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Proteins have generally been recognized to constitute the
key cellular component in shaping microbial phenotypes.
Due to limited cellular resources and space, optimal alloca-
tion of proteins is crucial formicrobes to facilitatemaximum
proliferation rates while allowing a flexible response to envi-
ronmental changes. Regulatory patterns of protein alloca-
tion were utilized to account for the condition-dependent
proteome in a genome-scale metabolic reconstruction of
Escherichia coli by linearly linking mass concentrations of
protein sectors and single metabolic enzymes to flux vari-
ables. The resulting protein allocation model (PAM) cor-
rectly approximates wildtype phenotypes and flux distribu-
tions for various substrates, even under data scarcity. More-
over, we showed the ability of the PAM to predict metabolic
responses of single gene deletion mutants by additionally
assuming growth-limiting, transcriptional restrictions. Thus,
we promote the integration of protein allocation constraints
into classical constraint-based models to foster their pre-
dictive capabilities and application for strain analysis and
metabolic engineering purposes.
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2 ALTER ET AL.

1 | INTRODUCTION
For many decades, metabolic models have been developed to describe, unravel, and understand the drivers of microbial
phenotypic behavior. In their simplest forms, thesemodels quantitatively connect extracellularly observable phenomena
leading to seminal empirical growth laws such as the hyperbolic relation betweenmicrobial growth and the substrate
concentration, which is captured by theMonod equation (Monod, 1949). In general, coarse-grainedmodels aided in
explaining the dependencies between intracellular processes and corresponding phenotypes (Klumpp et al., 2009; Scott
et al., 2010; You et al., 2013; Scott et al., 2014;Weiße et al., 2015; Erickson et al., 2017). Constraint-basedmodeling
techniques, namely flux balance analysis (Savinell and Palsson, 1992), facilitate the prediction of growth rates and
by-product secretion, as well as the investigation of metabolic flux distributions solely based on the stoichiometry of
biochemical reaction networks and an appropriate cellular objective function (Varma et al., 1993; Varma and Palsson,
1994; Edwards and Palsson, 2000; Schuetz et al., 2007). The accompanied development of genome-scale constraint-
basedmodels (GEM) fostered the investigation of fundamental biological phenomena (Varma et al., 1993; Pramanik
and Keasling, 1998;Mahadevan et al., 2002), the systematic analysis of complex omics data sets (Palsson, 2002; Blank
et al., 2005; Becker and Palsson, 2008; Lewis et al., 2010) or the suggestion of favorable genetic perturbations for the
overproduction of desired chemicals (Burgard andMaranas, 2003; Rocha et al., 2010; Cardoso et al., 2018; Alter et al.,
2018; Alter and Ebert, 2019).

While the utilization of GEMs faciliated valuable contributions to hypothesis generation, explanation of physio-
logical phenomena or optimal metabolic designs, the GEM’s predictive capabilities of microbial phenotypes strongly
rely on ad hoc capacity bounds on key reactions (Palsson, 2002; Covert et al., 2003), without which basic phenomena,
such as overflowmetabolism under rich conditions are not observable in silico. The consideration of additional cellular
processes and properties inmetabolic reconstructions resolved these predictive insufficiencies of GEMs. In this manner,
macromolecular expression (ME)models couplemetabolism to gene expression by linking enzyme concentrations to
metabolic reactions as well as accounting for the transcriptional and translational processes leading to the expression
of enzymes (Lerman et al., 2012). For various steady-state environments, MEmodels simultaneously simulatemaximum
growth and substrate uptake rates, the underlying responses on the mRNA level as well as the corresponding gene
expression profiles (O’Brien et al., 2013). Thus,MEmodels facilitate holistic insights into intracellular processes and
how they are affected by environmental, biochemical, or genetic perturbations (Yang et al., 2016, 2019; Chen and
Nielsen, 2019), while reliably informing about corresponding flux distributions. However advantageousMEmodels are
for making correct predictions on a flux or phenotypic level, the detail and complexity of the represented networkmay
be cumbersome regarding future applications in strain design approaches.

Another approach focuses on introducing enzyme limitations on fluxes by basic thermodynamic constraints. For
Saccharomyces cerevisiae and Escherichia coli, the fusion of a thermodynamic andmetabolic networkmodel including
an upper bound on total cellular Gibbs energy dissipation proved to explainmetabolic realizations at various growth
states, includingmaximum growth (Niebel et al., 2019). At themaximum rate of total Gibbs energy dissipation, the cell
reorganizes its flux distribution, hence activates fermentation pathways to facilitate optimal growthwith increasing
substrate uptake rates at the expense of biomass yield. Classically, this observed trade-off between biomass yield and
growth rate is explained on a structural rather than a thermodynamic level. For example, by assuming an upper limit for
the intracellular concentration of enzymes, the limiting effect of cytoplasmic molecular crowding explained observed
maximum growth rates and substrate uptake hierarchies (Beg et al., 2007; Vazquez et al., 2008). A similar principle
emerged from the investigation of how the finite protein capacity of cellular membranes affects metabolism (Szenk
et al., 2017). Here, a coarse-grainedmodel derived from the physical description of protein repulsion onmembranes
correctly predicted the onset of overflowmetabolism at the crowding limit of respiratory transmembrane proteins. In
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contrast, fine-grainedmodels of unicellular organisms, such as resource allocation (Goelzer and Fromion, 2011) and
whole-cell (Karr et al., 2012) models as well as self-replicating systems (Molenaar et al., 2009), uncover the traits and
limits ofmetabolism by describing the complexmanagement of resources among cellular subsystems. Despite disclosing
the cellular economic principles that govern observed growth behavior, diverse applicability of fine-grained biological
models, for example in biological engineering or data analysis disciplines, is hampered by the need for a tremendous
number of mostly unknown parameters.

Cellular protein allocation and its regulation have previously been suggested as the main drivers of metabolic
phenomena and a key process behind bacterial growth laws (Scott et al., 2010, 2014;Weiße et al., 2015; Mori et al.,
2016; Noor et al., 2016; Erickson et al., 2017; Mori et al., 2019). The incorporation of protein constraints in GEMs
exploits the principles of protein allocation as a fundamental growth law and simultaneously allows for the use of
established, tractable, and intuitive constraint-basedmodelingmethods. In this regard, by dividing the limited proteome
into three growth-variant sectors representing (1) ribosomal proteins, (2) biosynthetic enzymes, (3) catabolically active
enzymes, and one invariant housekeeping protein sector, the constrained allocation flux balance analysis (CAFBA)
framework computes the optimal partitioning between these proteome sectors and the correspondingly weighted
flux rates to reach maximum growth (Mori et al., 2016, 2019). Thus, CAFBA accounts for the trade-off between a
limited protein availability for biosynthesis and growth, and enables a quantitative prediction of pathway usages under
various conditions, particularly of sub-optimal growth yields as a consequence of overflowmetabolism. To facilitate the
utilization and analysis of proteomics data, enzyme kinetics were integrated into a GEMof S. cerevisiae and E. coli in the
form of explicit enzymatic constraints on flux rates (Sánchez et al., 2017). The respective GECKO framework (GEM
with enzymatic constraints using kinetic and omics data) gives detailed insights intometabolic realizations based on
proteomemeasurements and predicts growth phenomena evenwithout augmented (proteomic) data.

