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Abstract 2 

Structural and functional characteristics of the cortex systematically vary along global axes as 3 

a function of cytoarchitecture, gene expression, and connectivity. The topology of the cerebral 4 

cortex has been proposed to be a prerequisite for the emergence of human cognition and 5 

explain both the impact and progression of pathology. However, the neurogenetic origin of 6 

these organizational axes in humans remains incompletely understood. To address this gap in 7 

the literature our current study assessed macro scale cortical organization through an 8 

unsupervised machine learning analysis of cortical thickness covariance patterns and used 9 

converging methods to evaluate its genetic basis. In a large-scale sample of twins (n=899) we 10 

found structural covariance of thickness to be organized along both an anterior-to-posterior 11 

and inferior-to-superior axis. We found that both axes showed a high degree of 12 

correspondence in pairs of identical twins, suggesting a strong heritable component in 13 

humans. Furthermore, comparing these dimensions in macaques and humans highlighted 14 

similar organizational principles in both species demonstrating that these axes of cortical 15 

organization are phylogenetically conserved within primate species. Finally, we found that in 16 

both humans and macaques the inferior-superior dimension of cortical organization was 17 

aligned with the predictions of the dual-origin theory, highlighting the possibility that the 18 

macroscale organization of primate brain structure is subject to multiple distinct 19 

neurodevelopmental trajectories. Together, our study establishes the genetic basis of natural 20 

axes in the cerebral cortex along which structure is organized and so provides important 21 

insights into the organization of human cognition that will inform both our understanding of 22 

how structure guides function and for the progression of pathology in diseases. 23 

 24 

 25 

  26 
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Introduction 27 

A fundamental question in neuroscience is how the structure of the cortex constrains its 28 

function. Over the course of almost a century, numerous studies have shown that the cerebral 29 

cortex is organized along dimensions that reflect systematic variations in features of brain 30 

structure and function such as laminar differentiation, gene expression, structural and 31 

functional connectivity1-15. These dimensions have been suggested to reflect the timing of 32 

neurogenesis and may relate to the neurogenetic origin of cortical organization 3,16. A 33 

potential mechanism for the source of neurogenetic differentiation of brain regions is 34 

described by the dual origin theory 3,17-21. This theory conceptualizes cortical areas as 35 

emerging from waves of laminar differentiation that spring from the piriform cortex (paleo-36 

cortex) and the hippocampus (archi-cortex). The dual structure might be rooted in 37 

heterochronous ontological axes in the developing cortex16. 38 

 39 

The systematic topological organization of the cerebral cortex has been proposed to reflect an 40 

architecture which optimize the balance of externally and internally oriented functioning, 41 

which is critical for flexibility of human cognition 22. For example, association cortex is 42 

located at maximal distance from regions of primary cortex that are functionally specialized 43 

for perceiving and acting in the here and now. This increased spatial distance from primary 44 

cortex may allow association cortex to take on functions that are only loosely constrained by 45 

the immediate environment, allowing internal representations to contribute to cognition and 46 

so enhancing the flexibility, and evolutionary fitness of behavior 22-26. Accordingly, 47 

understanding how the structure of the cortex scaffolds function in a flexible manner requires 48 

understanding how macroscale structural features of the organization of the human cortex 49 

emerge. Moreover, previous work has implicated macroscale organizational axes of structure 50 

and function in the impact and progression of pathology. For example, Parkinson’s and 51 

Alzheimer’s disease have been proposed to follow a trajectory, in which underlying 52 
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anatomical axes determine the sequence in which specific regions and networks are 53 

progressively impacted at different disease stages 27,28. Recently, we have been able to show 54 

that functional abnormalities in autism spectrum disorder relate to systematic disruptions in 55 

large-scale organization of brain function, providing a parsimonious reference frame in which 56 

the heterogeneous symptoms of autism spectrum disorder can be understood 29. 57 

 58 

Although the importance of macroscale axes of cortical organization in cognition and 59 

pathology are now recognized, the degree to which these topological features of the cerebral 60 

cortex are genetically determined remains incompletely understood. Measured across a 61 

population, local brain structure shows marked patterns of covariation across the cerebral 62 

cortex, termed ‘structural covariance’. These macro scale patterns in cortical thickness have 63 

been linked to both structural and functional connectivity 30,31 and twin studies have shown 64 

that thickness covariance between regions is largely due to additive genetic effects 32,33. 65 

Recent work shows that inter-regional genetic correlation is determined by two organizational 66 

principles: (1) regions are strongly genetically correlated with their counterparts in the 67 

opposite cerebral hemisphere 34,35 and (2) regions are highly genetically correlated with 68 

geometrically nearby regions 35. The local processes that govern the observed distribution of 69 

cortical thickness are reasonably well understood. For example, associations between 70 

structural and functional connectivity may arise due to shared trophic changes at the synaptic 71 

and cellular levels 36,37 and/or reflect coupled expression of genes enriched in supra-granular 72 

layers 38 that are associated with transcriptomic similarity of local brain regions39. Importantly 73 

both of these effects converge with postmortem inter-regional correlations of gene expression 74 

40. Developmentally, macro scale patterns of cortical thickness mature with age, possibly 75 

because of synchronized neurodevelopment 36,37 and the expression of common genetic cues 76 

during early cortical development 41. 77 

 78 
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Taken together contemporary theory suggests that (a) macro scale patterns of cortical 79 

structure make an important contribution to human cognition and (b) that this is supported by 80 

common genetic influences in local areas of cortex. However, we currently lack a clear 81 

understanding of how genetic influences contribute to the fundamental organizational 82 

principles that underpin the macro scale patterns of cortical thickness seen in humans. Our 83 

current study sought to directly examine how genetic influences contribute to the spatial 84 

organization of macro scale features of the cortex. We used advanced machine learning 85 

methods to construct large-scale organizational gradients that underpin the structural 86 

covariance across the cortex. In contrast to clustering-based decompositions of the brain into 87 

discrete communities 42, cortex-wide gradient mapping techniques describe neural structure 88 

and function in a low dimensional space, or, coordinate system, that reflects the macro scale 89 

patterns that underpin the observed neural data. We used this approach to describe the 90 

structural covariance in humans as well as in non-human primates, and to evaluate whether 91 

theses dimensions of variation are genetically determined. In particular, we used a twin-92 

design based on the Human Connectome Young Adult sample (S900) using Sequential 93 

Oligogenic Linkage Analysis Routines (www.solar-eclipse-genetics.org; Solar Eclipse 8.4.0.) 94 

to evaluate genetic correlation of local cortical thickness across the cortical mantle. In a 95 

second analysis we evaluated the phylogenetic basis of macros scale patterns of structural 96 

covariance by comparing the large-scale gradients in macaque monkeys (PRIME-DE) 43 with 97 

those seen in humans. Last, we compared the axes of macro scale organization of cortical 98 

thickness in humans and macaques with organizational axes expected based on the theory of 99 

dual origin 3,17-20. 100 

 101 

Foreshadowing our results, both analyses found evidence that the two main organizational 102 

patterns that describe macro scale patterns of cortical thickness were driven by genetic 103 

factors. Using a pedigree model to evaluate the genetic correlation of thickness in humans, we 104 
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found that macro scale patterns of cortical thickness covariance were highly influenced by 105 

genetics, especially in prefrontal cortex, highlighting the role of genetics in shaping brain 106 

structure in regions functionally associated with complex features of human cognition. We 107 

also observed a similar macro scale organization of cortical thickness in humans and 108 

macaques, suggesting that these axes are phylogenetically conserved in primates. Moreover, 109 

we found an inverse relationship between archi-cortex (hippocampus) and paleo-cortex 110 

(olfactory cortex) distance and the inferior-to-superior organization gradient in humans and 111 

macaques, aligning covariance topology with the dual origin theory. Together these analyses 112 

highlight the important role that genetic processes play in determining the large-scale 113 

organization of cortical structure, and so provide an important window into the innate 114 

architecture supporting human cognition and a potential model for impact and progression of 115 

pathology.   116 
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Results 117 

Posterior-anterior and inferior-superior axes underlie macro scale organization of cortical 118 

thickness 119 

We started our analysis by evaluating the topological organization of structural covariance 120 

(Figure 1). We used the mean thickness within 400 parcels 44 to create group-level covariance 121 

maps based on individual thickness values of participants from the Human Connectome 122 

