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Key Findings 
1. Major depressive disorder and negative affect are associated with replicable profiles of 

cortical anatomy and function across independent population-level neuroimaging datasets 

(combined N≥23,723). 

 

2. Somatostatin interneurons are consistent spatial transcriptional associates of in-vivo 

depression-linked imaging phenotypes.  

 

3. Integrative single-cell gene expression analysis associate somatostatin interneurons and 

astrocytes with both in-vivo depression-linked imaging and ex-vivo gene downregulation in 

independent MDD cortical tissue samples. 

 

4. Transcriptional correlates of in-vivo depression imaging phenotypes selectively capture 

gene downregulation in post-mortem tissue samples from patients with depression, but not 

other psychiatric disorders.  

 

5. Indicating that some cell classes are preferentially sensitive to inherited disease liability, 

genome-wide risk for depression is enriched among interneurons, but not glia.  

 

6. Gene associates of depression-linked anatomy and function identify specific 

neurotransmitter systems, molecular signaling pathways, and receptors, suggesting possible 

targets for pharmaceutical intervention.  
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Abstract 
Major depressive disorder emerges from the complex interactions of biological systems 

that span across genes and molecules through cells, circuits, networks, and behavior. 

Establishing how neurobiological processes coalesce to contribute to the onset and 

maintenance of depression requires a multi-scale approach, encompassing measures of brain 

structure and function as well as genetic and cell-specific genomic data. Here, we examined 

anatomical (cortical thickness) and functional (functional variability, global brain connectivity) 

correlates of depression and negative affect across three population-imaging datasets: UK 

Biobank, Genome Superstruct Project, and ENIGMA (combined N≥23,723). Integrative 

analyses incorporated measures of cortical gene expression, post-mortem patient 

transcriptional data, depression GWAS, and single-cell transcription. Neuroimaging correlates of 

depression and negative affect were consistent across the three independent datasets. Linking 

ex-vivo gene downregulation with in-vivo neuroimaging, we found that genomic correlates of 

depression-linked neuroimaging phenotypes tracked gene downregulation in post-mortem 

cortical tissue samples of patients with depression. Integrated analysis of single-cell and Allen 

Human Brain Atlas expression data implicated somatostatin interneurons and astrocytes as 

consistent cell associates of depression, through both in-vivo imaging and ex-vivo cortical gene 

dysregulation. Providing converging evidence for these observations, GWAS derived polygenic 

risk for depression was enriched for genes expressed in interneurons, but not glia. Underscoring 

the translational potential of multi-scale approaches, the genomic correlates of depression-

linked brain function and structure were enriched for known and novel disorder relevant 

molecular pathways. These findings bridge across levels to connect specific genes, cell classes, 

and biological pathways to in-vivo imaging correlates of depression. 
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Introduction 
Major depressive disorder (MDD) is a common and debilitating illness with a strong 

genetic basis (heritability, h2~40%)1. Clinical depression emerges through complex interactions 

spanning multiple biological systems and levels of analysis2. The multi-scale nature of 

depression is evident in the presence of disorder relevant genetic loci3, as well as shifts in gene 

expression4,5, cellular composition6, cortical anatomy7, and large-scale network function8. 

However, most research on the pathophysiology of depressive illness focuses on select 

features of brain biology, often in isolation. For instance, in-vivo neuroimaging studies link 

symptom profiles in patients to brain anatomy and network function9,10, but are largely divorced 

from insights about underlying molecular and cellular mechanisms. By contrast, analyses of 

post-mortem tissue samples characterize illness related cellular and biological processes4,5,11,12, 

but often focus on few regions and are limited by coarse diagnostic detail. To date there have 

been few opportunities to directly explore the depressive phenotype across levels of analysis —

from genes and molecules through cells, circuits, networks, and behavior — simultaneously13. 

In-vivo neuroimaging has identified depression related shifts in brain anatomy, 

metabolism, and function. For example, discoveries linking amygdala–medial prefrontal cortex 

(mPFC) circuitry to emotional14 and social processing15 led to the hypothesis that dysregulated 

interactions of cortical and subcortical systems precipitate the onset of depression2,16. Further 

work has identified disrupted metabolism and altered grey matter volume in the mPFC of 

patients17, which may track illness chronicity18. However, as sample sizes have increased into 

the thousands it is now apparent that many early identified effects are likely more subtle than 

initially expected7,19. As a consequence, the stability of depression relevant profiles of brain 

anatomy and function across populations remains unclear. 

Complex clinical phenotypes like depression are tied to interactions throughout the 

functional connectome8,9,20. Supporting this perspective, biological subtypes and transdiagnostic 

features of depression may be revealed by considering the collective set of functional 

connections in the brain9,10. Spatially diffuse correlates of depression across brain anatomy and 

function could arise from a host of biological changes in patient populations, ranging from 

demyelination21, altered neurotransmission22, and inflammation23, as well as changes in cell 

abundance or morphology24. Approaches that consider cross-level neurobiological shifts 

associated with depression would illuminate the biological bases of large-scale neuroimaging 

correlates of depressive illness. The recent emergence of whole-brain transcriptional atlases25 

now permits more spatially comprehensive descriptions of the genomic correlates of 

depression, complementing targeted ex-vivo analyses of select cortical areas.   
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Post-mortem MDD patient data reveal abnormalities across cell classes, 

neurotransmitter systems, and molecular pathways6,24,26. For instance, diagnosis of depression 

is associated with reduced neuronal and glial cell size and abundance within prefrontal 

cortex17,27 and subgenual aspects of mPFC6,24. In particular, dysfunction of cortical somatostatin 

(SST) interneurons and astrocytes are hypothesized to play a preferential role in depression 

onset11,12,28. However, broad disruptions across molecular processes have been documented, 

including depression related dysregulation of pathways related to apoptotic stress and 

neuroinflammation29,30, g-coupled protein receptors (GPCR) and cytokine activity4, ERK 

signaling and excitatory neuron activity5, as well as extensive alterations that encompass most 

major neurotransmitter signaling systems26. The breadth of observed neurochemical disruptions 

in depression makes parsimonious descriptions of the disorder difficult. Moreover, the degree of 

diagnostic specificity linking depression relevant patterns of brain anatomy and of function with 

any given cellular or molecular abnormality remain unclear. 

 In this study, we identify shared neurobiological signatures of depression that link 

anatomical, functional, cellular, transcriptional, and genetic levels of analysis. Across three 

imaging datasets (combined N≥23,723), we establish diffuse but replicable profiles of cortical 

brain anatomy and function associated with both major depressive disorder and individual 

differences in trait negative affect. Whole-cortex gene expression analyses revealed 

transcriptional associates of depression-linked in-vivo imaging phenotypes. Polygenic markers 

of SST interneurons reliably associated with imaging signatures of depression, both across 

datasets and imaging modalities. Indicating that normative patterns of gene expression reveal 

regional vulnerability of cortex in depression, the transcriptional signature of in-vivo depression 

phenotypes correlated with gene downregulation in independent MDD ex-vivo patient tissue 

samples. Suggesting a degree of diagnostic specificity, this effect was not present within post-

mortem cortical tissue analyses of patients with schizophrenia, bipolar disorder, autism, or 

alcohol abuse disorder. Cell correlates of depression brain phenotypes were identified via joint 

analysis of single-cell expression data and spatial gene signatures of in-vivo imaging data. 

Across techniques, SST interneurons and astrocytes emerged as consistent cellular associates 

of depression, nominated through both in-vivo imaging and ex-vivo post-mortem gene 

downregulation. Suggesting that inherited risk for the disorder is preferentially conveyed via 

particular cellular pathways, polygenic risk for depression showed enrichment for genes 

expressed in interneurons, but not glia. Finally, we demonstrate that the transcriptional 

associates of depression-linked imaging markers may reveal clinically relevant information, 

including preferential importance of specific biological pathways and sensitivity to particular 
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classes of neurotransmitters. Taken together, these data identify stable imaging correlates of 

depression, highlighting the role of somatostatin interneurons and astrocytes, and define a 

roadmap for future multi-scale neuroscience research on genomic bases of brain structure, 

function, and risk for depression. 
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Results 
Neuroimaging correlates of depression and negative affect are consistent across 
populations 

To characterize the nature and stability of cortical imaging markers of depression and 

trait negative affect, we analyzed structural and functional MRI data from three independent 

large-scale collection efforts: UK Biobank (UKB)31, ENIGMA7, and Brain Genome Superstruct 

Project (GSP)32. Three imaging measures were examined: cortical thickness, resting-state 

functional amplitude (RSFA), and global brain connectivity (GBC). In the UKB (n=15,150), 

lifetime history of depression was determined from questionnaires collected at the MRI scan 

visit (see Methods). The diagnostic validity of the UKB depression phenotype was thoroughly 

explored. Rates of single (5.22%, n=791), moderate (9.93%, n=1,505), and severe (4.17%, 

n=631) depression were significantly positively associated with trait neuroticism, depressive 

symptom severity, genetic risk for depression estimated through prior GWAS3, and rate of 

antidepressant prescription (Supplementary Figure 1). Replication ENIGMA data reflect meta-

analytic results from Schmaal and colleagues7 showing shifts in cortical thickness in patients 

with depression (ns=1,206-1,302) relative to healthy comparison participants (ns=7,350-7,449). 