Here, we introduce an approach that consolidates protein allocation and enzymatic constraints onmetabolic fluxes
of an E. coliGEM. The resultingmodel, to whichwewill refer as the protein allocationmodel (PAM), accounts for the
condition-dependent proteome (Schmidt et al., 2016), where enzyme kinetics are explicitly parametrized in the GECKO
fashion (Sánchez et al., 2017). Proteome sectors that are not associated withmetabolic reactions in the basic GEM are
modeled by simple linear relations deduced from comprehensivemeasurements of the E. coli proteome (Schmidt et al.,
2016). Assuming a constant protein concentration bymass, the PAMpredicts experimentally observed phenotypes
and intracellular flux distributions at maximum growth as well as carbon-limited conditions on variousmedia. Beside
the wildtype behavior, the predictive capability of the PAM is also demonstrated for strains harboring gene deletions
or expressing heterologous proteins, without the need for laborious parameter sampling or explicitly constraining
model variables. Instead, the observed phenomena are traced back to restrictions in the expression of metabolically
active enzymes, presumably due to strictly determined responses of the transcriptional regulatory network. In line with
previous studies, we emphasize the fundamental role of protein allocation in steeringmicrobial metabolism. Moreover,
the PAM framework appears to be a promising tool for the rational design of microbial production strains and, due to its
constraint-based nature, enables rapid dry-lab screening of design and cultivation strategies with improved reliability.

2 | RESULTS
2.1 | Accounting for the total proteome in genome-scalemetabolic models
A key challenge for microbes is the distribution of limited proteins on their intracellular processes to facilitatemaximum
growth under a given environmental condition. While the ribosomal content for the production of proteins is regulated
to efficiency under mildly nutrient-limited to unlimited conditions (Scott et al., 2014; Bosdriesz et al., 2015;Mori et al.,
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2017), the protein household for energy and biomass precursor production generally contains unused or underused
enzymes (O’Brien et al., 2016) to allow for a flexible response to changes in the environmental conditions. The three
major protein sectors cover the total condition-dependent proteome and represent (1) ribosomal or translational
protein, (2) metabolically active enzymes, and (3) unused as well as underused enzymes (Scott et al., 2010). We will
refer to the latter as the excess enzyme sector for ease of simplicity.

To quantitatively account for the total condition-dependent proteome, we modeled and added each relevant
protein sector independently to the E. coliK-12MG1655GEM iML1515 (Monk et al., 2017) (Fig 1, cf. Methods section
for a detailed description). Based on in-depth proteomics measurements of various E. coli strains grown under different
conditions (Schmidt et al., 2016), the sum of themodeled protein mass concentrationφP,c reflected in the data set was
found to be constant among the tested strains and conditions (Fig 2A). By integrating equation (1) into the stoichiometric
matrix, we accounted for this central microbial proteome feature in the PAM and fixedφP,c to 0.26 g g−1cdw, representing
81% of the proteinmass covered by the proteomics data set and 47% of the approximated total cellular proteinmass
(Milo, 2013).

φP,c = φR + φAE + φEE (1)

Here,φR,φAE, andφEE are the proteinmass concentrations for the ribosomal, themetabolically active enzyme, and
the excess enzyme sectors, respectively.

kcat wR
wEE
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F IGURE 1 Scheme of the protein allocationmodel, including the classical metabolic as well as the added proteome
level.wR,wEE, and kcat represent the linear correlation factors betweenmodel variables and the translational, excess
enzymes, and active enzymes sector, respectively. The dotted lines mark themodel-inherent, linear relations between
protein sectors andmetabolic rates. A simplifiedmechanism of the regulation of microbial proteome, which is not part
of themodel, is additionally shown andwas adapted from You et al. (2013). It depicts the activation of the expression of
catabolically active enzymes by the CRP-cAMP complex, which synthesis is hampered by elevated amino acid precursor
levels. Additionally, the activating effects of these precursors and amino acid concentrations on amino acid synthesis as
well as protein synthesis, respectively, are sketched.
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F IGURE 2 Experimentally determined protein masses of distinct proteome sectors (A-C) under several conditions.
(A) Combination of the protein sectors shown in panel (B) and (C). The straight black linemarks the 81% ofmeasured
protein mass used to constrain protein availability in the PAM. (B) Translational or ribosomal sector including proteins
assigned to the COG (Clusters of Orthologous Groups) class “translation, ribosomal structure and biogenesis” which are
not covered by iML1515. (C) All iML1515 proteins found in the proteomics dataset. Black lines in (B) and (C) are linear
fits of the data points resulting in the shown equations and coefficients of determination R 2. Glucose chemostat and
batch experiments are highlighted in blue and red, respectively. Data was taken from Schmidt et al. (2016).

2.1.1 | The ribosomal sector
In agreement with previous studies, a linear correlation between the ribosomal sectorφR and the growth rate (Scott
et al., 2014; Schmidt et al., 2016) was implemented and described as

φR = φR,0 +wR µ (2)

where the slope wR compares with the inverse of the maximum ribosomal elongation rate and the intercept φR,0

indicates an increasing overcapacity of ribosomeswith a decreasing growth rate µ (Mori et al., 2017;Metzl-Raz et al.,
2017). Both parameterswR andφR,0 were determined for E. coli by fitting equation (2) to measured, cross-conditional
concentration data of the ribosomal proteome sector (Fig 2B). Consequently, wR and φR,0 were set to values of
50.0mgg−1cdw (9%of the total protein mass) and 36.8mghg−1cdw, respectively.