Project (HCP, S900). When computing the macro scale organization of cortical thickness, we 123 

controlled for the effects of age, sex, and global thickness. First, we evaluated the average 124 

structural covariance as a function of brain network organization 42. Strength of structural 125 

covariance was stronger between regions within the same functional community than between 126 

networks (Figure 1B; Supplementary Table 1).  127 

 128 

We then implemented diffusion map embedding, a method previously used in function 129 

connectivity as well as microstructural covariance networks. Diffusion map embedding 130 

allows local and long-distance connections to be projected into a common space 13,45. The 131 

resulting components are unitless and identify the position of nodes along the respective 132 

embedding axis that encodes the dominant differences in nodes’ connectivity patterns. The 133 

principal gradient in structural covariance followed a posterior-anterior trajectory from 134 

occipital regions to the frontal cortex and accounted for 17% of the variance in the thickness 135 

covariance data. Next, we examined the covariance values as a function of the structural 136 

gradient. We divided the structural gradient into 10 equally sized bins and plotted the average 137 

values of each structural gradient in each bin. We observed that the principal structural 138 

covariance gradient followed a U-shaped pattern with both extreme ends of the gradient 139 

showing strongest covariance and intermediate zones showing relative low covariance to 140 

regions in the same gradient level (Figure 1C). Topology of covariance showed a 141 

correspondence to functional organization, with unimodal regions exhibiting lower gradient 142 
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values relative to networks associated with higher-order processing (default mode network 143 

and frontoparietal network) (Figure 1).  144 

The secondary gradient followed an inferior-superior pattern with endpoints in superior 145 

parietal lobe and lingual gyrus respectively and explained 13% of the observed variance. 146 

Plotting this gradient in each of the 10 bins according to their gradient values indicated that 147 

structural covariance increased along the inferior-superior axis, with highest covariance 148 

between regions located within superior parietal cortex. Findings were reproducible in a 149 

different dataset (eNKI, n=792, age 8-85yrs) (Supplementary Figure 1) and were observed 150 

using different preprocessing pipelines of thickness (CIVET and Freesurfer 6.0) 151 

(Supplementary Figure 2, Supplementary Results) and parcellation methods (Desikan-152 

Killiany46, Glasser-atlas47, and Schaefer44 800 parcels, Supplementary Figure 3). Notably, 153 

age-related effects moderating structural covariance strength also followed posterior-anterior 154 

and inferior-superior axes (Supplementary Figure 1, Supplementary Results). The primary 155 

and secondary gradients, as well as gradients 3 and 4, showed comparable patterning 156 

bilaterally, while gradients 5 to 8 showed lateralization effects (Supplementary Figure 4, 157 

Supplementary Results). Follow up analysis indicated that the gradients of macro scale 158 

organization of cortical thickness existed above and beyond geodesic distance constraints, and 159 

aligned with previously reported gradients of functional connectivity and microstructural 160 

profile covariance (Supplementary Results). Conducting a meta-analysis using the 161 

Neurosynth database, we observed marked variation of function along both macro scale 162 

organizational gradients of thickness (Supplementary Results).  163 

 164 

 165 
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 166 

Fig 1. Large scale organization of structural covariance. A) Measuring structural 167 

covariance of thickness; B) Structural covariance matrix; C) mean correlation within 168 
functional network community 42; D) Gradient decomposition, primary (G1) and secondary 169 

(G2) macro scale gradient, and their average value in mean covariance strength within binned 170 

gradient-level, indicating the covariance between regions at similar gradient level, and 171 
gradient values as a function of functional community (color nomenclature according to C). 172 

 173 

 174 

Macro scale organization of cortical thickness is genetically determined 175 

Having established macro scale organizational patterns of cortical thickness, we next 176 

computed the genetic correlation between the 400 cortical regions44 in the HCP dataset. 177 

Genetic correlation is based on the decomposition of structural covariance in genetic and 178 

environmental factors using the genetic similarity between individuals to estimate shared 179 

additive genetic effects. Overall, 78±5% of the phenotypic correlation could be attributed to 180 

genetic factors and we observed high correlation between thickness covariance and genetic 181 

correlation of thickness (r=0.61, p<0.0001) and environmental correlation of thickness 182 

(r=0.33, p<0.001) across all nodes (Supplementary Figure 5). Patterns of genetic correlation 183 

were highest within, rather than between, functional communities (Figure 2A, 184 

Supplementary Figure 5, Supplementary Table 2). Though to a lesser extent, this was also 185 

the case for environmental influences (Figure 2B, Supplementary Table 3). 186 
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Performing whole-brain gradient decomposition on the genetic correlation maps, we observed 187 

almost identical large-scale gradients as in the structural covariance (Structural covariance G1 188 

versus genetic correlation G1: r=0.97, Structural covariance G2 versus genetic correlation 189 

G2:r=0.95). The primary genetic gradient explained 18% of the variance, traversing a 190 

posterior-anterior axis. Probing the within-gradient genetic correlation, we observed that both 191 

end points of the primary gradient showed highest genetic correlation to regions at the same 192 

level of the gradient, with the strongest genetic correlation observed in the frontal cortex 193 

(Supplementary Figure 6, Supplementary Figure 7). The secondary gradient explained 194 

14% of the variance, and, reflected a similar inferior-superior axis as was seen in the 195 

structural covariance gradients. Both organizational axes varied as a function of functional 196 

community, suggesting a relationship between the topological organization of genetic 197 

correlation of thickness and functional organization. Environmental correlations, explaining 198 

15% of variance of the thickness covariance, were organized along a rostral-caudal and 199 

inferior-superior axis as well, explaining 13% and 11% of the variance respectively 200 

(Supplementary Figure 8).  201 
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 202 

Fig 2. Large scale organization of genetic correlation of cortical thickness. A) Genetic 203 

correlation of local cortical thickness; i) mean genetic correlation between functional 204 

communities 42; B) Environmental correlation of cortical thickness; i) mean environmental 205 
correlation between functional communities 42; C) Gradient decomposition, primary and 206 

secondary macro scale gradient, and their average value in i). mean genetic correlation 207 

strength within binned gradient-level; ii). functional communities; D). Parcel-wise difference 208 
between the structural covariance gradients (GSCOV) and the genetic correlation gradients 209 

(GGC). Blue indicates higher gradient ranking in GSCOV, red indicates higher gradient ranking 210 

in GGC, as well as density plot and scatter of gradient values. 211 

 212 

Macro scale organization of cortical thickness in macaques. 213 

Thus far our analysis suggests that the macro scale organization of cortical structural 214 

covariance in humans shows evidence of high degree of concordance amongst identical twins 215 

suggesting a strong genetic influence. Our next analysis evaluated the genetic contribution to 216 

macroscale dimensions of cortical structure by examining its phylogenetic stability. To 217 

achieve this goal, we examined the topology of large-scale gradients in 41 macaque monkeys 218 
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from the PRIMatE Data Exchange (PRIME-DE) 43. We created a structural covariance matrix 219 

based on cortical thickness of 41 macaques, using parcels based on the Markov atlas48 and 220 

applied a similar analysis as for humans (see Methods). The principal and secondary gradient 221 

of the macaque monkey are presented in Figure 3. Similar to the gradients of structural 222 

covariance in humans, we observed that the topological organization of macaque monkey’s 223 

structural covariance was also well described by both a posterior-anterior and inferior-224 

superior component. In macaques the ordering of the components was reversed with the 225 

inferior-superior gradient explained 17% of the variance, whereas the posterior-anterior 226 

gradient explained 12% of the variance. The primary gradient stretched from inferior anterior 227 

temporal to sensory-motor cortex, and the secondary gradient stretched from sensory-motor to 228 

frontal cortex.  229 

 230 

Last, using an innovative approach to perform cross species alignment (weighted functional-231 

alignment) 49 we transformed human gradients to macaque cortex and compared them with 232 

the gradients in macaques directly. We observed strong similarity between the posterior-233 

anterior gradient (r=0.52, [0.41, 0.61], p<0.0001) and inferior-superior gradients in humans 234 

and macaques (r=0.60, [0.49, 0.70]), p<0.0001). Notably, these similarities were stronger than 235 

between posterior-anterior gradient in humans and inferior-superior gradient in macaques (r=-236 

0.08, [-0.23, 0.04], p=ns) or inferior-superior gradient in humans and posterior-anterior 237 

gradient in macaques (r=0.24, [0.08, 0.37], p=0.001). 238 
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 239 
Fig. 3. Structural covariance gradient in macaque monkeys. A) Mean cortical thickness in 240 
41 macaques from three independent sites (Davis, Oxford, and Newcastle); ii. Markov 241 

parcellation48; iii. Structural covariance matrix controlling for site. B). Gradient 242 

decomposition: primary gradient (G1) and secondary gradient (G2); C). Comparison of 243 
human and macaque gradients. Red indicated a higher gradient ranking in humans, whereas 244 

blue indicates a higher gradient ranking in macaques. Scatter plots indicate the association 245 

between human posterior -anterior covariance gradient (G1, black) and human inferior-246 

superior covariance (G2, red) and macaque principal gradient (G1, upper scatterplot) and 247 

secondary gradient (G2, lower scatterplot). 248 

 249 

 250 

 251 

 252 
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Macro scale organization of cortical thickness and the theory of dual origin. 253 

