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Abstract

The biological productivity and diversity of the California Current System (CCS) is at
the leading edge of major emerging climate trends, including hypoxia and acidification. We
present results from a hindcast simulation (reanalysis) of an eddy-resolving oceanic physical-
biogeochemical model of the CCS, to characterize its mean state and its patterns and drivers
of variability in marine biogeochemical and ecosystem processes from 1995-2010. This is a
companion paper to a physical analysis in Renault et al. (2019). The model reproduces long-
term mean distributions of key ecosystem metrics, including surface nutrients and productivity
and subsurface O2 and carbonate undersaturation. The spatial patterns of Net Primary Produc-
tivity (NPP) are broadly consistent with measured and remotely sensed rates, and they reflect
a predominant limitation by nitrogen, with seasonal and episodic limitation by Fe nearshore
in the central CCS, and in the open ocean northern CCS. The vertical distribution of NPP is
governed by the trade-off between nutrient and light limitation, a balance that reproduces and
explains the observed spatial variations in the depth of the deep Chl maximum. The seasonal
to interannual variability of biogeochemical properties and rates is also well captured by model
simulations. Because of the prevailing nutrient limitation, fluctuations in the depth of the pyc-
nocline and associated nutricline are the leading single factor explaining interannual variability
in the interior biogeochemical state, and the relationships between density and biogeochemical
rates and tracers are consistent between model and observations. The magnitude and relation-
ship between density structure and biogeochemical processes is illustrated by the 1997-98 El
Niño event, which faithfully reproduces the single largest deviation from the mean state in the
simulated period. A slower decadal shoaling of the pycnocline also accounts for the concomi-
tant trends in hypoxic and corrosive conditions on the shelf. The resulting variability is key to
understanding the vulnerability of marine species to oceanic change, and to the detection of
such changes, soon projected to exceed the range of conditions in the past century.
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1 Introduction
Coastal upwelling systems along the eastern boundaries of the subtropical oceanic basins are some
of the most climatically and biologically dynamic regions of the world’s oceans (Carr and Kearns,
2003; Kudela et al., 2008). In the California Current system (CCS) of the Eastern North Pacific,
the seasonal cycle of alongshore winds and offshore surface currents yields a direct conduit for
nutrient-rich water to rise from the deep ocean to the sunlit surface (Chavez and Messie, 2009).
The upwelling of cold water near the coast is evidenced in satellite remote sensing of sea sur-
face temperature, expansive offshore marine stratocumulus clouds, and a nearshore ribbon of high
chlorophyll from phytoplankton. The resulting cascade of phytoplankton biomass up the food
chain supports high biodiversity and productive fisheries (FAO, 2009).

The physical state of the Northeastern Pacific varies on time scales of days to decades. This
variability includes mesoscale eddies, seasonal cycle, interannual El Niño Southern Oscillation
(ENSO) variability, and lower frequency climate fluctuations characterized by the Pacific Decadal
Oscillation (PDO, Mantua et al. (1997)) and the North Pacific Gyre Oscillation (NPGO, Di Lorenzo
et al. (2008)). Ecosystems throughout the Eastern Pacific respond strongly to physical forcing at
each of these timescales, through the physical influence of winds, light, and heat, and their effects
on the supply of nutrients to phytoplankton and oxygen to marine animals. Interannual climate
cycles associated with ENSO in particular are major perturbations to these parameters and thus to
plankton productivity (Chavez et al., 2002; Bograd and Lynn, 2001). Because thermocline waters
entering the CCS are, like other subtropical Eastern Boundary Upwelling Systems, far from the
sites of atmospheric ventilation in the west, the rising waters are “old” and bear the signature of
decades of biogeochemical process that yield low O2, high nutrients, and low pH. The upwelling
in eastern boundary systems also generates energetic mesoscale eddy fields (Capet et al., 2008).
These eddies can transport the extreme properties of CCS thermocline waters far offshore and
down into the subtropical interior, connecting the biogeochemistry of the coastal CCS with the
adjacent oceanic gyres (Nagai et al., 2015; Gruber et al., 2011; Renault et al., 2016a; Frenger et al.,
2018).

Oceanic acidification and deoxygenation are also emerging trends in the CCS ecosystem (Gru-
ber et al., 2012; Chan et al., 2008). Anthropogenic CO2 has been detected in coastal subsurface
waters off Northern California (Feely et al., 2008). Decadal trends in oxygen have also been ob-
served in the California Current (McClatchie et al., 2010; Pierce et al., 2012) and have altered the
proportions of biologically important nutrients (Deutsch et al., 2011). In the Northern California
Current, massive benthic die-offs have been attributed to episodes of extreme hypoxia along the
Oregon shelf (Chan et al., 2008). Fluctuating abundance of species in upper trophic levels observed
over decadal and longer time scales arise from climate variability, but the specific mechanisms re-
main obscure (Chavez et al., 2003; Rykaczewski and Checkley, 2008). In addition to climate
forcing, the coastal ocean is subjected to anthropogenic pollution that could locally exacerbate hy-
poxia and acidification (Doney et al., 2007), and may contribute to the increasing frequency and
toxicity of harmful algal blooms along Californias coast (Andersson et al., 2008).

The continental margin of western North America has a rich endowment of historical and on-
going observational programs aiding evaluation of climate-ecosystem interactions, including one
of the most extensive time series programs (the California Cooperative Ocean Fisheries Investi-
gations, CalCOFI) anywhere in the world’s oceans (Ducklow et al., 2009). The age of shallow
thermocline waters also make them prone to large amplitudes of low-frequency variability (Ito and

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942565
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deutsch, 2010) that confound the detection of climate and other anthropogenic changes imping-
ing through the oceanic surface. Thus, even in this relatively well-studied region of the ocean,
it is difficult to distinguish long-term trends associated with anthropogenic climate change from
the low-frequency variability that pervades oceanic properties in regions of close contact with old,
deep waters. For example, it remains unclear whether the changes in hypoxia in the California Cur-
rent are driven by internal climate variability, or are an early sign of long-term climate warming
(McClatchie et al., 2010; Pierce et al., 2012; Long et al., 2016).

Models of this dynamic region often exhibit substantial biases in the mean state and unknown
fidelity in representing historical variability and its causal mechanisms. The purpose of this pa-
per is to report a system-wide validation of eddy-resolving, regional model fields and property
relationships through comparison to a variety of hydrographic, experimental, and remote sensing
observations. Here we focus on biogeochemical aspects of the model solution; the physical dy-
namics and its model validation are discussed in a companion paper (Renault et al., 2019). In this
work, Sec. 2 provides a description of the model, its boundary conditions, the simulations per-
formed, and the datasets used for model evaluation, which constitute the core results described in
Sec. 3 and summarized in the final Sec. 4.

2 Methods

2.1 Model description
The ecosystem and biogeochemical cycles are simulated in the Regional Ocean Modeling System
(ROMS, Shchepetkin and McWilliams (2005)). As in Renault et al. (2016b), the primary domain
extends from 144.7◦W to 112.5◦W and from 22.7◦N to 51.1◦N. Its grid is 437 x 662 points with a
horizontal resolution of dx = 4 km and 60 vertical levels. Initial and horizontal boundary data for
temperature, salinity, surface elevation, and horizontal velocity are taken from the quarter-degree,
daily-averaged Mercator Glorys2V3 product (http://www.myocean.eu). In order to maintain a
realistic water mass representation, monthly anomalies from the Mercator data are added to the
mean monthly climatology from the World Ocean Atlas (WOA, Locarnini et al. (2013); Zweng
et al. (2013)) over the period 1995-2004. The freshwater, turbulent heat, and momentum fluxes are
estimated using bulk formulae (Large, 2006) and the atmospheric fields derived from an uncoupled
simulation with the Weather Research and Forecasting model (WRF). This statistically equilibrated
solution, named USW4, is integrated over the period 1995-2010 after a spin up of 1 year (started
from a previous ROMS solution with 12 km horizontal resolution). Further details are described
in the companion paper (Renault et al., 2019).

The coastal biogeochemical dynamics are simulated using an ecosystem model (the Biogeo-
chemical Elemental Cycling (BEC) model, Fig. 1 and Appendix). This model includes both phy-
toplankton and zooplankton, and dissolved, suspended, and sinking particulates (Moore et al.,
2004). The model includes four phytoplankton functional groups (picoplankton, diatoms, coc-
colithophores, and diazotrophs) characterized by distinct biogeochemical functions (nutrient re-
cycling, silicification, calcification, and N2 fixation, respectively). Four nutrient cycles (nitrogen,
silicic acid, phosphate, and iron) are simulated and are coupled through a fixed phytoplankton
stoichiometry. The ecosystem is linked to an oceanic biogeochemistry module that includes total
inorganic carbon (DIC), alkalinity, iron, and dissolved O2. Remineralization of sinking organic
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matter is parameterized according to the mineral ballast model of Armstrong et al. (2001). Gas ex-
change fluxes for O2 and CO2 are based on Wanninkhof (1992). The BEC equations are listed in
the Appendix, and the model code, including parameter settings, are available through the GitHub
repository (see the remark at the end of the paper).

The iron Fe cycle includes dissolved iron, scavenged iron, and iron associated with organic
matter pools and dust particles, but only dissolved iron and organically bound iron are explic-
itly modeled as state variables. For dissolved iron, four processes are considered: atmospheric
deposition, biological uptake and remineralization, scavenging by sinking particles, and release
by sediments. Atmospheric iron deposition is based on the dust climatology of Mahowald et al.
(2006). We implemented a sedimentary iron source based on benthic flux chamber measurements
in the California margin. An equation relating sediment Fe release as a function of bottom water
O2 (log10[Ffe] = 2.5 - 0.0165 · O2, where O2 is in mmol m−3 and the efflux units are µ mol m−2

d−1) is derived from data compiled by Severmann et al. (2010). The resulting rates of Fe sup-
ply from sediments (Fig. 2) exceed those from atmospheric dust deposition throughout the model
domain.

We also added a nitrogen cycle, with losses to the sediments and water column. Bottom water
nitrate is removed using a statistical description of sediment denitrification proposed by Middel-
burg et al. (1996), based on a vertically resolved diagenetic model that predicts the primary de-
pendence of benthic denitrification to be on organic carbon sedimentation rate, with a secondary
sensitivity to bottom water oxygen concentration. This statistical description of the complete di-
agenetic model reproduces basic controls on observed sediment fluxes, without the considerable
computational cost of a sedimentary submodel. The predicted rates of N loss from this sedimen-
tary sink (Fig. 2) amount to a small loss of ≈ 3 ×1012 gN yr−1. Denitrification in the water column
is also modeled, but its integrated removal rate is an order of magnitude smaller than sedimentary
losses, and has negligible impact on the results because O2 in the model domain rarely falls below
the threshold (5 mmol m−3) assumed for this process. The higher O2 thresholds associated with
anaerobic particle micro-environments could increase the importance of anaerobic processes in the
CCS, but they are not represented in this model (Bianchi et al., 2018).

2.2 Biogeochemical forcing and validation data
The physical conditions at the open boundaries are extracted from a global reanalysis as described
in the companion paper (Renault et al., 2019) (Fig. 1). The biogeochemical boundary conditions
for nutrients (NO−3 , PO3−

4 , Si(OH)4) and O2 are taken from monthly climatological observations
in the 2013 World Ocean Atlas (WOA) (Garcia-Reyes et al., 2014). Boundary condition data for
Fe is taken from global simulations with the Community Earth System Model (CESM) that used
an earlier version of the same BEC ecosystem model. The NH+

4 boundary concentrations, be-
ing small in nature, are set to zero, but adjust rapidly to the ecosystem processes in the interior
of the domain. Time-dependent carbon cycle parameters, DIC and Alk, are taken from GLO-
DAP (Key et al., 2004), with a reference year of 1995. An imposed trend at the boundary scales
the anthropogenic component of DIC in proportion to the rise of atmospheric CO2 since 1995.
Time-dependent atmospheric pCO2 is also used for as surface boundary condition for air-sea gas
exchange. Aside from the boundary DIC, the only non-stationary forcing of the model solution
comes from the physical boundary conditions and surface forcing (Renault et al., 2019).

In order to ensure the integrity of tracer relationships along isopycnal surfaces, we map the
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Figure 1: Schematic structure and physical configuration of ROMS-BEC biogeochemical model.
(a) The main ecosystem state variables and fluxes. (b) Geographic scale of simulation, and sources
of surface forcing, open boundary condition data and representations of benthic nutrient fluxes.
The oceanic lateral boundary conditions are applied in a dx = 12 km outer domain, within which
the dx = 4 km subdomain is nested.

biogeochemical boundary conditions from source data to the model grid using density rather than
depth as the vertical coordinate, while retaining the mean-seasonal values of T and S (hence den-
sity) along the boundary as specified in the physical conditions (Renault et al., 2019). This prevents
any errors in the depth of isopycnal surfaces inherited from the physical boundary data (Mercator)
from biasing the biogeochemical properties along that surface.