2.1.2 | The excess enzyme sector
A major evolutionary characteristic of microbes facing unforeseeable changes in environmental conditions is the
synthesis of excess proteins. This protein hedging empowers the cell to quickly ramp up central carbonmetabolism
fluxes upon a sudden increase in substrate availability or to immediately catabolize a new carbon source. However,
such a stockpiling of proteins significantly reduces the growth rate (O’Brien et al., 2016). Protein expression and (over-
)allocation is generally coordinated by the cyclic AMP (cAMP) dependent signaling pathway via the cAMP-activated
global transcriptional receptor protein (CRP) (Kolb, 1993; You et al., 2013) (Fig 1). The CRP-cAMP complex enhances
the transcription of over 100 genes by attaching near or at their promoter regions therebymediating the binding of
RNA polymerase for transcription initiation (Busby and Ebright, 1999). The target genes aremainly associatedwith
catabolism, thus, CRP-cAMP aids in stimulating the carbon influx leading to the accumulation of precursors for amino
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6 ALTER ET AL.

acids, and therefore for protein synthesis. These precursors, such as oxaloacetate or α-ketoacids, inhibit the cAMP
synthesis, thus lower the CRP-cAMP level which in turn closes the negative feedback loop between protein precursors
and substrate uptake (we refer to You et al. (2013) for respective insights into the cAMP signaling pathway). In this
way, CRP-cAMP indirectly coordinates the global protein allocation, including the allocation of excess enzymes, even
though transcription of only a small fraction of genes is directly affected. Hence, by regarding the cAMP-controlled
signaling pathway as a blueprint for protein synthesis regulation, wemodeled the excess enzyme sector as a negative
linear function of the substrate uptake flux, which wemathematically expressed as

φEE = φEE,0 −wEE νs (3)

where φEE,0 is the excess enzyme concentration at zero substrate uptake and νs the substrate uptake rate. wEE

relates the decrease of the excess enzymes concentration to an increase in νs. φEE,0 was determined from a linear fit
of proteomics data of all iML1515 proteins, resulting in a value of 0.17 g g−1cdw equivalent to 31% of the total protein
mass (Fig 2C). The slopewEE is individually assigned for each substrate under the assumption that the excess enzyme
concentration is zero at themaximum substrate uptake rate. Thus,wEE is calculated from

wEE =
φEE,0

νs,max
(4)

Themaximum substrate uptake rate νs,max needs to be provided as an observable but can be directly inferred from the
PAMby assuming an upper limit in the transcriptional capacity, as will be shown.

2.1.3 | The active enzyme sector
To account for the enzyme cost of metabolic fluxes, we integrated enzyme mass balances for all relevant metabolic
reactions in the stoichiometric matrix of iML1515 according to the GECKO framework (Sánchez et al., 2017). The
employed enzymemass balance formulation (equation (5)) relates the flux νe to theminimally required concentration
ρe of the enzyme catalyzing reaction e by the enzyme’s maximum turnover number kcat,e. Since the PAM accounts for
the total proteome bymass, we transformedmolar tomass concentrations using themolar massMe of each individual
model enzyme (cf. theMethods section for a detailed description).

ρe = kcat,e M e νe (5)

Eventually, the sum of the concentration of all E enzymes constitutes themetabolically active enzyme sectorφAE and
is expressed as

φAE =
E∑
e
ρe (6)

Parametrization of the active enzyme sector is of particular importance to facilitate a meaningful relation between
fluxes and enzyme concentrations. For the PAM we determined kcat values for 2843 protein-related reactions of
iML1515 from queries of the databases BRENDA (Jeske et al., 2019), SABIO-RK (Wittig et al., 2012), and UniProt
(Bateman, 2019) following the protocol of Sánchez et al. (2017). The kcat dataset wasmanually curated to allow for
the simulation of reasonable phenotypes (cf. additional files for the final dataset), thus transforming the primary in
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F IGURE 3 Relative fraction (A) and cumulative distribution (B) of kcat (in vitro curated) and kapp,max (machine
learning (ML) model) values. kcat values are curated data extracted from the BRENDA, SABIO-RK, and UniProt
databases, whereas kapp,max values were taken fromHeckmann et al. (2018).

vitro kcat estimates to effective (or apparent) in vivo turnover numbers kapp (Valgepea et al., 2013; Davidi et al., 2016).
Recently, measurements of kapp,max, the maximum kapp values across conditions, were extrapolated to genome-scale
usingmachine learningmodels informedwith biochemical and enzymatic data (Heckmann et al., 2018). Interestingly,
although the distribution of kapp,max values is significantly different from our curated set (Fig 3), simulations using the
PAMparametrized with either of both kapp,max sets yielded comparable phenotypes (data not shown). Thus, it appears
that the ratio of kcat values between different reactions or pathways is an important factor for the predictive capability
of PAMs in general.

2.2 | Protein allocationmodel predicts wildtype phenotypes and flux distributions
2.2.1 | Prediction of E. coli phenotypes
To benchmark the predictive capabilities of the PAM, wildtype phenotypic behavior on a glucose minimal medium
was simulated and compared to extensive literature data (Perrenoud and Sauer, 2005; Nanchen et al., 2006; Vemuri
et al., 2006; Valgepea et al., 2010; Folsom et al., 2014;McCloskey et al., 2014; Peebo et al., 2015; Folsom and Carlson,
2015). Themaximum glucose uptake rate, a parameter for the excess enzyme sector, was set to 8.9mmol g−1cdw h−1 which
supported amaximally observed growth rate of 0.65h−1 (Perrenoud and Sauer, 2005). The simulated phenotypes are
in good agreement with experimentally observed data for a range of carbon limited conditions and depict significant
improvements compared to the purely stoichiometric model iML1515 (Fig 4). Particularly the acetate secretion
trend correctly mirrors the metabolic overflow characteristics of E. coli starting from glucose uptake rates above
4.3mmol g−1cdw h−1 (Fig 4B). Despite reasonable projections of growth, acetate secretion, and oxygen uptake, the PAM as
well as the iML1515model overestimate carbon dioxide secretion rates, pointing to potential inconsistencies in the
carbon content of themodel-inherent biomass equation.

The phenotypes simulated by the PAMare alsomirrored in the fluxes through central metabolic pathways as shown
in Fig 5. The distribution of carbon flux among the pathways qualitatively follows previous findings (Nanchen et al.,
2006). Under carbon limited and fully respiratory conditions, flux rates through Embden-Meyerhof-Parnas (EMP)
pathway, tricarboxylic acid (TCA) cycle, pentose phosphate (PP) pathway, and the glyoxylate shunt (GLYXS) scale linearly
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F IGURE 4 Phenotypic predictions of growth (A), acetate secretion (B), oxygen uptake (C), and carbon dioxide
production (D) rates for E. coli for a range of physiologically relevant glucose uptake rates using the PAM (black lines) in
comparison to data from the literature (red dots). Simulation results using the original stoichiometric iML1515model
are additionally shown (dashed lines). The red shaded areamarks the occurrence of fermentation resulting in the
secretion of acetate.

with the glucose uptake rate. In the vicinity of the turning point from a fully respiratory to partially fermentative
metabolism, the activity of the GLYXS diminishes completely. As soon as limitations in the global protein household
impede exclusive ATP production via respiration, the carbon flux is partly diverted from theNADH-yielding, and thus
respiration-fueling TCA cycle towards acetate. Simultaneously, the split between the EMP and PP pathway starts to
increase with elevated glucose uptake rates in favor of glycolysis. Beyond the assumed maximum glucose uptake
rate, the PAMs stoichiometric and protein allocation constraints still support feasible growth states. However, the
increase in growth rate is bought at the expense of biomass yield, which becomes evident by a drastic decrease of
the flux through the EMP pathway and the TCA cycle, as well as a progressively increasing acetate secretion rate.
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becomes zero. The red shaded areamarks the occurrence of fermentation resulting in the secretion of acetate.