 254 

Finally, we studied the genetic ontogeny of macro scale organization of cortical thickness in 255 

light of the dual origin theory of cortical development. This perspective assumes that cortical 256 

areas develop from waves of laminar differentiation that have their origin in either the 257 

piriform cortex (paleo-cortex) or the hippocampus (archi-cortex). The theory was established 258 

on histological investigations of the adult cortex of various reptiles and mammals 3,17-20,50. We 259 

evaluated the previously reported gradients in humans and macaques with respect to the 260 

geodesic distance from the paleo-cortex (olfactory cortex) and the archi-cortex (hippocampus) 261 

(similar to previous work 16).  262 

 263 

In humans, the paleocortex was defined by the paleocortex, and the archi-cortex was defined 264 

by hippocampus, pre-subiculum, area 33’, and retrosplenial complex. We computed the 265 

average geodesic distance from these ROIs (Figure 4a) and evaluated its association to the 266 

principal and secondary gradient of genetic correlation of thickness (based on Figure 2). We 267 

observed a dissociation between distance from paleo-cortex in inferior and superior 268 

proportions of the inferior-superior gradient (statistical energy-test51: p<0.001). And, using 269 

spin-tests to account for spatial autocorrelation 52, we observed a negative relation between 270 

the paleo-cortex distance map and inferior-superior gradient level (rspin=-0.78, p<0.01), 271 

suggesting that the macro scale structural organization varies gradually as a function of paleo-272 

cortex distance. Contrarily, there was positive relationship between inferior and superior 273 

proportions of the inferior-superior gradient and archi-cortex distance (energy-test: p<0.003) 274 

and a negative, but non-significant, linear relationship between this gradient and archi-cortex 275 

distance (rspin =-0.24, p>0.1). We did not observe a consistent association between the dual 276 

origin and the posterior-anterior gradient (archi-cortex distance: energy-test: p>0.1, 277 

rspin =0.12, p>0.1; paleo-cortex: energy-test: p<0.0001, rspin =-0.43, p>0.1). Evaluating genetic 278 
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correlation as a function of paleo- and archi-cortex distance, we observed that genetic 279 

correlation varied as a function of distance from both origins.  280 

 281 

We performed a similar analysis in macaque monkeys, using the distance from archi- and 282 

paleo-cortex reported by Goulas et al.16. We observed that the inferior-superior gradient in 283 

structural covariance showed a positive association with archi-cortex distance (energy-test: 284 

p<0.002, r=0.64, p<0.0001) and a negative association with paleocortex distance (energy-test: 285 

p=ns, r=-0.40, p<0.04). Again, we did not observe a consistent association between the dual 286 

origin and the posterior-anterior gradient (archi-cortex distance: energy-test: p<0.02, r=-0.31, 287 

p>0.1; paleo-cortex distance: energy-test: p>0.1, r =-0.14, p>0.1).  288 

 289 
Fig. 4. Cross-species topology of covariance as a function of the dual origin theory.  290 
A). Left: distance from archi-cortex and paleo-cortex in humans; Middle: Association 291 

between G1 and G2 of genetic correlation of thickness and distance from archi-cortex and 292 
paleo-cortex in humans (two binned gradients, as well as linear relationship); Right: genetic 293 

correlation as a function of archi- and paleo-cortex distance; B). Left: Distance from archi-294 

cortex and paleo-cortex in macaque monkeys 16; Middle: Association between G1 and G2 of 295 
thickness covariance and distance from archi-cortex and paleo-cortex in macaque monkeys 296 

(two binned gradients, as well as linear relationship); Right: structural covariance as a 297 

function of archi- and paleo-cortex distance16. 298 
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Discussion 299 

The cortical mantle is organized along axes that reflect systematic variations in brain structure 300 

and function such as laminar differentiation, gene expression, structural and functional 301 

connectivity. Although the importance of macro scale axes of cortical organization for human 302 

cognition and disorder are now recognized, the degree to which these topological features of 303 

the cerebral cortex are genetically determined remains incompletely understood. Our current 304 

study provided converging evidence that genetic influences contribute to the spatial 305 

organization of macro scale structural features of the cortex. In humans we found two robust 306 

topological patterns of macro scale organization of thickness; a posterior-anterior and an 307 

inferior-superior gradient, and almost identical organization patterns were observed when 308 

assessing genetic correlation of thickness. Furthermore, we found that similar patterns of 309 

macro scale organization of cortical thickness as are seen in humans were present in macaque 310 

monkeys. Last, we show that both in humans and macaques the inferior-superior axis could 311 

be aligned with organization patterns expected based on the theory of dual origin, providing a 312 

neurogenetic basis for observed topological patterns. Together, these different analyses 313 

provide converging evidence of the important role that genetic influences play in determining 314 

the macro scale organization of the cortex. 315 

 316 

Our study builds on a growing body of evidence describing the organizational axes that 317 

determine the macro scale organization of specific brain features such as myeloarchitecture 2-
318 

6, cytoarchitecture 7-10, laminar origin of connections 11,12 10, functional connectivity 13, 319 

cortical thickness 14, and gene expression 6,15. Together these studies indicate that the 320 

transition from cortical areas with less to more laminar differentiation constitutes major axis 321 

of cortical organization across which cortical features systematically vary 6,12,13. These 322 

variations have functional and behavioural ramifications 1,13 and the systematic topological 323 

organization of the cerebral cortex has been proposed to reflect an architecture which 324 
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optimize the balance of externally and internally oriented functioning, which is critical for 325 

flexibility of human cognition13,22,26. In the current study we uncovered two major topological 326 

axes in macro scale organization of thickness, of which the posterior-anterior gradient 327 

explained the greatest amount of variance in humans. Various studies 53-56 have demonstrated 328 

a posterior-anterior gradient in neuron number in the cortex of a broad range of mammalian 329 

species, including rodents, marsupials, and non-human primates 1,54,57. Neuron numbers are 330 

high in posterior portions of the cortex, such as the occipital lobe, and gradually decreases 331 

toward more anterior regions. The difference in neuronal numbers has been found to relate to 332 

the temporal sequence of neurogenesis 55,57, whereas posterior regions undergo a high number 333 

of cell cycles, which accounts for the higher number of neurons in these areas, in anterior 334 

regions more time is devoted to the growth of large neurons with many connections 58. The 335 

posterior-anterior gradient therefore might signify a shift in computational capacity, from a 336 

high number of processing units in caudal regions, to a lower number of highly connected 337 

units in rostral regions 55. Functionally, human imaging studies have placed representation of 338 

stimulus properties posteriorly, involving local computations, and more complex operations, 339 

involving integration of various functions, anteriorly 59-61. 340 

 341 

A second organizational axis in macro scale organization of thickness was identified that 342 

followed an inferior-superior pattern in humans and macaque monkeys. Inferior-superior 343 

(dorso-ventral) patterning is a key organizational principle during embryonic development of 344 

the central nervous system 3,16-20,62,63 and dorsal-ventral dichotomies have been reported in 345 

macaques 9 64 65 and humans 66. Notably, the inferior-superior axis differentially related to 346 

distance from paleo- and archi-cortex respectively, aligning the inferior-superior axis in 347 

macro scale organization of thickness with the dual origin theory. This convergence suggests 348 

that our method captures at a macro scale how regions, which could be reasonably distant in 349 

space can be affiliated because they share similar origins 9,16,20. The emergence of the dual 350 
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connectional trends might be rooted in two patterns centers in the developing pallium, 351 

resulting in two opposing neurogenetic gradients 2. Both ventral and dorsal systems have been 352 

proposed to relate to differentiable functional processes. Whereas the dorsal system has been 353 

proposed to relate to time, space, and motility, the ventral system has been associated with 354 

assigning meaning and motivation 66-68. 355 

 356 

We observed differential ordering of posterior-anterior and inferior-superior gradients in 357 

humans and macaques. Whereas in humans the principal gradient traversed a posterior-358 

anterior trajectory, we observed that in macaques this gradient was only the second 359 

description of shared variance. This difference might reflect the difference in the timing of 360 

cortical expansion between humans and macaques. For example, it has been shown that in the 361 

macaque monkey, neurogenesis ends about 20 days earlier in the rostral pole than in the most 362 

caudal regions 69, in humans, however, a posterior-anterior difference of up to 70 days has 363 

been predicted 57. It is possible that difference in timing of neurogenesis might describe why 364 

the same axis of organization can be more or less pronounced in different species. Previous 365 

work, using the same sample of macaques, has shown that similarity in functional cortical 366 

organization between humans and macaques decreases with geodesic distance from unimodal 367 

systems, culminates in the greater differences in posterior regions of the default network. It is 368 

possible this functional difference emerges from the different balance of the structural 369 

organizational patterns between macaques and humans. Notably, it has been suggested that 370 

the evolution of the globular shape of the human brain is related to genes involved in 371 

neurogenesis and myelination 70, resulting in relatively globular shape of the brain in modern 372 

humans relative to its ancestors. It will be important for future work to explore whether 373 

differences in the emphasis placed on similar organizational patterns across different species 374 

can describe the evolutionary differences in cognitive functions between humans and other 375 

primates. 376 
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 377 

Follow up analysis indicated the posterior-anterior and inferior-superior organization 378 

gradients in macro scale organization of thickness is similar to previously described gradients 379 

in microstructural profile covariance 6 and functional connectivity 13. The posterior-anterior 380 

gradient related to T1wT2w contrast in all layers. This is in line with previous in vivo and 381 

post-mortem evidence of an increase of mean myelin from polar towards sensory regions 71,72. 382 