The CCS is among the best-sampled regions of the world’s oceans. Hydrographic sampling
and biological rate measurements have been conducted repeatedly if not routinely along several
sections off the West coast, most notably in the CalCOFI lines in the Southern California Bight,
the Newport Line off Oregon, and Line P off British Columbia, the latter being at the northern
edge of the 4 km model domain. Despite the abundant datasets from this region, data density is
still sparse for much of the central California coast and for many biogeochemical properties of
interest (e.g., Fe). The total number of profiles in the World Ocean Database are plotted for NO−3
and O2 over the entire historical data period (1955-2013; Fig. 3). In addition to these climato-
logical databases, we use specific repeat hydrographic lines in the Southern California Bight, off
Monterey Bay, California and Newport, Oregon to evaluate the vertical and cross-shelf structure
of biogeochemical variables at greater resolution.

To facilitate comparison of model outputs to data, and particularly seasonal cycles, we de-
fined 6 regions (Fig. 3), dividing the CCS by distance from the coast into nearshore (0-100 km)
and offshore (100-500 km) regions, and by latitude into the Northern, Central and Southern CCS.
These designations are somewhat arbitrary, but are based on a combination of topographic de-
lineations and to ensure adequate data coverage in each region. Locations of the primary repeat
hydrographic lines and regional boundaries used for model analysis are also shown in Fig. 3. High
frequency biogeochemical measurements from moorings are generally available only for more
recent periods, and primarily from nearshore environments. We therefore focus our validation
efforts on broad-scale measures that can be evaluated from climatological databases, namely the
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Figure 2: Parameterized fluxes of iron and nitrate between the water column and sediments. (a)
The Fe efflux (in mmol m−2 yr−1) to the water column from the sediments. (b) The nitrate flux
from the water column to the sediments due to net denitrification in sedimentary pore waters. Both
fluxes are parameterized as a function of bottom water O2 (for Fe and N ) and organic matter flux
to the seafloor (N only). The maps are therefore part of the model solutions, and not prescribed
forcings.

2013 World Ocean Database (downloaded from https://www.nodc.noaa.gov/OC5/WOD13/), and
its objectively-mapped climatological representation, the World Ocean Atlas (WOA; Garcia-Reyes
et al. (2014)). Comparison to mooring data is left for planned downscaling of these simulations
better suited to examine high-frequency variability.

3 Results
We describe the spatial patterns and temporal variability of model biogeochemical solutions and
their fidelity to observational datasets. Of the numerous properties and rates of the biogeochemical
system that are predicted by the model, we focus on those that are most important to the overall
elemental cycling of carbon, nitrogen, and oxygen, and are best observed over scales captured by
the model. Our analysis begins with surface rates of air-sea CO2 flux and net primary productivity
(NPP), followed by the factors limiting NPP, including nutrients and light. We then evaluate the
rates and efficiency of organic matter exported to depth and the accumulated signature of its respi-
ration in deeper waters that lead to hypoxic and corrosive conditions in the thermocline. Aspects
of the model solution that are not presented include nutrients that are not limiting, rates that lack
large-scale and climatological datasets, and variability that is poorly resolved by a dx = 4 km
model (e.g., submesoscale and nearshore phenomena).
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Figure 3: Hydrographic data density used for model validation. Observations in the World Ocean
Database are binned in a regular 1o latitude/longitude grid for each month over the entire historical
data period (1955-2013). Total number of months with a profile are shown for NO−3 (left) and
O2 (right). Nominal station locations for major repeat hydrographic lines used for validation (see
Fig. 17) are shown (red circles), along with the boundaries (black lines) used for regional time
series comparisons in Figs. 6, 7, 15, and 21.

3.1 Photic Zone
3.1.1 Chlorophyll and Net Primary Production

We begin with an evaluation of model distributions of Chlorophyll-a (hereafter Chl), and Net
Primary Productivity (NPP), both of which are estimated from remote sensing of ocean color.
While NPP is of greater biological significance, its estimation is more indirect than for Chl.

The model Chl concentrations are governed by the product of biomass and the C : Chl ratios.
Biomass is subject to advection and to ecosystem transformations (see Appendix). The C : Chl
ratio is determined by photoacclimation, or the amounts of light-harvesting pigments and photo-
protective compounds produced by phytoplankton in response to their growth environment. This
process is included in the ROMS-BEC representation of phytoplankton physiology following the
model of Geider et al. (1998), which relates changes in chlorophyll synthesis and nutrient uptake
in response to changing PAR. The dominant patterns of Chl are also found in biomass (see below),
indicating that photoacclimation is not the leading factor in Chl variability. While biomass may
be a more ecologically meaningful comparison, we validated model solutions using Chl because
it is directly estimated from ocean color. The frequency distribution of Chl in both ROMS and
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SeaWIFS is approximately log-normal and is mapped after logarithmic transformation.
The annual mean concentrations of Chl vary most strongly in the cross-shore direction, with

relatively weak alongshore gradients, a well-known pattern in observations (Banas and Hickey,
2008) that is well represented by the model (Fig. 4a,b). The offshore drop-off in Chl is some-
what weaker in model simulations, resulting in a wider band of high coastal Chl, a tendency that
is not reflected in NPP (discussed immediately below). Kessouri et al. (2019) shows that there
is some sensitivity in these distributions to model resolution, with higher resolution increasing
the nearshore biomass and productivity. The leading pattern of variability in climatological Chl is
characterized by a seasonal cycle that is also largely synchronous along the coast. The leading Em-
pirical Orthogonal Function (EOF) (Fig. 4d,e), has Chl reaching peak values in late summer, and
it accounts for the large majority of the climatological variance in both observations (EOF1=64%
variance) and model solutions (EOF1 = 69% variance). The second EOF (not shown) also has a
similar loading pattern, but with more meridional structure offshore and a minimum in spring but
accounts for only 13% and 19% of the variance, respectively. The seasonality of Chl reveals anti-
phased cycles between nearshore high-Chl band and the lower Chl offshore. While near-shore
Chl peaks in late summer, the offshore surface Chl has a minimum. This pattern is not found in
the EOFs of depth integrated NPP, indicating that the dipole structure of the Chl pattern results
from a vertical redistribution of Chl to greater depths in offshore waters as they become more
oligotrophic due to nutrient uptake during summer months. This interpretation is confirmed in the
analysis of the vertical Chl maximum (Sec. 3.1.2).

In BEC the net primary productivity (NPP) depends on the sum of j model phytoplankton
biomasses (Bj), their maximum growth rates (µmax(T ) = µ0 T

1.06), and the limitation of those
rates by light (0 ≤ γj(I) ≤ 1) and the minimum Michaelis-Menten function λi,j (0 ≤ λi,j(Ni) ≤
1), among the i nutrients with half-saturation Ki,j (0 ≤ λi,j(Ni) ≤ 1), written as

NPP = Σi,j µmax j(T ) γj(I) min[λi,j(Ni) ]Bj . (1)

The spatial patterns of modeled NPP fall within the range of satellite-derived estimates (Fig. 5).
The two commonly used satellite-based algorithms are the vertically generalized production model
(VGPM) (Behrenfeld and Falkowski, 1997) and the carbon-based productivity model (CbPM)
(Westberry et al., 2008). The VGPM estimates productivity on the basis of light and chlorophyll
concentrations, calibrated to a predominantly coastal radiocarbon incubation dataset. The CbPM
additionally incorporates phytoplankton backscattering and growth rate relationships in order to es-
timate productivity as a function of phytoplankton biomass, and it is calibrated to subtropical gyre
radiocarbon incubations. The two algorithms exhibit a relatively wide range for the CCS region,
reflecting the considerable uncertainty in “empirical” NPP estimates as well as differences in the
measurements underlying each. The VGPM algorithm has a larger offshore gradient, with higher
coastal values, and lower values in the open ocean, compared to the carbon-based CbPM. NPP
rates from ROMS-BEC generally fall between the two remote sensing products, but are generally
closer to the values of the VGPM algorithm, supporting higher near-shore rates, lower offshore
rates, and increased seasonality relative to the CbPM. The VGPM has been explicitly calibrated
against radiocarbon bottle incubations from the CalCOFI program, and it is therefore likely to be
more accurate in this region (Kahru et al., 2009). Indeed, we find that ROMS-BEC rates and distri-
butions of productivity are also consistent with direct estimates from the ship-based data both from
CalCOFI (Fig. 5; Munro et al. (2013)) and the broader subtropical Northeast Pacific (Palevsky
et al., 2016).
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Productivity in the northern CCS has been consistently biased in regional models (Banas and
Hickey, 2008), including in our initial simulations. We conducted simulations with and without
lateral nitrogen fluxes at the Strait of Juan de Fuca imposed as boundary condition from model
simulations by Davis and Martı́n (2014). Consistent with that study, without the nutrient inputs
from the Salish Sea, NPP was biased low by > 50%. The inclusion of the effects of N inputs at
the Juan de Fuca Strait brought the model much closer to satellite-based empirical models. The
inclusion of these inputs is consistent with the study by Davis and Martı́n (2014), and it is used in
all results reported here. Non-nitrogenous nutrients, including Fe, were not available for inclusion
in fluxes from the Strait of Juan de Fuca.

The seasonal cycle of NPP is also well captured by the model (Fig. 6). In all 6 regions of
the CCS, the climatological NPP, integrated over the depth of the photic zone and averaged over
the regional mask, exhibits an amplitude and phasing that is within the range of satellite-based
empirical models. The most notable exception is the offshore Northern domain, where a spring
bloom is predicted to be of stronger magnitude than estimated by either satellite product. This
model result is consistent with measured geochemical tracers, which also indicate the spring bloom
in the offshore Northeast Pacific is greater than estimated from the satellite algorithms (Palevsky
et al., 2016). A smaller discrepancy occurs in the southern nearshore region, where ROMS-BEC
generates greater summer production than either of the satellite algorithms. Model NPP in the
oligotrophic part of the domain is lower than satellite estimates, but is more consistent with the
most offshore values in the depth integrated rates based on radiocarbon bottle incubations from
CalCOFI. Overall, where and when ROMS-BEC and satellite algorithms for NPP disagree, ROMS-
BEC output is generally closer to the available observational data.

3.1.2 Seasonal limitation of productivity by light and nutrients

To evaluate the role of environmental factors shaping the seasonal cycle and regional differences
in rates of productivity, we computed monthly mean limitation factors for each of the environmen-
tal variables that modulate the maximum growth rates, including macronutrients (NO−3 , PO3−

4 ,
Si(OH)4), Fe, and light; see (1). By construction, growth rates are limited by only one nutrient
at a time (Liebigs Law of the Minimum), such that only the lowest value has an influence on rates.
Light operates as a multiplicative factor on nutrient limitation, while temperature influences max-
imum growth rate, but is not considered a limitation factor in the upper ocean, so is not analyzed
here. Over a climatological seasonal cycle, small plankton growth rates are almost always reduced
by light more so than by nutrients, regardless of season or location (Fig. 7). The small plankton
are assumed to have a lower half-saturation constant for nutrients, and the resulting higher affinity
makes them less prone to nutrient limitation than large plankton are. Thus, in the inshore regions
where nutrients are high, light is always limiting. Offshore, nutrients can limit small phytoplank-
ton to a similar degree as light in the summer. However, large phytoplankton make up ≈ 90% of
modeled net primary productivity on average, and large phytoplankton (“diatoms”) are primarily
limited by nutrient availability. In the model, this results from a nutrient supply by combined wind-
induced upwelling and eddy-induced subduction (Gruber et al., 2011; Nagai et al., 2015; Renault
et al., 2016a) that are unable to saturate the potential net uptake of nitrogen by phytoplankton at
prevailing light levels.2 Large phytoplankton only experience light limitation in the northern CCS,

2 Significant eddy fluxes also occur due to submesoscale eddies and fronts in the CCS (Kessouri et al., 2019).
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where the seasonal cycle alternates between winter light limitation and nutrient limitation for the
rest of the year.

While on the regional scales used for this analysis N limitation appears more stringent than Fe
limitation throughout the CCS, significant Fe limitation occurs on smaller scales and shorter du-
rations (see below). The seasonal amplitude of plankton growth rates is relatively small (≈ 10%),
indicating that the amplitude of seasonal production (≈ 100%) is governed by seasonal controls on
biomass rather than growth rates. The trade-off between light and nutrient limitation spatially and
seasonally is a ubiquitous feature of phytoplankton distributions and phenology. Moving deeper
in the water column, light becomes more limiting as photosynthetically active radiation (PAR,
light of 400 - 700 nm wavelengths) is absorbed and scattered, while nutrient concentrations are
greatest below the surface mixed layer and rapidly decrease upward across the seasonally variable
pycnocline; i.e., there is a well-defined nutricline.