This does not necessarily indicate an underestimatedmaximum glucose uptake rate since PAMparametrization stays
feasible even for maximum glucose uptake rates far beyond physiologically relevant values (data not shown). In fact,
this suggests that the metabolically limiting factor for E. coli is neither stoichiometry nor protein allocation. As we
will show, maximal division ratesmay rather be attributed to a limitedmaximum number of proteins, thus pointing to
transcriptional restrictions as the determining growth limiting factor.

2.2.2 | Computingmaximum substrate uptake rates
Since glucose is the preferred carbon source of E. coli, its metabolism and regulation is adapted to effectively utilize
glucose, which led us to assume that there are no excess enzymes under glucose-excess conditions. However, such a
state of adaption does not hold for alternative carbon sources and thus, experimentally observed substrate uptake
rates may not reflect growth states with (near-)zero excess enzymes. To enable the PAM to simulate growth on any
alternative carbon source without the need for extensive cultivation data, we approximatedmaximum substrate uptake
rates assuming a limited, total protein synthesis rate NP. NP represents the sum ofmolar synthesis rates of proteins
from the active enzyme sector and the ribosomal sector and is calculated as

NP = µ

(
φR

MR
+

E∑
e

kcat,e νe

)
(7)

Here,MR is the sum of molar masses of all 21 ribosomal subunits, which adds up to 3.5 × 105 gmol−1. Based on the
PAM and phenotypic data of E. coli grown on several non-glucose substrates (Gerosa et al., 2015), we found that a NP of
2.04µmol g−1cdw h−1 defines maximum substrate uptake rates (Table 1, cf. Methods section for a detailed description).
Interestingly, the growth-optimal acetate uptake rate approaches a global maximum at 18.44mmol g−1cdw h−1 without
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TABLE 1 In silico determinedmaximum substrate uptake rates according to amaximally allowable total protein
synthesis rate NP of 2.04µmol g−1cdw h−1. Since fully anaerobic conditions are infeasible for the PAM and also iML1515,minimal oxygen uptake rates of 1.5mmol g−1cdw h−1 and 3.5mmol g−1cdw h−1 were used to simulatemicro-aerobic growthon glucose and xylose, respectively.

Substrate Maximumuptake rate Substrate Maximumuptake rate
[mmol g−1cdw h−1] [mmol g−1cdw h−1]

Glucose (aerobic) 9.8 Fructose 9.6
Glucose (micro-aerobic) 20.3 Fumarate 26.5
Galactose 9.4 Acetate 18.4
Glycerol 14.9 Gluconate 9.5
Pyruvate 53.0 Succinate 24.0
Xylose (aerobic) 14.2 Mannose 6.4
Xylose (micro-aerobic) 26.6 Glucosamine 9.5

reaching the upper bound for NP . Thus, other factors such as ATP generationmust ultimately limit maximum growth on
substrates, which, as in the case of acetate, prohibit the use of energy-yielding metabolic modes other than respiration.
By parametrizing the excess enzyme sector (equation (3)) with the substrate-specific maximum substrate uptake rates,
PAM simulations of phenotypes of E. coli grown on the individual alternative carbon sources showed a good correlation
with experimentally observed data (Fig 6). The phenotypes predicted for the determinedmaximum substrate uptake
rates generally overestimate the observed growth and acetate secretion rates (Appendix Fig S1), indicating an unused
potential to adapt E. coli to these alternative carbon sources. Exemplarily, Fong et al. (2005) exploited the apparent
potential for growth on glycerol by evolving the glycerol uptake rate to around 15mmol g−1cdw h−1, which is close to the
PAM’s predictions.

2.2.3 | Prediction of E. coli flux distributions
By exploiting the optimality principles of microbial growth, GEMs give quantitative insights into the intracellular flux
distribution and pathway usage based purely on stoichiometric constraints. For a particular environmental condition
of interest, the prediction accuracy of the stoichiometric GEM generally scales with the amount and accuracy of
experimental data introduced to the model in the form of flux constraints. With a minimum need for such data, the
PAM allows for an accurate blueprint of the intracellular metabolic processes. A comparison with fluxomics data from
multiple studies shows that flux distributions of the central carbonmetabolism of E. coli grown on aminimal glucose
medium are well predicted by the PAM, which is indicated by Pearson correlation coefficients up to 0.97 (Fig 7). Here,
the PAMwas constrainedwith themeasured glucose uptake rates, and the excess enzyme sector was parameterized
according to the methodically determined maximum glucose uptake rate, which, in turn, was a direct model output
(cf. Section 2.2.2). Thus, protein allocation and enzymatic constraints alone enhance constraint-based modeling as
a metabolic prediction tool, particularly under data scarcity. Yet, rather high discrepancies between simulated and
experimental flux data fromNanchen et al. (2006) and Haverkorn van Rijsewijk et al. (2011) (Fig 7B and C) were found
for the pyruvate kinase. These incongruities result from the neglect of the dephosphorylation of phosphoenolpyruvate
(PEP) for the glucose uptake by the phosphotransferase system (PTS) by Nanchen et al. (2006), thus necessitating
elevated pyruvate kinase fluxes to balance PEP.
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F IGURE 6 Comparison between experimentally determined (Gerosa et al., 2015) and predicted growth and acetate
secretion rates using several substrates as sole carbon sources. Substrate uptake rates were constrained according to
the reported values. Maximum substrate uptake rates were approximated according to amaximum total protein
synthesis rate NP (Table 1). The goodness of the correlation between simulations and experiments was determined
using the Pearson correlation coefficient r and the corresponding P value.

Using themethodically determinedmaximum substrate uptake rates and constraining the PAMwithmeasured
uptake rates, flux distributions were approximated for non-glucose carbon sources (Fig 8). Here, the prediction capabili-
ties weremore diverse resulting in high correlations for acetate, galactose and succinate (r > 0.92) but intermediate to
weak predictions, e.g., for fructose or gluconate (r < 0.65). In the case of gluconate consumption, the ED pathwaywas
experimentally observed to be themain catabolic route, whereas the simulated carbon fluxwas exclusively channeled
towards pyruvate through the pentose phosphate (PP) pathway. The flux split between the PP and ED pathway proves
to be highly sensitive to the ratio in the protein demands of both pathways. Substrate-dependent differences in the
biomass compositions as well as inconsistencies in the applied kcat values, particularly of backward reactions, may
cause the observed discrepancies between experimentally determined and simulated pathway usages.