In the GSP sample (n=947), trait negative affect was measured in healthy young adults using 

five convergent self-report questionnaires associated with the experience of negative mood 

(See Methods). 

We identified whole-brain shifts in brain structure and function that are consistent across 

neuroimaging samples, phenotypic measures (i.e. depression status and trait negative affect), 

and imaging modalities (Figure 1). Depression and trait negative affect were associated with 

distributed shifts in cortical thickness, RSFA, and GBC, measured across 200 symmetric ROIs 

from the parcellation of Schaefer and colleagues33. Across UKB, ENIGMA, and GSP imaging 

datasets, we observed consistent global patterns linked to the history of depression for 

thickness (rs=0.29, p=0.018, pspin=0.016), RSFA (rs=0.40, p=4.7e-9, pspin=5e-5), and GBC 

(rs=0.41, p=2.3e-9, pspin=1e-4; Figure 1a-c; Supplementary Figure 2). The significance of spatial 

correlations was tested using spin-based permutation tests34,35. Consistent with the theorized 

core role for disrupted heteromodal association cortex functioning in psychiatric illness13, 

depression relevant shifts in RSFA and GBC were preferential to heteromodal relative to 

unimodal cortices. That is, depression-linked Cohen’s d for RSFA was greater in heteromodal 

(M=0.018±0.025(SD)) relative to unimodal cortex (-0.026±0.023; pperm=0.001). By contrast, GBC 

was lower in heteromodal (-0.003±0.021) relative to unimodal cortex (0.008±0.03, pperm=0.003; 

Supplementary Figure 2). This unimodal/heteromodal distinction replicated in the GSP sample 
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for both RSFA (pperm=0.001) and GBC (pperm=0.001). Together, these data provide evidence for 

small, yet replicable shifts in cortical anatomy and function linked to both depression and trait 

levels of negative affect. A critical further question is the extent to which subtle depression-

linked profiles of in-vivo brain anatomy and function reveal consistent genomic markers of 

illness risk. Across all genes, spatial Allen Human Brain Atlas (AHBA) transcriptional associates 

of the depression cortical phenotypes were highly consistent between cross-cohort measures of 

thickness (r=0.62, p<2.2e-16), RSFA (r=0.81, p<2.2e-16), and GBC (r=0.75, p<2.2e-16). Figure 

1d shows the gene-wise Rank-Rank Hypergeometric Overlap for each modality.  

 

 

In-vivo depression imaging phenotypes track ex-vivo expression of somatostatin 
interneuron markers 

Identifying molecular and cellular correlates of depression neuroimaging phenotypes 

would yield insight into the biological bases of the disorder and nominate targets for 

pharmacological intervention. For instance, brain areas that preferentially express genes related 

to a psychiatric disorder may be particularly vulnerable to illness progression36,37. Reductions in 

somatostatin (SST) gene expression are a pronounced pathophysiological feature of 

depression11,38, underscored by the preferential expression of SST markers in cortico-striatal 

reward circuitry and mPFC in donor tissue from healthy populations36,39. SST expression is 

reduced within dorsolateral prefrontal cortex and subgenual mPFC in patients with 

depression40,41, and experimental manipulation of SST neurotransmission in rodents modulates 

anxiolytic and antidepressant behaviors42 as well as socioaffective processing43. Depression 

linked alterations in the function of GABAergic cells, including SST, may influence signal-to-

noise properties of cortex and global measures of connectivity11,38, which could be reflected 

depression-related differences in RSFA and GBC. Thus, in-vivo imaging markers of depression 

may be most evident in cortical areas where SST related gene expression is greatest. 

Next, we tested whether SST interneuron gene markers were spatially correlated to in-

vivo patterns of brain anatomy and function associated with depression. Three highly selective 

gene markers of SST interneurons were analyzed (i.e. SST, CORT, NPY; Supplementary 

Figure 3 for validation of SST marker specificity). Critically, expression of SST markers should 

not be mistaken for a direct measure of cell abundance. Rather, relative expression likely 

reflects a combination of cell density and regional variability in cell transcription patterns. 

Cortical gene expression was measured with post-mortem AHBA data (see Methods). Figure 2a 

shows the normalized AHBA expression of SST, CORT, and NPY across 200 parcels 
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(Supplemental Figure 4 for bi-hemispheric maps). Expression was also summarized across 68 

desikan atlas parcels in order to match ENIGMA data.  

Across all datasets and modalities, ex-vivo expression of SST gene markers spatially 

correlated to in-vivo depression-linked cortical phenotypes (Figure 2b-e). That is, SST, CORT, 

and NPY were expressed most in anterior cortical areas where depression-linked cortical 

thinning was greatest, an effect that is consistent in both UKB (rsst=-0.25, pspin=0.0004; rcort=-

0.22, pspin=0.001; rnpy=-0.31, pspin=1e-4) and ENIGMA data (rsst=-0.57, pspin=3e-4; rcort=-0.57, 

pspin=3e-4; rnpy=-0.38, pspin=0.004). The strength of the association was also benchmarked 

against permuted gene triplets drawn from a pool of 17,448 brain expressed AHBA genes (two-

sided p-value). Results were robust to alternative permutation strategies using sets of cell gene 

markers (Supplementary Figure 5). In terms of function, depression-linked increases in RSFA 

were greatest in areas with greater relative SST triplet marker expression, across both the UKB 

(rsst=0.38, pspin=1e-4; rcort=0.47, pspin=1e-4; rnpy=0.26, pspin=1e-4) and GSP (rsst=0.18, pspin=0.007; 

rcort=0.24, pspin=8e-4; rnpy=0.22, pspin=0.002) samples. For functional connectivity, SST triplet 

gene markers were significantly correlated with depression decreases in GBC across data from 

the UKB (rsst=-0.40, pspin=5e-5; rcort=-0.33, pspin<1e4; rnpy=-0.40, pspin=5e-5) and the GSP (rsst=-

0.30, pspin=5e-5; rcort=-0.39, pspin<1e-4; rnpy=-0.01, pspin=0.09). For the first time, these data 

identify a replicable and parsimonious cell correlate of anatomical and functional neuroimaging 

signatures of depression, and further nominate SST interneurons as a potential target for 

biological intervention.  
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Figure 1: Imaging correlates of depression and negative affect are consistent across 
datasets. (a) Differences in cortical thickness between moderate/severe MDD and controls in 

the UKB and ENIGMA, and their spatial correlation (rs=0.29). Association of (b) functional 

variability and (c) global brain connectivity to moderate/severe MDD in the UKB, and negative 

affect in the GSP, and their spatial correlation (RSFA: rs=0.40, GBC: rs=0.41). (d) AHBA 

transcriptional correlates of MDD phenotypes are consistent across datasets: thickness 

(r=0.62), RSFA (r=0.81), and GBC (r=0.75). Heatmaps reflect -log10p calculated from Rank-

Rank Hypergeometric Overlap tests. 
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Figure 2: SST marker genes are spatially associated to in-vivo imaging correlates of 
depression. (a) Normalized AHBA cortical expression of three gene markers for somatostatin 

interneurons: somatostatin (SST), cortistatin (CORT), and neuropeptide Y (NPY). Each dot on 

the cortical surface represents expression in a single AHBA tissue sample, which is averaged 

across 200 bihemispheric cortical parcels. (b) SST marker expression is spatially correlated with 

depression-related shifts in cortical thickness (ravg=-0.25), RSFA (ravg=0.37), and GBC (ravg=-

0.38) in UKB data. Circles in the dot plots are cortical parcels, colored by relative SST 

expression. Permutation analyses revealed that the strength of the spatial association was 

greater than what is expected by random selection of 10,000 triplets of brain-expressed genes. 

(e) SST marker spatial associations are consistent in replication data for cortical thickness 

(ravg=-0.51), RSFA (ravg=0.21), and GBC (ravg=-0.26). SSTmark=average of SST, NPY, CORT 

spatial correlations.  
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Transcriptional associates of in-vivo depression imaging phenotypes capture patterns of 
ex-vivo gene downregulation in patients 

An outstanding challenge is to link neuroimaging markers of psychiatric disorders to 

underlying molecular alterations. Towards this goal, we tested whether transcriptional 

associates of depression-linked cortical imaging phenotypes capture patterns of gene 

dysregulation in post-mortem samples of brain tissue from patients with depression. Normalized 

AHBA cortical gene expression was spatially correlated (spearman’s rho) to each of the six 

depression-linked structural and functional effect maps detailed above (Figure 3a). AHBA 

correlates were then averaged to obtain a 1x17,448 array reflecting gene-wise spatial 

association to depression cortical maps, where negative r-values indicate stronger association 

(e.g. increased intrinsic expression in areas of depression-linked cortical thinning). We also 

analyzed meta-analytic differential expression estimates from Gandal and colleagues4, reflecting 

the degree to which a gene is up- or down-regulated in post-mortem cortex of patients with 

depression, bipolar disorder (BD), autism spectrum disorder (ASD), alcohol abuse disorder 

(AAD), and schizophrenia (SCZ). This results in a gene-wise array for each disorder, where the 

i-th entry gives the degree to which the i-th gene is up or down-regulated in the diagnostic group 

(Figure 3b).  