The competing influences of nutrient and light limitation on depth of optimal plankton growth
are reflected in the depth of the deep chlorophyll maximum (DCM). In the CCS, the depth of the
DCM deepens from the coast to the open ocean, suggesting that the optimal combination of light
and nutrients is found deeper offshore, consistent with a deepening nutricline that intensifies nu-
trient limitation at the surface and light limitation where nutrients are abundant for both small and
large phytoplankton. We use the observed pattern of the DCM depth as an indicator of whether
the model achieves a realistic trade-off between these two countervailing growth condition gra-
dients (Fig. 8). However, for DCM depth to be a reliable indicator of phytoplankton growth rate
trade-offs, we must rule out two simpler interpretations relating to isopycnal advection and pho-
toacclimation. First, the offshore deepening of the DCM can have a physical origin. Because it
closely follows the plunging of isopycnal surfaces offshore, the vertical peak in biomass and as-
sociated chlorophyll could be caused by eddy subduction carrying high surface chlorophyll away
from the coast along deepening isopycnals (Gruber et al., 2011; Nagai et al., 2015; Renault et al.,
2016a). To evaluate this possibility, we compared the depth of plankton biomass to the depth at
which the product of light and nutrient limitation terms are maximized (Fig. 8). The two maps are
virtually indistinguishable, suggesting the DCM follows growth rates rather than advection. As a
more stringent test, we performed a short (5-year) simulation in which surface PAR was reduced
by 10%. The results revealed a significant shoaling of both the biomass and Chl peaks, but no
detectable change in isopycnal depths, confirming that these depths do in fact reflect a nutrient-
light trade-off rather than advection along density surfaces. Second, the peak depth of Chl may
also be decoupled from that of biomass and growth rates due to photoacclimation, or a shift in the
amounts of light-harvesting pigments and photoprotective compounds produced by phytoplankton
in response to the light-environment. This process is included in the ROMS-BEC representation
of phytoplankton physiology following the model of Geider et al. (1998), which relates changes
in chlorophyll synthesis and nutrient uptake in response to changing PAR. Indeed, we find that the
depth of the DCM is slightly deeper than that of the maximum plankton biomass. However, the
offshore and latitude gradients of the depth of peak biomass and chlorophyll are very similar. DCM
deepening offshore is consistent with optimized growth conditions in the model, and reproduce the
pattern observed in the available CalCOFI data (Fig. 8).

Thus, we take this correspondence to indicate that the model adequately captures the essential
trade-off between light and nutrient limitation. Growth rates are modulated by a complex and
evolving pattern of nutrient limitation by reactive nitrogen (NO−3 + NH+

4 ) and soluble dissolved
Fe, with no appreciable limitation by Si(OH)4 and PO3−

4 in the CCS. The limitation factors are
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mapped as a biomass-weighted fraction of time that each of the nutrients is most limiting (Fig. 9).
The spatial pattern among nutrients largely reflects the areas where NO−3 supply routinely exceeds
maximum potential uptake seasonally. Thus, the waters entering the CCS from the subarctic High
Nutrient – Low Chlorophyl (HNLC) region are most frequently Fe limited. Along the coast, the
seasonal upwelling of excess nitrogen leads to significant periods of Fe limitation as well. In the
coastal zone off Monterey Bay, Fe limitation has been diagnosed via incubation experiments, in a
band of water slightly offshore, with nitrogen limitation both in more shoreward and open coastal
zones (Firme et al., 2003). This pattern is consistent with that predicted by the model (Fig. 9b
inset). Most of the rest of the model domain is perpetually nitrogen limited.

3.1.3 Nutrient concentrations

Surface nutrient concentrations provide an important measurable test of system behavior. For
nutrients that limit phytoplankton growth, accurately simulating their distributions is a necessary
condition for a mechanistic prediction of NPP. Moreover, they provide an integrative measure of
net community production (equal to NPP less community heterotrophic respiration) and export of
organic matter to the thermocline. We therefore compared model predicted distributions of the
two primary limiting nutrients, NO−3 and Fe, to available observations. Coastal measurements of
dissolved Fe reveal a spatially patchy distribution, reflecting its short residence time with respect
to removal by plankton uptake and particle-active scavenging. Existing data are too sparse to yield
a clear climatological pattern for model validation. However, the primary coastal region where the
model predicts most frequent Fe limitation, in the central CCS, has been relatively well sampled,
including on two cruises off Monterey Bay that also tested for Fe limitation (Firme et al., 2003);
see Fig. 9, inset). Given the lack of a clear large-scale pattern of surface Fe levels, we used a
more statistically-based validation metric, focusing on the relative frequency of Fe measurements
versus concentration and distance from the shore (Fig. 10). On average, the data and model both
show a decline in the mean and median Fe levels with offshore distance. This reduction is driven
largely by the decreasing frequency of high concentrations, while the most commonly observed Fe
levels remain consistent at ≈ 0.5 10−6 mol m−3 regardless of distance from shore. The thinning
tail of high concentrations in Fe distribution with cross-shelf distance occurs in both modeled and
observed fields, but is more pronounced in the measurements.

In the CCS, the nutrient most often limiting NPP is reactive nitrogen, of which by far the largest
and most commonly measured pool is nitrate ([NO−3 ], hereafter simply N). We therefore compare
the model simulated patterns of NO−3 to climatological values from the World Ocean Database
(Fig. 11). A depth of 50 m is chosen because it approximates the average depth of maximum
biomass and NPP (see Fig. 8). We included all historical measurements for this analysis because
the data density in the model period (1994-2010) was much sparser, and no significant differences
were found between the average N in this period relative to 1955-2013. ROMS-BEC captures
regional patterns well for NO−3 (Fig. 11). Annual mean concentrations of ≈ 15 mmol m−3 along
the coast decline to values below the half-saturation level for model diatom growth (N < 1 mmol
m−3) within 500 km from shore. The offshore gradient is similar throughout most of the CCS,
except the Southern California Bight (SCB) where coastal surface values are much lower. Similar
model fidelity was found for other macronutrients (Si(OH)4, PO3−

4 ), but not shown because they
do not reach limiting concentrations. The coastal zone exhibits strong variability in N at the base
of the photic zone (50 m), with standard deviations of 5-10 mmol m−3 throughout most of the
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coastal zone, but with a slight northward increase in variance (Fig. 11c). The variability of N in
the climatology (WOA) exhibits a similar spatial pattern, but with ≈ 50% of the magnitude. Thus,
approximately half of the variation in surface nutrients most commonly limiting NPP is associated
not with the seasonal cycle, but with interannual variability. The model also reproduces observed
magnitudes and patterns of NO−3 variability (Fig. 11d). We use the interannual anomaly fields in
the model and in observations to test the importance of nutrient supply as a mechanism driving
changes in NPP over time.

3.1.4 Interannual variability in NPP

Factors that limit NPP during the mean seasonal cycle may drive interannual and longer term
productivity changes. We examined correlations between NPP and both light and nutrient concen-
trations in model simulations and observations, where available. Interannual anomalies in NPP in
ROMS-BEC are found to be well correlated (R2 ≈ 0.5) to the density of water below the photic
zone (100 m) (Fig. 12). This reflects the role of pycnocline heave and vertical mixing in supplying
macronutrients, and alleviating local nutrient limitation. Observations show a similar magnitude of
correlation in the southern and central CCS, but a weaker correlation to the north. This may reflect
the role of nutrient supply processes that are either missing or represented only climatologically
in our model, and not connected to pycnocline heave. Because the weaker correlations are in the
northern domain where nutrients can enter from subarctic surface waters, the climatological NO−3
used for the boundary conditions is a likely culprit. However, the presence of river N sources or
a variable Juan de Fuca flux could also weaken the correlation in the observations relative to the
model.

Predicted correlations between NPP and density can be tested directly from hydrographic ob-
servations in the southern CCS. Relationships between nutrient and density anomalies (subtract-
ing the mean seasonal cycle), are of similar strength, accounting for ≈ 50% of the variability in
both CalCOFI observations and model simulations (Fig. 13). Interannual anomalies in NPP in
ROMS-BEC are also significantly correlated with surface PAR due to variable cloudiness, though
it accounts for a smaller fraction of the variance (≈ 20%). The role of light is confined closer to
the coastal upwelling where surface NO−3 is high, and light availability thus limits phytoplankton
growth.

3.1.5 Remineralization and export of carbon from the photic zone

Of the net production of organic matter by phytoplankton, a substantial fraction can be respired
by zooplankton and higher trophic levels. The remainder is available to be transported away, by
particle sinking and transport of dissolved organic matter, e.g., via eddy subduction (Sec. 3.1.2).
The fraction of NPP that is regenerated within the surface ocean depends on food web processes,
such as grazing rates. Although data is not available to evaluate large-scale patterns of grazing
rates, an indirect comparison can be made through the export flux and the fraction of NPP that
is exported in sinking particles rather than recycled (the so-called pe-ratio (Dunne et al., 2005;
Murray et al., 1196)).

The fraction of NPP that is exported varies from 5-25%, consistent with the range of val-
ues inferred in field studies (Fig. 15). The model predicts highest pe-ratios in the coastal zone,
where productivity is high and sea surface temperature relatively low. These dependencies are also
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consistent with those inferred from a global analysis of rate measurements for NPP and Net Com-
munity Production (NCP, assumed equal to total export of both particulate and dissolved organic
carbon) (Dunne et al., 2005). For a more quantitative comparison, we compared modeled pe-ratios
to those predicted by a statistical model fit to global observations by Dunne et al. (2005), over the
seasonal cycle in each of our 6 standard CCS regions (Fig. 15). In both the empirical model and in
ROMS-BEC, the mean value, phasing, and seasonal amplitude of changes in pe-ratio are similar.
Empirically based estimates generate a similar result even when sea surface temperature is held
constant, suggesting that the trophic mismatch between phytoplankton growth and zooplankton
grazing is the primary reason for variable pe-ratios, a prediction that is also consistent with model
behavior.

Annual mean export flux represents the transfer of biogenic material from the surface to depth,
and thus the influence of CCS productivity on air-sea CO2 flux and thermocline properties. Model
simulated export production ranges from ≈ 1−10 molC m−2 y−1 (Fig. 15b). Few measurements of
export or net community production are available to evaluate the overall pattern of this flux. In the
SCB region, measurements ofO2 have been used to estimate NCP rates of 3 - 17 (mean 6.5) mol C
m−2 y−1 (Munro et al., 2013), in line with modeled rates and with similar spatial patterns of export
(greatest along the Northern coast of the SCB). Munro et al. (2013) also combine information from
15N uptake experiments and nitrate based new production ratios (Dugdale et al., 1992; Eppley et al.,
1992) with radiocarbon incubations to generate very similar estimates of the magnitude and spatial
variability of production in the SCB. Particle export based estimates of export (neglecting the role
of dissolved carbon) are lower than observed NCP as well as ROMS-BEC export, 2 - 4 mol C
m−2 y−1 (Collins et al., 2011; Stukel et al., 2011), though enhanced particle export associated with
mesoscale fronts (2 - 3 times greater rates over smaller spatial and temporal scales (Stukel et al.,
2017)) highlights the potentially important role of subduction by eddies and fronts in explaining
mismatches between observations. Importantly, ROMS-BEC generates such mesoscale features
which contribute to model export estimates. Model export production is also similar to regional
nutrient budget analyses which suggest NCP averaging 7 - 9 mol C m−2 y−1 over the broader
CalCOFI region (Roemmich and McCallister, 1989; Bograd and Lynn, 2001). Similar nutrient
budget analysis indicates that annual NCP should be ≈ 17 mol C m−2 y−1 off Monterrey Bay,
again in line with ROMS-BEC estimates of export for that region (Fig. 15b). As noted above, the
fidelity of modeled nitrate distributions across the model domain provides a critical broad-scale
measure of net biological drawdown, and thus of net community and export production.