2.3 | PAMexplains the growth defect upon heterologous protein expression
Enzyme overexpression or the expression of heterologous, non-native genes and their products is a common strategy
in many biotechnological disciplines. General purposes are the introduction of novel cellular functionalities, flux
enforcement through a specific pathway, or the investigation of cellular processes via reporter proteins. In any case, the
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F IGURE 7 PAMpredictions of intracellular fluxes of the central carbonmetabolism of E. coli grown on a glucose
minimal medium. The glucose uptake rate was constrainedwith experimentall determined values. The excess enzyme
sector was parameterized according to the computationally determinedmaximum value of 9.82mmol g−1cdw h−1. Thepredictions are comparedwith experimental flux data fromGerosa et al. (2015) (A), Haverkorn van Rijsewijk et al.
(2011) (B), and Nanchen et al. (2006) (C). The goodness of the correlations was computed based on the Pearson
correlation coefficient r and the corresponding P value.

introduced pull of proteins from the limited native protein household and the resultingmetabolic burden inevitably
causes a defect in growth.

To investigate and evaluate the response of the PAM to such an induced protein demandwe simulated growth for a
range of expression levels of an enhanced green fluorescent protein (eGFP) and compared relative growth rates with
experimental data from Bienick et al. (2014). For the standard amount of total condition-dependent proteinφP,c of
0.26 g g−1cdw the simulated relative growth defect is significantly higher compared to experimentally observed growth for
intracellular eGFP concentrations beyond 0.03 g g−1cdw (Fig 9A). However, Bienick et al. (2014) employed an E. coli TUNER
strain, a derivative of the genome-reduced BL21 strain optimized for protein expression. Thus, the protein demand for
the growth rate-independent housekeeping sector is reduced andmade available tometabolic, condition-dependent
proteome sectors, which can be reflected in the PAMby an increase ofφP,c. As a result, by expandingφP,c about 20%,
the surplus in protein availability attenuates the detrimental effects of eGFP expression on growth and results in an
excellent reproduction of experimentally observed phenotypes (Fig 9A) (cf. Methods for the determination of the
optimalφP,c).

Interestingly, the relation between eGFP expression strength and growth predicted by the PAM is non-linear, which
is in contrast to a previous theoretical postulation (Bienick et al., 2014). The non-linearity arises from a combined effect
of a protein drain from the ribosomal and the active metabolic enzyme sectors. An enforced protein waste causes a
decline in the ribosome concentration resulting in a reduced translation rate. At the same time, protein allocation to the
metabolic sectors producing biomass precursors, amino acids, and energy is limited, which, in a manner of a vicious
cycle, further decelerates protein production and growth. This intracellular tug-of-war for proteins is intrinsically
manifested in the PAM leading to an outperformance in the prediction of protein overexpression phenotypes over too
simplified coarse-grainedmodels. Moreover, the PAMdiscloses relevant effects of a protein drain on the pathway flux
level (Fig 9B). For an increasing eGFP expression strength and an accompanied protein deficiency, central carbon fluxes
are progressively diverted to fermentation pathways (acetate secretion) and eventually to the ED pathway. Both routes
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F IGURE 8 PAMpredictions of intracellular fluxes of the central carbonmetabolism of E. coli grown on several
alternative carbon sources. The substrate uptake rates and the excess enzyme sector were constrainedwith the
determinedmaximum values. The predictions are compared with experimental flux data fromGerosa et al. (2015). The
goodness of the correlations was computed based on the Pearson correlation coefficient r and the corresponding P
value.

aremore protein efficient inmetabolizing carbon substrates but ultimately yield fewer energy equivalents per substrate
molecule as compared to respiration or the EMP pathway, respectively (Flamholz et al., 2013;Mori et al., 2019; Ng et al.,
2019).

2.4 | Limitations in the protein allocation of single enzymes lead to gene deletionmutant
phenotypes

Alongside the over- and heterologous expression of genes, rearrangement of metabolic networks and flux distributions
by gene deletions is a core instrument in metabolic engineering. In recent years, the engineering of microbial cell
factories has increasingly been supported by computational strain designmethods which, besides elementary-mode
analysis frameworks, utilize constraint-basedmodels for describing the (mutant) metabolism. However, in contrast to
the vast number of model-driven strain design and optimizationmethodsMaia et al. (2016), constraint-basedmethods
have often proven unreliable in predicting phenotypes of gene-deletionmutant strains (GMS).While GMSs have been
shown to evolve towards FBA-predicted phenotypes Fong andPalsson (2004), observed growthdefects and intracellular
fluxes of non-evolved GMS can not be explained by stoichiometry and a cellular growth objective alone Kim and Reed
(2012); Long et al. (2016); Long and Antoniewicz (2019a).

Firstly, we tested the impact of ten single-gene deletions on the PAM’s FBA results by parametrizing the excess
enzyme sector with themethodically determinedmaximum glucose uptake rate of 9.82mmol g−1cdw h−1. The calculated
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phenotypes did not significantly differ from the unperturbedwildtype solutions and hence, did not compare to experi-
mental data from Fong et al. (2006) and Long et al. (2016) (Appendix Fig S2). Only by constraining the glucose uptake
rate to the measured values, the simulated growth and acetate secretion rates correlate well with the experiments
(Fig 10). Furthermore, a blind test, more precisely FBA simulations with augmented in vivo glucose uptake rates of
the GMS but with an intact target gene, yielded the same phenotypes (Appendix Fig S3). These results led us to the
conclusion that themain driver for the observed growth defects of GMSs is a naturally orchestrated catabolite uptake
repression induced by the respective network perturbations. In detail, a disruption showing a phenotype implicates a
decrease in the levels of one or more amino acid precursors, since evidently tight proteome coordination (You et al.,
2013) hampers the enzyme allocation towards alternative precursor synthesis routes. According to the coarse-grained
model of You et al. (2013) considering the general mechanism of ribosomal RNA transcription (Paul et al., 2004), low
amino acid levels stall ribosomal protein synthesis via ppGpp. Moreover, low precursor levels, such as oxaloacetate
or α-ketoglutarate, lead to an increased cAMP synthesis and elevated CRP-cAMP levels, which foster the expression
of catabolic enzymes for alternative substrates and further reduce growth. Elevated cAMP concentrations, which
were experimentally observed in multiple GMSs (McCloskey et al., 2018b), indicate increased CRP-cAMP activities and
support this view on a gene deletion triggering the integral feedback of metabolic control.

