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Supplementary Methods3

1 Laboratory processing4

DNA extraction. We extracted DNA from each replicate sample following the protocol5

in [31]. Leeches were transferred to a new tube to remove the preservative, soaked in a6

volume of digestion buffer (10 mM Tris-HCl, 10 mM NaCl, 2% SDS, 5 mM CaCl2, 2.5 mM7

EDTA, 40 mM dithiothreitol, and 0.2 mg/ml proteinase K) equal to 5 times the volume of8

each sample’s leeches, and incubated at 55 °C (rotating) until all the leeches were dissolved.9

Following this incubation, we aliquoted 0.6 ml of digestion buffer from each sample for10

purification with the QIAquick PCR purification kit (Qiagen, Hilden, Germany). To detect11

any DNA cross-contamination, negative controls were created in both steps, digestion and12

purification.13

PCR amplification. We PCR-amplified two mitochondrial markers, one14

from the 16S rRNA (MT-RNR2) gene using the primers 16Smam115

forward 5'-CGGTTGGGGTGACCTCGGA-3' and 16Smam2 reverse16

5'-GCTGTTATCCCTAGGGTAACT-3' [38], and the other from the 12S rRNA (MT-17

RNR1) gene with the primers (forward: 5'-ACTGGGATTAGATACCCC-3' and reverse:18

5'-YRGAACAGGCTCCTCTAG-3') modified from [26]. Target fragments were 81 to 11719

bp and 82 to 150 bp respectively, excluding primers. We hereafter refer to these two20

markers as LSU (16S) and SSU (12S), respectively, referring to the ribosomal large subunit21

and small subunit that these genes code for. The LSU primers are designed to target22

mammals, and the SSU primers to amplify all vertebrates. A third primer pair targeting23

the standard cytochrome c oxidase I marker [14] was tested but not adopted in this study24

as it co-amplified leech DNA and consequently returned few vertebrate reads.25

Primers were ordered with sample-identifying tag sequences. To be able to identify (and26

remove) ‘tag jumping’ errors [30], we used a ‘twin-tagging strategy,’ meaning that both27

forward and reverse primers used the same tag sequence for a sample (e.g. F1/R1, F2/R2,28

F3/R3). Thus, if a library contained tag combinations F1/R1, F2/R2, and F3/R3, an29

F1 tag-jump would produce F1/R2 or F1/R3, which could be detected and removed, since30

these combinations were not used in this library. We used the DAMe protocol [40] to remove31

these tag-jumped Illumina reads and to identify and remove reads containing PCR and/or32

sequencing errors. The DAMe protocol PCR-amplifies each sample three times per marker,33

each time with a different twin-tag pair, which allows the PCRs to be individually identified34

after sequencing. Reads containing errors are more likely to show up in only one PCR and at35

low copy numbers, which allows them to be filtered out bioinformatically (see below).36

PCR negative controls were carried out for each PCR set, and the PCR sets that revealed37

contamination in the negative controls were redone, or ultimately, abandoned. For each38

library, a sample of negative and positive controls were sent for sequencing, in order to39

identify contaminants and to determine a minimum read number per OTU. The 20 µL40

PCR reactions consisted of 2 µL of 10X buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.2 µM per41
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primer, 5% DMSO, 0.6 U ExTaq HotStart DNA polymerase (TAKARA Biosystems, Dalian,42

China), and 1 µL of template DNA, with a thermal cycling profile of 95 °C for 5 min, then43

40 cycles of 95 °C for 30 s, 59 °C for 30 s, and 72 °C for 45 s, with a final extension time of44

7 min at 72 °C.45

2 Bioinformatic pipeline and taxonomic assignment46

Preprocessing. We used AdapterRemoval v2.1.7 [32] to remove adapter sequences from47

reads and Sickle v1.33 [11] to trim reads of low quality nucleotides. We then used BFC v18148

(parameters: -s 3g -k 25) [15] to de-noise the reads, and we merged the read pairs with49