Surface oceanCO2 partial pressure and sea-to-air flux is reduced by net community production,
increased by surface heat flux, reduced by freshwater fluxes, and modulated by upwelling and
lateral circulation. It thus represents another important metric of overall system function. The
role of the CCS and its sub-regions in the atmosphere-ocean balance of CO2 has previously been
investigated in several studies, both empirically (e.g., Hales et al. (2012)) and in models (e.g.,
Fiechter et al. (2014); Turi et al. (2014) and references therein). We evaluated the patterns of
annual mean and summertime surface pCO2 in the model hindcast simulation against observations
in the SOCATv6 database from 1995-2010 (Bakker and coauthors, 2016), and the associated air-
sea fluxes over the modeled coastal region. Similar to observations over the simulated period,
strong CO2 supersaturations are simulated in a narrow band of coastal water within about 100 km
of the shore. The values are highest along the central coast (35N-43N), lowest in the northern CCS,
and intermediate in the southern domain. The highest values are associated with major topographic
features, as previously noted by (Fiechter et al., 2014). The lack of apparent regional or seasonal
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bias in the the surface pCO2, together with the good model-data agreement in surface buoyancy
fluxes (Renault et al., 2019) and biological rates in these simulations (above), suggests that the
balance of processes regulating the model’s surface CO2 fluxes is reliably captured. Consistent
with previous studies, the net integrated CO2 flux to the atmosphere (an uptake of 1.4 TgC/yr;) is
found to be a relatively small residual of larger compensating outgassing and ingassing fluxes. The
fact that our model predicts a larger net uptake is likely a result of the fact that its domain extends
farther to the northern CCS where the combination of cold water and fresh water forcing suppresses
surface pCO2. A detailed accounting of factors driving pCO2 and air-sea flux variability has been
described by (Fiechter et al., 2014; Turi et al., 2014). An extension of that analysis to the northern
CCS domain with stronger freshwater forcing is left to future work.
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Figure 4: Mean annual Chlorophyll (Chl)and its seasonal cycle. Mean annual concentrations
(upper panels) are shown in mg m−3 averaged over the simulation period in both model output
and SeaWIFS remote sensing level 3 product. The seasonal cycle is shown as the spatial loading
patterns (middle panels) and time series (bottom panel) of the first EOF of climatological values of
log 10[Chl]. In both the mean annual and seasonal variations of Chl, the dominant variations are
cross-shore and at Point Conception, which separates the central CCS from the SCB. High coastal
Chl extends further offshore in model solutions than in observations, a bias that is not found in
productivity (Fig. 5).
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Figure 5: Spatial distribution of annual Net Primary Productivity (mol C m−2 yr−1) integrated over
the depth of the photic zone, from (top left) ROMS, (top right) CalCOFI, (bottom left) VGPM, and
(bottom right) CbPM.
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Figure 6: Seasonal cycle of annual Net Primary Productivity. The NPP rate (mol C m−2 yr−1)
from ROMS-BEC (black), and two satellite algorithms (VGPM, blue; CbPM, red) are integrated
over the depth of the photic zone, and averaged over 6 regions (see Fig. 3) from northern (top row),
central (middle row), and southern (bottom row) of the CCS, and divided by distance from the
coast into a nearshore (0-100 km; right column) and offshore (100-500 km; left column).
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Figure 7: Seasonal cycle of growth limitation factors for light (γ term in (1), blue) and for nutrients
(λ term in (1): NO−3 (green) and Fe (red) for diatoms (dashed) and small phytoplankton (dotted)).
Factors are NPP-weighted and averaged over the photic zone for each region shown in Fig. 3.
Limitation factors close to 1 mean no limitation; values close to 0 mean complete limitation.
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Figure 8: Depth of the vertical maximum of Chlorophyll in CalCOFI (panel a) and ROMS (panel
b), and of model diatom biomass (panel c) and nutrient limitation factor (panel d). The correspon-
dence between model fields demonstrates that the model DCM tracks the nutrient limitation, while
the fidelity to observations implies the model captures a realistic trade-off between nutrients and
light limitation.
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Figure 9: Frequency of limitation by N (left) and Fe (right) for the models dominant primary
producer, diatoms. The limitation factors are weighted by biomass (as in Fig. 7), using 5-day
output, and plotted as the fraction of time that each nutrient limitation factor is the lowest among
nutrients. The inset shows offshore band of relatively frequent Fe limitation along the central
CCS, as observed by (Firme et al., 2003).
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Figure 10: Histogram of surface Fe concentrations (10−6 mol m−3) from observations (left) and
ROMS (right). Because Fe concentrations are patchy in nature and sparsely observed, values are
binned by distance from shore (0-20 km, upper row; 20-40 km middle row; 40-60 km lower row)
to reveal a cross-shelf gradient, in the same latitude band off Monterey Bay for which observations
were made on summer cruises (Firme et al., 2003).
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Figure 11: Long-term mean and historical variability of nitrate (mmol m−3) near the base of the
photic zone (50 m) in a) ROMS, and b) WOD. Variability is mapped as the standard deviation and
consists of roughly equal contributions from seasonal and interannual variability (see text). The
full period of the World Ocean Database (1955-2013) is used to yield the most robust estimate of
variance.
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Figure 12: Correlation (R2) between NPP and density, from ROMS-BEC (left) and CalCOFI mea-
surements. The NPP rate is integrated over depth from 14C bottle incubation data, and density is
interpolated to 100 m as an index of nutrient supply (see Fig. 12). In both variables, the mean
seasonal cycle is removed leaving interannual variations. Relationships have similar strength in
data and model, and indicate that ≈ 50% of interannual variability in NPP can be attributed to
anomalous nutrient supply due to pycnocline heaving.
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Figure 13: Correlation (R2) between NO−3 and density at 100 m depth in ROMS-BEC (left) and
WOD (right). For both variables, the mean seasonal cycle is removed leaving interannual varia-
tions. Interannual variations in subsurface (100 m)NO−3 highly correlated with density (R2 ≥ 0.8)
in most of CCS. Correlation is weaker in northern CCS in data than in model.
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Figure 14: Surface ocean CO2 partial pressure (ppm) and air-sea flux (mol m−2 yr−1). (a) Annual
surface pCO2 from ROMS. (b) Surface pCO2 from SOCATv6 gridded coastal dataset, averaged
over all months from 1995-2010. (c) Annual air-sea CO2 flux from ROMS. Negative values indi-
cate outgassing to the atmosphere.
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Figure 15: Annual mean and seasonal cycle of fraction of NPP that is exported in sinking particles
(i.e., pe-ratio; colored lines), and the export flux (mol C m−2 yr−1; black line). Values diagnosed
from model simulations (red line) are compared to an empirically derived algorithm (Dunne et al.,
2005) based on Chl and SST (blue line), and from the same algorithm applied with constant SST
(green line). Observed annual net community production, which should approximate export on an
annual basis are measured to 5-10 mol C m−2 yr−1 (Munro et al., 2013).
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3.2 Thermocline
Here we test the model’s representation of biogeochemical properties below the mixed layer and
photic zone, i.e., in the thermocline. We focus on distributions and variability of O2 and aragonite
saturation state (ΩA) as these properties influence habitability for calcification and aerobic respi-
ration by marine animals. The values of ΩA are calculated from model dissolved inorganic carbon
(DIC) and total alkalinity (Alk) using carbonate system equilibrium equations (CO2SY S) (van
Heuven et al., 2011). The variability of O2 has been analyzed in greater detail using previous sim-
ulations of this model with different atmospheric and physical boundary conditions (Durski et al.,
2017).

To evaluate the vertical structure of biogeochemical tracers, we turn to repeat hydrographic
sections (Fig. 17). Transects through three cross-sections spanning the Southern California Bight
(CalCOFI line 80), the central California coast (MBARI line 67), and the central Oregon coast
(Newport line) show the typical vertical and cross-shelf gradients of NO−3 and O2. The downward
enhancement of NO−3 and depletion of O2 is a signal of the broad-scale vertical redistribution of
these elements by the formation and degradation of organic matter within the CCS, as well as the
gradients imported from the Pacific basin through the boundary conditions. The shoaling of the
isopleths of both quantities follows that of the isopycnal surfaces by upwelling along the coast. The
distributions of NO−3 and O2 are generally well reproduced by ROMS-BEC. The model somewhat
underestimates the slope of these isopleths very nearshore. This tendency is also reflected in, and
likely derived from, the same underestimate in the zonal tilt of isopycnal surfaces (Renault et al.,
2019).

Along isopycnal surfaces, O2 generally increases with latitude and with distance from shore,
reflecting the contrasting properties carried by the broad offshore California current from the O2-
rich subarctic, and the narrow near-shore California Undercurrent that transports low-O2 waters of
tropical origin northward along the slope. Both northern and southern end-member water types can
be seen on the isopycnal surface 26.5 (Fig. 18), which also comprises the source of water upwelling
onto the continental shelf along much of the US west coast (Pierce et al., 2012). On this and other
density surfaces, the distribution of O2 in ROMS-BEC is consistent with climatological observa-
tions, suggesting that the balance of distinct water masses and the respiratory modifications they
experience in the interior of the domain are relatively well represented in the model. Thermocline
nutrient distributions exhibit a similar model skill (not shown).

TheO2 in the thermocline of the CCS is highly variable, with standard deviations of ≈ 20 mmol
m−3 that are on average 15-20% of the mean O2 across the historical measurements (Fig. 18). The
magnitudes and patterns of variance are well captured by the ROMS hindcast. In both the model
hindcast and in observations, the standard deviation of monthly O2 is ≈ 5 times larger than that
of the climatological seasonal cycle. Thus, a large majority of the O2 variability is explained by
non-seasonal time-scales, including large eddy-driven fluctuations (Frenger et al., 2018) and low-
frequency climate variability (Buil and Lorenzo, 2017; McClatchie et al., 2010). Both model and
observations indicate that O2 variation peaks slightly offshore, in a pattern resembling that of eddy
kinetic energy. The high interannual to decadalO2 variability observed in the central North Pacific,
which reaches its maximum on the isopycnal 26.5, is not included in the climatological boundary
conditions, and thus likely accounts for the model bias toward low O2 variance in the north of the
domain.

Variations inO2 on depth surfaces in the thermocline are also dominated by interannual anoma-
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lies. The fluctuating O2 at depths of 100-200 m are highly correlated with density (R2 ≥ 0.5)
throughout the CCS, reflecting the importance of isopycnal heaving of the background O2 gradi-
ent. Similar correlations are observed in ROMS and World Ocean Database (Fig. 19). In the model,
the largest such anomaly is associated with the ENSO event in 1997-98, in which deepened isopy-
cnals yield high O2 conditions that last for ≈ 1 year. The signal is recorded in the central CCS as
well, although the magnitude of the anomalies is reduced by ≈ 50% relative to the better-sampled
event in the SCB. The variability of O2 within an isopycnal surface can be used to account for this
portion of variance, leaving only lateral circulation and respiration. We find that along σθ = 26.5
kg m−3, a large fraction of O2 variability is correlated with salinity (Fig. 16), commonly used as a
proxy for tropical low-oxygen and high-salinity water transported poleward in the coastal under-
current (Meinvielle and Johnson, 2013). Interannual variability in respiration rates on this surface
also account for ≈ 20% of isopycnal O2 variance, and is in turn correlated with the depth of the
density layer (Deutsch et al., 2011). Historical observations show a declining strength of correla-
tion between S and O2 with latitude, suggesting that variability from dynamics other than the CUC
become an increasingly important source of O2 variability to the north. Indeed, the variability of
O2 in central mode water from the open North Pacific is most pronounced on this density surface,
but is not represented in the model boundary conditions. Thus the relatively constant correlation
between S and O2 across latitude in the model may stem from the lack of isopycnal variance en-
tering the domain from the open North Pacific. A complete attribution of the observed magnitudes
of O2 variance in source waters to the CCS will require inclusion of anomalies entering from the
broader North Pacific and is left for future work.

In addition to low coastal O2, the CCS is characterized by shallow depth horizons for aragonite
saturation (Fig. 20). Below ≈ 100 m depth,CO2 concentrations are commonly undersaturated with
respect to aragonite mineral formation, and thus inhibit shell formation by calcifying organisms.
The aragonite saturation state, ΩA, is predicted to fall below saturation (ΩA < 1) along most of the
coast in summer, consistent with observations in NOAA coastal surveys (e.g., Feely et al. (2008)).
Coastal hydrographic surveys reveal a strong mesoscale patchiness to the carbonate saturation
state, likely reflecting mesoscale eddies and submesoscale features. In the multi-annual mean
distribution of ΩA, the model hindcast captures the scale and intensity of undersaturated conditions
well.

Both low O2 and low ΩA have been implicated as primary factors mediating the influence of
climate on organism fitness and species habitat in the CCS. We compare decadal trends in both
these properties from the hindcast simulations to the observed changes over time. For ΩA, the
measurements are too sparse and the distribution too patchy to define a robust trend, even over the
short model period. For each property, time series are shown for the regions with the most data
coverage (Fig. 21): northern CCS for aragonite saturation, and southern CCS forO2. In both cases,
the trend in the data is within the uncertainty in the measurements.

As a metric of variability in these habitat constraints, we computed the volume of water subject
to hypoxic or corrosive conditions. We use a constant O2 level of 100 mmol m−3 as a simple
indicator of hypoxic constraints, recognizing that this value varies among species, and depends
on other factors, including temperature (Deutsch et al., 2015). Corrosive conditions are defined
by simple thermodynamic undersaturation (ΩA < 1), though biological sensitivities may begin at
higher thresholds. Water volumes are computed as the sum of grid cell volumes with O2 < 100
mmol m−3 or ΩA < 1 that are on the continental shelf (− z < 200 m).