The dorsal-ventral dissociation was only observed in the upper two strata, with ventral 383 

regions relating to lower T1wT2 contrast than dorsal regions. Difference in upper and lower 384 

strata T1wT2w contrast has been summarized using “skewness”, indicating regions with high 385 

difference between upper and lower layers would have a low skewness, whereas regions with 386 

a small difference between upper and lower layers having a high skewness 73. Dorsal regions 387 

including the sensory-motor cortex have been reported to have a low skewness, indicating a 388 

high difference in myelin between upper and lower layers. It is possible that the dorsal-ventral 389 

patterning of myelin in the upper layers reflects a dissociation in information processing, with 390 

sensory agranular regions providing feedforward information and project locally, whereas 391 

ventral, more granular paralimbic, regions are involved in feedback processing and project 392 

from infragranular layers 74,75. Additionally, we found comparable topologies in 393 

microstructural profile covariance and macro scale organization of thickness, in line with 394 

previous evidence that thickness topology relates to microstructural differentiation 14,76. 395 

Notably, both posterior-anterior macro scale organization patterns, as well as the combination 396 

of both the posterior-anterior and inferior-superior gradient showed a positive relation 397 

primary organizational axis of functional connectivity at rest. Our observation that a 398 

combination of gradients associated with differing neurogenetic and developmental 399 

mechanisms puts forward the hypothesis that functional organization arises through the 400 

combination of multiple structural organizational axes, and, as such, creating an architecture 401 
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which optimize the balance of externally and internally oriented functioning, which is critical 402 

for flexibility of human cognition. 403 

 404 

Understanding of large-scale organization of brain structure may offer a novel and compelling 405 

model to evaluate to impact and progression of pathology. For example, it has been suggested 406 

that Parkinson’s and Alzheimer’s disease follows a staging trajectory, with different regions 407 

and networks affected at different stages of the disorder 27,28, and its sequence determined by 408 

underlying anatomical axes. Parkinson’s is assumed to show early disruptions in the lower 409 

brain stem, followed later disruption in other midbrain structures, meso-cortex and allocortex. 410 

Final stages of the disorder are characterized by disruptions in sensory-motor areas. We note 411 

that this sequence of deficits is similar to the inferior-superior axis, suggesting that 412 

understanding this feature of cortical organization may also help understand the apparent 413 

sequence of deficits in Parkinson’s disease. Future work should therefore consider whether 414 

the macro scale patterns of that our analysis shows reflect the contribution of genetic 415 

influences may shed light on specific orderly sequences in symptoms that underpins 416 

Parkinson’s disease, as well as other neurodegenerative conditions. 417 

 418 

To conclude, our novel results establish that two major organizational axes in macro scale 419 

organization of thickness in human and non-human primates that are likely to be at least 420 

partially influenced by genes. We found a principal gradient stretched from posterior to 421 

anterior cortical areas, whereas a secondary gradient traversed along an inferior-superior 422 

gradient, and aligned with theories on the dual origin of the cortex. Combined, our 423 

observations provide direct evidence of a genetic basis of macro scale organizational patterns. 424 

It is of note that our findings were made possible thanks to open data initiatives. These 425 

initiatives offer the neuroimaging and network neuroscience communities an unprecedented 426 

access to large datasets for the investigation of human and non-human brains and for the 427 
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cross-validation of observations across data-sets and methods. Uncovering the organizational 428 

axis of the human cerebral cortex provides insights in the neurogenetic processes shaping its 429 

structural and functional organization and its relation to human cognition. Such axes can be 430 

utilized to evaluate disease progression as well as disseminate potential neurogenetic origins 431 

of abnormal cortical development.  432 

 433 

 434 

 435 

  436 
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Materials and methods 437 
 438 

HCP sample: 439 

Participants and study design  440 

For our analysis we used the publicly available data from the Human Connectome Project 441 

S900 release (HCP; http://www.humanconnectome.org/), which comprised data from 970 442 

individuals (542 females), 226 MZ twins, 147 DZ twins, and 597 singletons, with mean age 443 

28.8 years (SD = 3.7, range = 22–37). We included individuals for whom the scans and data 444 

had been released (humanconnectome.org) after passing the HCP quality control and 445 

assurance standards 77. The full set of inclusion and exclusion criteria are described elsewhere 446 

78,79. In short, the primary participant pool comes from healthy individuals born in Missouri to 447 

families that include twins, based on data from the Missouri Department of Health and Senior 448 

Services Bureau of Vital Records. Additional recruiting efforts were used to ensure 449 

participants broadly reflect ethnic and racial composition of the U.S. population. Healthy is 450 

broadly defined, in order to gain a sample generally representative of the population at large. 451 

Sibships with individuals having severe neurodevelopmental disorders (e.g., autism), 452 

documented neuropsychiatric disorders (e.g. schizophrenia or depression) or neurologic 453 

disorders (e.g. Parkinson’s disease) are excluded, as well as individuals with diabetes or high 454 

blood pressure. Twins born prior 34 weeks of gestation and non-twins born prior 37 weeks of 455 

gestation are excluded as well. After removing individuals with missing structural imaging 456 

data our sample consisted of 899 (504 females) individuals (including 220 MZ-twins and 135 457 

DZ-twins) with a mean age of 28.8 years (SD =3.7, range =22-37).  458 

 459 

Structural imaging processing 460 

MRI protocols of the HCP are previously described in78,79. In short, MRI data used in the 461 

study were acquired on the HCP’s custom 3T Siemens Skyra equipped with a 32-channel 462 

head coil. Two T1w images with identical parameters were acquired using a 3D-MPRAGE 463 
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sequence (0.7 mm isotropic voxels, matrix = 320 × 320, 256 sagittal slices; TR = 2,400 ms, 464 

TE = 2.14 ms, TI = 1,000 ms, flip angle = 8°; iPAT = 2). Two T2w images were acquired 465 

using a 3D T2-SPACE sequence with identical geometry (TR = 3,200 ms, TE = 565 ms, 466 

variable flip angle; iPAT = 2). T1w and T2w scans were acquired on the same day. The 467 

pipeline used to obtain the Freesurfer-segmentation is described in detail in a previous article 468 

78 and is recommended for the HCP-data. The pre-processing steps included co-registration of 469 

T1- and T2-weighted scans, B1 (bias field) correction, and segmentation and surface 470 

reconstruction using FreeSurfer version 5.3-HCP to estimate cortical thickness.  471 

In addition to assess robustness and replicability of the results across different surface 472 

estimation pipelines, cortical thickness estimates were further estimated using FreeSurfer 473 

version 6.0 and CIVET.  For both these additional analyses, only bias-corrected T1-weighted 474 

data were used as the input. FreeSurfer version 6.0 was performed using the default recon-all 475 

options. Surface-extraction and cortical thickness estimation using CIVET were performed 476 

using version 2.1.1 (http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET). The non-477 

uniformity artefacts were corrected with the N3 algorithm (Sled et al., 1998) using the 478 

recommended N3 spline distance of 125mm for 3T T1-weighted scans. Cortical thickness was 479 

then measured as the distance between the estimated “white” and “grey” cortical surfaces, in 480 

the native space framework of the original MR images, using the same approach that is used 481 

in FreeSurfer80. 482 

 483 

Parcellation approach 484 

We used a parcellation scheme44 based on the combination of a local gradient approach and a 485 

global similarity approach using a gradient-weighted Markov Random models. The 486 

parcellation has been extensively evaluated with regards to stability and convergence with 487 

histological mapping and alternative parcellations. In the context of the current study, we 488 

focus on the granularity of 400 parcels, as averaging will improve signal-to-noise. In order to 489 
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improve signal-to-noise and improve analysis speed, we opted to average unsmoothed 490 

structural data within each parcel. Thus, cortical thickness of each ROI was estimated as the 491 

trimmed mean (10 percent trim).  Findings were additionally evaluated using different 492 

parcellation schemes using the 800 parcel Schaefer44 solution, as well as the Glasser atlas47 493 

based on myelo-architecture and the Desikan-Killiany46 atlas.  494 

 495 

Gradient decomposition  496 

In line with previous studies 5,13 the structural covariance and genetic correlation matrix, as 497 

well as age-related t-maps, were proportionally thresholded at 90% per row and converted 498 

into a normalized angle matrix using the BrainSpace toolbox for matlab 52. Diffusion map 499 

embedding45, a non-linear manifold learning technique, identified principal gradient 500 

components, explaining structural covariance variance in descending order (each of 1 × 400). 501 