The assumption that a regulatory substrate uptake inhibition shapes GMS’ phenotypes, raised the question if
substrate uptakemodes can be quantitatively predicted by the PAM. To tackle this question, we recalled the success of
computational frameworks such asMinimizationOfMetabolic Adjustment (MOMA) Segrè et al. (2002), Regulatory
On/OffMinimization (ROOM) Shlomi et al. (2005) or RELAtive CHange (RELATCH) Kim and Reed (2012) in determining
the metabolic impact of gene knockout strains. The common principle behind all three methods is the minimization
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F IGURE 9 (A) Simulated growth rates relative to themaximum growth rate are shown for a range of intracellular
eGFP concentrations using the PAMwith a standard (red line) and increased (blue line) total condition dependent
protein concentrationφP,c (0.26 g g−1cdw and 0.31 g g−1cdw, respectively). The shown experimental data is taken fromBienick et al. (2014). The given P values derived from a Student’s t-test, indicate howwell the experimental data is
explained by themodel predictions. The dashed lines illustrate the predicted range of values based on theoretical
considerations by Bienick et al. (2014). (B) Simulated fluxes through central metabolic pathways are shown for a
concentration range of intracellularly expressed eGFP applying aφP,c of 0.31 g g−1cdw.
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F IGURE 10 Comparison of predicted growth and acetate secretion rates of GMSwith experimentally determined
values taken from Long et al. (2016) and Fong et al. (2006). Predictions weremade applying the PAM and constraining
the glucose uptake rates to observed values.

of themetabolic response to genetic perturbations due to an unchanged regulatory system that forces the GMS’ flux
distribution towards the original steady state. In the context of protein allocation, theminimal response principle can
be translated as follows: Upon a network perturbation, a GMS establishes a substrate uptake rate so that increases
in protein allocation towards single enzymatic reactions are minimal compared to genetically unperturbed strains.
The cellular objective is to allow formaximummetabolic activity in the face of knockout-induced flux rerouting and a
hampered reallocation of protein due to a strict (wildtype) regulatory regime.

To apply theminimal response principle on the PAM for mutant phenotype predictions, we implemented a strategy
based on the analysis of growth optimal flux distributions at a range of substrate uptake rates (cf. Methods section for a
detailed description). For each flux distribution, the difference in the enzyme synthesis rate∆Ne between a reference,
wildtype state at maximum growth and amutant state is calculated for each enzymewithin the PAM. Themaximum
substrate uptake rate of the GMS is determined as soon as∆Ne meets a defined upper bound∆N crit

e for one enzyme
within that flux distribution. In doing so, we assign a certain flexibility to the overexpression capacity of single enzymes,
whichmay be attributed to the utilization of unused enzymes. Moreover, if∆N crit

e is met for an enzyme, flux rerouting
to circumvent the saturated reaction or pathway is not possible.

Fig 11 shows the prediction results in comparison to experimentally determined phenotypic data (Fong et al.,
2006; Long et al., 2016; Long and Antoniewicz, 2019b) for an∆N crit

e of 16nmol g−1cdw h−1 (cf. Methods section for the
determination of ∆N crit

e ). With one exception, there is a general agreement between predicted and experimentally
determined phenotypes (Pearson correlation: r = 0.81, P = 7.76 × 10−11). By disregarding the rpe deletion mutant,
the Pearson correlation improves to r = 0.97with aP value of 1.5 × 10−23. For the omitted outlier, simulations show
a near-wildtype behavior similar to the gnd GMS, whereas growth is significantly reduced in the experiments. This
observed growth defect is peculiar, since knockouts of enzymes adjacent to ribulose-phosphate 3-epimerase do not
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F IGURE 11 Comparison of predicted growth, glucose uptake, and acetate secretion rates of GMSwith
experimentally determined values taken from Long et al. (2016) (blue), Long and Antoniewicz (2019b) (green), and Fong
et al. (2006) (red). All values were normalized with corresponding wildtype data. Predictions weremade applying the
PAMby constraining the excess enzyme sector according to amaximum glucose uptake rate of 9.82mmol g−1cdw h−1. Themaximum overexpression capacity of single enzymes∆N crit

e was set to 16nmol g−1cdw h−1.

show such a growth-limited phenotype. Moreover, the experimentally determined phenotype of an rpe GMS from
Nakahigashi et al. (2009) was similar to the wildtype E. coli strain, thus obscures a plausible judgment of the simulated
phenotype.

The considerable agreement between experimental and simulated phenotypic data also translates to intracellu-
lar flux data, which we computed for single-gene deletions leading to a complete, demonstrable inactivation of the
corresponding reaction (Long and Antoniewicz, 2019b). Predicted flux responses correlate well with predicted flux
data from Long and Antoniewicz (2019b) (Fig 12), noticeable on Pearson’s correlation coefficients of r > 0.93 for all
tested single deletions, except for the∆tpiAmutant (r = 0.67). Concerning the∆tpiAGMS, an experimentally observed
rerouting of glycolytic flux through themethylglyoxal pathway towards pyruvate (McCloskey et al., 2018a; Long and
Antoniewicz, 2019b) stands in contrast to the results of the PAM suggesting the activation of the ED pathway to
surpass the blocked glycolysis. The simulated behavior can be traced back to an underestimated protein cost of the ED
pathway. By decreasing the kcat values of the two central ED pathway reaction steps phosphogluconate dehydratase
and 2-dehydro-3-deoxyphosphogluconate aldolase to 2.5%of the original values and following a re-evaluation of the
maximum glucose uptake rate, glycolytic flux was diverted into themethylglyoxal pathway simultaneously leading to an
activated acetate secretion (Appendix Fig S4). This selective adaption of turnover numbers, and thus of protein costs
for the corresponding reactions, resulted in a significant convergence of simulated flux data towardsmeasured values
for the∆tpiA and also the∆rpeGMS (r of 0.90 and 0.99, respectively) (Appendix Fig S5). However, flux predictions for
the∆gndmutant were deteriorated at the same time (r = 0.95). Here, fluxwas shifted from the ED pathway towards
glycolysis, which contradicts experimental data. Nevertheless, the kcat value adaption only slightly lessened the PAM’s
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F IGURE 12 Comparison of predicted intracellular flux rates of GMSs with experimentally determined values taken
from Long and Antoniewicz (2019b). All values were normalized with corresponding glucose uptake rates. Predictions
weremade applying the PAMby constraining the excess enzyme sector according to amaximum glucose uptake rate of
9.82mmol g−1cdw h−1. Themaximum overexpression capacity of single enzymes∆N crit

e was set to 16nmol g−1cdw h−1.

overall predictive capabilities (Appendix Fig S5), thus generally points to the need for fine-tuning kinetic parameters to
improve the flux split between pathways across different conditions.

