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Abstract

The functional network of the brain continually adapts to changing environmental demands. The consequence
of behavioral automation for task-related functional network architecture remains far from understood. We inves-
tigated the neural reflections of behavioral automation as participants mastered a dual n-back task. In four fMRI
scans equally spanning a 6-week training period, we assessed brain network modularity, a substrate for adaptation
in biological systems. We found that whole-brain modularity steadily increased during training for both conditions
of the dual n-back task. In a dynamic analysis, we found that the autonomy of the default mode system and
integration among task-positive systems were modulated by training. The automation of the n-back task through
training resulted in non-linear changes in integration between the fronto-parietal and default mode systems, and
integration with the subcortical system. Our findings suggest that the automation of a cognitively demanding task
may result in more segregated network organization.

INTRODUCTION

The brain constantly adjusts its architecture to meet the
demands of the ever-changing environment. Such neural
adaptation spans multiple time scales, being observed
over seconds to minutes during task performance1–5,
over days to weeks during learning6–8, and over years
during development9. Like many other complex biolog-
ical systems, the adaptability of the brain is supported
by its modular structure10. Intuitively, modularity al-
lows for dynamic switching between states of segregated
and integrated information processing, whose balance
is constantly adjusted to meet the requirements of our
cognitive faculties11,12. Understanding the patterns of
these adjustments and determining the rules that expli-
cate their relation to human behavior is one of the most
important challenges for cognitive neuroscience.

It is hypothesized that simple, highly automated sen-
sorimotor tasks can be maintained by a highly segre-

gated brain organization, while more complex and cog-
nitively demanding tasks require integration between
multiple subnetworks13. Indeed, switching from a segre-
gated to a more costly integrated network architecture
is consistently reported as human participants transi-
tion to challenging tasks with heavy cognitive load1–5;
in contrast, network organization during simple motor
tasks remains highly segregated3,4. Whether shifts to-
wards network integration depend on the level of task
complexity or on the level of task automation remains to
be delineated12. Is it possible that a complex, but fully
automated task, can be performed without the need for
costly network integration?

Longitudinal studies, during which participants are
scanned multiple times while mastering a specific task,
can shed light on patterns of network adaptation related
to learning and task automation12. For example, Bas-
sett et al.7 showed that training on a visuomotor task
over the course of 6 weeks leads to increased autonomy
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between task-relevant subnetworks in motor and visual
cortices. In another study, Mohr et al.8 found increased
segregation of the default mode system after short-term
visuomotor training. Collectively, these findings suggest
that an increase in network segregation and a decrease
in integration may constitute a natural consequence of
task automation. However, these results refer to the
training of simple motor tasks, which do not require
extensive network integration, in contrast to complex
tasks involving higher order cognitive functions such as
cognitive control12. The consequence of complex cog-
nitive task automation on the balance between network
segregation and network integration remains unknown.

In the present study, we investigated whether mas-
tering a demanding working memory task affects the
balance between network segregation and integration
during task performance. Does effortless performance
of the demanding cognitive task lead to the same in-
crease in network segregation that is characteristic of
simple motor tasks3,8? Is the breakdown of network
segregation during the changing demands of the cogni-
tive task still necessary when the cognitive task is au-
tomated? Finally, do we observe stronger separation of
subnetworks relevant to cognitive control when track-
ing dynamical brain network reorganization throughout
the course of training? To address these questions, par-
ticipants underwent four functional magnetic resonance
imaging (fMRI) scans while performing an adaptive dual
n-back task taxing working memory over a 6-week train-
ing period. The dual n-back task consisted of visuospa-
tial and auditory tasks that were performed simultane-
ously14. In the visuospatial portion of the task, par-
ticipants had to determine whether the location of the
stimulus square presented on the screen was the same
as the location of the square n-back times in the se-
quence; in the auditory portion of the task participants
had to determine whether the heard consonant was the
same as the consonant they heard n-back times in the
sequence. To ensure that participants mastered the task
due to training, and not simply due to a repeated ex-
posure to the task, we compared their performance to
an active control group. While participants from both
the experimental and the control groups performed the
same version of the dual n-back task, with interleaved
1-back and 2-back blocks, inside the fMRI scanner, only
the experimental group trained their working memory
using an adaptive version of the task in 18 training ses-
sions outside the scanner. We examined network re-
configuration using static functional network measures
to distinguish distinct task conditions, and using dy-
namic network measures to study fluctuations of net-
work topology across short task blocks.