The volume of hypoxic and corrosive water in the CCS varies strongly over latitude and time
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(Fig. 22). For both properties, restriction of putative habitat volume is stronger to the north of Pt.
Conception, opposite the latitudinal gradient ofO2 and ΩA. The corrosive volumes are much larger
than hypoxic volumes, exceeding 90% of water volume in northern latitudes during the summer
upwelling season, consistent with NOAA survey data. On an annual basis, waters with a more
stringent criterion for calcification (ΩA < 2) are about twice as voluminous still, primarily because
the length of the season with low carbonate is broadened. Hypoxic conditions occupy a smaller
fraction of shelf waters, but reach 30% of shelf water volume over a broad latitude range. The
fractional coverage by hypoxia peaks around 45◦N, on the Oregon coast, and it is quite small in the
Southern California Bight, where O2 declines most sharply below 200 m rather than on the shelf.

An analogous figure is shown in Renault et al. (2019) for the along-coast and temporal vari-
ability of the sea-surface height and depth of the σθ = 26.5 kg m−3 depth anomalies. Relative
to the quantities shown in Fig. 22, they exhibit more along-coast coherence and a more dominant
seasonal cycle, with less evident interannual variability than shown here, apart from the 1997-98
ENSO event. This indicates somewhat smoother physical fields than biogeochemical ones, reflec-
tive of non-conservative biogeochemical processes acting on top of the broader patterns of physical
circulation influence.

Variability in both habitat constraints is largely synchronous (Fig. 22c,d), reflecting the strong
control on both O2 and ΩA by the effects of cumulative organic matter respiration. For both
volumes, the fractional variation is similar and substantial, reaching ≈ 50% of the mean across
much of the latitude range. Variability of corrosive volumes is greatly attenuated south of Pt.
Conception. Simulated hypoxic volumes increased sharply during the early 2000s off Oregon,
when major ecosystem die-offs were attributed to the onset of extreme hypoxia there (Chan et al.,
2008).
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Figure 16: Correlation coefficient between O2 and salinity anomalies in (left) ROMS, and (right)
WOD along the isopycnal surface σθ = 26.5 kg m−3. Prevailing negative values indicate that high
S occurs when O2 is low. To maximize data availability, the observational correlation is based on
monthly anomalies in WOD from the period 1955-2013. The correlations are of similar magnitude
when confined to the simulated period, 1995-2010, but are only available in the Southern California
Bight.
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Figure 17: Vertical sections of annual mean NO−3 (left) and O2 (right) (mmol m−3), from ROMS
(left) and WOD (right) at the latitudes with regular observations by repeat hydrographic surveys.
The lines span the northern CCS (upper row, ∼ 44.5◦N, nearest the Newport OR), the central CCS
(middle row, MBARI line 67), and the southern CCS (bottom row, CalCOFI line 80). Locations of
observations are shown in Fig. 3.
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Figure 18: Thermocline O2 in model simulations and observations of the climatological mean
(upper) and variance (lower). All maps are interpolated to a potential density surface (26.5) surface
chosen as the density class of waters upwelling onto the shelf in summer (a.k.a. source water). The
meanO2 maps are from summer months (JJA), however other seasons reveal similar model fidelity.
Observed mean summerO2 is from objectively mapped climatology (WOA). Variability is mapped
as the standard deviation of monthly values from the World Ocean Database covering 1955-2013
(lower right), and it is predominantly due to interannual variability rather than the seasonal cycle
(see text).
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Figure 19: Correlation between O2 and density anomalies at 100 m, in ROMS-BEC (left) and
WOD (right). Interannual variations in subsurface O2 are highly correlated with density (R2 ≥
0.5) throughout the CCS, and the strength of the relationship is similar in model and observations.
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Figure 20: Aragonite saturation state (ΩA) at 100 m from observations (left) and ROMS-BEC
(right). Observations are from large-scale objectively analyzed fields (color field, GLODAP2 (Lau-
vset and coauthors, 2016)), and from NOAA coastal surveys in the summer of 2007 (circles, Feely
et al. (2008)). Model distribution is averaged over summer (JJA) from 2004-2010 climatology.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942565
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 21: Trends in thermocline O2 and ΩA over the simulated period. Maps of the linear trend
are shown in upper panels. Time series (lower panels) are shown for the regions with the most
data coverage for each tracer: northern CCS for carbonate, and southern CCS for O2. For ΩA

all available profiles are shown. For O2, the mean value and standard deviation are plotted as
box-whisker for each month in the WOD.
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Figure 22: Top row: mean temperature and temporal trend (C year−1) of water on the shelf (− z <
200 m). Middle and bottom rows: volume of corrosive and hypoxic water over time and latitude.
Water volumes are computed as sum of grid cell volumes with O2 < 100 mmol m−3 (bottom) and
ΩA < 1 (middle) that are on the shelf (− z < 200 m). Mean values for each month are shown in
the left column, and anomalies, computed as a fractional deviation from the climatological mean
monthly volume at each latitude, in the middle column. Trends over time are shown in the right
column.
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4 Conclusions
We present model simulations of ecosystem and biogeochemical cycles in the CCS that reproduce
the broad patterns of processes and states observed in this region over the past couple of decades.
Our results demonstrate that productivity of the CCS reflects a complex interplay of factors. The
limitation by the physical supply and removal of macronutrients (nitrate) provides the dominant
seasonal and spatial pattern of NPP, but with significant constraints from light and Fe on a seasonal
basis, especially in the northern CCS. Interannual variations in NPP are reasonably well predicted
by fluctuations in pycnocline depth that modulate the rates of surface nutrient supply. Expanded
datasets on near-surface Fe concentrations are needed to better establish its role as a limiting
factor for growth in the CCS. A significant correlation between model NPP and surface irradiance
suggests that changes in light are also influential. Together, these results suggest that an index of
NPP that accounts for both regional pycnocline structure and cloud cover would be more skillful
than one based only on coastal winds (e.g., Bakun (1990); Jacox et al. (2018)). Our results highlight
the value of continued measurements of the depth of the chlorophyll maximum.

Biogeochemical properties of subsurface waters in the CCS are also well reproduced by model
simulations. The amplitude of interannual variability in NO−3 at the base of the photic zone and of
O2 in the thermocline are also both strongly correlated to undulations of the pycnocline. The largest
such anomalies in our simulation period were associated with the 1997-98 ENSO event, whose
amplitude of density and O2 anomalies remains coherent over a wide latitude band, albeit with
declining magnitude. ForNO−3 , the overall variance is somewhat lower, and the strength of density
correlations is somewhat higher in model output than in observations in the northern domain. This
suggests an important role for anomalies entering the CCS from the subarctic North Pacific, an
HNLC region. Basin-scale changes in biogeochemical properties are known to be exceptionally
high at the gyre boundary ≈ 45◦N (Mecking et al., 2008), and these remote anomalies are likely
to play an important but uncertain role in the variability observed in the CCS. Evaluating these
remote influences using empirically-based time-dependent biogeochemical boundary conditions is
an important avenue for future research.

The variability of biogeochemical properties leads to significant changes in the volume of wa-
ters characterized by biologically stressful conditions of hypoxia and carbonate undersaturation. In
the volume anomalies for both habitat constraints, there is strong coherence across the CCS. Years
with unusually large volumes of hypoxic or corrosive water offer few obvious latitudinal refuges.
The onset of these conditions tends to propagate from the central CCS (≈ 40◦N), arriving in the
northern CCS with a 2-3 month delay. Thus, monitoring hypoxia and CO2 system parameters in
the central CCS may offer some seasonal predictability for northern ecosystem impacts.
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Codes and Simulation Data The physical and biogeochemical codes used for our simulations
are at https://github.com/UCLA-ROMS/Code. Simulation model output archive data can be made
available by email requests to the Corresponding Authors.
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5 Appendix: Biogeochemical Model
Here, for completeness, we summarize the equations of the Biogeochemical Elemental Cycling
(BEC) model in the implementation used for this work. This formulation is based on the original
version presented in Moore et al. (2004).

5.1 Variables and parameters
Prognostic variables

Name Description Units
NNH4 ammonium mmol N /m3

NNO2 nitrite mmol N /m3

NNO3 nitrate mmol N /m3

NN2O nitrous oxide mmol N/m3

NNO3 nitrate mmol N/m3

PPO4 Phosphorus mmol P /m3

O2 dissolved oxygen mmol O2/m3

Fe iron nmol Fe/m3

SiSiO2 Silicate mmol SiO2/m3

CDIC dissolved inorganic carbon mmol C/m3

Alk total alkalinity mmol/m3

Csp small phytoplankton carbon mmol C/m3

Cdiat diatom carbon mmol C/m3

Cdiaz diazotroph carbon mmol C/m3

Chlsp small phytoplankton carbon mmol Chl/m3

Chldiat diatom chlorophyll mmol Chl/m3

Chldiaz diazotroph chlorophyll mmol Chl/m3

Czoo zooplankton chlorophyll mmol Chl/m3

Fesp small phytoplankton iron mmol Fe/m3

Fediat diatom iron mmol Fe/m3

Fediaz diazotroph iron mmol Fe/m3

Casp small phytoplankton calcium carbonate mmol CaCO3/m3

Sidiat diatom silicate mmol SiO2/m3

Ndon dissolved organic nitrogen mmol N /m3

Pdop dissolved organic phosphorus mmol P /m3

Cdoc dissolved organic carbon mmol C/m3

Fedofe dissolved organic iron mmol Fe/m3
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Local variables

Name Description Units
Jusp,no3 nitrate uptake by small phytoplankton mmol N/m3/s
Jusp,nh4 ammonium uptake by small phytoplankton mmol N/m3/s
Judiat,no3 nitrate uptake by diatoms mmol N/m3/s
Judiat,nh4 ammonium uptake by diatoms mmol N/m3/s
Jgrzsp grazing loss for small phytoplankton mmol C/m3/s
Jgrzsp,dic grazed small phytoplankton routed to DIC mmol C/m3/s
Jgrzsp,doc grazed small phytoplankton routed to DOC mmol C/m3/s
Jgrzsp,poc grazed small phytoplankton routed to POC mmol C/m3/s
Jgrzsp,zoo grazed small phytoplankton routed to new zooplankton

biomass
mmol C/m3/s

Jgrzdiat grazing loss for diatoms mmol C/m3/s
Jgrzdiat,dic grazed diatoms routed to DIC mmol C/m3/s
Jgrzdiat,doc grazed diatoms routed to DOC mmol C/m3/s
Jgrzdiat,poc grazed diatoms routed to POC mmol C/m3/s
Jgrzdiat,zoo grazed diatoms routed to new zooplankton biomass mmol C/m3/s
Jgrzdiaz grazing loss for diazotrophs mmol C/m3/s
Jgrzdiaz,dic grazed diazotrophs routed to DIC mmol C/m3/s
Jgrzdiaz,doc grazed diazotrophs routed to DOC mmol C/m3/s
Jgrzdiaz,poc grazed diazotrophs routed to POC mmol C/m3/s
Jgrzdiaz,zoo grazed diazotrophs routed to new zoo biomass mmol C/m3/s
Jaggsp aggregation loss of small phytoplankton mmol C/m3/s
Jaggdiat aggregation loss of diatoms mmol C/m3/s
J lsp non-grazing mortality of small phytoplankton mmol C/m3/s
Jprodsp,caco3 CaCO3 production by small phytoplankton mmol CaCO3/m3/s
Qdiaz
P :C Diazotroph phosphorus to carbon ratio no units

J lsp,dic non-grazing mortality of small phytoplankton routed to DIC mmol C/m3/s
J lsp,doc non-grazing mortality of small phytoplankton routed to

DOC
mmol C/m3/s

J lsp,poc non-grazing mortality of small phytoplankton routed to
POC

mmol C/m3/s

J ldiat non-grazing mortality of diatoms (mmol C/m3/s)
J ldiat,dic non-grazing mortality of diatoms routed to DIC mmol C/m3/s
J ldiat,doc non-grazing mortality of diatoms routed to DOC mmol C/m3/s
J ldiat,poc non-grazing mortality of diatoms routed to POC mmol C/m3/s
J ldiaz non-grazing mortality of diazotrophs (mmol C/m3/s)
J ldiaz,dic non-grazing mortality of diazotrophs routed to DIC mmol C/m3/s
J ldiaz,doc non-grazing mortality of diazotrophs routed to DOC mmol C/m3/s
J ldiaz,poc non-grazing mortality of diazotrophs routed to POC mmol C/m3/s
J lzoo zooplankton mortality mmol C/m3/s
J lzoo,dic zooplankton mortality routed to DIC mmol C/m3/s)
J lzoo,doc zooplankton mortality routed to DOC mmol C/m3/s
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PAR photosynthetically active radiation W/m2

Jammox rate of NH4 oxidation to NO2 mmol N/m3/s
Jnit rate of NO2 oxidation to NO3 mmol N/m3/s
JWCD amount of NO3 converted to N2 by water column denitrif. mmol N/m3/s
JBD amount of NO3 converted to N2 by benthic denitrif. mmol N/m3/s
Jotherremin reminineralization in the sediments by processes other than

oxic remin.
and denitrif. mmol C/m3/s

Jprodpoc amount of particulate organic C produced mmol C/m3/s
Jprodpic amount of particulate inorganic C produced mmol C/m3/s
JprodPSi amount of particulate organic Si produced mmol Si/m3/s
Jprodpfe amount of particulate organic Fe produced mmol Fe/m3/s
Jreminpoc remineralized particulate organic C mmol Fe/m3/s
Jreminpic remineralized particulate inorganic C mmol Fe/m3/s
JreminPSi remineralized particulate organic Si mmol Fe/m3/s
Jreminpfe remineralized particulate organic Fe mmol Fe/m3/s
Φmineral
poc incoming mineral associated particulate C flux mmol C cm/m3/s