Ex-vivo cortical gene downregulation in depressed patients was significantly correlated 

to AHBA derived genomic associates of in-vivo depression cortical phenotypes (Figure 3a; 

r=0.047, p=3.4e-8). Suggesting a degree of diagnostic specificity, this positive relationship was 

selective to ex-vivo data from patients with depression and was not present in four comparison 

psychiatric disorders: schizophrenia (r=-0.044, p=1.2e-5), bipolar disorder (r=-0.017, p=0.082), 

alcohol abuse disorder (r=-0.028, p=0.0007), and autism spectrum disorder (r=0.0015, p=0.86; 

Figure 3c). Correlations for each disorder were calculated using all genes that were common 

across post-mortem and AHBA datasets. To explore the stability of this effect, we conducted a 

binned analysis relating ex-vivo dysregulation to AHBA imaging-genomic associates of 

depression (Figure 3d). For depression data, the 14,095 analyzable genes that were common 

across AHBA and Gandal et al.4 datasets were ranked by ex-vivo gene downregulation and 

divided into 40 gene bins. Average ex-vivo differential expression and average spatial 

association to in-vivo depression phenotypes was calculated for each bin, and then correlated. 

This approach revealed a significant correlation for depression data (rs=0.72, p=5.3e-7) that was 

highly stable across bin numbers, ranging from 10-40 in increments of 5 (range=0.69-0.92, 

M=0.78). The increased magnitude of this correlation (Figure 3c) is likely due to reductions in 

noise from binned-estimates relative to single-gene values. We also observed a significant 
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effect for bipolar disorder (rs=0.49, p=0.002), but not other disorders. Together, these data 

indicate that areas marked by expression of genes that are downregulated in post-mortem 

patient tissue samples are more likely to show in-vivo illness-related shifts in brain structure and 

function (i.e., decreased thickness, decreased GBC, increased RSFA). 
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Figure 3: Selective association between in-vivo depression-linked imaging phenotypes 
and ex-vivo gene dysregulation in depression. (a) AHBA spatial gene expression was 

correlated to each the six depression-linked anatomical and functional neuroimaging map, then 

averaged. (b) Standardized case-control expression differences were calculated using post-

mortem meta-analytic data from Gandal and colleagues4. (c) Average AHBA spatial correlation 

to depression maps was selectively correlated to post-mortem depression dysregulation 

(r=0.047, p=3.4e-8), but not to downregulation in other disorders. (d) Binned-analysis revealed a 

parallel relationship between gene downregulation in depression and AHBA correlates of in-vivo 

depression effects (rs=0.72, p=5.3e-7), which was also present for BD (rs=0.49, p=1.7e-3). 

MDD=Major Depressive Disorder; SCZ=Schizophrenia; ASD=Autism Spectrum Disorder; 

AAD=Alcohol Abuse Disorder. *p<0.05. 
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Cell associates of in-vivo imaging phenotypes 
The pathophysiology of depression is complex, emerging through interactions across 

multiple biological pathways and cell types26. Here, we incorporate single-cell expression data to 

explore the cell-type associates of depression-linked imaging phenotypes. A polygenic 

approach was adopted, since not all cell types express highly specific markers of their identity 

(e.g. SST in somatostatin interneurons). Cortical single-nucleus Droplet-based Sequencing (sn-

Dropseq) data from Lake and colleagues44 were analyzed to identify positively differentially 

expressed genes across 16 transcriptionally defined cell classes (See Methods). This analysis 

resulted in 16 sets of gene cell markers (corrected q<0.05; See Supplementary Data). AHBA 

expression data were used to define spatial transcriptional associates of anatomical and 

functional neuroimaging correlates of depression (Figure 1). For each cell class, Fast-preranked 

Gene Set Enrichment Analyses (FGSEA) tested whether cell-specific genes were significantly 

more spatially correlated to anatomical and functional imaging markers of depression, 

normalized for the number of genes in a given cell-type set (i.e. Normalized Enrichment Score, 

NES)45.  

Across all six imaging modalities and datasets, astrocytes, OPC, and Ex8 excitatory 

neurons (CBLN2+POSTN+) were significantly enriched for genes related to the derived 

depression neuroimaging phenotypes (Figure 4a). In line with a priori hypothesis driven 

analyses in Figure 2, SST interneurons were also positively enriched across 5 of the 6 imaging 

modalities. Astrocyte specific genes showed the strongest spatial association to depression 

neuroimaging effects (Figure 4b) and were expressed most within mPFC, anterior temporal 

lobes, and insular cortex (Figure 4c). The pattern of cell enrichment revealed by FGSEA was 

stable when compared to an alternative method, where the cortical expression of cell-specific 

genes was averaged using AHBA data (Figure 4c). In this approach, averaged cell-expression 

maps were then correlated to each depression imaging map. The cell-wise correspondence 

between this method and FGSEA was (rs=0.92, p<2.2e-16). We further established the stability 

of these results using polygenic cell deconvolution (Supplementary Figure 7)46. Deconvolution 

derived imputed distributions of SST interneurons and astrocytes were the two most spatially 

correlated cell types across all six modalities (rsst=-0.26, rast=-0.18). 

The above results identify cell correlates of depression relevant neuroimaging 

phenotypes. However, any given cell class might be unchanged in depression or exhibit 

patterns of gene dysregulation. To address this, we conducted parallel FGSEA analyses using 

separate post-mortem data from Gandal and colleagues4 to identify cells enriched for gene 

downregulation in ex-vivo cortical tissue samples from patients with depression (Figure 4d). The 
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NES values were above zero for most cells, indicating a broad pattern of depression linked 

downregulation amongst nearly all cell markers. The degree of observed cell enrichment was 

greatest for SST interneurons (NES=1.97, p=2.5e-09) and astrocytes (NES=1.97, p=8.2e-11). 

However, reduced astrocyte transcription was not a global feature of psychiatric illness, such 

that astrocyte markers showed significantly increased expression in SCZ (NES=-3.34), BP 

(NES=-3.10), and ASD (NES=-2.09) ex-vivo data. Taken together, these findings reveal 

patterns of reduced cell-specific gene expression in cortex of MDD patients that are greatest for 

SST interneurons and astrocytes. 

Cell related abnormalities in MDD may reflect inherited genetic risk among cell-

preferential pathways, or arise through environmental or second-order effects. Using GWAS 

data from Wray and colleagues3, we examined whether polygenic risk for depression is enriched 

among cell-preferential genes. Enrichment was measured with two methods, MAGMA gene-set 

property analysis47 and LDSC partitioned heritability48. Single cell expression data provided 

genomic signatures of 8 cell classes, measured from visual (V1C) and dorsal frontal (DFC) 

cortex44, as well replication data from temporal gyrus (MTG)49. Using LDSC, we observed 

significant enrichment of polygenic depression risk among interneuron specific genes in DFC 

(q=0.037) and MTG (q=0.46; Figure 5b). MAGMA revealed a similar pattern of enrichment for 

interneurons that was consistent across all three brain areas (V1C, q=1.4e-4; DFC, q=1.08e-3; 

MTG, q=3.4e-6). Excitatory neuron enrichment for depression GWAS signal was present with 

MAGMA, but not LDSC. We did not observe polygenic enrichment among any non-neuronal 

support cells, despite consistent associations of astrocytes to both in-vivo and ex-vivo 

depression phenotypes (Figure 4). Overall, our analyses suggest that areas with higher intrinsic 

expression of genes downregulated in depression were more likely to show illness-related shifts 

in both brain structure and function (i.e., decreased thickness, decreased GBC, increased 

RSFA). 
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Figure 4: Integrative single-cell analyses implicate excitatory neurons, SST interneurons, 
and astrocytes. (a) AHBA genes were rank-ordered by spatial correlation to each depression 

MRI phenotype (e.g. UKB thickness, GSP RSFA). FGSEA identified astrocytes, OPC, and Ex8 

(CBLN2+POSTN+) neurons as enriched across all modalities. RSFA gene correlates were 

multiplied by -1 to match the direction of thickness and GBC effects. Warm colors indicate 

positive enrichment, numbers reflect corrected p-values. (b) FGSEA enrichment plot showing 

that astrocyte marker genes tend to be spatially correlated to in-vivo depression maps. Each 

black line on the x-axis is the position of an astrocyte specific gene (c) Average AHBA 

expression of astrocyte marker genes, which was significantly spatially correlated to each 

depression imaging map (ravg=-0.20). (d) FGSEA analysis of genes downregulated in ex-vivo 

tissue samples from the cortex of patients revealed broad enrichment across cell classes, that 

was most pronounced in astrocytes and SST interneurons. NES=Normalized Enrichment Score. 
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Figure 5: Genome-wide risk for depression is primarily enriched for inhibitory 
interneurons, but not glia. (a) Polygenic cell enrichment analyses were conducted across the 

eight superordinate cell categories across two methods, LDSC and MAGMA. Cell specific genes 

are defined using data from the MTG, DFC, and V1C. For LDSC, inhibitory interneuron markers 

show increased polygenic risk for depression3. For MAGMA, inhibitory and excitatory genes 

show enrichment for polygenic depression risk, but the effect is limited to differentially 

expressed genes defined from the MTG. Per=Pericytes; Oli=Oligodendrocytes; 

OPC=Oligodendrocyte Precursor Cells; End=Endothelial; Ast=Astrocytes; Inh=Inhibitory; 

Exc=Excitatory. 
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Gene ontology of the transcriptional associates of depression 
We next examined whether transcriptional associates of depression brain phenotypes 

capture clinically relevant information, such as sensitivity to a particular class of 

neurotransmitters, or increased importance of specific signaling pathways. Gene enrichment 

analyses were conducted using the top decile of genes correlated to neuroimaging markers of 

depression (n=1,745; Figure 6), revealing known and novel biological associates of depression. 