Pandaseq v2.11 [20]. Except for BFC, we used default parameters.50

Demultiplexing and DAMe quality filtering. To filter out tag-jumping events and to remove51

artifactual reads arising from PCR or sequencing errors, we used the DAMe pipeline [40].52

DAMe’s sort.py function was used to remove reads with unused tag combinations, and53

the filter.py function was used to keep only the haplotypes that appeared in ≥2 PCRs,54

with ≥9 (LSU) or ≥20 (SSU) copies per PCR, using the logic that sequences which appear55

in multiple, independent PCRs and in multiple copies per PCR are more likely to be true56

sequences (filter.py parameters for 12S: -x 3 -y 2 -p 14 -t 20 -l 81; for 16S: -x 357

-y 2 -p 13 -t 9 -l 82). Filtering parameters were chosen after inspection of the control58

samples.59

De novo chimera removal. DAMe filtering also removes the chimeric sequences that can60

result from incomplete PCR extension, but we also used the de novo chimera detection61

function uchime denovo in VSEARCH v2.9.0 [28] to remove any remaining chimeras after62

dereplicating with the derep fulllength function.63

Clustering into preliminary operational taxonomic units. We used SWARM v2.0 [19] to64

cluster the filtered sequences into preliminary OTUs (‘pre-OTUs’) and then used the R65

package lulu v0.1.0 [7] to merge SWARM pre-OTUs that shared high similarity and distri-66

bution across samples (i.e. over-split OTUs) and output a representative sequence for each67

pre-OTU. For both, we used default values.68

Assigning taxonomy to preliminary operational taxonomic units. One of the more crucial69

steps in the iDNA bioinformatic pipeline is taxonomic assignment. With vertebrates, ex-70

act species identity can have important management consequences because some species,71

but not their close relatives, are given high conservation value [2]. Existing taxonomic72

assignment programs are typically biased toward assigning sequences to species that hap-73

pen to be in a reference database, even though we know that some of our leech-derived74

sequences are likely from known species that have never been sequenced, or more rarely,75

that are undescribed. We thus used PROTAX for taxonomic assignment of the pre-OTU76

sequences [33, 34]. PROTAX provides an unbiased, estimated probability of assignment77

at each rank, where unbiased means, for example, that 70% of all assignments given78

a 70% probability of accuracy are indeed correct. Thus, a PROTAX assignment of a79

pre-OTU to Carnivora(probability=0.999)/Canidae(0.996)/Nyctereutes(0.821)/Nyctereutes80

procyonoides(0.557) means that this pre-OTU is very likely to be in the genus Nyctereutes,81

but there is a (1 − 0.577) =44% probability that the species is not N. procyonoides. PRO-82

TAX can also estimate the probability that a pre-OTU sequence is ‘unknown,’ i.e. not in83

the reference database. Thus, PROTAX helps prevent mistaken assignments of sequences84
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to species, potentially avoiding wasted management effort directed towards species that are85

not actually present.86

We refer the reader to Somervuo et al. [33, 34] for in-depth discussions of PROTAX and to87

Axtner et al. [2] for details of the bioinformatic pipeline used to create the LSU and SSU88

reference databases and to train and assess the PROTAX models. We built the reference89

databases starting from the Midori Unique 20180221 lrRNA and Unique 20180221 srRNA90

databases [17], supplemented with mitogenomes from [22]. We used the R package taxize91

[5] to build a taxonomy database of all Tetrapoda and to harmonize species names between92

the Tetrapoda taxonomies and the sequences in the MidoriSalleh reference database, and93

we used SATIVA [13] to identify reference sequences mislabelled at family level and above,94

which we removed. With the curated reference database, we then trained PROTAX models95

for both LSU and SSU, setting a 90% prior probability for the set of Tetrapoda species96

known from Ailaoshan, thereby reducing false-positive assignments [27]. Raw similarities97

between each query and all reference sequences were calculated with LAST v.982 [12], after98

which the trained PROTAX models were used to assign probabilities of assignment for pre-99

OTUs at class, order, family, genus, and species ranks. The bioinformatic scripts, reference100

datasets, trained models, and bias-accuracy plots are available for download from GitHub101