Φsoft
pcaco3 incoming soft CaCO3 particulate flux mmol CaCO3 cm/m3/s

Φhard
pcaco3 incoming hard CaCO3 particulate flux mmol CaCO3 cm/m3/s

Φsoft
SiO2

incoming soft SiO2 particulate flux mmol PSiO2 cm/m3/s
Φhard
SiO2

incoming hard SiO2 particulate flux mmol PSiO2 cm/m3/s
Φsoft
dust incoming soft dust flux mmol C cm/m3/s

Φhard
dust incoming hard dust flux mmol C cm/m3/s

J burypoc particulate C-flux buried in the sediments mmol C cm/m3/s
λpoc remineralization length scale for soft poc no units
JNfixdiaz total N2-fixation by diazotrophs mmol N /m3/s
JNexcretediaz N excreted by diazotrophs mmol N /m3/s
JphotoNdiaz N fixed by diazotroph (non-excreted) mmol N /m3/s

5.2 Ecosystem parameters

Parameters Description Values Units
Model grid

ε Small value 10−8 mmol/m3

∆z Model layer thickness variable meters
kρ Index of model vertical

level at tracer points
1-60 no units

Carbon
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PCsp
ref max phyto C-specific

growth rate at Tref
(GD98) for small
phytoplankton

3.0 1/d

PCdiat
ref max phyto C-specific

growth rate at Tref
(GD98) for diatoms

3.0 1/d

PCdiaz
ref max phyto C-specific

growth rate at Tref
(GD98) for diazotrophs

0.4 1/d

αchl chlorophyll-specific
initial slope of P vs. I
curve for diatoms and
small phytoplankton

0.3 mmol C m2/(mg
Chl W day)

αdiazchl chlorophyll-specific
initial slope of P vs. I
curve for diazotrophs

0.036 (mmol C m2/(mg
Chl W day))

Nutrient limita-
tion

kspNO3
Small phyto. half satu-
ration constant forNO3

uptake

0.5 mmol/m3

kdiatNO3
diatom half saturation
constant for NO3 up-
take

2.5 mmol/m3

kspNH4
Small phyto. half
saturation constant for
NH4 uptake

0.01 mmol/m3

kdiatNH4
Diatom half saturation
constant for NH4 up-
take

0.1 mmol/m3

kspFe Small phyto. half sat-
uration constant for Fe
uptake

0.035e-3 mmol/m3

kdiatFe Diat half saturation
constant for Fe uptake

0.08e-3 mmol/m3

kdiazFe Diazotroph half satura-
tion constant for Fe up-
take

0.1e-3 mmol/m3

kspPO4 Small phyto. half satu-
ration constant for PO4

uptake

0.01 mmol/m3
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kdiatPO4 Diatom half saturation
constant for PO4 up-
take

0.1 mmol/m3

kdiazPO4 Diazotroph half satura-
tion constant for PO4

uptake

0.005 mmol/m3

kdiatSiO2 Diatom half saturation
constant for SiO32 up-
take

1 mmol/m3

Fixed Stoi-
chiometry

QN :C Nitrogen to Carbon ra-
tio

0.137 no units

QP :C Small phyto. and di-
atom P:C ratio

0.00855 (mmol P /mmol
C)

Qdiaz
P :C Diazotroph P:C ratio 0.002735 (mmol P /mmol

C)

Dissolved or-
ganic matter

τDOM Dissolved organic mat-
ter remineralization in-
verse timescale

0.01 1/d

N2 fixation

αdiazex Ratio of N excreted by
diazotrophs to total N
fixed

0.3

Chl stoichiome-
try and produc-
tion

Qsp,growth
N :chl,max Max ratio of Chl

produced to N photo-
synthesized for small
phyto.

2.5 mg Chl/mmol N
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Qdiat,growth
N :chl,max Max ratio of Chl pro-

duced to N photosyn-
thesized for diatom

4.0 mg Chl/mmol N

Qdiaz,growth
N :chl,max Max ratio of Chl pro-

duced to N photosyn-
thesized for diaz.

3.4 mg Chl/mmol N

Light

fIsw Fraction of incoming
radiation used for pho-
tosynthesis

0.45

µw Radiation attenuation
coefficient per unit
chlorophyll

0.03 1/m/(mg Chl/m3)

µChl Radiation attenuation
coefficient for water

0.04 1/m

Fe stoichiome-
try and cycling

Qsp,g0
Fe:C Ratio used in the calcu-

lation of the Fe to C ra-
tio of uptake for small
phyto.

6e-6 mmol Fe/mmol C

Qsp,g1
Fe:C Maximum Fe:C ratio of

uptake by small phyto.
if Fe < 2 · kspFe.

2.5e-6 mmol Fe/mmol C

Qdiat,g0
Fe:C Ratio used in the calcu-

lation of the Fe to C
ratio of uptake for di-
atoms

6e-6 mmol Fe/mmol C

Qdiat,g1
Fe:C Maximum Fe:C ratio of

uptake by diatoms if Fe
< 2 · kdiatFe

2.5e-6 mmol Fe/mmol C

Qdiaz,g0
Fe:C Ratio used in the calcu-

lation of the Fe to C
ratio of uptake for dia-
zotrophs

42e-6 mmol Fe/mmol C

Qdiaz,g1
Fe:C Maximum Fe:C ratio of

uptake by diazotrophs
if Fe < 2 · kdiazFe

14e-6 mmol Fe/mmol C

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942565
http://creativecommons.org/licenses/by-nc-nd/4.0/


βmax,scale1fe Scaling parameter used
in the calculation of Fe
scavenging

3.0 no units

βthresh,1fe Fe threshold parameter
used in the calculation
of Fe scavenging

0.6e-3 mmol/m3

βthresh,2fe Fe threshold parameter
used in the calculation
of Fe scavenging

0.5e-3 mmol/m3

CaCO3 stoi-
chiometry and
production

Qsp,max
CaCO3:C Maximum calcification

to C photosynthesis ra-
tio

0.4 mmol
CaCO3/mmol C

fprodCaCO3
Initial calcification to C
photosynthesis ratio

0.026 mmol
CaCO3/mmol C

TCaCO3
1 Temperature parameter

used to modify the ini-
tial calcification rate

1. ◦C

TCaCO3
2 Temperature parameter

used to modify the ini-
tial calcification rate

-2. ◦C

Si stoichiome-
try

Qdiat,max
Si:C Maximum QSi:C ratio

for diatoms
0.685 mmol Si/mmol C

Qdiat,g0
Si:C Default Si:C ratio of

growth for diatoms
0.137 mmol Si/mmol C

Qdiat,g1
Si:C Ratio used to calculate

the Si to C multiplica-
tive ratio of growth for
diatoms

2.5 no units

Grazing

βgrzz grazing coefficient,
used in density de-
pendent grazing
modification

1.05 mmol C/m3
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βgrz,sp,0thres Small phytoplankton
threshold concentration
for grazing

0.001 mmol C/m3

βgrz,diat,0thres Diatom threshold con-
centration for grazing

0.02 mmol C/m3

βgrz,diaz,0thres Diazotroph thresh-
old concentration for
grazing

0.01 mmol C/m3

αgrz,zoosp Fraction of small phyto.
grazing going to zoo-
plankton

0.3 no units

αgrz,zoodiat Fraction of diatom
grazing going to
zooplankton

0.3 no units

αgrz,zoodiaz Fraction of diazotroph
grazing going to zoo-
plankton

0.21 no units

αgrz,pocsp Default fraction of
small phytop. grazing
going to POC

0.22 no units

αgrz,pocdiat Fraction of diatom
grazing going to POC

0.26 no units

αgrz,pocdiaz Fraction of diazotroph
grazing going to POC

0.0 no units

αgrz,docsp Fraction of small phyto.
grazing going to DOC

0.34 no units

αgrz,docdiat Fraction of diatom
grazing going to DOC

0.13 no units

αgrz,docdiaz Fraction of diazotroph
grazing going to DOC

0.24 no units

αgrz,dicsp Fraction of small phy-
top. grazing going to
DIC

0.36 no units

αgrz,dicdiat Fraction of diatom
grazing going to DIC

0.31 no units

αgrz,dicdiaz Fraction of diazotroph
grazing going to DIC

0.55 no units

Losses

λmortsp Small phyto. mortality
1

0.15 1/d

λmortdiat Diatom mortality 1 0.15 1/d
λmortdiaz Diazotroph mortality 1 0.16 1/d

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942565
http://creativecommons.org/licenses/by-nc-nd/4.0/


αl,pocdiat Fraction of diatom loss
going to POC

0.05 no units

αl,pocdiaz Fraction of diazotroph
loss going to POC

0 no units

flabile Fraction of Labile dis-
solved organic matter
for loss calculations

0.70 no units

Aggregation

τagg,mindiat Minimum aggregation
rate for diatoms

0.01 1/d

τagg.mindiaz Minimum aggregation
rate for diazotrophs

0.01 1/d

τagg,maxsp Maximum aggregation
rate for small phyto.

0.75 1/d

τagg,maxdiat Maximum aggregation
rate for diatoms

0.75 1/d

τagg,maxdiaz Maximum aggregation
rate for diazotrophs

0.75 1/d

λmort2sp Small phyto. quadratic
mortality

0.0035 1/(mmol m3 d)

λmort2diat diatom quadratic mor-
tality

0.0035 1/(mmol m3 d)

λmort2diaz diazotroph quadratic
mortality

0.16 1/(mmol m3 d)

N cycle rates

τammox NH4 oxidation inverse
timescale

0.06 1/d

τnit NO2 oxidation inverse
timescale

0.33 1/d

PARnitrif
max Light threshold for on-

set of nitrification
4.0 W / m2

Qdenit
N :C Ratio of inorganic N

consumed to POC rem-
ineralized during deni-
trification

104/106 mmol N / mmol
POC

fdenitn2o Fraction of denitrifica-
tion that goes to N2O

0.95 no units

τ consn2o N2O reduction inverse
timescale

0.33333 1/d
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abohl0 Parameter used to
calculate sedimentary
denitrification (Bohlen
et al., 2012)

0.06 no units

abohl1 Parameter used to
calculate sedimentary
denitrification (Bohlen
et al., 2012)

0.19 no units

abohl2 Parameter used to
calculate sedimentary
denitrification (Bohlen
et al., 2012)

0.99 no units

Particle cycling
ρpic Organic carbon to inor-

ganic carbon mass ratio
in PIC

0.07 · 100.09
12.01

no units

ρpsi Organic carbon to inor-
ganic Si mass ratio in
PSiO2

0.033 · 60.08
12.01

no units

ρdust Organic carbon to dust
mass ratio in dust

0.07 · 106

12.01
no units

5.3 Model equations
5.3.1 Tracer equations

Here the symbol d /dt denotes the sum of the local time derivative and the physical transport.

d

dt
(Nno3) = Jnit − Jdenitno3,no2 − Jdenitsed − (Judiat,no3 + Jusp,no3) (A1)

d

dt
(Nnh4) = QN :CJ

remin
poc + τdomNdon +QN :C(J ldiat,dic + J lsp,dic

+ J ldiaz,dic) +QN :CJ
l
zoo,dic +QN :C (Jgrzdiat,dic + Jgrzsp,dic + Jgrzdiaz,dic)

− Jnit − (Judiat,nh4 + Jusp,nh4)

(A2)

d

dt
(Nno2) = Jammox − Jnit − Jdenitno2,n2o (A3)

d

dt
(Nn2o) = 0.5Jdenitno2,n2o − Jdenitn2o,n2 (A4)
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d

dt
(Nn2) = Jdenitn2o,n2 + 0.5Jdenitsed (A5)

d

dt
(Fefe) = JDOfe,fe − JscavFe + (Qzoo

Fe:CJ
l
zoo,dic) + JFeremin − Judiaz,Fe

+Qsp
Fe:C(J lsp,dic + Jgrzsp,dic) +Qdiat

Fe:C(J ldiat,dic + Jgrzdiat,dic)

+Qdiaz
Fe:C(J ldiaz,dic + Jgrzdiaz,dic) − Jusp,Fe − Judiat,Fe

+ Jgrzsp,zoo(Q
sp
Fe:C −Qzoo

Fe:C) + Jgrzdiat,zoo(Q
diat
Fe:C −Qzoo

Fe:C)