3 | DISCUSSION
Proteins are themajor molecular class in cells and being the catalyst for global cellular functionalities, the importance of
themutual connection betweenmicrobial metabolic behaviors and protein allocation is well appreciated (Scott et al.,
2010, 2014; Weiße et al., 2015; Mori et al., 2016; Noor et al., 2016; Erickson et al., 2017; Mori et al., 2019). Based
on existent techniques for the consideration of protein allocation and enzymatic constraints in the well established
constraint-basedmodeling area (Mori et al., 2016; Sánchez et al., 2017), we implemented amethodology to account for
the total condition-dependent proteome in an E. coliGEM. Besides the integration of basic enzyme kinetics in the form
of turnover numbers, the resulting PAM considers simple, linear relations betweenmicrobial growth and the ribosomal
as well as the excess protein sector to describe 81%of the total cellular protein cost.
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The PAM’s accurate predictions confirmed the prominent role of protein allocation in shaping the microbial
metabolism. Nevertheless, protein allocation itself appears to be regulated to exhaust fundamental biochemical
limits. Maximum substrate uptake rates, and therefore alsomaximum growth rates, are dictated by an ultimately limited
total synthesis rate of condition-dependent proteins. On a biochemical level, the apparent restriction of total protein
copy numbers translates to a limited, cell-wide transcription capability. The causal link between transcription limitations
andmaximum proliferation rates is also indirectly suggested by genetic sequencing results of E. coli strains that have
undergone extensive adaptive laboratory evolution (ALE) (LaCroix et al., 2015). The adapted strains, all exhibiting a
fitness increase of up to 1.6 fold, showedmutations in the rpoB or rpoC gene leading to point mutations in the primary
sequence of the β /β ’ subunit of the RNA polymerase, which is part of the enzyme’s active center. Thus, the observed
mutations globally affect transcription (LaCroix et al., 2015). Based on our study, we presume a corresponding reduction
of transcriptional limitations allowing for an increased protein allocation towards themetabolically active enzyme and
ribosomal protein sector. A detailed proteomics study is necessary to uncover changing protein allocation principles in
growth-optimizedmicrobial strains as well as to test this hypothesis with the PAM.

Recognizing transcriptional limitations as hard constraints for themicrobial metabolism and by recalling that the
presented PAMpredictions represent growth optimal flux states, a cellular principle is deduced supporting previous
findings (Mori et al., 2019): Particularly under substrate-limited conditions, E. coli regulates central cellular processes
tomaintain a Pareto-optimum between growth rate and the ability to flexibly adapt its metabolism to changing envi-
ronmental conditions. The degree of flexibility is directly linked to the amount of allocated excess enzymes, which is
hard-codedwithin the PAM. Interestingly, evenwhen protein becomes ametabolically limiting factor, apparent from the
onset of overflowmetabolism, the cell maintains a strictly substrate uptake orientated allocation of protein to the excess
enzyme sector. This preservation of flexibility could allow for an evolutionary advantage in the original environmental
niche, however, may be a promising target for engineering E. coli or anymicrobe towards a high-performance cell factory.

Recently, systemsmetabolic engineering was emphasized as an integral part in the development and optimization
of microbial cell factories (Wittmann and Lee, 2012; Maia et al., 2016; Saa et al., 2019; Choi et al., 2019; Sarkar and
Maranas, 2019). Thus, wewant to put the PAM forth to highlight the advantages of considering the allocation of the
total condition-dependent proteome for constraint-basedmodeling techniques in favor of more accuratemutant strain
predictions. We showed sound predictions of growth upon a range of overexpression levels of a non-enzymatic protein.
The predictive capability for the overexpression of enzymes participating in metabolic reactions, e.g. in heterologously
expressed pathways, still needs to be verified. However, the strict regulation of protein allocation, represented by the
functional description of ribosomal and excess enzyme sectors in the PAM, appeared to shapemetabolic responses and
is insensitive to genetic interferences. Wealso confirmed a rather inflexible protein allocation behavior for gene deletion
mutant strains. Coherent prediction results were obtained by allowing only small divergences from awildtype state in
the expression rates of single enzymes. Hence, we suggest, additionally to the CRP-cAMPmediated restrictions, a link
to transcriptional limitations, similar to our aforementioned observation of maximum growth of wildtype strains. This
hypothesis is supported by ALE experiments in which adaption of single-gene deletionmutants frequently generated
mutations affecting the regulation of global and pathway-specific transcription (McCloskey et al., 2018b), possibly
eliminating transcriptional hurdles and (partly) restoring growth rates.

In summary, we want to stress the importance of considering protein allocation constraints in GEMs for the
systematic constraint-based reconstruction and analysis (COBRA), and the engineering ofmicrobialmetabolismwithout
having to sacrifice computational speed or applicability of established COBRAmethods (Heirendt et al., 2019). Beside
the facilitated advantages, the limited availability and credibility of basic enzymatic kinetic data, particularly in the form
of turnover numbers, still poses amajor obstacle in providing PAMs for anymicroorganism. Therefore, we join the call
for the establishment of a thorough kcatome as part of an accessible, genome-wide kinetome (Nilsson et al., 2017).

reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights

this version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.10.941294doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.941294


ALTER ET AL. 19

4 | METHODS
4.1 | Formulating and solving the protein allocationmodel
All flux solutions and corresponding phenotypes in this work represent growth optimal solutions of the following,
classical FBA-problem including additional protein allocation and enzymatic constraints:

max
ν∈Ò|N | , ρ∈Ò|E |

µ

s .t . Classical FBA constraints

S ν = 0

νlbi ≤ νi ≤ ν
ub
i

νi ≥ 0

}
[i ∈ N

Protein allocation constraints

ρe = kcat,eMe νe

ρe ≥ 0

}
[e ∈ E

φR = φR,0 +wR µ

φEE = φEE,0 −wEE νs

φP,c = φR + φEE +
∑E

e ρe

(8)

Here, S is the stoichiometric matrix of the original GEM and νi the flux variable of reaction i from themetabolic
reaction pool N . Note that each reversible reaction in the original GEM has been split into irreversible forward and
backward reactions to only allow for positive flux values, hence the lower and upper flux bounds νlbi and νub

i are equal or
greater than zero. The additional protein allocation and enzymatic constraints comprise themass concentrations ρe for
each considered enzyme or enzyme complex, as well as themass concentrations of the ribosomal and excess enzymes
sectorφR andφEE, respectively. All protein allocation constraints in equation (8) were added to the stoichiometric
matrix S of the basis GEM iML1515 representing the Escherichia coliK-12MG1655 strain (Monk et al., 2017).

Each reaction e from pool E , comprising all reactions that are linked to one or more genes via a gene-protein-
reaction (GPR) relation, is assigned to exactly one protein with a unique turnover number kcat,e andmolar massMe. In
case a reaction e is catalyzed by an enzyme complex (multiple genes are connected via logical AND operators in the
GPR relation) themolar massMe is the sum of molar masses of the participating gene products. If two or more enzymes
are able to catalyze the same reaction independently from each other (multiple genes are connected via logical OR
operators in the GPR relation), the isozymes aremerged into one hypothetical protein with amolar mass equal to the
mean of the molar masses of the merged isozymes. Molar masses of enzymes were calculated as the sum of molar
masses of the amino acids constituting the respective primary sequences while taking into account the loss of onewater
molecule per peptide bond. The amino acid sequences were retrieved from the KEGG database (Kanehisa et al., 2017)
by queries with the GEM-inherent, KEGG-specific gene identifiers. The kcat values for all enzymatic reactions in the
model were retrieved fromBRENDA (Jeske et al., 2019) following a protocol of Sánchez et al. (2017). Since simulated
maximum growth rates were unreasonably lowwhen applying an initial kcat set, a BRENDA-, SABIO-RK- (Wittig et al.,
2012), and UniProt-based (Bateman, 2019) manual curationwas done for those turnover numbers that showed the
most pronounced effects on growth rates. The final set of curated kcat values as well as molar masses of enzymes used
throughout this study can be found in the Additional Files.
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TABLE 2 Universal PAMparameters applied for all simulations in this study.