[39].102

Using pairwise correlations between SSU and LSU OTUs to reconcile taxonomies. Dif-103

ferent marker genes have different levels of taxonomic coverage and discrimination power104

[33, 34], and as a result, the same species can be assigned to different taxonomies by SSU105

and LSU. For instance, as described above, the SSU dataset confidently detected Nyc-106

tereutes procyonoides, but the LSU dataset did not, although it did assign one OTU to Car-107

nivora(probability=0.999)/Canidae(0.999)/Canis(0.475)/Vulpes, unknown species(0.231).108

Given the confident assignment to Canidae, this LSU OTU might also have derived from109

Nyctereutes. To combine taxonomic information across the two markers, we therefore cal-110

culated pairwise correlations of SSU and LSU pre-OTUs across the 619 replicates for which111

both markers had amplified and visualized the correlations as a network (Figure ??). If an112

SSU and an LSU pre-OTU occur in the same subset of replicates and are assigned the same113

higher-level taxonomies, the two pre-OTUs are likely to have been amplified from the same114

set of leeches feeding on the same species. We manually inspected the network diagram and115

assigned such correlated pre-OTU pairs the same taxonomy.116

Final operational taxonomic units and dataset filtering. After using PROTAX and then117

searching for network correlations, to assign taxonomies to pre-OTUs, we verified that the118

positive and negative control samples were free of any substantive contaminants before re-119

moving them from the dataset, along with one sample that had neither ranger nor patrol120

area information. We eliminated any pre-OTUs to which we were unable to assign a tax-121

onomy; these pre-OTUs only accounted for 0.9% and 0.2% of reads in the LSU and SSU122

datasets respectively, and most likely represent sequencing errors rather than novel taxa.123

Within the LSU and SSU datasets, we merged pre-OTUs that had been assigned the same124

taxonomies, thus generating a final set of OTUs for each dataset. Finally, we removed the125

OTU identified as Homo sapiens from both datasets prior to analysis. As expected, since126

the leeches were collected with bare hands and might have in some cases been feeding on127

the rangers themselves, human DNA was obtained from the majority of samples in both128

datasets.129

After excluding humans, the final LSU and SSU datasets comprised 18,502,593 and130
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84,951,011 reads respectively. These reads were assigned to a total of 72 OTUs across131

740 replicates and 127 patrol areas in the SSU dataset, and 59 OTUs across 653 replicates132

and 126 patrol areas in the LSU dataset. We attached IUCN data for individual OTUs by133

using the R package rredlist v0.5.0 [4] to search for scientific names assigned by PROTAX134

(or synonyms where we were aware of nomenclature changes). For mammalian OTUs, we135

used the PanTHERIA database [10] to obtain data on adult body mass for each OTU; where136

species-level information was not available, we used the median adult body mass from the137

database for the lowest taxonomic group possible.138

3 Site-occupancy modeling139

Overview. We used hierarchical multispecies site-occupancy models [6] to analyze our data.140

The models that we used are an extension of the single-season occupancy model in [18].141

For each species, the models explicitly capture (i) an ‘ecological process’ governing the142

(unobserved) presence or absence of the species in each patrol area; and (ii) an ‘observation143

process’, governing whether we detect the species’ DNA in each of our replicate samples.144

The ecological and observation processes for individual species are linked in our model by145

imposing community-level priors over the parameters that describe the processes for each146

species.147

We estimated separate models for the LSU and SSU OTU tables. For each dataset, we148

estimated a set of alternative models, summarized in Table S1, specifying different com-149

binations of predictors for the ecological and observation processes. We used the deviance150

information criterion to compare results and select the final models as presented in the main151

text of this paper.152

Ecological process. Each species i was assumed to be either present or absent in each153

patrol area j, and we used zi,j to denote this unobserved ecological state. We assumed the154

zi,j are constant across all replicates taken from patrol area j, consistent with the samples155

being taken at essentially the same point in time (sometimes referred to as the ‘closure’156

assumption). zi,j was assumed to be a Bernoulli random variable governed by an occupancy157

parameter ψi,j , i.e. the probability that species i was present in patrol area j:158

zi,j ∼ Bernoulli(ψi,j). (S1)