In brief, the algorithm estimates a low-dimensional embedding from a high-dimensional 502 

affinity matrix. In this space, cortical nodes that are strongly interconnected by either many 503 

supra-threshold edges or few very strong edges are closer together, whereas nodes with little 504 

or no covariance are farther apart. The name of this approach, which belongs to the family of 505 

graph Laplacians, derives from the equivalence of the Euclidean distance between points in 506 

the embedded space and the diffusion distance between probability distributions centered at 507 

those points. It is controlled by a single parameter α, which controls the influence of the 508 

density of sampling points on the manifold (α = 0, maximal influence; α = 1, no influence). 509 

Based on previous work 5,13 we followed recommendations and set α = 0.5, a choice that 510 

retains the global relations between data points in the embedded space and has been suggested 511 

to be relatively robust to noise in the covariance matrix. Gradients were mapped onto 512 

fsaverage surface visualized using SurfStat (http://mica-mni.github.io/surfstat)77 and we 513 

assessed the amount of variance explained. To show how the principal and secondary gradient 514 

of covariance/genetic correlation relates to systematic variations in functional organization 42, 515 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.10.939561doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.939561
http://creativecommons.org/licenses/by-nd/4.0/


24 

Shaping Brain Structure 

we calculated and plotted the mean covariance profiles within ten equally sized discrete bins 516 

of the respective gradient. To evaluate correlation between macrostructural gradients we used 517 

spin permutations 35. 518 

 519 

Genetic correlation analysis  520 

To investigate the genetic correlation of brain structure, we analyzed 400 parcels of cortical 521 

thickness in a twin-based genetic correlation analysis. As in previous studies 81, the 522 

quantitative genetic analyses were conducted using Sequential Oligogenic Linkage Analysis 523 

Routines (SOLAR) 82. SOLAR uses maximum likelihood variance-decomposition methods to 524 

determine the relative importance of familial and environmental influences on a phenotype by 525 

modeling the covariance among family members as a function of genetic proximity. This 526 

approach can handle pedigrees of arbitrary size and complexity and thus, is optimally efficient 527 

with regard to extracting maximal genetic information. To ensure that our cortical thickness 528 

parcels were conform to the assumptions of normality, an inverse normal transformation was 529 

applied81. 530 

Heritability (h2) represents the portion of the phenotypic variance (σ2
p) accounted for by the 531 

total additive genetic variance (σ2
g), i.e., h2 = σ2

g/σ
2

p. Phenotypes exhibiting stronger 532 

covariances between genetically more similar individuals than between genetically less 533 

similar individuals have higher heritability. Within SOLAR, this is assessed by contrasting 534 

the observed covariance matrices for a neuroimaging measure with the structure of the 535 

covariance matrix predicted by kinship. Heritability analyses were conducted with 536 

simultaneous estimation for the effects of potential covariates. For this study, we included 537 

covariates including global thickness, age, and sex.  538 

To determine if shared variations in cortical thickness were influenced by the same genetic 539 

factors, genetic correlation analyses were conducted. More formally, bivariate polygenic 540 

analyses were performed to estimate genetic (ρg) and environmental (ρe) correlations, based 541 
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on the phenotypic correlation (ρp), between brain structure and personality with the following 542 

formula: ρp = ρg√(h2
1h

2
2) + ρe√[(1 − h2

1)(1 − h2
2)], where h2

1 and h2
2 are the heritability of the 543 

parcel-based cortical thickness. The significance of these correlations was tested by 544 

comparing the log likelihood for two restricted models (with either ρg or ρe constrained to be 545 

equal to 0) against the log likelihood for the model in which these parameters were estimated. 546 

A significant genetic correlation (corrected for multiple comparisons using Bonferroni 547 

correction) is evidence suggesting that (a proportion of) both phenotypes are influenced by a 548 

gene or set of genes83. To compute the contribution of genetic effects relative to the 549 

phenotypic correlation, we computed the contribution of the genetic path to the phenotypic 550 

correlation (√ h2
1 × ρg × √ h2

2) (ρphg) divided by the phenotypic correlation. For the relative 551 

contribution of environmental correlation to the phenotypic correlation we computed (√ 1-h2
1 552 

× ρe × √ 1-h2
2) (ρphe) divided by the phenotypic correlation84. 553 

 554 

Geodesic distance  555 

Geodesic distance was computed between each vertex in fsaverge5 space using the Eucledian 556 

coordinates of the vertices, creating a 20484 x 20484 distance matrix. Only ipsilateral 557 

distance was considered. Following distances between parcels were computed by taking the 558 

average distance between both parcels. We evaluated the macro scale organization of 559 

thickness while controlling for distance by multiplying the covariance strength by the distance 560 

between the respective parcels. 561 

 562 

Comparisons between gradients and modalities. 563 

To make comparisons across gradient and distance maps, we used spin-tests to control for 564 

spatial autocorrelation when possible85. Difference between the two distributions of archi- and 565 

paleo-cortex distance and macro scale organizational gradients were assessed using statistical 566 

energy test, a non-parametric statistic for two sample comparisons 51 (https://github. 567 
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com/brian-lau/multdist/blob/master/minentest.m) and statistical significance was assessed 568 

with permutation tests (1000). 569 

 570 

Macaque sample 571 

We used the MRI data from the recently formed NHP data sharing consortium PRIME-DE 572 

[http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html ]. Three cohorts of macaque 573 

monkeys were included in the present study (Newcastle University, Oxford University, and 574 

University of California, Davis).  575 

Oxford data: The full data set consisted of 20 rhesus macaque monkeys (macaca mulatta) 576 

scanned on a 3T scanner with 4‐channel coil. The data were collected while the animals were 577 

under anesthesia. Briefly, the macaque was sedated with intramuscular injection of ketamine 578 

(10 mg/kg) combined with either xylazine (0.125‐0.25 mg/kg) or midazolam (0.1mg/kg) and 579 

buprenorphine (0.01 mg/kg). Additionally, macaques received injections of atropine (0.05 580 

mg/kg, i.m.), meloxicam (0.2 mg/kg, i.v.), and ranitidine (0.05 mg/kg, i.v.). The anesthesia 581 

was maintained with isoflurane. The details of the scan and anesthesia procedures were 582 

described in 86 and the PRIME‐DE website 583 

(http://fcon_1000.projects.nitrc.org/indi/PRIME/oxford.html).  584 

UC-Davis Data: The full data set consisted of 19 rhesus macaque monkeys (macaca mulatta, 585 

all female, age=20.38 ± 0.93 years, weight=9.70 ± 1.58 kg) scanned on a Siemens Skyra 3T 586 

with 4‐channel clamshell coil. All the animals were scanned under anesthesia. In brief, the 587 

macaques were sedated with injection of ketamine (10 mg/kg), dexmedetomidine (0.01 588 

mg/kg), and buprenorphine (0.01 mg/kg). The anesthesia was maintained with isoflurane at 589 

1‐2%. The details of the scan and anesthesia protocol can be found at 590 

(http://fcon_1000.projects.nitrc.org/indi/PRIME/ucdavis.html).  591 
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Newcastle data: The full data set consisted of 14 rhesus macaque monkeys (macaca mulatta) 592 

scanned on a Vertical Bruker 4.7T primate dedicated scanner. We restricted our analysis to 10 593 

animals (8 males, age=8.28±2.33, weight=11.76±3.38) for whom two awake resting‐state 594 

fMRI scans were required. The structural T1‐weighted images were acquired using MDEFT 595 

sequence with 0.6x0.6x0.6mm resolution, TE=6ms, TR=750ms.  596 

MRI data processing: The structural processing includes 1) spatial denoising by a non‐local 597 

mean filtering operation 87, 2) brain extraction using ANTs registration with a reference brain 598 

mask followed by manually editing to fix the incorrect volume (ITK‐SNAP, 599 

www.itksnap.org) 88; 3) tissue segmentation and surface reconstruction (FreeSurfer)89,90; 4) 600 

the native white matter and pial surfaces were registered to the Yerkes19 macaque surface 601 

template 91. 602 

Quality control: We excluded macaque monkeys that showed a hemispheric difference of 603 

more 0.2 cm (UC Davis (0); Oxford (7), Newcastle (5)) for our final analysis, as gradient 604 

models were estimated based on covariance of ipsi- and contra-lateral covariance.  605 