The top depression-linked gene decile possessed the greatest number of enrichment terms 

across molecular function, cellular component, and biological process ontological categories 

(Figure 6a). Further, genes related to “Depressive Disorder” and “Mental Depression” showed 

the strongest overlap with the top 10% of neuroimaging MDD gene correlates (Figure 6b). 

These effects indicate that coherent molecular processes capture MDD shifts in anatomy and 

function. 

Consistent with evidence of decreased glutamate and glutamine in the mPFC of patients 

with depression50, genes tied to glutamatergic receptors (GO:0008066, q=0.004) and secretion 

(GO:0014047, q=0.013) were significantly over-represented in the top decile. In line with prior 

reports of reduced cortical GABA in patients with depression51, we also observed enrichment 

terms for GABA receptor complex (GO:1902710, q=0.029) and GABAergic synaptic 

transmission (GO:0051932, q=0.041). Major monoamine neurotransmitter systems were also 

enriched, driven by genes tied to dopamine (GO:0014046; q=0.0098), histamine secretion 

(GO:0001821, q=0.036), and serotonergic synapses (Pathway 525336, q=0.017). Finally, our 

analyses identified terms related to g-protein coupled second messenger systems (GPCR; 

Pathway 1269544, q=0.00059) and downstream intracellular signaling pathways, including to 

cAMP-mediated signaling (GO:0019933, q=0.00033), ERK1 and ERK2 cascade (GO:0070371, 

q=0.043), MAPK cascade (GO:0000165, q=0.017), and non-canonical Wnt signaling pathways 

(GO:0035567, q=0.0044). These GPCR-activated intracellular cascades are important 

mediators of the neuromodulatory effects of neuropeptides52, which were also enriched in our 

data (GO:0007218, q=0.00021). Beyond SST, the neuropeptides substance P (TAC1), 

cholecystokinin (CCK), cocaine-and-amphetamine related transcript (CARTPT), galanin (GAL), 

and receptors for mu and kappa opioids (OPRM1, OPRK1) in the top decile of MDD correlated 

genes. Critically, these results do not demonstrate that these systems are necessary altered in 

patient populations. Rather, they identify genes and pathways that are preferentially expressed 

within swaths of cortex implicated in depression. 

These data are also consistent with gene networks implicated in depression from prior, 

independent, analyses of post-mortem cortical tissue. Specifically, there was strong spatial 
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correlation between all depression imaging maps and the cortical expression of DUSP6 (ravg=-

0.365, 240th/17,448=0.003), which inhibits the ERK pathway and is a key hub gene that is 

downregulated within the mPFC of patients with depression5. Depression-linked neuroimaging 

effects were similarly correlated to EMX1 expression, which is upregulated in the mPFC of 

patient populations. However, these spatial effects were in the opposite direction (ravg=-0.337, 

17,034th/17,448=0.976), such that normative EMX1 expression was lower in depression 

implicated areas of cortex (e.g. thinning of mPFC; Supplemental Figure 6). These findings 

suggest that expression differences in the cortical territories tied to depression may reflect 

divergence from normative patterns of area-specific expression, but more data is required to 

test this hypothesis. 
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Figure 6: Transcriptional correlates of in-vivo depression-linked imaging phenotypes are 
enriched for depression relevant pathways. (a) Genes were rank-ordered by average spatial 

correlation to depression imaging maps, then split into deciles. The top gene deciles had the 

greatest number of enrichment terms across ontological categories. (b) The top gene decile was 

enriched for depression and other psychiatric disorders. (c) Subset of significant enrichment 

terms for the top decile of MDD imaging correlated genes. Hierarchical clustering is based on 

overlap of genes in each category. Blue indicates that the gene is included in a given 

enrichment term. Full enrichment terms are available in Supplementary Data. 
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Discussion 
The present analyses reveal converging biological signatures of depression that link 

neuroimaging, cellular, and molecular associates of the illness. Analyses of three population-

imaging datasets identified replicable anatomical and functional cortical correlates of depression 

and negative affect. The observed neuroimaging markers of depression were spatially coupled 

to stable patterns of whole-cortex gene expression across both imaging modalities and data 

collections. Gene associates of in-vivo depression-linked cortical phenotypes were correlated 

with ex-vivo patterns of gene downregulation in cortex of patients with depression, but not 

samples from other comparison psychiatric disorders. In particular, gene markers of 

somatostatin interneurons and astrocytes were consistently spatially associated to in-vivo 

depression neuroimaging effects, and were downregulated within ex-vivo cortical samples from 

patients with depression. Indicating that some cell classes may be preferentially sensitive to 

inherited disease risk, cell enrichment analysis of depression GWAS data revealed increased 

polygenic burden among interneuron-specific genes, but not those of glia. Overall, we identify 

regionally variable imaging correlates of depression and present cross-modal data highlighting 

the particular role of somatostatin interneurons and astrocytes. Collectively, these results 

suggest potential biological targets for intervention and identify molecular pathways with 

exaggerated expression in depression implicated aspects of the cortex.  

Our findings have important implications for understanding the cellular associates of 

structural, functional, and transcriptional alterations in depression. Prior neuroimaging research  

reveals subtle patterns of cortical thinning in mPFC, sgACC, and ventral temporal lobes that 

tracks illness severity7,17,18. In terms of function, depression is associated with reductions in 

global brain connectivity in mPFC and sgACC53, that extend to distributed aspects of multimodal 

association cortex54. The cellular bases of these alterations remain ambiguous, but may relate 

to GABAergic alterations55 or reduced size and density of neurons and glia6,27,56, particularly 

astrocytes12. Here, polygenic signatures of astrocytes were consistently associated to 

depression relevant shifts in both in-vivo imaging phenotypes and ex-vivo profiles of gene 

downregulation (Figure 4). Astrocytes influence synapse formation and elimination, as well as 

modulate neuronal communication, in part, through glutamate release and NMDAR receptor 

activation57,58. Accordingly, depression related abnormalities in astrocytes may be involved in 

reduced glutamate levels in PFC and ACC of patients12. We did not find evidence for enriched 

depression polygenic risk among astrocyte specific genes (Figure 5), although speculative, this 

may suggest that observed cell alterations arise through environmental factors not directly tied 

to genetic risk. For instance, astrocytes are involved in neuroinflammatory signaling and are 
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sensitive to cytokines, which are also implicated in depression etiology12,23.  

Considerable evidence indicates a preferential vulnerability of SST interneurons in 

depression and affective illness11,40. Multi-scale studies in humans link SST related transcription 

to reward related cortico-striatal circuitry as well as regional variation in cortical function36,39. 

Here, polygenic SST marker genes were significantly spatially correlated to all six depression 

neuroimaging phenotypes (Figure 2). That is, SST gene markers were expressed most in 

sgACC, mPFC, anterior insula and temporal lobes (Figure 2) corresponding to areas of 

depression-linked cortical thinning, increased amplitude, and decreased global connectivity 

(Figure 1). Highlighting the association of SST and astrocytes reported here, recent evidence 

indicates that astrocytes are particularly sensitive to SST interneuron activity, mediated in part 

by binding of somatostatin to astrocytic GABABR receptors59,60.  

In depression, SST related expression is consistently downregulated within the sgACC 

and amygdala of patients28,61. Modulation of SST interneuron activity experimentally reduces 

depressive-like behavior in animal models of depression42, and is selectively tied to affective 

state discrimination in rodents43. Given evidence that SST expression is sensitive to BDNF and 

is cAMP dependent, depression related decreases in SST may reflect differences in neuronal 

activity rather than altered cell morphology or number62,63. Spatial maps of SST marker 

expression shown here should not be conflated with a direct measure of SST cell density. 

However, rhesus macaque data indicate that the density of CALB1 expressing interneurons (a 

subset of SST cells) and ratio of glia/neurons is highest within agranular limbic cortex relative to 

lateral PFC64, consistent with data in rodents65. Nonetheless, differences in relative expression 

of the neuropeptides like SST and NPY are likely functionally important, given their ability to 

influence neuronal and glial function52,59. Increased relative expression of SST has further been 

documented among distributed whole-brain affective circuitry, including the nucleus accumbens, 

ventral tegmental area, mediodorsal thalamus, and anterior hippocampus36,66. Future work 

should investigate whether alterations in SST cells in depression are consistent across 

distributed cortico-limbic circuitry. 