First, we investigated global changes in network seg-
regation (modularity) across different task conditions as
compared to rest. In line with the aforementioned re-
search, we expected modularity to decrease during dual
n-back task performance compared to rest, and also to

decrease as the demands of the n-back task increased.
We also hypothesized that over the course of training
network segregation during the n-back task would in-
crease, and the extent of demand-related modularity
change would decrease. In the systems relevant to work-
ing memory performance – the fronto-parietal and the
default mode systems15 – we expected an increase in au-
tonomy throughout the course of training. To verify this
hypothesis, we utilized previously developed dynamic
network methods7 to assess the recruitment and inte-
gration of the default mode and fronto-parietal systems.
Finally, we expected that changes in network architec-
ture would correspond to the level of task automation
and training progress.

Our results demonstrate that adult human brain
functional networks not only reorganize during a work-
ing memory task, but also can be modulated by the level
of expertise in the task. After working memory train-
ing, brain networks are more segregated. The increase in
segregation is visible at the whole-brain level for static
networks, and also evidenced by an increased segrega-
tion of the default mode and task-positive systems when
considering dynamic changes in network organization.
Automation of the working memory task is accompa-
nied by non-linear changes in coupling between the de-
fault mode and fronto-parietal systems and engagement
of the subcortical system. Together, these results shed
new light on the mechanisms underlying brain network
reorganization accompanying the automation of perfor-
mance on cognitively demanding tasks.

RESULTS

Behavioral changes during training

Behavioral improvement in the task can either occur as
a result of training or occur in response to repeated ex-
posure to a task across multiple scanning sessions. To
distinguish the effect of intensive working memory prac-
tice and task automation from the effect of repeated ex-
posure, we employed an active control group. When
participants from the experimental group underwent
the challenging, adaptive, dual n-back working mem-
ory training, participants from the control group per-
formed a single, non-adaptive, 1-back working memory
task (Figure 1).

The dual n-back task (1-back and 2-back conditions)
was performed in the scanner on the first day of the ex-
periment (Naive), after two weeks of training (Early),
after four weeks of training (Middle), and after six weeks
of training (Late). We measured participant perfor-
mance as a d′, a measure based on signal detection the-
ory that takes into account both response sensitivity
and response bias16 (see Methods). Better cognitive
performance is characterized by higher values of d′. We
expected that participants from the experimental group
would exhibit a substantial increase of d′ during train-
ing, particularly for the 2-back condition in comparison
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to the 1-back condition, the latter being easy to master
even without extensive training.
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Figure 1: Study design. (Left) The dual n-back working mem-
ory task was performed in the scanner on the first day of the ex-
periment (Naive), after 2 weeks of training (Early), after 4 weeks
of training (Middle), and after 6 weeks of training (Late). (Right)
We investigated (1) changes in static modularity across task con-
ditions (1-back versus 2-back) and (2) dynamic fluctuations in
network community structure from block to block.

Using multilevel modelling (see Methods), we found
that participants had significantly different d′ depend-
ing on the training stage (Naive, Early, Middle, Late),
condition (1-back vs. 2-back), and group (Experi-
mental vs. Control). Specifically, we found a signifi-
cant session × condition × group interaction (χ2(3) =
9.39, p = 0.02; Figure 2). The greatest improvement
was observed in the experimental group when compar-
ing ‘Naive’ to ‘Late’ training phases during the 2-back
condition (mean 43.2% d′ improvement; Bonferroni-
corrected, t(20) = -9.17, p < 0.0001). For comparison,
the control group exhibited a 24.3% increase in d′ dur-
ing the 2-back condition (Bonferroni-corrected, t(20) =
-6.45, p < 0.0001). The increase in d′ was significantly
larger for the experimental group than for the control
group (Bonferroni-corrected, t(20) = -4.12, p = 0.0004;
Figure 2d). In the 1-back condition, the experimen-
tal group displayed a 12.2% increase in d′ (Bonferroni-
corrected, t(20) = -3.18, p = 0.02); no improvement was
found in the control group (Bonferroni-corrected, t(22)
= -1.91, p = 0.28) (see Figure 2c). The change in d′

during the 1-back condition did not differ between the
two groups (t(39.64) = -0.52, p = 0.47). Interestingly,
in the experimental group we observed no significant
difference in performance between the 1-back condition
and the 2-back condition after training (t(20) = 0.02,
p = 0.98), while in the control group, the difference
in performance between conditions remained substan-
tial (Bonferroni-corrected, t(20) = 4.91, p < 0.0016).
This finding suggests that the 2-back condition, which
was much more effortful before training (’Naive’ phase),
was performed effortlessly after training, at the same
level as the 1-back task.