+ Jgrzdiaz,zoo(Q
diaz
Fe:C −Qzoo

Fe:C) + JSedFe

(A6)

d

dt
(Ppo4) =

1

QP :C

(Jreminpoc + J lzoo,dic + J lsp,dic + J ldiat,dic + Jgrzsp,dic + Jgrzdiat,dic)

+ J ldiaz,dip − (Jusp,P + Judiat,P + Judiaz,P ) + JDOP,po4

(A7)

d

dt
(Sisio2) =

1

QSi:C

(JDOC,dic + 0.5 Jgrzdiat,dic + 0.95 J lzoo)

− Judiat,Si + JSiremin

(A8)

If (O2 > O2min)

d

dt
(O2) = (Jusp,C + Judiat,C + Judiaz,C)/Rd

C:O + ((−Jreminpoc − JDOC,dic − J lzoo,dic − J lsp,dic

− Jgrzsp,dic − J ldiat,dic − Jgrzdiat,dic − J ldiaz,dic − Jgrzdiaz,dic)/R
d
C:O)

− 1.5 Jammox − 0.5Jnit − Jpocremin/(R
d
C:O)

(A9)

If (O2 ≤ O2min)

d

dt
(O2) = (Jusp,C + Judiat,C + Judiaz,C)/Rd

C:O (A10)
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d

dt
(DIC) = JDOC,dic + 0.33 Jgrzsp QC:caco3

+ J lzoo,dic + J lsp,dic + Jgrzsp,dic + J ldiat,dic + Jgrzdiat,dic − Jusp,C − Judiat,C

− Jprodsp,caco3 + Jgrzdiaz,dic + J ldiaz,dic − Judiaz,C + (Jreminpoc + Jreminpic )

(A11)

d

dt
(Alk) = −dNno3

dt
+
dNnh4

dt
+ 2 Jreminpic + 0.33 Jgrzsp QC:caco3 − Jprodsp,caco3

+ 2 Jreminpic

(A12)

d

dt
(Csp) = Jphotosp,C − (Jgrzsp + J lsp + Jaggsp ) (A13)

d

dt
(Chlsp) = Jpasp,chl −Qsp

Chl:C(Jgrzsp + J lsp + Jaggsp ) (A14)

d

dt
(Fesp) = gQsp

Fe:CJ
photo
sp,C −Qsp

Fe:C(Jgrzsp + J lsp + Jaggsp ) (A15)

d

dt
(Casp) = Jprodsp,caco3 + Jusp,nh4) −Qcaco3(Jgrzsp + J lsp + Jaggsp ) (A16)

d

dt
(Cdiat) = Jphotodiat,C − (Jgrzdiat + J ldiat + Jadiat) (A17)

d

dt
(Fediat) = gQdiat

Fe:CJ
photo
diat,C −Qdiat

Fe:C(Jgrzdiat + J ldiat + Jaggdiat) (A18)
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d

dt
(Chldiat) = Jpadiat,chl −Qdiat

Chl:C(Jgrzdiat + J ldiat + Jaggdiat) (A19)

d

dt
(Sidiat) = gQSi:CJ

photo
diat,C −Qdiat

Si:C(Jgrzdiat + J ldiat + Jaggdiat) (A20)

d

dt
(Cdiaz) = Jphotodiaz,C − (Jgrzdiaz + J ldiaz) (A21)

d

dt
(Fediaz) = gQdiaz

Fe:CJ
photo
diaz,C −Qdiaz

Fe:C(Jgrzdiaz + J ldiaz + Jaggdiaz) (A22)

d

dt
(Chldiaz) = Jpadiaz,chl −Qdiaz

Chl:C(Jgrzdiaz + J ldiaz + Jaggdiaz) (A23)

d

dt
(Czoo) = (Jgrzsp,zoo + Jgrzdiat,zoo + Jgrzdiaz,zoo) − J lzoo (A24)

d

dt
(Cdoc) = J lsp,doc + J ldiat,doc + J ldiaz,doc + J lzoo,doc

+ (Jgrzsp,doc + Jgrzdiat,doc + Jgrzdiaz,doc) − τdomCdoc

(A25)

d

dt
(Ndon) = QN :C (J lsp,doc + J ldiat,doc + J ldiaz,doc + J lzoo,doc

+ Jgrzsp,doc + Jgrzdiat,doc + Jgrzdiaz,doc) − τdom Ndon + Jexcretediaz,N

(A26)

d

dt
(Pdop) = QP :C (J lsp,doc + J ldiat,doc + Jgrzsp,doc + Jgrzdiat,doc + J lzoo,doc)

+ J ldiaz,dop − τdom Pdop

(A27)
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d

dt
(Fedofe) = Qsp

Fe:C (J lsp,doc + Jgrzsp,doc) +Qdiat
Fe:C (J ldiat,doc + Jgrzdiat,doc) +

Qdiaz
Fe:C (J ldiaz,doc + Jgrzdiaz,doc) +Qzoo

Fe:C J
l
zoo,doc − τdom Fedofe

(A28)

5.3.2 Treatment of particulate organic matter

General model

Particulate organic matter is produced and instantaneously distributed over the depth of the water
column following the exponential solution to the steady-state 1-dimensional production-remineralization
equation:

∂Φ(z)

∂z
= Jremin(z) − Jprod(z) = − Φ(z)

λ
+ Jprod(z), (A29)

where Φ is a flux, λ is the remineralization length-scale, Jprod is the known production rate within
the layer, and Jremin the remineralization rate within the layer, which needs to be determined. For
a single layer, assuming the flux at the top of the layer Φ(k) is known, and the production Jprod(k)
is constant within the layer, the solution to equation A29, can be cast to determined the flux out of
the layer, Φ(k − 1), for each element i:

Φi(k − 1) = Φi(k) e
−∆z
λi + Jprod(k) (1 − e

−∆z
λi )λ, (A30)

Particulate organic carbon (POC) is partitioned between a free and mineral associated compo-
nent:

Φpoc(z) = Φfree
poc (z) + Φmineral

poc (z) (A31)

Φmineral
poc can be associated with CaCO3, SiO2 or dust. Each mineral-associated POC flux is

further partitioned into a ”soluble” component, which remineralizes with the length-scale of the
associated mineral, and a ”non-soluble” component which remineralizes with a length-scale of
40,000 m.

Φmineral
poc (z) = ρpic

(
Φsol
pic(z) + Φnonsol

pcaco3(z)
)

+ρpsi
(
Φsol
psi(z) + Φnonsol

psi (z)
)

+ρdust
(
Φsol
dust(z) + Φnonsol

dust (z)
)

(A32)

For all components of the fluxes except Fe, the flux out of the layer, Φ(k−1), is computed first,
with knowledge of the source within the layer, Jprod(k), and of the remineralization length-scale.
Remineralization in the layer is then calculated from conservation, i.e., from (A29). Below, for
each component, we list the equations used to determine the production terms Jprod(k), followed
by the fluxes out, Φ(k−1), and finally the remineralization terms, Jremin(z), which enter the tracer
conservation equations.
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Production

Jprodpoc =
(
Jgrzsp,poc + Jgrzdiat,poc + Jgrzdiaz,poc

)
+
(
Jaggsp + Jaggdiat

)
+
(
J lsp,poc + J ldiat,poc + J ldiaz,poc

)
+ fdzoo J

l
zoo (A33)

Jprodpic =
(
0.67 Jgrzsp + Jaggsp + J lsp

)
Qsp
caco3:C (A34)

Jprodpsi =
(
0.5 Jgrzsp + 0.05 J lsp

)
Qdiat
Si:C (A35)

Available production for free POC is then:

Jprodpoc,avail = Jprodpoc − ρpicJ
prod
pic − ρpsiJ

prod
psi (A36)

Fluxes out

Temperature dependency is used to modify the remineralization length scales of particulate organic
carbon, POC, and opal, SiO2:

Tpoc = (Q10,poc)
T−30

10 (A37)

TPsi = (Q10,psi)
T−30

10 (A38)

Free POC flux equation:

Φfree
poc (k − 1) = Φ(k)freepoc e

−∆z Tpoc
λpoc + Jprodpoc,avail(k) (1 − e

−∆z Tpoc
λpoc )

λpoc
Tpoc

(A39)

Soluble mineral-associated POC flux equation:

Φsol
pic(k − 1) = Φ(k)solpic e

− ∆z
λpic + Jprodpic (k) (1 − γpic) (1 − e

− ∆z
λpic )λpic (A40)

Φsol
psi(k − 1) = Φ(k)solpsi e

−
∆z Tpsi
λpsi + Jprodpoc (k) (1 − γpsi) (1 − e

−
∆z Tpsi
λpsi )

λpsi
Tpsi

(A41)

Φsol
dust(k − 1) = Φ(k)soldust e

− ∆z
λdust (A42)

Non-soluble mineral-associated POC flux equation:

Φnonsol
pic (k − 1) = Φ(k)solpic e

− ∆z
λnonsol + Jprodpic (k) γpic ∆z (A43)

Φnonsol
psi (k − 1) = Φ(k)solpsi e

−
∆z Tpsi
λnonsol + Jprodpoc (k) γpsi ∆z (A44)

Φnonsol
dust (k − 1) = Φ(k)nonsoldust e

− ∆z
λnonsol (A45)

53

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942565
http://creativecommons.org/licenses/by-nc-nd/4.0/


Remineralization

Remineralization is computed from conservation, i.e., (A29):

Jremin = Jprod +
∂Φ(z)

∂z
(A46)

Numerically, for each individual layer, we have:

Jreminpoc (k) = Jprodpoc (k) +
Φfree
poc (k) − Φfree

poc (k − 1) + Φmineral
poc (k) − Φmineral

poc (k − 1)

∆z
(A47)

Jreminpic (k) = Jprodpic (k) +
Φsol
pic(k) − Φsol

pic(k − 1) + Φnonsol
pic (k) − Φnonsol

pic (k − 1)

∆z
(A48)

Jreminpsi (k) = Jprodpsi (k) +
Φsol
psi(k) − Φsol

psi(k − 1) + Φnonsol
psi (k) − Φnonsol

psi (k − 1)

∆z
(A49)

Jremindust (k) =
Φsol
dust(k) − Φsol

dust(k − 1) + Φnonsol
dust (k) − Φnonsol

dust (k − 1)

∆z
(A50)

Particulate Fe

Production is as follows:

Jprodpfe = (Jaggsp + Jgrzsp,poc + J lsp,poc)Q
sp
Fe:C

+ (Jaggdiat + Jgrzdiat,poc + J ldiat,poc)Q
diat
Fe:C

+ (Jaggdiaz + Jgrzdiaz,poc)Q
diaz
Fe:C + 0.1 JscavFe

(A51)

Particulate Fe remineralization is assumed to be proportional to POC remineralization:

Jreminpfe (k) = Jreminpoc (k)
Φsol
pfe + Φnonsol

pfe

Φfree
poc + Φmineral

poc

(A52)

The flux out can then be computed from conservation:

Φpfe(k − 1) = Φpfe(k) + ∆z
(
Jprodpfe (k) − Jreminpfe (k)

)
(A53)

5.3.3 Biogeochemical rates

Carbon

Jphotosp,C = PCsp
ref f

sp
nut Tfunc

(
1 − e−αchl(Chlsp/Csp)

)
Csp (A54)

Jphotodiat,C = PCdiat
ref f

diat
nut Tfunc

(
1 − e−αchl(Chldiat/Cdiat)

)
Cdiat (A55)

Jphotodiaz,C = PCdiaz
ref fdiaznut Tfunc

(
1 − e−αchl(Chldiaz/Cdiaz)

)
Cdiaz (A56)
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Nutrient limitation

f spnut = min[V sp
NO3

+ V sp
NH4

, V sp
Fe, V

sp
PO4

] (A57)

fdiatnut = min[V diat
NO3

+ V diat
NH4

, V diat
Fe , V diat

SiO3
, V diat

PO4
] (A58)

f spnut = min[V diaz
Fe , V diaz

PO4
] (A59)

V sp
NO3

=
NNO3/k

sp
no3

1 +NNO3/k
sp
no3 +NNH4/k

sp
nh4

(A60)

V diat
NO3

=
NNO3/k

diat
no3

1 +NNO3/k
diat
no3 +NNH4/k

diat
nh4

(A61)

V sp
NH4

=
NNH4/k

sp
nh4

1 +NNO3/k
sp
no3 +NNH4/k

sp
nh4

(A62)

V diat
NH4

=
NNH4/k

diat
nh4

1 +NNO3/k
diat
no3 +NNH4/k

diat
nh4

(A63)

V sp
Fe =

Fe

Fe+ kspfe
(A64)

V diat
Fe =

Fe

Fe+ kdiatfe

(A65)

V diaz
Fe =

Fe

Fe+ kdiazfe

(A66)

V sp
PO4

=
PO4

PO4 + ksppo4
(A67)

V diat
PO4

=
PO4

PO4 + kdiatpo4

(A68)

V diaz
PO4

=
PO4

PO4 + kdiazpo4

(A69)