Our results suggest that normative patterns of brain gene expression capture biologically 

meaningful information about depression related differences in cortex. These data converge 

with reports that spatial gene expression may reflect regional sensitivity to psychiatric 

illnesses36,67, neurodevelopmental disorders37, and normative brain function and 

organization39,68,69. Here, we demonstrate that gene-wise association to depression imaging 

phenotypes correlated with gene downregulation in post-mortem patient tissue samples (Figure 

3). Such findings support the emerging hypothesis of “transcriptional vulnerability”37, where 
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brain regions with high baseline expression of disorder-linked genes are more likely to be 

affected over the course of an illness. The current results nominate specific receptors and 

signaling pathways linked to depression implicated brain areas, which may guide targets for 

biological interventions. Although a subset of our data include healthy young adults with varying 

levels of negative affect32, the current analyses largely reflect neuroimaging and transcriptional 

correlates at the depressive illness endpoints, and neurodevelopmental approaches are 

required to prospectively identify genomic bases of areal vulnerability. 

Our in-vivo analyses identified consistent, yet subtle, anatomical and functional 

correlates of MDD and trait negative affect (Figure 1). The small effect sizes observed in UKB 

data could be due to the relatively older mean age of our sample or the use of self-report MDD 

symptoms (see Supplemental Figure 1 for validation of MDD phenotype). However, null 

hypothesis significance testing becomes problematic when analyzing very large samples, 

particularly in the UKB which has a target recruitment of 100,000 individuals70. For instance, the 

magnitude of linear effects linking brain features and behavior tend to be muted and generally 

require multivariate techniques to account for an appreciable amount of variance31, possibly 

reflecting the distributed nature of information processing in the brain71. Such a scenario echoes 

issues faced within the field of population genetics, where single genetic polymorphisms may 

have fleetingly small effects, but global or whole-genome analyses explain a considerable 

portion of trait variance72. Future work should investigate whether the pattern and magnitude of 

disease relevant neuroimaging effects vary by patient subpopulation or are differentially 

expressed across divergent symptom presentations5 or diagnosis constructs73, particularly given 

marked symptom heterogeneity seen in patients with depression. 

A strength of the current analyses is our focus on global patterns of brain anatomy and 

function. For instance, our whole-cortex analyses revealed a surprising pattern of slightly 

increased visual cortex thickness in patients relative to controls (Figure 1), an effect that may be 

missed by small samples or hypothesis driven examinations of select brain areas. Of interest, 

this anatomical effect may, at least in part, explain patterns of increased functional connectivity 

in occipital cortex, reported both here through other collection efforts73. We also find that MDD 

and trait negative affect were associated with distributed functional changes that dissociate 

unimodal versus heteromodal cortex (Supplementary Figure 2). Global brain connectivity (GBC) 

was reduced in MDD across OFC, mPFC, and anterior temporal lobes, which contrasts 

increased GBC within visual cortex. These data support previous reports in smaller samples of 

reduced GBC in mPFC53,74, but highlight the presence of broad spatially cohesive patterns of 

connectivity change. In this study, resting-state functional amplitude (RSFA) was increased in 
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depression within heteromodal cortex, but was reduced in unimodal regions (Figure 1). 

Depression changes in RSFA and GBC were spatially anti-correlated to one another, supporting 

prior evidence that BOLD signal amplitude is predictive of within-subject change in functional 

connectivity75. In sum, these data identify spatially variable functional patterns across cortex in 

depression and negative affect, providing a neuroimaging foothold from which to interrogate 

underlying molecular and cellular associates. 

 

Future Directions 
Future work should consider more refined characterizations of depressive illness to 

reflect the significant heterogeneity of the disorder, as well as to differentiate finer-grained 

phenotypes such as treatment resistance depression, early illness onset, or potential biotypes9. 

These cross-level data may also be used to explore psychiatric phenotypes that are not 

amenable to post-mortem analyses, such as premorbid illness risk or resilience. For instance, 

detailed neural signatures of depression risk will be available through large scale developmental 

neuroimaging collections, such as the Adolescent Brain Cognitive Development (ABCD) study76, 

which can be integrated with expanding atlases of developmental brain gene transcription77. 

Such efforts would shed light on disease etiology and are motivated by data from Schmaall and 

colleagues7 suggesting anatomical correlates of MDD are stronger in adolescence, relative to 

adulthood. The present results may also be used to explore treatment targeting strategies 

aimed at brain areas related in depressive disorder.  Further, our analyses suggest that 

anatomical and functional correlates of depression extend beyond the limbic and affective brain 

systems typically implicated in depression (e.g. thicker visual cortex), which are not often 

targeted for post-mortem transcriptional analyses. Future work should aim for more regionally 

comprehensive genomic data in order to disentangle areal differences in depression brain 

correlates, such as anatomical and functional changes in visual cortex.  

 

Conclusion 
In this study, we identify replicable anatomical and functional neuroimaging correlates of 

depression and trait negative affect, which serve as a foundation for integrative genomic 

analyses. Normative expression of polygenic SST interneuron markers in cortex were 

significantly spatially associated to depression correlates across all imaging modalities and 

datasets, in line with the hypothesized importance of this cell type in the disorder. Our data also 

suggest that the transcriptional associates of depression neuroimaging phenotypes capture 

global patterns of differential gene expression in depression, measured in ex-vivo patient 
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cortical tissue. Incorporation of single-cell gene expression data showed that gene markers of 

SST interneurons and astrocytes were particularly strong spatial associates of depression 

imaging phenotypes, and were preferentially downregulated in post-mortem tissue samples 

from patient populations. Enrichment analyses of depression transcriptional associates 

identified multiple biological pathways, including neuropeptides, GPCR binding, and related 

intracellular MAPK, ERK, and cAMP signaling. Together, these data provide an integrative 

profile of the biology of depression that spans neuroscientific levels of analysis, connecting 

specific genes, cell classes, and molecular pathways to in-vivo imaging correlates of illness. 
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Methods 
 

Major Depressive Phenotypes 

 

UK Biobank. Lifetime history of depression was imputed using retrospective self-report 

questions collected during the imaging scan visit. The criteria for major depressive disorder 

followed the procedures of Smith and colleagues78. Individuals meeting criteria for single, 

moderate, or recurrent depression reported depressed mood (UKB Field 4598) or anhedonia 

(UKB Field 4631) for a week or more, with the longest period of anhedonia/depressed mood 

lasting two or more weeks (UKB Field 4609/5375). Single episode depression was 

characterized by endorsement of only one lifetime symptomatic period (UKB Field 4620/5386), 

and required individuals to have sought treatment through a general practitioner (GP; UKB 

Field: 2090) or psychiatrist (UKB Field 2100). Both recurrent and severe depressive diagnoses 

required two or more lifetime symptomatic episodes of anhedonia or depressed mood (UKB 

Field 4620/5386). Assignment of moderate depression required treatment seeking through GP 

(UKB Field 2090), but not a psychiatrist (UKB Field 2100), whereas assignment of recurrent 

depression required the opposite. For subsequent analyses, moderate and severe depression 

were reclassified into a binary indicator. Imaging data from individuals with a single lifetime 

episode depression were not analyzed.  

Neuroticism scores were calculated by summing 12 self-report items from the UKB 

neuroticism inventory asking about trait levels of mood, irritability, worry, nerves, and guilt79. A 

subset of individuals completed an online behavioral battery assessing lifetime history of 

depressive symptoms. These online questions assessed history of sadness (UKB Field 20446), 

anhedonia (UKB Field 20441), sleep change (UKB Field 20532), feelings of worthlessness 

(UKB Field 20450), difficulty concentrating (UKB Field 20435), fatigue (UKB Field 20449), 

thoughts of death (UKB Field 20437), and weight change (UKB Field 20536). Self-reported anti-

depressant usage was assessed in the same manner as Wray and colleagues3, which identified 

41 types of pharmaceutical therapies for depression. Binary coding indicated whether 

individuals were taking at least one anti-depressant at the time of the scan visit (UKB Field 

20003). Polygenic risk for depression was calculated for each UKB participant using GWAS 

data from Wray and colleagues3. Non-imputed genotype data were analyzed from 14,105 

White/Non-Latino UKB subjects. Plink v1.9 was used to preprocess SNP data to remove 

variants with MAF < 0.05, hwe < 1e-6, variant missingness < 0.1, and sample missingness < 

0.180, resulting in 371,458 analyzable SNPs. Genetic-relatedness matrices were produced with 
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GCTA and 20 genetic principle components were estimated for use as later covariates81. 

PRSice was used to calculate polygenic risk scores for each individual82 without application of a 

p-value threshold to filter GWAS variants. We note that 10.5% of MDD patients in the Wray and 

colleagues3 GWAS are from the UKB pilot data release, thus there is some overlap in our 

samples. Polygenic risk scores were compared between MDD groups, controlling for phenotypic 

and genetic covariates. 