In sum, the results demonstrate that the experimen-
tal group gradually improved in behavioral performance
measured during the fMRI scanning sessions, and that

this improvement was significantly greater than the cor-
responding effect in the control group. We also repli-
cated these findings using an alternative measure of be-
havior, penalized reaction time (pRT) which incorpo-
rates a measure of accuracy (see Supplementary Figure
3 and Supplementary Methods).
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Figure 2: Behavioral performance modulated by training.
(a, b) Line plots representing mean behavioral performance mea-
sured as d′, calculated for all training phases (Naive, Early, Mid-
dle, Late), dual n-back conditions (1-back and 2-back), and groups
((a) experimental and (b) control). We found a significant inter-
action effect between session, condition, and group. After train-
ing, the experimental group exhibited no difference in behavioral
performance between the 1-back and 2-back conditions. (c) No
significant difference between groups was found for d′ reduction
(from Naive to Late sessions) during the 1-back task condition.
(d) The experimental group showed a significant reduction in
d′ compared to the control group during the challenging 2-back
condition. Error bars represent 95% confidence intervals. ***
p < 0.001 Bonferroni corrected; ** p < 0.05 Bonferroni corrected.
Source data are provided as a Source Data file.

Whole-brain network modularity changes

To establish whether complex working memory task
training leads to increased network segregation at the
whole-brain level, we investigated network modularity
during different sessions and load conditions. Here,
we employed a common community detection algorithm
known as modularity maximization17, which we imple-
mented using a Louvain-like locally greedy algorithm.
The modularity quality function to be optimized en-
codes the extent to which the network can be divided
into non-overlapping communities. Intuitively, a com-
munity is a group of densely interconnected nodes with
sparse connections to the rest of the network17. Modu-
larity is a relatively simple measure of segregation, with
high values indicating greater segregation of the brain
into non-overlapping communities and low values indi-
cating lesser segregation. Because modularity depends
upon the network’s total connectivity strength, we nor-
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malized each modularity score by dividing it by the
mean of the corresponding null distribution calculated
on a set of randomly rewired versions of the original
networks18 (see Methods for details).
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Figure 3: Modularity differences between resting and dual
n-back task conditions in ’Naive’ session. Whole-brain mod-
ularity was higher during the resting state than during the dual
n-back task, and decreased as demands heightened from the 1-
back to the 2-back condition. Error bars represent 95% confidence
intervals. ***p < 0.001, *p < 0.05. Source data are provided as a
Source Data file.

Functional network modularity may vary depend-
ing on the difficulty of the task. Several studies have
reported a reduction in modular structure during de-
manding n-back conditions2,3,5. Here, we first investi-
gated the differences between the high-demand 2-back
condition and the low-demand 1-back condition as com-
pared to a baseline resting state scan acquired during
the first session (‘Naive’) for all subjects. Using mul-
tilevel modeling we found a significant main effect of
condition (χ2(2) = 84.13, p < 0.00001). Planned con-
trast analysis revealed that network modularity during
the dual n-back task was lower than network modularity
during the resting state (β = -0.20, t(88) = -11.37, p <
0.00001). Furthermore, modularity was significantly re-
duced during the 2-back condition relative to the 1-back
condition (β = -0.08, t(296) = -2.60, p = 0.01; Figure 3).
We note that the results reported here use a functional
brain parcellation composed of 264 regions of interests
provided by Power et al.19; in robustness tests, we per-
formed the same analyses using the Schaefer parcella-
tion, and obtained similar results (see Supplementary
Figure 16).