Parameter Symbol Value
Total protein concentration φP,c 258.0mgg−1cdw
Intercept ribosomal sector φR,0 49.9mgg−1cdw
Slope ribosomal sector wR 36.8mghg−1cdw
Intercept excess enzymes sector φEE,0 171.1mgg−1cdw

The ribosomal and excess enzymes sector φR and φEE are linearly related to growth rate µ and the substrate
uptake rate νs, respectively. As described in the Results chapter, the linear equations of both sectors (equation (8))
are parametrized according to thorough measurements and analyses of the total, condition-dependent proteome
(O’Brien et al., 2016; Schmidt et al., 2016) and, except for themaximum substrate uptake rate νs , are maintained for any
simulations in this work. Finally, the total mass concentration of condition-dependent protein φP,c is kept constant
and comprises the sum of the ribosomal sectorφR, excess enzymes sectorφEE, and each considered enzyme ρe. An
overview of the applied parameters is given in Table 2.

4.1.1 | Determination ofmaximum substrate uptake rates
By applying the fully parametrized PAM,maximum uptake rates for single substrates were determined according to a
maximally allowable total protein synthesis rate NP (cf. Results chapter). Our hypothesis was that by parametrizing
the slopewEE of the excess enzymes sector so that maximum uptake rates for any substrate aremet at a unique NP,
the PAM should correctly predict phenotypes at substrate limited or measured conditions. Therefore, NP values were
calculated for substrates covered by the study of Gerosa et al. (2015) at a wide range of maximum substrate uptake
rates based on growth-optimal flux distributions and while parametrizing the excess enzymes according to equation (4).
Therefore, we generally assumed an absence of excess enzymes at maximum substrate uptake rates.

By using the respectively parametrized PAM, phenotypes are simulated for experimentally determined substrate
uptake rates (Gerosa et al., 2015), if the assumedmaximum uptake rates exceed themeasured values. These simulated
phenotypes, more specifically the growth rates, were then compared with the observed values by computing the
absolute difference. For similarNP values among the tested substrates, these absolute differences were summed up. At
aNP of 2.04µmol g−1cdw h−1 the sum of absolute differences between simulations andmeasurements wasminimal (c.f.
Fig 6) leading tomaximum substrate uptake rates shown in Table 1.

4.2 | Mutant strain simulations
4.2.1 | eGFP overexpression
Expression of eGFP was simulated by introducing an additional column to the stoichiometric matrix of the PAM
representing a protein with mass of 2.8 × 104 gmol−1. Thus, the expression strength of eGFP is controlled by the
respectivemodel variable describing the protein’s intracellular concentration. To identify the total protein concentration
that represents the elevated protein availability in the E. coli TUNER strain used by Bienick et al. (2014), the summed
absolute difference betweenmeasured and simulated relative growth rates at all experimentally tested eGFPexpression
strengths was computed for a range of total protein concentrationφP,c values. The observed and simulated growth
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rates were normalizedwith wildtype growth rates. Student’s t-tests were applied to determine theφP,c yielding the
best possible correlation betweenmeasurements and simulations.

4.2.2 | Phenotype determination of gene deletionmutants
The deletion of a genewas simulated by identifying all reactions connected to this gene via themodel-inherent GPR and
setting the respective upper bounds to zero. To predict maximum substrate uptake rates of GMSs, enzyme synthesis
rates were calculated from growth optimal flux distributions for a wide range of substrate uptake rates. The synthesis
rate Ne of an enzyme ewas computed from flux distributions by

Ne = ρe · µ (9)

where µ and ρe are the growth rate and themolar concentration of enzyme e, both being optimization variables to the
PAM.

For each tested substrate uptake rate the maximum difference in the computed enzyme synthesis rate ∆Nmax
e

between the GMS and a reference state representing a wildtype strain grown under substrate-unlimited conditions
was identified among all modeled enzymes. By scanning ∆Nmax

e values from high to low substrate uptake rates, the
maximum substrate uptake rate for a GMS is found as soon as ∆Nmax

e meets a critical value ∆N crit
e (also termed

maximum overexpression capacity). Thus, the correspondingmetabolic mode supports a maximally achievable growth
rate under a constrained flexibility to change or reallocate protein amongmetabolic pathways and their single reactions.
We assumed the level of restriction in flexibility ∆N crit

e to be the same in any GMS according to phenotypic data
of GMS from Long et al. (2016), Long and Antoniewicz (2019b), and Fong et al. (2006). We found that a ∆N crit

e of
16.0nmol g−1cdw h−1 leads to a minimal sum of errors between predicted and observed growth, substrate uptake, and
acetate secretion rates. Corresponding comparisons of experimentally determined and predicted phenotypes as well as
flux distributions are shown in Fig 11 and Fig 12, respectively.

4.3 | Implementation
All conducted simulations, model reconstructions, and data analyses were performed inMATLAB 2018a on aWindows
7machine with 16 GB of RAM and an AMD FX-8350 Eight-Core (à 4.00 GHz) processor. COBRA toolbox functions
(Heirendt et al., 2019) and the Gurobi Optimizer (8.0.0, Gurobi Optimization, Inc.) were utilized for processing and solv-
ing themetabolic models. All MATLAB functions necessary to handle and build a protein allocationmodel (PAM) from
a COBRA format-based, stoichiometric reconstruction are provided on GitHub (https://github.com/Spherotob/
PAM_public).

5 | ABBREVIATIONS
ALE Adaptive laboratory evolution

CAFBA Constraint allocation flux balance analysis
cAMP Cyclic adenosinemonophosphate
CDW Cell dry weight

COBRA Constraint-based reconstruction and analysis
COG Clusters of orthologous groups
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CRP cAMP receptor protein
ED Entner-Doudoroff

eGFP Enhanced green fluorescent protein
EMP Embden-Meyerhof-Parnas
GEM Genome-scale model
GMS Gene-deletionmutant strains
GPR Gene-protein-reaction
ME Macromolecular expression
PAM Protein allocationmodel
PEP Phosphoenolpyruvate
PP Pentose phosphate

ppGpp guanosine 5-diphosphate 3-diphosphate
PTS Phosphotransferase system
TCA Tricarboxylic acid
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