 

ENIGMA. The results from the ENIGMA meta-analytic study by Schmaal and colleagues7 were 

used for comparison against UKB anatomical effects. Cortical thickness changes in recurrent 

adult depression versus controls were analyzed, quantified in terms of Cohen’s d effect sizes 

across 68 Desikan atlas ROIs. Sample size varied by ROI: recurrent depression participants 

(N=1,206-1,302), control participants (N=7,350-7,450). Meta-analytic estimates controlled for 

sex, age, and scan center. Detailed information about patient and study demographics are 

published7. 

 

Genome Superstruct Project. Trait negative affect was assessed in the same manner as 

Holmes and colleagues19. A single self-report measure was comprised of five scales related to 

history of negative emotion, including the NEO neuroticism scale83, the behavioral inhibition 

scale from the BIS/BAS84, reported mood disturbance assessed with the Profile of Mood State 

(POMS)85, the Spielberger State/Trait Anxiety Inventory (STAI)86, and measures of harm 

avoidance assessed with the Temperament and Character Inventory (TCI)87. Scores on each 

scale were z-transformed across individuals prior to averaging to generate a trait negative affect 

composite score. 

 

Neuroimaging Processing 

 

UK Biobank. Structural and functional MRI data from the UKB were analyzed using an 

extended version of the standard UKB preprocessing pipeline 

(https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1). Anatomical and functional data 

from 16,350 individuals were initially available for analysis after preprocessing. Data were 

collected on Siemens 3T Skyra and 32-channel receive head coil and were obtained from the 

UK Biobank (Project ID: 25163). T1-weighted structural scans were reconstructed from raw 

DICOMS (TR=2,000ms, TE=2.01ms, TI=880ms, flip angle=8 degrees, resolution=1 mm3). 

Minimally preprocessed resting-state fMRI scans were acquired using a multiband gradient 
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echo EPI sequence (length=6 min, FOV=210mm, slices=64, TR=735ms, TE=39ms, 

resolution=2.4 mm3). Data were collected on multiple scanners across imaging centers in 

Cheadle and Newcastle, UK. Detailed imaging protocols are published31. Scans were not 

analyzed if they were marked as corrupted or “unusable” by UKB automated quality control 

tools. 

A minimally modified version of the UKB processing pipeline 

(”UK_biobank_pipeline_v_1”) was implemented to allow for surface-based structural and 

functional imaging analyses. The T1 structural pipeline included gradient distortion correction 

(GDC), reduction of the image field of view (FOV), and combined linear and non-linear 

registration to a 1mm MNI152 “non-linear 6th generation” group atlas. GDC, linear, and non-

linear transforms to standard space were implemented via a single combined transformation 

step to reduce image distortions. A similar pipeline was implemented for T2 FLAIR images, with 

the additional use of BIANCA to estimate the volume of white-matter hyperintensities88. The 

UKB resting-state fMRI pipeline (“bb_functional_pipeline”) was applied, reflecting the following 

preprocessing steps implemented with MELODIC89: GDC unwarping, EPI fieldmap unwarping, 

MC-FLIRT motion correction90, grand-mean intensity normalization, and high-pass temporal 

filtering. Using the trained classifier from the UKB, ICA+FIX was applied in order to remove 

structured artefacts and motion confounds (24 parameters). FSL feat was not used to perform 

spatial censoring of EPI data based on SNR, which would lead to missing data in frontal and 

temporal poles when rest data are project to the cortical surface. Instead, a binarized T1-derived 

brain mask was applied to remove non-brain voxels. Cortical thickness was estimated using 

non-face-masked T1 images, given evidence that face-masking can alter Freesurfer derived 

estimates of brain morphometry32. Freesurfer v6.0.0 was used to derive estimates of individual 

cortical surfaces and produce vertex-wise estimates of cortical thickness91 We do not use the 

Freesurfer “FLAIRpial” option to use the T2 FLAIR image for pial surface delineation. Vertex-

level data were summarized using the 200 parcel 17-network functional parcellation by Schaefer 

and colleagues33. To produce ROI-based estimates of Freesurfer cortical thickness, the group-

space functional atlas was transformed to the native surface space of each individual and 

statistics were extracted using the Freesurfer ”mris_anatomical_stats” utility. 

Surface-based preprocessing of the resting data was then conducted using a previously 

published pipeline (https://github.com/ThomasYeoLab/CBIG)92,93. Processing steps included 

identification of outlier EPI frames with frame-wise head-motion greater than 0.3mm or DVARS 

greater than 75. Outliers included one frame before and two frames after a detected movement. 

Alignment of Freesurfer processed structural data and functional images was conducted with 
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Freesurfer’s boundary-based registration software, using a high-contrast EPI volume as a 

functional reference. Segments of the BOLD run were marked for removal if they consisted of 

fewer than 5 contiguous frames. A run was not analyzed if more than 50% of frames were 

outliers. Nuisance regression was conducted using linear regression to remove effects of global 

signal, average white matter signal, average CSF signal, average ventricular signal, six head 

motion estimates (3 rotational, 3 translational), and all corresponding temporal derivatives. 

Frames that were marked as outliers were not considered during the nuisance regression step. 

Censored frames were then interpolated using least-squares spectral estimation prior to band-

pass filtering (0.009 Hz ≤ f ≥ 0.08 Hz) and removal of linear trends. The resulting preprocessed 

volumetric data was then projected onto fsaverage6 surface space, smoothed with a 2mm full-

width half-maximum kernel and finally downsampled into fsaverage5 vertex space. The same 

procedure was conducted on non-bandpassed volumetric data to generate RSFA estimates. 

 Parcellated surface-based estimates of RSFA (standard deviation of BOLD time- 

course) and functional connectivity were estimated using HCP workbench. RSFA values were z-

transformed within individuals. A subject’s 200x200 functional connectivity estimates were 

Fisher-Z transformed. GBC was calculated as the average correlation of a given cortical parcel 

to all 199 other parcels. Quantitative quality control included row-wise deletion for missing 

thickness or resting-state estimates across the 200 cortical parcels. Individuals with average 

cortical thickness, RSFA, or GBC more than ±3SD from the mean were removed. Similarly, we 

identified outliers at the level of individual parcels and individuals with thickness, RSFA, or GBC 

outliers in more than 5% of all cortical parcels were removed. Finally, individuals with outlier 

(±3SD) total brain size or white matter lesion volume were censored from further analyses. MDD 

case status was binarized to mark controls and individuals with moderate/severe lifetime history 

of depression. Individuals reporting only a single lifetime history of MDD were not analyzed. The 

final sample included (N=2,136) cases and (N=12,084) controls (age: 62.78±7.40; percent 

female=53.07). 

 

Genome Superstruct Project. Neuroimaging and phenotypic data from the open-access Brain 

Genomics Superstruct Project (GSP) were obtained 

(https://dataverse.harvard.edu/dataverse/GSP)32. All individuals were healthy young adults of 

White/Non-Hispanic ancestry with no history of psychiatric illness. Imaging data were acquired 

across multiple Seimens Tim Trio scanners at Massachusetts General Hospital and Harvard 

University. Only data from individuals scanned using 12-channel phased array head coils were 

analyzed. Anatomical data were collected using a multi-echo T1w magnetization-prepared 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942227doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

gradient-echo image (multi-echo MPRAGE; TR=2200ms; TI=1100ms; TE=1.54ms; FA=7°; 

1.2mm3; FOV=230). T2w anatomical data were acquired in the same session using a turbo-

spin-echo with high sampling efficiency (multi-echo MPRAGE94: TR=2800ms; TE=327ms; 

1.2mm3; FOV=192), with a bandwidth matched to the T1w acquisition (652 Hz/pixel). Resting-

state functional MRI data were acquired using a single 6-minute gradient echo planar imaging 

(EPI) sequence (TR=3000ms; TE=30ms; FA=85°; 3mm3, FOV=216; slices=47; interleaved foot-

head acquisition=1, 3, …45, 47, 2, 4, …, 44, 46).  

Anatomical data were processed using the Human Connectome Project version 

Freesurfer v5.3.0. T2w images were incorporated to improve accuracy of pial surface estimation 

(i.e. “T2pial” flag). Freesurfer anatomical segmentations were visually inspected to identify gross 

abnormalities. Surface-based preprocessing of resting-state BOLD data was conducted with the 

CBIG pipeline (https://github.com/ThomasYeoLab/CBIG). Preprocessing steps included removal 

of first 4 TRs, slice-time correction, and identification of head motion outliers (frame-wise 

displacement > 0.2, DVARS > 50). Above threshold frames were identified, along with one 

frame before and two frames after a detected movement. Frames were also marked for removal 

if not part of contiguous segment of five low-motion frames. A scan was not analyzed if more 

than 50% of frames were marked for removal. MCFLIRT was used to perform motion correction 

with spline interpolation. Freesurfer’s bbregister with FSL initialization was used to align T1w 

and EPI data, prior to generation of masks to mark brain voxels. Nuisance regression was 

performed with linear regression to remove effects of the global signal, mean ventricular signal, 

mean white matter signal, six motion parameters, and their temporal derivatives. Motion outlier 

frames were not considered when performing nuisance regression. Data were then band-pass 

filtered (0.009 Hz ≤ f ≥ 0.08 Hz). Volumetric data were also transformed to surface space 

without band-pass filtering for later calculation of RSFA. 