Gradient analysis: First we constructed a covariance matrix, controlling for dataset site and 606 

global thickness. Following we performed gradient analysis analogue to described in humans.  607 

Alignment of human gradients to macaque gradients: To evaluate the similarity between 608 

human and macaque gradients we transformed the human gradient to macaque cortex based 609 

on a functional-alignment techniques recently developed. This method leverages advances in 610 

representing functional organization in high-dimensional common space and provides a 611 

transformation between human and macaque cortices. 49.  612 

Archi-paleo cortex distance: Distance from the archi – and paleo cortex was computed in 613 

Goulas et al., 2019 16. 614 

 615 

 616 
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 617 

Cortical microstructure and microstructural covariance networks. 618 

We estimated MPC using myelin-sensitive MRI (MPCMRI), in line with the previously 619 

reported protocol 5, in our main sample (HCP S900). The myelin-sensitive contrast was 620 

T1w/T2w from the HCP minimal processing pipeline, which uses the T2w to correct for 621 

inhomogeneities in the T1w image. We generated 12 equivolumetric surfaces between the 622 

outer and inner cortical surfaces 92. The equivolumetric model compensates for cortical 623 

folding by varying the Euclidean distance ρ between pairs of intracortical surfaces throughout 624 

the cortex to preserve the fractional volume between surfaces 
93. ρ was calculated as follows 625 

for each surface (1): 626 

(1) 627 

in which α represents a fraction of the total volume of the segment accounted for by the 628 

surface, while Aout and Ain represents the surface area of the outer and inner cortical surfaces, 629 

respectively. We systematically sampled T1w/T2w values along 64,984 linked vertices from 630 

the outer to the inner surface across the whole cortex. Following we computed the average 631 

value of T1w/T2 in each of the 400 parcels of the Schaefer atlas44. In turn, MPCMRI(i,j) for a 632 

given pair of parcels i and j is defined by (5): 633 

(5) 634 

in which s is a participant and n is the number of participants. We used the MPCMRI to (re-) 635 

compute the gradient of microstructure. 636 

 637 
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Functional connectivity gradient 638 

The functional connectivity gradient was downloaded from (https://www.neuroconnlab.org) 639 

computed as part of 13, based on 820 individuals from the HCP S900 release. As the gradient 640 

was reported at the fs_32k standard space surface, values were resampled for the Schaefer 641 

400 parcellation for further analysis.  642 

 643 

Replication sample: eNKI  644 

Participants and study design  645 

To evaluate the cross-sample reproducibility of observations we additionally investigated 646 

correspondence between personality and cortical brain structure in the enhanced Nathan Kline 647 

Institute-Rockland Sample (NKI). The sample was made available by the Nathan-Kline 648 

Institute (NKY, NY, USA), as part of the ‘enhanced NKI-Rockland sample’ 649 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472598/). In short, eNKI was designed to 650 

yield a community-ascertained, lifespan sample in which age, ethnicity, and socioeconomic 651 

status are representative of Rockland County, New York, U.S.A. ZIP-code based recruitment 652 

and enrollments efforts were being used to avoid over-representation of any portion of the 653 

community. Participants below 6 years were excluded to balance data losses with scientific 654 

yield, as well as participants above the age of 85, as chronic illness was observed to 655 

dramatically increase after this age. All approvals regarding human subjects’ studies were 656 

sought following NKI procedures. Scans were acquired from the International Neuroimaging 657 

Data Sharing Initiative (INDI) online 658 

database http://fcon_1000.projects.nitrc.org/indi/enhanced/studies.html For our phenotypic 659 

analyses, we selected individuals with complete personality and imaging data. Our sample for 660 

phenotypic correlations consisted of 799 (400 females) individuals with a mean age of 41.1 661 

years (SD =20.3, range =12-85).  662 

 663 
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Structural imaging processing 664 

3D magnetization-prepared rapid gradient-echo imaging (3D MP-RAGE) structural scans88 665 

were acquired using a 3.0�T Siemens Trio scanner with TR=2500�ms, TE=3.5�ms, 666 

Bandwidth=190�Hz/Px, field of view=256 × 256�mm, flip angle=8°, voxel size=1.0 × 1.0 × 667 

1.0�mm. More details on image acquisition are available at 668 

http://fcon_1000.projects.nitrc.org/indi/enhanced/studies.html. All T1 scans were pre-669 

processed using the Freesurfer software library (http://surfer.nmr.mgh.harvard.edu/) version 670 

6.0.0 80,89,90,94 to compute cortical thickness. Next, the individual cortical thickness and 671 

surface area maps were standardized to fsaverage5 for further analysis. Segmentations were 672 

visually inspected for anatomical errors (S.L.V.).   673 

 674 

Modulation of structural covariance of thickness by age 675 

In the eNKI sample, we also computed the modulation of structural covariance by probing the 676 

interaction of covariance by age in the following model:  677 

Ti = β0 + β1*Sex + β2* Age + β3*Tseed + β4*C + β5*(Tseed × Age) 678 

Following the parcel to parcel t-maps were used to compute large-scale gradients age-related 679 

changes in covariance. 680 

 681 
Replication: cortical thickness methodology 682 

Cortical thickness of the individuals of the HCP S1200 release were computed as part of an 683 

independent study (Kharabian, under review) and resampled to Schaefer 400 parcels. We 684 

utilized the extracted thickness values of FreeSurfer 6.0 to evaluate the stability of observed 685 

covariance organization as a function of cortical thickness estimation method. For the 686 

FreeSurfer 6.0. analysis of the T1-weighted images in the HCP dataset we used the default 687 

recon-all options (version (v) 6.0; (www.surfer.nmr.mgh.harvard.edu)). Moreover, cortical 688 

thickness estimation using CIVET were performed using version 2.1.1 689 

(http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET).  690 
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Data availability 692 

All human data analyzed in this manuscript were obtained from the open-access HCP young 693 

adult sample (HCP; http://www.humanconnectome.org/)79 and enhanced NKI-Rockland 694 

sample (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472598/) 95. Scans were acquired 695 

from the International Neuroimaging Data Sharing Initiative (INDI) online 696 

database http://fcon_1000.projects.nitrc.org/indi/enhanced/studies.html. The raw data may not 697 

be shared by third parties due to ethics requirements, but can be downloaded directly via the 698 

above weblinks. Macaque data was obtained from the recently formed NHP data sharing 699 

consortium PRIME-DE [http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html ]. Three 700 

cohorts of macaque monkeys were included in the present study (Newcastle University, 701 

Oxford University, and University of California, Davis). Genetic analyses were performed 702 

using Solar Eclipse 8.4.0 (http://www.solar-eclipse-genetics.org), and data on the KING 703 

pedigree analysis is available here: https://www.nitrc.org/projects/se_linux/ 82,96. Gradient 704 

mapping analyses was based on open-access tools (Brainmap, 705 

https://brainspace.readthedocs.io/en/latest/). Surface-wide statistical comparisons and 706 

visualizations were carried out using SurfStat https://github.com/MICA-707 

MNI/micaopen/tree/master/surfstat) in combination with colorbrewer 708 

(https://github.com/scottclowe/cbrewer2). Both structural covariance and genetic correlation 709 

gradients are available at 710 

(https://github.com/sofievalk/projects/tree/master/Structure_of_Structure). 711 

 712 

  713 
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Supplementary Results 741 

Replication of structural covariance gradients in eNKI dataset 742 

To evaluate whether the observed organizational axes of structural covariance could also be 743 

observed in different datasets with a wider age-range, we evaluated the structural covariance 744 

gradients in the eNKI dataset (792 individuals, ages 8-85yrs). Here we observed, similar to 745 

the main observations in the HCP dataset, a principal anterior posterior gradient explaining 746 

15% of variance and a secondary gradient traversing from inferior to superior regions 747 

explaining 11% of variance. Though overall patterns were highly comparable (G1: rspin=0.81, 748 

p<0.0001, G2: rspin=0.88, p<0.0001) between HCP and eNKI covariance gradients 749 

(Supplementary Figure 1). 750 

 751 

Association between ageing and structural covariance organization axes 752 

As the eNKI dataset had a broad age distribution we evaluated whether the effect of age on 753 

covariance was also organized along posterior-anterior and inferior-superior axis. For this we 754 

computed the t-maps of age-related modulation of covariance, and performed gradient 755 

analysis on the t-maps. Again, we observed a principal gradient (14% of variance) traversing 756 

from posterior to anterior regions, and a secondary gradient (12% of variance) traversing from 757 

inferior to superior regions. These gradients showed high correlation with the overall 758 

principal and secondary gradients in this dataset (G1: rspin=0.76, p<0.0001, G2: rspin=0.63, 759 

p<0.0001) (Supplementary Figure 3). 760 

 761 

The third – eight gradient of thickness covariance and genetic correlation of thickness. 762 

