l t e r n a t i v e l a t e n c y a n a l y s i s u s i n g t i m e - r e s o l v e d S V M Since we wanted to avoid
that putative latency differences were biased due to the way we defined on-
set latencies on the basis of TFRs, we additionally employed a time-resolved
support-vector machine analysis (t-SVM) as alternative. To determine the
onset of discriminability in the time-domain between sSTOP and cAC-GO
trials, a t-SVM was trained and tested separately for each subject, and for rIFG
and pre-SMA. First, we z-normalized each source signal relative to baseline
period (samples before the GO cue, 500ms length). Next, to reduce the com-
putational cost and increase the signal-to-noise ratio, the data were smoothed
with a Gaussian Kernel of ± 10ms and downsampled to 300Hz, similar to the
approach in Hebart et al. (2018). After preprocessing, the preprocessed source
data were randomly assigned to one of eight supertrials (per condition) and
averaged (MATLAB code was adapted from Guggenmos et al., 2018). Finally,
we separated these supertrials into training and testing data with one supertrial
per condition serving as test data and all the other as training data. The binary
classification was performed for each time-point from –100ms before to 700ms
after STOP or AC-GO signal onset. To obtain a more robust estimate of the
classification accuracy, we performed 100 iterations of supertrials averaging
and classification. The final classification time-series reflects the average across
these iterations. For statistical testing, we employed a non-parametric cluster
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permutation approach (Maris and Oostenveld, 2007), with clustering of subse-
quent time points. The null-hypothesis of no experimental effect for the MEG
classification time series was equal to 50% chance level and tested from 0 to
350ms (SSRTmax).

For each subject we computed the onset and peak latency of the classification
time-course. For this, we adopted the method of Marti et al. (2015). First, the
data were low-pass filtered at 10Hz. Secondly, to measure the latency of the peak,
we considered all time points, in the window from 0 to 350ms (SSRTmax), that
exceeded the 95th percentile of the distribution of the classification performance.
The median of these points was considered as the peak latency. Finally, from
the peak latency, the onset of the peak was defined by going backward and
identifying the time point at which the classification performance exceeded
a certain threshold percentage of the peak. We performed this analysis with
different percentage values (10%, 25%, 30%, 50%) of the difference between
the mean decoding accuracy during baseline and the time-window of interest
(results were similar across different values). For 13 subjects the decoding
performance in the task period did not exceed 2 standard deviations of the
baseline accuracy; since also no clear peak was present, we excluded these
subjects. Statistical differences between onset latencies of rIFG and pre-SMA at
group level were assessed as in the TFR based latency analysis with permutation
statistics (50,000 permutations).

C o n n e c t i v i t y

N o n - P a r a m e t r i c G r a n g e r C a u s a l i t y For the computation of conditional Granger
causality (cGC), we employed a multivariate nonparametric spectral matrix
factorization (mNPSF). We computed the cross-spectral density matrix of the
source signals on the time window from 100 to 350ms using the fast fourier
transform (FFTT) in combination with multitapers (5Hz smoothing). Using
the nonparametric variant of cGC (Dhamala et al., 2008) avoids choosing a
multivariate autoregressive model order, which can introduce a bias. Specifically,
we used a blockwise approach (Wang et al., 2007), considering the first two
PCs of each source signal as a block, and we estimated the cGC that a source 1
exerts over a source 2 conditional on the remaining areas (Bastos et al., 2015).
According to our hypothesis, testing for differences between both trial conditions
was done for two links, from rIFG to pre-SMA, and vice versa, conditional on all
other five active cortical sources as obtained by the source reconstruction. Even
though unobserved sources pose an irresolvable problem (Bastos and Schoffelen,
2016), and we can not totally exclude this scenario, we made use of all the
information from the sources observed to distinguish between direct and indirect
effects and thus avoiding possible spurious results.
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S t a t i s t i c a l t e s t i n g o f c G C First, we assessed whether the average cGC (in the
frequency range of 8–44 Hz) of the source-target pairs (rIFG to pre-SMA and
vice versa) was reliably above the bias level, for each condition (sSTOP and
cAC-GO) separately. In order to estimate the bias, we randomly permuted the
trials 500 times in each condition to create a surrogate distribution of mean
cGC values. We tested if the found cGC value was in the upper 97.5% extreme
(equivalent p < 0.05 with a Bonferroni correction for two possible source-target
pairs) of the surrogates distribution. If the average cGC exceeded the bias level,
this source-target link was considered significant. These steps were repeated
for each subject separately. Second, for both source-target pairs, cGC values in
the sSTOP condition were contrasted with cGC value in the cAC-GO condition
at the group level on the subjects that showed at least a significant link in
one of the two conditions. The statistical comparison was performed in the
range 8–44Hz using a dependent-samples permutation t-metric. A cluster-based
correction was used to account for multiple comparisons across frequencies
(Maris and Oostenveld, 2007). Adjacent frequency samples with uncorrected p
values of 0.05 were considered as clusters. Fifty-thousand permutations were
performed and the critical α value was set at 0.025. A Bonferroni correction
was applied to account for multiple comparisons across links.
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