Resulting preprocessed data were then projected onto fsaverage6 group space (2mm 

vertex spacing) using Freesurfer’s “vol2surf”, and then smoothed with a 6mm full-width half max 

kernel. Smoothed surface data were downsampled to fsaverage5 space (4mm vertex spacing). 

Non-bandpassed vertex-level data as summarized across 200 bihemispheric cortical parcels, 

then parcel-wise RSFA was calculated in the same manner as UKB data (i.e. standard deviation 

of BOLD time-course). Parcel-wise connectivity estimates were calculated using band-passed 

data. Individual 200x200 connectivity estimates were Fisher-Z transformed. GBC was calculated 

as the average correlation of a cortical parcel to all 199 other parcels. 

Behavioral and neuroimaging quality control resulted in 947 individuals for subsequent 

analyses (age: 18-74, M=21.8±5.05; percent female: 54.38; Shipley IQ: 113.40±8.49). 
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Individuals with missing GBC or RSFA data in any cortical parcel were not analyzed. We then 

identified individuals possessing GBC or RSFA outliers (±3SD) in greater than 5% of cortical 

parcels, or extreme outliers in global GBC or RSFA (±4SD). RSFA values were then z 

transformed within individuals. 

 

Regression linking depressive phenotypes to neuroimaging. 

 

Regression analyses were conducted at independently across the 200 bihemispheric 

cortical parcels. All quantitative variables were z-transformed. In the UKB, the effect of 

moderate/severe MDD history (0/1) on cortical thickness, RSFA, and GBC were estimated, 

covarying for sex, age, age2, age*sex, age2*sex, total brain size, volume of white matter 

hypointensities, self-reported ancestry, genetically estimated ancestry (White/Non-Hispanic or 

not), T1 inverse SNR, MRI run-wise average motion and inverse SNR, diastolic and systolic 

blood pressure, X/Y/Z position of brain in the scanner (center mass of brain mask), and UKB 

imaging acquisition center. Regression analyses in the GSP sample was conducted in a parallel 

fashion to predict RSFA and GBC from trait negative affect, controlling for age, sex, age, age2, 

age*sex, age2*sex, intracranial volume, height, weight, Shipley fluid intelligence, years of 

education, scanner bay, and scanner console version. Cohen’s d effect size estimates of 

depression status were calculated using the t-statistic and df from the regression: 

 

𝑑 = 	
2 ∗ 𝑡
√𝑑𝑓

 

 

Allen Human Brain Atlas 

 

Publicly available human gene expression data from six postmortem donors (1 female), 

aged 24–57 years (42.5±13.38) were obtained from the Allen Institute. Data reflect the 

microarray normalization pipeline implemented in March 2013 (http://human.brain-map.org). 

Probes without Entrez IDs were removed and probe-wise noise for each donor was quantified 

as the number of above-threshold samples in cortex, divided by total cortical sample count. A 

probe-wise average was computed across all six donors, which was used to remove probes 

expressed in fewer than 20% of cortical samples. If more than one probe existed for a given 

gene, the one with the highest mean expression level was selected for further analysis, resulting 

in 17,448 brain-expressed genes. All analyses were conducted according to the guidelines of 
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the Yale University Human Subjects Committee 

Individual cortical tissue samples were mapped to each AHBA donor’s Freesurfer 

derived cortical surfaces, downloaded from Romero-Garcia and colleagues95. Native space 

midthickness surfaces were transformed into a common fsLR32k group space while maintaining 

the native cortical geometry of each individual donor. The native voxel coordinate of each tissue 

sample was mapped to the closest surface vertex using tools from the HCP workbench96. A 

cortical tissue sample was not analyzed if it was greater than 4mm from the nearest surface 

vertex, resulting in 1,683 analyzable cortical samples.  Expression data was then averaged 

across 200 roughly symmetric surface ROIs from the 17-network functional parcellation of 

Schaefer and colleagues33. To allow for comparison to ENIGMA thickness data, gene 

expression was also summarized according to the 68 parcel Desikan atlas97. Even after 

normalization procedures employed by the Allen Institute to correct for batch effects, we 

observed residual differences in global expression intensity across cortical samples, possibly 

reflecting technical artifacts. Thus we perform within-sample z-transform normalization, similar 

to Burt and colleagues98, to reduce global expression differences across cortex. Microarray 

expression of each gene was then mean- and variance-normalized, revealing relative 

expression differences across cortex. Cortical data visualization was carried out using 

“wb_view” from the HCP workbench. 

 

Single-cell transcriptional enrichment analyses 

 

We identify transcriptional markers of individual cell types using single-nucleus droplet-

based sequencing (snDrop-seq) UMI counts for cells from visual (BA17) and dorsal frontal 

cortex (BA 6/9/10), obtained from GEO (GSE97942)44. UMI processing with Seurat was done 

separately for visual and frontal samples99. Initial filtering was conducted to ensure removal of 

genes expressed in fewer than 3 cells, as well as cells with fewer than 200 expressed genes. 

Expression values were normalized for each cell according to total expression values (i.e. 

“LogNormalize”), as well as covariates for sequencing platform and processing batch. 

Predefined superordinate cell categories from Lake and colleagues44 were used, which 

identified 16 cell classes that were present in both frontal and visual cortex. Differential 

expression in each cell type, relative to all others, was calculated using the Wilcoxon rank sum 

test in Seurat (i.e. “FindMarkers”). Seurat was used to conduct the same preprocessing steps 

on single-cell RNAseq data from the middle temporal gyrus (MTG) obtained from the Allen 

Institute49.  
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Cell enrichment analyses were conducted using Fast Gene Set Enrichment Analysis 

(FGSEA)45. Cell specific genes were identified based on significant positively differentially 

expressed in both frontal and visual cortex Lake data (fdr ≤ 0.05). Cell-wise FGSEA was then 

conducted for each neuroimaging modality (i.e. thickness, RSFA, GBC) and dataset (i.e. UKB, 

ENIGMA, GSP). Gene transcriptional associates of each imaging phenotype were identified 

using normalized AHBA expression data. That is, the cortical expression of each gene was 

spatially correlated to parcel-level depression neuroimaging effects (Cohen’s d). RSFA values 

were multiplied by -1 to align the direction of thickness and GBC effects. Ranked gene lists for 

FGSEA were in descending order based on spatial association to depression effects. 

Enrichment scores are the same that of GSEA100. We report normalized enrichment scores 

(NES) that account for the number of genes present in each cell marker group. Single-cell 

RNAseq MTG data were used as replication data49.  

As technical replication, we also relate spatial averages of cell specific genes to each 

depression imaging phenotype. Simply, normalized spatial expression of AHBA cell specific 

genes from each cell class were averaged. The cell-wise expression maps were then spatially 

correlated to each anatomical and functional depression Cohen’s d effect map. Cell 

associations from the six imaging phenotypes were averaged, and then compared to the results 

of FGSEA. We also estimate spatial distributions of cell types by deconvolving bulk microarray 

AHBA data using CIBERSORTx (www.cibersortx.stanford.edu/)46. Gene symbols and entrez IDs 

were harmonized across AHBA and Lake snDrop-seq data using the NCBI gene alias dictionary 

(ftp://ftp.ncbi.nih.gov/gene/%20DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz). 

Deconvolution analysis was performed using genes that were matched across single-cell and 

AHBA datasets. All data were transformed into non-log space, and single-cell gene signature 

matrices were produced separately for visual and frontal cortex snDrop-seq data. Each AHBA 

donor was deconvolved separately. Batch correction (“S-mode”) was performed to adjust for 

platform differences between UMI snDrop-seq and AHBA microarray data. Absolute imputed 

cell densities were mean- and variance-normalized separately for each AHBA donor, and then 

averaged across the Schaefer 17-network 200 parcel functional atlas and 68 node Desikan 

structural atlas. Individual cells were not analyzed if their imputed density was zero in more than 

50% of cortical samples. 

 

AHBA spatial correlation to depression-linked neuroimaging 

 Normalized AHBA expression data, summarized by surface atlas parcels, was spatially 

correlated (spearman’s) to each of the six depression-linked neuroimaging phenotypes. We 
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specifically investigate whether gene markers of somatostatin interneurons are spatially 

associated to anatomical and functional correlates of depression. The genes Cortistatin 

(CORT), Neuropeptide Y (NPY), and Somatostatin (SST) were used to index somatostatin 

interneuron transcription, given that they are highly and selectively expressed within SST 

interneurons. Given spatial autocorrelation among AHBA expression data, the significance of 

each expression-to-imaging correlation was assessed using spin-based permutation tests, 

which preserve the proximity-based correlation structure of expression maps34. We also perform 

multiple gene-based permutations to benchmark the strength of the association between SST 

gene markers (i.e. CORT, NPY, SST) and each depression-linked imaging phenotype. The first 

permutation randomly selects gene triplets (n=10,000 perms) from the pool of 17,445 brain-

expressed genes (this exclude CORT, NPY, SST). The second selects gene triplets (n=10,000 

perms) from a select pool of 1,609 genes that were identified as significant cell type markers 

according to single-cell data from Lake and colleagues44 (excluding markers of SST 

interneurons). The third permutation strategy selects genes from the same pool of 1,609 marker 

genes, however each triplet is composed of genes that are significant markers for the same cell 

type (n=10,000 perms per cell type, excluding markers of SST interneurons). The results of 

each permutation strategy are presented in Supplementary Figure 5.  