Additionally, we studied the third-eight gradient of thickness covariance and genetic 763 

correlation of thickness, explaining 5-10% of variance (Supplementary Figure 1 and 2). The 764 
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third gradient traversed from sensory-motor and mid temporal areas to both frontal and 765 

occipital cortices, and a comparable gradient was observed in genetic correlation of thickness. 766 

The fourth gradient had a bilateral axis in superior dorsolateral frontal cortex on the one hand 767 

and frontal polar, parietal and temporal polar regions on the other hand. The fifth gradient 768 

showed strong lateralization between left temporal parietal regions and right lingual gyrus and 769 

corresponded to the sixth gradient of genetic correlation of thickness. The sixth gradient was 770 

centered in the right supramarginal gyrus extending to sensory-motor areas on the one hand, 771 

and less so in the left sensory cortex, and on the other hand precuneus and para-limbic areas, a 772 

similar gradient was not observed in genetic correlation of thickness. The seventh gradient 773 

related to sensory-motor, fusiform gyrus and posterior-mid cingulate on the one hand, and 774 

temporal regions and precuneus on the other and was most pronounced in the right 775 

hemisphere, this gradient was similar to the fifth gradient in coheritability of thickness. The 776 

eighth gradient showed a dissociation between temporal parietal regions and posterior-mid 777 

cingulate on the one hand, and occipital and sensory regions on the other.   778 

 779 

Structural gradients are above and beyond geodesic distance. 780 

Previous work has shown a strong relationship between structural thickness covariance, 781 

genetic correlation of cortical thickness, and geodesic distance 15. Thus, we explored the 782 

relationship between organization of structural covariance and geodesic distance. Geodesic 783 

distance was defined as the average distance between each of the 400 parcels ipsilaterally 784 

(Supplementary Figure 10). In line with previous reports, we observed a strong relation 785 

between structural covariance and geodesic distance (left hemisphere: r=-0.52, p<0.00001, 786 

right hemisphere: r=0.51, p<0.00001). Moreover, we observed that genetic correlation varied 787 

as a function of the organization of distance, with regions at comparable levels of the geodesic 788 

distance gradients showing high genetic correlation among each other. Importantly, when 789 

controlling for geodesic distance we again observed an inferior-superior gradient and a 790 
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posterior-anterior gradient, suggesting the organizational patterns in covariance exist above 791 

and beyond geodesic distance. Notably, comparing the topological organization based on 792 

geodesic distance and structural covariance, we observed that especially regions in the 793 

temporal-parietal areas showed stronger covariance than expected based on distance along, 794 

whereas regions in sensory-motor areas showed less covariance than expected based on 795 

distance (Supplementary Figure 11).  796 

 797 
Relationship between large-scale organization of genetic correlation of regional thickness 798 

and microstructure profiles 799 

In a last step we evaluated the association between the two main axis of regional covariance 800 

topology and cortical microstructure (T1w/T2w), microstructural covariance gradients 6, and 801 

large-scale organization of functional connectivity 7, in order to qualify and quantify the 802 

relation of the observed covariance gradients in thickness to previously reported 803 

microstructural and functional cortical organization6,7. We probed cortical microstructure at 804 

12 equidistant surfaces sampled between the outer and inner cortical layer 6 in the same 805 

participants (HCP S900 sample). We observed a strong negative relationship between G1scov 806 

and cortical T1w/T2w at all layer depts (-0.34 < r >-0.44) (Supplementary Figure 12A; 807 

Supplementary Table 4). G2scov, however, only showed a significant positive association 808 

with the two most outer strata (layer 1: r=0.60, layer 2: r=0.40), but not with layers closer to 809 

the GM/WM surface (Supplementary Figure 12A; Supplementary Table 5). Following we 810 

probed the association between organizational gradients of within-individual microstructural 811 

profile covariance and topological organization of structural covariance of cortical thickness. 812 

To do so, we computed the mean microstructural profile covariance (MPC) maps across 813 

individuals and preformed gradient decomposition. We observed, as previously reported 6, a 814 

primary gradient of cortical microstructural profile covariance traversing a sensory-fugal 815 

pattern (22% of variance), and secondary gradient (17% of variance) traversing a pattern from 816 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.10.939561doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.939561
http://creativecommons.org/licenses/by-nd/4.0/


37 

Shaping Brain Structure 

sensory-motor to frontal cortices. We found that the first MPC gradient showed a close 817 

correlation with the inferior-superior gradient of genetic covariance of thickness (r=0.62, 818 

p<0.00001), but not with the posterior-anterior gradient of genetic covariance of thickness 819 

(r=-0.02). Conversely, the secondary gradient of MPC was associated with the posterior-820 

anterior gradient of genetic covariance of thickness (r=0.30, p<0.00001), but not with the 821 

inferior-superior gradient of genetic covariance (r=-0.09, p>0.1). 822 

 823 

Relationship between large-scale organization of genetic correlation of regional thickness 824 

and functional connectivity topology. 825 

Next, we evaluated the association between the posterior-anterior and inferior-superior 826 

covariance gradients and the previously reported large-scale organizational gradient of 827 

functional connectivity (constructed based on functional connectivity maps in a subset of the 828 

HCP S900 sample)7 (Supplementary Figure 12). We observed that the functional gradient 829 

showed a positive correlation with the rostral-caudal gradient (r=0.37 [0.23 0.49], p<0.00001) 830 

but not with the ventral-dorsal gradient alone did not relate to the large-scale functional 831 

gradient (r=0.08 [-0.04 0.23], p<0.1). At the same time, the combination of the both gradients 832 

showed a strong association with large-scale functional organization (r=0.45 [0.33 0.58], 833 

p<0.00001), above and beyond the association with rostro-caudal patterns alone (rdiff -0.08 [-834 

0.18 -0.01]). Indeed, combining the rostro-caudal and ventral dorsal gradient partially 835 

revealed an organization patterns from unimodal (visual and sensory-motor cortex) to 836 

heteromodal association areas (frontal and temporal cortex). Genetic correlation was observed 837 

to vary as a function of the combination of gradients and was strongest in regions at similar 838 

levels of the combined gradient. Last, we evaluated genetic correlation patterns as a function 839 

of the functional gradient reported by Margulies7. We observed genetic correlation also varied 840 

as a function of large-scale organization of functional connectivity, with regions at similar 841 
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gradient levels (probed in 10 equally sized bins) showing stronger genetic correlation relative 842 

to regions at different gradient levels.  843 

 844 

 845 

 846 

Functional topography along macro scale organizational patterns of thickness 847 

We conducted a meta-analysis using the Neurosynth 97 database and estimated the center of 848 

gravity across a set of diverse cognitive terms 5,13 along the posterior-anterior and inferior-849 

superior macro scale organization patterns of thickness (Supplementary Figure 13). In the 850 

posterior-anterior gradient we observed a divergence between sensory and visual functions 851 

posteriorly and ‘working-memory’, ‘reading’, as well as ‘motor’ and ‘action’ processing 852 

anteriorly. Various terms such as ‘emotion’ and ‘reward’ related to both posterior and anterior 853 

regions. The inferior-superior gradient on the other hand related to ‘motor’, ‘working 854 

memory’ and ‘action’ in superior regions, but ‘emotion’, ‘reward’, ‘affective’, ‘pain’ in 855 

inferior regions.  856 

 857 
  858 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.10.939561doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.939561
http://creativecommons.org/licenses/by-nd/4.0/


39 

Shaping Brain Structure 

Supplementary Figures 859 

 860 

SUPPLEMENTARY TABLES 861 

 862 
Functional 
networks 

Visual Sensory-
Motor 

Dorsal 
attention 

Ventral 
attention 

Limbic Fronto-
parietal 
network 

Default mode 
network 

Visual 0,09 -0,01 -0,01 -0,02 -0,01 -0,04 -0,03 

Sensory Motor -0,01 0,04 0,01 0,00 -0,03 -0,01 -0,02 

Dorsal attention -0,01 0,01 0,05 -0,01 -0,05 0,01 -0,01 

Ventral attention -0,02 0,00 -0,01 0,01 -0,01 0,00 0,00 

Limbic -0,01 -0,03 -0,05 -0,01 0,09 -0,01 0,01 

Fronto-parietal 
control network 

-0,04 -0,01 0,01 0,00 -0,01 0,03 0,01 

Default mode 
network 

-0,03 -0,02 -0,01 0,00 0,01 0,01 0,02 

Supplementary Table 1. Average structural covariance (Spearman’s rho) in each 863 

cytoarchitectural and functional network. Corresponding table to Figure 1Bi, indicating 864 
the average covariance of regions within the respective functional networks. 865 