We allowed the occupancy probability ψi,j to vary among species as well as among patrol159

areas, to capture e.g. preferences of different species for particular habitat types, or interac-160

tions between taxa. In particular, we modelled ψi,j as a function of environmental covariates161

that varied over the patrol areas, scaled by species-specific coefficients. Models 1a, 1b and162

1c represented the full ecological model:163

logit(ψi,j) = β0i + β1ielevj + β2iTPIj + β3iroadj + β4istreamj + β5ireservej (S2)

where elevj , TPIj , roadj , streamj and reservej are, respectively, the median values of164

elevation, topographic position index, distance to nearest road, distance to nearest stream,165

and the distance from centroid to nature reserve boundary for patrol area j.166

Preliminary results indicated that elev, reserve and road were likely to be the most useful167

occupancy predictors. So, for comparison, we estimated a set of reduced models (2a, 2b and168

4



2c) with only these occupancy covariates:169

logit(ψi,j) = β0i + β1ielevj + β2iroadj + β3ireservej . (S3)

The covariates elev and road were positively correlated (r = 0.6), so we additionally esti-170

mated a set of models (3a, 3b and 3c) omitting road:171

logit(ψi,j) = β0i + β1ielevj + β2ireservej (S4)

and a set of models (4a, 4b and 4c) omitting elev:172

logit(ψi,j) = β0i + β1iroadj + β2ireservej . (S5)

Observation process. Although we cannot directly observe the true ecological state zi,j ,173

we do know whether we detected DNA from species i in each replicate k from patrol area174

j. But this is an imperfect proxy for the true ecological state. For replicate k from patrol175

area j, we assumed that we detected DNA from species i with probability pi,j,k when i was176

truly present in patrol area j, and with probability 0 when i was absent:177

yi,j,k ∼ Bernoulli(zi,j .pi,j,k), (S6)

where the yi,j,k are the observed data (i.e. detection or non-detection of species i’s DNA178

in each replicate). Our model therefore assumes that false positives do not occur, i.e. that179

Table S1: Summary of model specifications tested. elev = median elevation; TPI =
median topographic position index; road = median distance to nearest road; stream =
median distance to nearest stream; reserve = distance from centroid to nature reserve
boundary; numleeches = number of leeches in replicate; othertaxa = number of other taxa
detected in replicate; human = fraction of reads from replicate assigned to Homo sapiens

Model Occupancy covariates Detection covariates

1a elev + TPI + road+ stream+ reserve numleeches

1b elev + TPI + road+ stream+ reserve numleeches+ othertaxa

1c elev + TPI + road+ stream+ reserve numleeches+ human

2a elev + road+ reserve numleeches

2b elev + road+ reserve numleeches+ othertaxa

2c elev + road+ reserve numleeches+ human

3a elev + reserve numleeches

3b elev + reserve numleeches+ othertaxa

3c elev + reserve numleeches+ human

4a road+ reserve numleeches

4b road+ reserve numleeches+ othertaxa

4c road+ reserve numleeches+ human

5



we never falsely detect species i’s DNA through lab contamination or through incorrectly180

assigned sequence reads. On the other hand, since pi,j,k may be less than one, it allows for181

the possibility of false negatives, i.e. that we failed to detect species i’s DNA when species182

i was actually present. Although false positives probably do occur, we focused mainly on183

lab procedures and the taxonomic assignment pipeline to address these, and we expect false184

negatives to far outstrip false positives in our final datasets.185

We allowed the conditional detection probability pi,j,k to vary among species, to capture186

e.g. variation in leech feeding preferences for different taxa, as well as among replicates, to187

capture e.g. technical differences that might affect the probability of detecting taxa. The ob-188

served data clearly showed that the number of leeches included in a replicate was positively189

related to the number of taxa detected (see Figure S4b). Our baseline detection model there-190

fore used the number of leeches in replicate k from patrol area j, denoted numleechesj,k,191

as a predictor for the detection probability for each species i in that replicate:192

logit(pi,j,k) = γ0i + γ1inumleechesj,k, (S7)

and we used this observation model in conjunction with each of the ecological models in193