 

Ex-vivo psychiatric patient differential expression 

 

 Meta-analytic estimates of differential expression from Gandal and colleagues4 were 

analyzed. Gene expression values were normalized prior to differential expression calculation 

with linear-mixed effects modeling in order to provide standardized beta coefficients, indicating 

the degree that a gene is up- or down-regulated for a given psychiatric population. Analyses 

included cortical expression data from patients with Major Depressive Disorder (MDD), Autism 

Spectrum Disorder (ASD), Bipolar Disorder (BD), Alcohol Abuse Disorder (AAD), and 

Schizophrenia (SCZ). Information about data preprocessing is published4, and sample 

information is available in Supplementary Data. Gene-wise patient differential expression (i.e. 

normalized beta) was then correlated to the gene-wise spatial correlation to in-vivo 

neuroimaging phenotypes.  

 

Single-cell MDD GWAS enrichment. 

 

We tested whether polygenic risk for depression, using the GWAS from Wray and 
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colleagues3 was enriched among cell-specific genes. Enrichment was measured using MAGMA 

gene-set property analysis47 and LDSC partitioned heritability101. Cell-specificity of gene 

expression was measured with single-cell data from V1C, DFC, and MTG. Cell specific 

expression was quantified using the EWCE R package102. Genes were split into deciles for each 

cell, ordered from most specifically expressed to least. LDSC annotation files were created 

using the 1000 Genomes European Phase 3 release. Cell enrichment estimates were 

conditional on a baseline model (”1000G_EUR_Phase3_baseline”) of 53 genomic regions (e.g. 

enhancer, genic, etc.). Enrichment statistics were reported for the top gene decile for each 

dataset and cell type. MAGMA gene-property analyses followed those of Watanabe and 

colleagues103. We calculated averaged gene expression for each cell type and included overall 

gene-wise expression, collapsed across all cells, as a covariate. This approach also does not 

depend upon the creation of gene bins.  For both methods, p-values were corrected for multiple 

comparisons (Benjamini-Hochberg) separately for each single-cell dataset (e.g. 8 tests for DFC 

snDrop-seq data). 

 

Gene Ontology Enrichment Analysis 

 

 ToppGene104 was used to identify biological enrichment terms across the MDD gene 

deciles. Genes were rank-ordered based on their average AHBA spatial correlation, collapsed 

across the six depression-linked neuroimaging maps, and then split into evenly sized gene 

deciles. The number of enrichment terms for each gene decile were then compared (Figure 6a), 

split across major ontological categories (e.g. Biological Process, Cell Component, etc.). We 

illustrate specific genes enriched among a circumscribed set of enrichment categories (Figure 

6c). Similarity of each enrichment term was defined as the number of overlapping genes 

between two categories, relative to the number of total genes link to both enrichment categories. 

This similarity matrix was then hierarchically clustered to identify clusters of similar enrichment 

terms. Genes were selected for plotting if they were present among multiple enrichment 

categories.  

 

Code availability. 

 

Data and code used in this analysis are publicly available upon publication, unless restricted by 

data use agreement. 
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Supplemental Figure 1: Construct validity of inferred depression history in the UK 
Biobank We examined whether inferred lifetime history of depression tracked with related 

measures of depression and negative affect. (a) Proportion of individuals with imputed 

single episode (0.05%, n=791), moderate (0.10%, n=1,505), and severe (0.04%, n=631) 

history of depression. (b) Relative to controls, self-reported trait neuroticism was 

significantly greater in single-episode (β=0.21, p=0.045), moderate (β=1.93, p<2e-16), and 

severe depression (β=2.83, p<2e-16) groups. (c) Relative to controls, self-reported online 

depressive scores were greater among single (β=2.30, p<2e-16), moderate (β=3.19, p<2e-

16), and severe (β=3.85, p<2e-16) depression groups. (d) Relative to controls, polygenic 

risk for depression was greater in single (β=3.7e-6, p=1.9e-9), moderate (β=4.7e-6, p<2e-

16) and severe (β=5.9e-6, p<2e-16) depression groups. (e) Anti-depressant prescription 

rates were greater among single (β=0.15, p=1.5e-5), moderate (β=0.037, p<2e-16), and 

severe depression (β=0.24, p<2e-16), relative to controls. 
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Supplemental Figure 2: Anatomical and functional correlates of depression and trait 
negative affect (a) Cortical thickness correlates of depression in the UKB (left) and ENIGMA 

(right). (b) Resting-state Functional Amplitude (RSFA) correlates in UKB (left) and Brain 

Genomics Superstruct Project (GSP; right). (c) Global Brain Connectivity correlates in UKB (left) 

and GSP (right). (d) Spatial correlation of depression/trait negative affect effects across 

modalities. Depression/trait negative affect is associated with (e) increased RSFA and (f) 

decreased GBC in heteromodal association cortex. 
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Supplemental Figure 3: External validation of SST gene marker expression. 
Expression of Somotostatin (SST), Cortistatin (CORT), and Neuropeptide Y (NPY) across 

four interneuron populations and four species, mouse, marmoset, macaque, and human. 

Data are from Krienen and colleagues105 and can be obtained at 

interneuron.mccarrolllab.org/. 
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Supplemental Figure 4: Bi-hemispheric normalized cortical AHBA expression of the SST 
markers Somatostatin (SST), Neuropeptide Y (NPY), and Cortistatin (CORT). Individual 

dots reflect brain tissue samples, colored by relative expression value. Parcel color reflects the 

average expression of individual tissue samples within a given boundary.   
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Supplemental Figure 5: Consistent spatial correlation of SST gene markers to 
neuroimaging phenotypes, benchmarked against three permutation strategies. SST gene 

markers – CORT, NPY, SST – were spatially correlated to anatomical and functional correlates 

of depression and trait negative affect. Vertical dashed lines on reflect the strength of spatial 

correlation, averaged across the three SST gene markers. The strength of the SST triplet 

correlation was compared to three types of permutation based null distributions. (a) Null triplets 

were randomly selected from a pool of 17,448 genes expressed in cortex. (b) Null triplets were 

selected from a pool of 1,609 significant gene cell markers, defined from single-cell data from 

Lake and colleagues44 (excluding gene markers from SST cells). (c) Similarly, null triplets were 

selected from Lake and colleagues44 marker genes, however all three genes in a given null 

triplet were markers for the same cell type (e.g. Astrocyte, microglia, etc.)  
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Supplemental Figure 6: Spatial expression of DUSP6 and EMX1 across cortex. (a) 

Normalized AHBA spatial expression of DUSP6 and EMX1. (b) RNAseq expression of each 

gene across 11 cortical regions using data from PsychENCODE77. RPKM values from six 

adult donors were batch normalized to correct for residual donor effects using ComBat106. 

Each dot represents expression in a given region, for a given donor. Regions are ordered 

approximately from anterior to posterior. OFC=Orbitofrontal Cortex; MFC=Medial Frontal 

Cortex; ITC=Inferior Temporal Cortex; VFC=Ventral Frontal Cortex; DFC=Dorsal Frontal 

Cortex; M1C=Primary Motor Cortex; S1C=Primary Sensory Cortex; IPC=Inferior Parietal 

Cortex; A1C=Primary Auditory Cortex; STC=Superior Temporal Cortex; V1C=Primary 

Visual Cortex. 
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Supplemental Figure 7: CIBERSORTx imputed cell densities correlated to depression 
neuroimaging phenotypes. Bulk AHBA cortical gene expression were deconvolved using 

single-cell data from V1C and DFC44. (a) Spatial correlation of each imputed density map to 

each dataset and modality. Negative values indicate stronger association to depression 

effects (e.g. increased density in areas of depression cortical thinning). Spatial density 

maps were imputed separately using V1C and DFC signatures before averaging across the 

two. (b) Somatostatin (SST) interneurons and Astrocyte imputed density maps were 

consistently spatially associated to the depression anatomical and functional correlates. 
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Supplemental Figure 8: CIBERSORTx interneuron imputed spatial density maps 
Imputed density maps for interneurons, estimated separately with single-cell data from V1C 

and DFC. 
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Supplemental Figure 9: CIBERSORTx excitatory neuron imputed spatial density maps. 
Imputed density maps for excitatory neuron classes, estimated separately with single-cell data 

from V1C and DFC. 
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Supplemental Figure 10: CIBERSORTx imputed spatial density maps for non-
neuronal support cells Imputed density maps for non-neuronal glia, estimated separately 

with single-cell data from V1C and DFC. 
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