 866 
Functional 
networks 

Visual Sensory-
Motor 

Dorsal 
attention 

Ventral 
attention 

Limbic Fronto-
parietal 
network 

Default 
mode 
network 

1 0,25 0,00 0,00 -0,06 -0,01 -0,11 -0,08 

2 0,00 0,10 0,04 0,00 -0,07 -0,04 -0,05 

3 0,00 0,04 0,20 0,02 -0,15 0,04 -0,02 

4 -0,06 -0,01 0,01 0,04 -0,03 0,01 0,01 

5 -0,01 -0,07 -0,14 -0,03 0,20 -0,03 0,02 

6 -0,11 -0,04 0,04 0,01 -0,02 0,10 0,05 

7 -0,08 -0,05 -0,02 0,01 0,02 0,06 0,05 

Supplementary Table 2. Average genetic correlation between each functional network. 867 
Table based on Figure 2Ai. 868 

 869 
Functional 
networks 

Visual Sensory-
Motor 

Dorsal 
attention 

Ventral 
attention 

Limbic Fronto-
parietal 
network 

Default 
mode 
network 

1 0,01 -0,01 0,00 -0,01 -0,01 0,00 0,00 

2 -0,01 0,01 0,00 0,00 -0,01 -0,01 -0,01 

3 0,00 0,00 0,01 -0,01 -0,02 0,00 0,00 

4 -0,01 0,00 -0,01 0,00 -0,01 0,00 0,00 

5 0,00 -0,01 -0,02 -0,01 0,05 -0,01 -0,01 

6 0,00 -0,01 0,00 0,00 -0,01 0,01 0,00 

7 0,00 -0,01 0,00 0,00 -0,01 0,00 0,00 

Supplementary Table 3. Average environmental correlation between each functional 870 
network. Table based on Figure 2Bi. 871 

 872 

T1w/T2w  Correlation with G1 T1w/T2w  Correlation with G1 
Layer 1 -0.34, p<0.000001 Layer 7 -0.42, p<0.000001 
Layer 2 -0.40, p<0.000001 Layer 8 -0.43, p<0.000001 
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Layer 3 -0.40, p<0.000001 Layer 9 -0.43, p<0.000001 
Layer 4 -0.38, p<0.000001 Layer 10 -0.44, p<0.000001 
Layer 5 -0.39, p<0.000001 Layer 11 -0.43, p<0.000001 
Layer 6 -0.40, p<0.000001 Layer 12 -0.43, p<0.000001 

Supplementary Table 4. Correlation between layer-dependent T1q and G1GC. 873 
Correlation between layer-based T1w/T2w and the primary gradient of thickness covariance.  874 

 875 
T1w/T2w  Correlation with G2 T1w/T2w  Correlation with G2 
Layer 1 0.64, p<0.000001 Layer 7 -0.05, p>ns 
Layer 2 0.40, p<0.000001 Layer 8 -0.04, p>ns 
Layer 3 0.12, p<0.02 Layer 9 -0.03, p>ns 
Layer 4 -0.01, p>ns Layer 10 -0.03, p>ns 
Layer 5 -0.05, p>ns Layer 11 -0.02, p>ns 
Layer 6 -0.05, p>ns Layer 12 0.00, p>ns 

Supplementary Table 5. Correlation between layer-dependent T1q and G2GC. 876 
Correlation between layer-based T1w/T2w and the secondary gradient of thickness 877 

covariance. 878 

 879 
  880 
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SUPPLEMENTARY FIGURES 881 

 882 

 883 
Supplementary Fig 1. Robustness of structural covariance gradients using replication 884 

sample (eNKI) and associations with age-related change in covariance. A). Replication of 885 
the first two gradients in the eNKI dataset, using the Schaefer 400 parcellation. B). Gradient 886 

decomposition of t-maps of age-related modulation of structural covariance. 887 

 888 
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 889 
Supplementary Fig 2. Robustness of structural covariance gradients as a function of 890 
cortical thickness estimation method. A). Cortical thickness estimation in HCP sample 891 

based on Freesurfer 6.0 standard pipeline. B). Cortical thickness estimation in HCP sample 892 
based on CIVIT 2.1.0. standard pipeline. 893 

 894 
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 895 
Supplementary Figure 3. Robustness of structural covariance gradients as a function of 896 
parcellation method.  A). Cortical thickness parcellated using the Desikan-Killiany atlas; B). 897 

Cortical thickness parcellated using the Glasser atlas; C). Cortical thickness parcellated using 898 
the Schaefer 800 atlas 899 

 900 

 901 
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 902 
Supplementary Figure 4. Structural covariance gradients 3-8. The third-eight gradient of 903 

structural covariance of thickness.  904 

 905 

 906 
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Supplementary Figure 5. Correlation between structural covariance of thickness and 907 
genetic and environmental components. A). Whole brain correlation between covariance 908 

and genetic correlation (black) and environmental correlation (red). B). Correlation between 909 

covariance and genetic correlation (blue outline) and environmental correlation (no outline) 910 

within each functional community25. 911 

 912 

 913 
Supplementary Figure 6. Spatial distribution of significant genetic correlations. Sum of 914 
significant genetic correlation per parcel (FDRq<0.05); i). genetic correlation summary per 915 

functional community (averaged by the total number of parcels in each functional network) 916 

(positive: red; negative: blue); ii). genetic correlation summary per functional community 917 

(averaged by the total number of parcels in each functional network) (positive: red; negative: 918 

blue) 919 

 920 

 921 
Supplementary Figure 7. Genetic correlation between gradient bins. The average genetic 922 

correlation between binned (10 equally sized bins) principal and secondary gradients of 923 

genetic correlation (Figure 2).  924 

 925 

 926 
Supplementary Figure 8. Large-scale organizational gradients of environmental 927 
correlations of thickness. Performing the same analysis as in Figure 2C on the 928 

environmental correlation of thickness.  929 

 930 
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 931 
Supplementary Figure 9. Genetic correlation gradients 3-8. The third-eight gradient of 932 

genetic correlation of thickness.  933 

 934 

 935 
Supplementary Fig 10. Association between large-scale organization of structural 936 

covariance and geodesic distance i). Geodesic distance matrix of ipsilateral 400 Schaefer 937 

parcels; ii). Correlation between geodesic distance and structural covariance between parcels; 938 
iii). Principal and secondary gradient of geodesic distance; iv. Genetic correlation as a 939 

function of the binned geodesic distance gradients; v. Covariance gradients while controlling 940 
for geodesic distance. 941 

 942 
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 943 
Supplementary Fig 11. Parcel-wise difference between large-scale organization of 944 

structural covariance and geodesic distance. Parcel-wise difference between the structural 945 
covariance gradients (GSCOV) and the distance-based gradients (GDIST). Blue indicates higher 946 

gradient ranking in GDIST, red indicates higher gradient ranking in GSCOV. 947 

 948 
 949 

 950 
Supplementary Fig 12. Link between organization of macro scale organization of 951 
thickness, microstructure, and function. A). Relationship between large-scale organization 952 

of genetic correlation of thickness and cortical T1w/T2w; i. T1w/T2w values of equidistant 953 

layers between the pial and GM/WM surface and the correlation with the principal and 954 
secondary gradient (G1SCOV and G2SCOV) of macro scale organization of thickness. For 955 

visualization purposes only the first (blue), fourth(orange), seventh (yellow), tenth (purple) of 956 

12 probed layers are reported; ii. Principal and secondary gradient of microstructure profile 957 

covariance (MPC) and the relationship between MPC gradients and G1SCOV and G2SCOV. B). 958 

Relationship between large-scale organization of thickness covariance and functional 959 

organization; i. the correlation between G1 SCOV, G2 SCOV, G1G2SCOV and G1FC; ii. Combined 960 

G1 SCOV and G2 SCOV gradient, the genetic correlation between binned G1G2 SCOV gradient, and 961 

the correlation between G1 SCOV, G2 SCOV, G1G2 SCOV and G1FC; ii. Principal gradient of large-962 

scale functional organization and genetic correlation of thickness between G1FC gradient bins.  963 

 964 
 965 
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 966 

Supplementary Fig 13. Meta-analysis maps for diverse cognitive terms were obtained from 967 

Neurosynth similar to Margulies et al.13. We calculated parcel-wise z-statistics, capturing 968 

node-term associations, and calculated the center of gravity of each term along the poster-969 

anterior and inferior-superior gradients. The plots depict the average z-score within binned 970 

(20-bins) gradient layer of meta-analysis maps.  971 

 972 

 973 
 974 

 975 
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