Equations S2 through S5 (i.e. models 1a, 2a, 3a and 4a).194

We also estimated two other variants of the observation model. First, to test the idea195

proposed in [1] that the detection probability for species i may be lowered in the presence196

of DNA from other species, we calculated othertaxai,j,k as the number of species other197

than i detected in replicate k from patrol area j. We used this along with numleeches to198

model detection probability, and used this observation model in conjunction with each of199

the ecological models in Equations S2 through S5 (i.e. models 1b, 2b, 3b and 4b):200

logit(pi,j,k) = γ0i + γ1inumleechesj,k + γ2iothertaxai,j,k. (S8)

Second, along similar lines, we examined the possibility that the detection probability for201

species i may be lowered in the presence of human DNA, which in some replicates accounted202

for the majority of reads. We therefore calculated humanj,k as the fraction of reads assigned203

to Homosapiens in replicate k from patrol area j after all filtering steps in our bioinformatic204

pipeline. We used this along with numleeches to model detection probability, and used this205

observation model in conjunction with each of the ecological models in Equations S2 through206

S5 (i.e. models 1c, 2c, 3c and 4c):207

logit(pi,j,k) = γ0i + γ1inumleechesj,k + γ2ihumanj,k. (S9)

Community model. Equations (S1) through (S9) define a set of 12 site-occupancy models208

for each species i with alternative specifications for modelling the ecological and observation209

processes (summarized in Table S1). For each of these 12 alternative model specifications,210

we united the species-specific models with community models for both ecological and ob-211

servation processes. Specifically, we assumed that the species-level β and γ parameters are212

distributed according to distributions described by a set of community-level hyperparame-213

ters:214

βmi ∼ N(µβm , σβm) m = 1, 2, ... (S10)

γni ∼ N(µγn , σγn) n = 1, ... (S11)

(β0i, γ0i) ∼ MVN([µβ0 , µγ0 ], [σβ0 , σγ0 ]) (S12)
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where N( ) and MVN( ) denote normal and multivariate normal distributions, with215

community-level hyperparameters µ• and σ•. That is, for each model specification, m216

and n vary so that there is a distribution described by Equations S10 or S11 for each217

predictor. We used a multivariate normal prior for (β0i, γ0i) to allow non-zero covariance218

between species’ occupancy and detection probabilities, as we might expect if, for exam-219

ple, variation in abundance affects both probabilities [6]. These community models allow220

rare species effectively to borrow information from more common ones, producing a better221

overall ensemble of parameter estimates [6, 16, 29].222

Incompletely labelled data points (i.e. sequence data without records of which patrol areas223

they came from) were retained in the model by including these data points without accom-224

panying environmental covariates. Since the identity of the collecting ranger was known225

and could be used to identify replicates that came from the same unknown location, this226

allowed these data to contribute to both detection and occupancy estimates. At the same227

time, we generated occupancy estimates for patrol areas without accompanying data by228

augmenting the data matrix with rows of missing values and including their environmental229

covariates.230

We normalized all predictors to a mean of 0 and a standard deviation of 1 prior to modelling.231

We estimated all model variants in a Bayesian framework with JAGS v4.3.0 [23] in R v3.5.1232

[25] via rjags v4.8 [24] and R2jags v0.5-7 [37]. We used uninformative diffuse priors233

for all parameters and hyperparameters. We ran each model with three chains of 40,000234

generations and a burn-in of 10,000, thinning results by a factor of 20. From the retained235

results we calculated means for all model parameters of interest, as well as estimated species236

richness for each patrol area. We assessed convergence by inspecting the R̂ statistic [8, 3],237

and calculated 95% credible intervals from the 2.5% and 97.5% percentiles of the posterior238

distribution.239

Comparing model results. We used the deviance information criterion (DIC) [36] to com-240

pare the 12 model variants against one another for each dataset. This computationally241

straightforward approach is known to have limitations, both in general and for occupancy242

models in particular [35, 9], but there is a lack of consensus on superior methods, and our243

conclusions, in any case, are unlikely to hinge on the choice of specification.244