V diat
SiO2

=
Sisio3

Sisio2 + kdiatsio2

(A70)
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NO3 and NH4 uptake

Jusp,no3 = QN :C

V sp
NO3

V sp
NO3

+ V sp
NH4

Jphotosp,C (A71)

Jusp,nh4 = QN :C

V sp
NH4

V sp
NO3

+ V sp
NH4

Jphotosp,C (A72)

Judiat,no3 = QN :C

V diat
NO3

V diat
NO3

+ V diat
NH4

Jphotodiat,C (A73)

Judiat,nh4 = QN :C

V diat
NH4

V diat
NO3

+ V diat
NH4

Jphotodiat,C (A74)

N2 fixation

Jphotodiaz,N = QN :C J
photo
diaz,C (A75)

Jnfixdiaz = Jphotodiaz,N/(1 − αdiazex ) (A76)

Jexdiaz,N = αdiazex Jnfixdiaz (A77)

Chl stoichiometry and production

Qsp
Chl:C = Chlsp/(Csp + ε) (A78)

Qdiat
Chl:C = Chldiat/(Cdiat + ε) (A79)

Qdiaz
Chl:C = Chldiaz/(Cdiaz + ε) (A80)

Jpasp,chl = Qsp,growth
N :chl,max

Jphotosp,C /Csp

αchlQ
sp
Chl:C PAR

QN :C J
photo
sp,C

CspQ
sp
Chl:C

(A81)

Jpadiat,chl = Qdiat,growth
N :chl,max

Jphotodiat,C/Cdiat

αchlQdiat
Chl:C PAR

QN :c J
photo
diat,C

CdiatQdiat
Chl:C

(A82)

Jpadiaz,chl = Qdiaz,growth
N :chl,max

Jphotodiaz,C/Cdiaz

αchlQdiaz
Chl:C PAR

QN :c J
photo
diaz,C

Cdiaz Qdiaz
Chl:C

(A83)

Light

PARB(k − 1) =

{
max(0, fIsw ISW ), if k = ksurf

PARB(k) e(µchl(Chlsp+Chldiat+Chldiaz)+µw)∆z elsewhere
(A84)

PAR(k) =
PARB(k + 1) − PARB(k)

µchl(Chlsp + Chldiat + Chldiaz) + µw)∆z
(A85)
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Fe stoichiometry and cycling

Qsp
Fe:C = Fesp/Csp (A86)

Qdiat
Fe:C = Fediat/Cdiat (A87)

Qdiaz
Fe:C = Fediaz/Cdiaz (A88)

Qsp,g
Fe:C =

{
Qsp,g0
Fe:C , if Fe ≥ 2 kspfe

max(Qsp,g1
Fe:C ,

Qsp,g0Fe:C Fe

2 kspfe
), otherwise

(A89)

Qdiat,g
Fe:C =

Q
diat,g0
Fe:C , if Fe ≥ 2 kdiatfe

max(Qdiat,g1
Fe:C ,

Qsp,g0Fe:C Fe

2 kdiatfe
), otherwise

(A90)

Qdiaz,g
Fe:C =

Q
diaz,g0
Fe:C , if Fe ≥ 2 kdiazfe

max(Qdiaz,g1
Fe:C ,

Qdiaz,g0Fe:C Fe

2 kdiazfe
), otherwise

(A91)

JscavFe =


( Jscav,0Fe min[(Φpoc + 8.33 · 104 Φhard

dust )/Φ
ref
poc , β

max,scale1
fe ]

+(Fe− βthresh,1fe ) )Fe, ifFe > βthresh,1fe

( Jscav,0Fe min[(Φpoc + 8.33 · 104 Φhard
dust )/Φ

ref
poc , β

max,scale1
fe ]

+ Fe

βthresh,2fe

) )Fe, ifFe < βthresh,2fe

(A92)

JSedFe =

{
10(2.5− 0.0165 max[1,O2]) (0.001/86400)∆z, if k = kbottom

0, elsewhere
(A93)

75% of JSedFe is released in the bottom layer and 25 % in the layer above.

CaCO3 stoichiometry production

Qsp
caco3:C =

{
CaCO3 sp/Csp if CaCO3 sp/Csp ≤ Qsp,max

caco3:C

Qsp,max
caco3:C otherwise

(A94)

Jprod,maxsp,caco3 = fprodcaco3 J
photo
sp,C /Cspf

sp
nut (A95)

JprodTsp,caco3 =

{
Jprodmaxsp,caco3 if T ≥ T caco31

Jprodmaxsp,caco3
max[T−T caco31 , 0]

T caco31 −T caco32
if T < T caco31 and Csp < 3.0

(A96)

Jprodsp,caco3 =

{
min[(JprodTsp,caco3Csp/3, 0.4Jphotosp,C ] where Csp > 3.0

Jprod,Tsp,caco3 elsewhere
(A97)
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Si stoichiometry

Qdiat
Si:C = max(Sidiat/Cdiat, Q

diat,max
Si:C ) (A98)

Qdiat,g
Si:C =


[Qdiat,g0

Si:C (2Qdiat,g1
Si:C kdiatfe /Fe−Qdiat,g1

Si:C + 1), Qdiat,max
Si:C ]

if 0 < Fe < 2 kdiatfe and Sisio2 > 2kdiatsio2

Qdiat,max
Si:C if Fe = 0

Qdiat,g0
Si:C otherwise

(A99)

Grazing

βgrz,spthres =


βgrz,spthres,0 · (200 − z)/100 z ≤ 100m
βgrz,spthres,0 · (200 − z)/100 100 m < z < 200 m
0 z ≥ 200 m

(A100)

P ′sp = max(Csp − βspgrz, 0) (A101)

βgrz,diatthres =


βgrz,diatthres,0 z ≤ 100m
βgrz,diatthres,0 · (200 − z)/100 100 m < z < 200 m
0 z ≥ 200 m

(A102)

P ′diat = max(Cdiat − βdiatgrz , 0) (A103)

βgrz,diazthres =


βgrz,diazthres,0 z ≤ 100m
βgrz,diazthres,0 · (200 − z)/100 100 m < z < 200 m
0 z ≥ 200 m

(A104)

P ′diaz = max(Cdiaz − βdiazgrz , 0) (A105)

Jgrzsp = Jg,maxsp Tfunc
P ′2sp

P ′2sp + (βgrzz )2
Czoo (A106)

Jgrzdiat = Jg,maxdiat Tfunc
P ′2diat

P ′2diat + 0.81(βgrzz )2
Czoo (A107)

Jgrzdiaz = Jg,maxdiaz Tfunc
P ′2diaz

P ′2diaz + (βgrzz )2
Czoo (A108)

Jg,zoosp = αgrz,zoosp Jgrzsp (A109)

Jg,zoodiat = αgrz,zoodiat Jgrzdiat (A110)
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Jg,zoodiaz = αgrz,zoodiaz Jgrzdiaz (A111)

Jg,pocsp = max(Qsp,max
caco3:C Q

sp
caco3:C ,min[0.18P ′sp, α

grz,poc
sp )] Jgrzsp (A112)

Jg,pocdiat = αgrz,pocdiat Jgrzdiat (A113)

Jg,pocdiaz = αgrz,pocdiaz Jgrzdiaz (A114)

Jg,docsp = αgrz,docsp Jgrzsp (A115)

Jg,docdiat = αgrz,docdiat Jgrzdiat (A116)

Jg,docdiaz = αgrz,docdiaz Jgrzdiaz (A117)

Jg,dicsp = αgrz,dicsp Jgrzsp (A118)

Jg,dicdiat = αgrz,dicdiat Jgrzdiat (A119)

Jg,dicdiaz = αgrz,dicdiaz Jgrzdiaz (A120)

Losses

J lsp = λmortsp P ′sp (A121)

J ldiat = λmortdiat P
′
diat (A122)

J ldiaz = λmortdiaz P
′
diaz (A123)

J l,pocsp = Qsp
caco3:C J

l
sp (A124)

J l,pocdiat = αl,pocdiat J
l
diat (A125)

J l,pocdiaz = αl,pocdiaz J
l
diaz (A126)

J l,docsp = (1 − flabile)(J
l
sp − J l,pocsp ) J lsp (A127)

J l,docdiat = (1 − flabile)(J
l
diat − J l,pocdiat ) J ldiat (A128)
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J l,docdiaz = (1 − flabile)(J
l
diaz − J l,pocdiaz ) J ldiaz (A129)

J l,dicsp = flabile(J
l
sp − J l,pocsp ) J lsp (A130)

J l,dicdiat = flabile(J
l
sp − J l,pocdiat ) J ldiat (A131)

J l,dicdiaz = flabile(J
l
sp − J l,pocdiaz ) J ldiaz (A132)

Aggregation

Jaggsp = min[τagg,maxsp P ′sp, λ
mort2
sp P ′2sp] (A133)

Jaggsp = max[τagg,mindiat P ′diat,min[τagg,maxdiat P ′diat, λ
mort2
diat P ′2diat]] (A134)

Jaggdiaz = 0.0 (A135)

N -cycle rates

Jammox =

{
τammoxNnh4, where PARB(k) < PARnitrif

max andO2 > Omin
2

0, elsewhere
(A136)

Jnit =

{
τnitNno2, where PARB(k) < PARnitrif

max andO2 > Omin
2

0, elsewhere
(A137)

J conso2 = (Jreminpoc + JDOC,dic + J lzoo,dic + J lsp,dic

+ Jgrzsp,dic + J ldiat,dic + Jgrzdiat,dic

+ J ldiaz,dic + Jgrzdiaz,dic + Jpocremin)/QC:O

+ 1.5 Jammox + 0.5 Jnit

(A138)

Jdenitno3,no2 =

{
Qdenit
N :C J

remin
poc , whereO2 ≤ Omin

2

0, elsewhere
(A139)

Jdenitno2,n2o = fdenitn2o Jdenitno3,no2 (A140)

Jdenitn2o,n2 = τ consn2o Nn2o (A141)

Jdenitsed =

{
abohl0 + abohl1 (abohl2 )O2−Nno3 Φoutpoc

∆z
, where z = zbottom

0, elsewhere
(A142)

60

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942565
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
Andersson, A. J., F. T. Mackenzie, and N. R. Bates, 2008: Life on the margin: implications of

ocean acidification on mg-calcite, high latitude and cold-water marine calcifiers. Mar. Ecol.
Progr. Ser., 373, 265–273.

Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham, 2001: A new, mechanistic
model for organic carbon fluxes in the ocean based on the quantitative association of POC with
ballast minerals. Deep-Sea Res. II, 49, 219–236.

Bakker, D., and coauthors, 2016: A multi-decade record of high-quality fCO2 data in version 3 of
the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8, 383–413.

Bakun, A., 1990: Global climate change and intensification of coastal ocean upwelling. Science,
247, 198–201.

Banas, N., and B. Hickey, 2008: Why is the northern end of the California Current System so
productive? Oceanography, 21, 90–107.

Behrenfeld, M. J., and P. G. Falkowski, 1997: Photosynthetic rates derived from satellite-based
chlorophyll concentration. Limnol. Oceanogr., 42, 1–20.

Bianchi, D., T. S. Weber, R. Kiko, and C. Deutsch, 2018: Global niche of marine anaerobic
metabolisms expanded by particle microenvironments. Nature Geosci., 11, 263–268.

Bograd, S. J., and R. J. Lynn, 2001: Physical-biological coupling in the California Current during
the 1997–99 El Niño-La Niña cycle. Geophys. Res. Lett., 28, 275–278.

Bohlen, L., A. W. Dale, and K. Wallmann, 2012: Simple transfer functions for calculating benthic
fixed nitrogen losses and C:N:P regeneration ratios in global biogeochemical models. Global
Biogeochem. Cycles, 26, GB3029, 1–16.

Buil, M. P., and E. D. Lorenzo, 2017: Decadal dynamics and predictability of oxygen and subsur-
face tracers in the California Current System. Geophys. Res. Lett., 44, 4204–4213.

Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale
transition in the California Current System. Part I: Flow structure, eddy flux, and observational
tests. Journal of Physical Oceanography, 38 (1), 29–43.

Carr, M.-E., and E. J. Kearns, 2003: Production regimes in four Eastern Boundary Current Sys-
tems. Deep Sea Res. II, 50, 3199–3221.

Chan, F., J. Barth, J. Lubchenco, A. Kirincich, H. Weeks, W. T. Peterson, and B. Menge, 2008:
Emergence of anoxia in the California Current large marine ecosystem. Science, 319, 920–920.

Chavez, F., and Coauthors, 2002: Biological and chemical consequences of the 1997–1998 El
Niño in central California waters. Progr. Oceanogr., 54, 205–232.

Chavez, F. P., and M. Messie, 2009: A comparison of eastern boundary upwelling ecosystems.
Progr. Oceanogr., 83, 80–96.

61

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.10.942565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942565
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chavez, F. P., J. Ryan, S. E. Lluch-Cota, and M. Ñiquen, 2003: From anchovies to sardines and
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