The modularity of functional brain network architec-
ture decreases appreciably during challenging task con-
ditions, but is the breakdown in modularity still present
when the demanding task is mastered? To address this
question, we tested whether modularity during the dual
n-back task changed depending on the session, task con-
dition, and group. Using a multilevel model (see Meth-
ods), we found a significant main effect of session (χ2(2)
= 19.40, p = 0.0002) and of group (χ2(1) = 6.62, p =
0.01). However, the experimental and control groups
did not differ by session (χ2(1) = 1.44, p = 0.69), nor
did we observe a significant session by condition inter-
action (χ2(1) = 1.50, p = 0.68). A planned contrast
comparison showed that participants’ whole-brain func-
tional network modularity significantly increased from

‘Naive’ to ‘Middle’ sessions (β = 0.15, t(114) = 2.61, p
= 0.01) and from ‘Naive’ to ‘Late’ sessions (β = 0.24,
t(114) = 4.05, p = 0.0001; Figure 4ab). The experimen-
tal group showed a higher network modularity (M =
3.09) than the control group (M = 2.87). To summarize,
we showed that the modularity of the functional brain
network generally increased during the training period.
However, the degree to which modularity changed be-
tween load conditions remained stable. Groups did not
differ significantly in the change of modularity. These
results suggest that the functional brain network shifts
towards a more segregated organization as a result of
behavioral improvement after training and also after re-
peated exposure to the task. Although network modu-
larity increased to a similar extent in both conditions,
the demand-dependent change in modularity remained
stable. One could interpret these results as suggesting
that a general increase in modularity reflects the fact
that less expensive information processing is required
within segregated brain subsystems after training of the
complex task.
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Figure 4: Modularity differences across task, sessions, and
groups. (a, b) Line plots representing the mean values of mod-
ularity for each scanning session (Naive, Late, Middle, Late) and
condition, separately for (a) the experimental group and (b) the
control group. (c, d) Modularity changes from ‘Naive’ to ‘Late’
sessions for the 1-back condition and the 2-back condition. Error
bars represent 95% confidence intervals. *** p < 0.01 Bonferroni
corrected; ** p < 0.05 Bonferroni corrected, * p < 0.05 uncor-
rected. Source data are provided as a Source Data file.

To further explore the changes in modularity that
might be specific to each group and condition, we per-
formed additional analyses comparing modularity mea-
sured before and after training (Figure 4cd). Specifi-
cally, we employed separate paired t-tests to investigate
differences in modularity for each group and condition
between ‘Naive’ and ‘Late’ sessions. We found a signif-
icant increase of modularity in the experimental group
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in the 1-back condition (Bonferroni-corrected, t(20) = -
3.66, p= 0.006) and in the 2-back condition (Bonferroni-
corrected, t(20) = -3.33, p = 0.013). The increase
in modularity observed in the control group was not
significant for either the 1-back condition (Bonferroni-
corrected, t(20) = -2.35, p = 0.11) or the 2-back con-
dition (Bonferroni-corrected, t(20) = -1.88, p = 0.28).
The change of modularity from ‘Naive’ to ‘Late’ sessions
did not significantly differ between groups for the 1-back
condition (t(39.88) = -0.80, p = 0.42) or for the 2-back
condition (t(39.99) = -1.05, p = 0.30). These results
indicate that the experimental group displays increased
network modularity for both task conditions when mov-
ing from ‘Naive’ to ‘Late’ sessions, suggesting that net-
work segregation may be a consequence of the 6-week
working memory training. While the same effect was
not present in the control group, we did not observe
a significant group × session interaction, and therefore
further work is needed to inform our conclusions.

Behavioral gains resulting from working memory
training differed across participants, suggesting the ex-
istence of individual differences in learning capabilities.
Therefore, we also tested whether the increase of mod-
ularity observed during the 2-back condition in the ex-
perimental group was correlated with behavioral per-
formance after training as measured by a decrease in
d′. However, we did not find a significant relationship
between these two variables (Pearson’s correlation coef-
ficient r = 0.08, p = 0.71; Supplementary Figure 20).
This finding suggests that the change of modularity is
a general consequence of training and may not reflect
individual differences in behavioral improvement.

Our results confirmed the existence of a decrease in
modularity during increased cognitive demands. How-
ever, changes in modularity during training were not
different across conditions or experimental groups. A
significant increase in modularity from ’Naive’ to ’Late’
sessions was found for the 1-back and 2-back conditions
for the experimental group, which suggests the enhance-
ment of network segregation associated with task au-
tomation.