We used AICcmodavg:DIC in R [21] to calculate DIC for each model, and ranked models245

accordingly (Table S2). In both datasets, model 3a (occupancy covariates elev and reserve;246

detection covariate numleeches) was the best ranked model. We therefore report results247

from this model specification in the paper. However, models 4a and 2a also performed248

reasonably well, and in any extension of this work it would be worth considering whether249

there is value in including road as a predictor in addition to, or instead of elev.250
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Table S2: DIC results. Models are ordered according to DIC within each dataset, with the
best models first. pD = effective number of estimated parameters for each model; DIC =
deviance information criterion; ∆DIC = difference in DIC compared to top-ranked model.

(a) LSU dataset

Model pD DIC ∆DIC

3a 2504 9706 0

4a 2595 9877 171

2a 2621 10317 611

1a 2594 11297 1590

2c 2377 11842 2135

3c 3035 12018 2312

4c 3109 12119 2412

1c 1922 12376 2670

3b 2637 119096 109390

2b 2552 119515 109809

4b 3729 120262 110555

1b 2705 120678 110972

(a) SSU dataset

Model pD DIC ∆DIC

3a 2947 13620 0

4a 3080 13749 129

2a 3024 14204 583

1a 3734 15918 2298

4c 3339 15992 2372

3c 3426 16110 2489

2c 3470 16673 3053

1c 3186 17385 3765

2b 3131 165447 151827

3b 3700 165509 151889

4b 3977 165800 152180

1b 3083 166392 152772
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aware identification and correction of taxonomically mislabeled sequences”. Nucleic286

Acids Research 44.11 (June 2016), pp. 5022–5033.287

[14] M. Leray, J. Y. Yang, C. P. Meyer, S. C. Mills, N. Agudelo, V. Ranwez, et al. “A new288

versatile primer set targeting a short fragment of the mitochondrial COI region for289

metabarcoding metazoan diversity: application for characterizing coral reef fish gut290

contents”. Frontiers in Zoology 10 (June 2013), p. 34.291

[15] H. Li. “BFC: correcting Illumina sequencing errors”. Bioinformatics 31.17 (Sept.292

2015), pp. 2885–2887.293

9



[16] W. A. Link and J. R. Sauer. “Extremes in Ecology: Avoiding the Misleading Effects of294

Sampling Variation in Summary Analyses”. Ecology 77.5 (1996), pp. 1633–1640. doi:295

10.2307/2265557.296

[17] R. J. Machida, M. Leray, S.-L. Ho, and N. Knowlton. “Metazoan mitochondrial gene297

sequence reference datasets for taxonomic assignment of environmental samples”. Sci-298

entific Data 4 (2017), p. 170027. doi: 10.1038/sdata.2017.27. Data downloaded299

from http://www.reference-midori.info/download.php on 9 August 2019.300

[18] D. I. MacKenzie, J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and C. A.301

Langtimm. “Estimating site occupancy rates when detection probabilities are less than302

one”. Ecology 83.8 (2002), pp. 2248–2255.303

[19] F. Mahe, T. Rognes, C. Quince, C. de Vargas, and M. Dunthorn. “Swarm v2: highly-304

scalable and high-resolution amplicon clustering”. PeerJ 3 (2015). doi: 10.7717/305

peerj.1420.306

[20] A. P. Masella, A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld.307

“PANDAseq: paired-end assembler for illumina sequences”. BMC Bioinformatics 13.1308

(Nov. 2012), pp. 1–7.309

[21] M. J. Mazerolle. AICcmodavg: Model selection and multimodel inference based on310

(Q)AIC(c). R package version 2.2-2. 2019. url: https://cran.r-project.org/311

package=AICcmodavg.312

[22] F. Mohd Salleh, J. Ramos-Madrigal, F. Peñaloza, S. Liu, S. S. Mikkel-Holger, P. P.313
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