Dynamic reorganization of large-scale systems

The modular architecture of functional brain networks
is not static but instead can fluctuate appreciably over
task blocks. Here, we used a dynamic network approach
to answer the question of whether large-scale brain sys-
tems change in their fluctuating patterns of expression
during training. Based on a previous study of motor
sequence learning7, we expected that systems relevant
to working memory – the fronto-parietal and the de-
fault mode – would become more autonomous over the
6 weeks of working memory training (Figure 5a). To
formally test our expectation, we investigated the dy-
namic reconfiguration of the network’s modular struc-
ture as subjects switched between blocks of the dual
n-back task. Pooling across conditions and sessions, we

constructed a multilayer network model of the data in
which each block corresponds to a unique layer, each re-
gion corresponds to a node, and each functional connec-
tion corresponds to an edge. We then employed a mul-
tilayer community detection algorithm that estimates
each node’s module assignment in each network layer20.
The presence of fluctuations in community structure
across task blocks is indicated by variable assignments
of nodes to modules across layers. For each subject and
session, we summarized these data in a module alle-
giance matrix P, where each element Pij represents a
proportion of blocks for which node i and node j were
assigned to the same module. We also applied a normal-
ization to allegiance matrices, to remove any potential
bias introduced by differences in the number of nodes
within each subsystem. Following the functional car-
tography framework described by Mattar et al.21, we
used P to calculate the recruitment of all 13 large-scale
systems, as well as the pairwise integration among them
(see Methods for details). We selected these measures
to maintain consistency with the methodology used in a
previous study on the effects of motor sequence training
on the dynamics of functional brain networks7. Recruit-
ment is defined for each system separately, while inte-
gration is calculated for pairs of systems. Intuitively,
high recruitment indicates that nodes of the system are
consistently assigned to the same module across differ-
ent layers; this consistency reflects the non-random na-
ture of brain dynamics in which a functional module is
persistently recruited for a task. High integration indi-
cates that pairs of nodes (where one region of the pair
is located in one system and the other region of the pair
is located in the other system) are frequently classified
in the same module across layers). We used a multi-
level model to test whether recruitment and integration
coefficients differed between scanning sessions and ex-
perimental groups.

First, we examine dynamic topological changes in
the fronto-parietal and default mode systems, which
were directly related to our hypothesis. Using a mul-
tilevel model, we observed a significant session × group
interaction effect when considering changes in the re-
cruitment of the fronto-parietal system during training
(χ2(3) = 9.03, p = 0.028; Figure 5b). The largest
increase in fronto-parietal recruitment was observed
in the experimental group when comparing ‘Early’ to
‘Late’ training phases (β = -0.07, t(120) = -2.892, p =
0.027, Bonferroni-corrected; Figure 5b). No significant
changes from ‘Naive’ to ‘Late’ training phases were ob-
served in the control group (β = -0.03, t(120) = -1.169,
p = 1, Bonferroni-corrected). Turning to an examina-
tion of the default mode, we found a significant main
effect of session (χ2(3) = 24.17, p < 0.0001) and of
group (χ2(1) = 3.96, p = 0.046) on system recruitment
(Figure 5c). However, the interaction effect between
session and group was not significant (χ2(3) =2.66, p
= 0.48). Planned contrasts revealed that the default
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Figure 5: Changes in module allegiance of the fronto-parietal (FP) and default-mode (DM) systems. (a) Module allegiance
matrices for the default mode and fronto-parietal systems. Each ij-th element of the matrix represents the probability that node i and node
j are assigned to the same module within a single layer of the multilayer network. (b) Only the experimental group exhibited increases
in fronto-parietal recruitment across sessions. (c) Both experimental and control groups exhibited increases in default mode recruitment
between ‘Naive’ and ‘Late’ stages of training. (d) In both groups, the integration between the fronto-parietal and default mode systems
decreased from ‘Naive’ to ‘Late’ sessions, but groups differed in the pattern of integration changes between ’Naive’ to ’Middle’ sessions (see
also Supplementary Figure 6). Source data are provided as a Source Data file.
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Figure 6: Changes of the recruitment and integration of large-scale systems. Colored tiles represent all significant effects (p <
0.05, uncorrected; *p < 0.05 FDR-corrected). (top panel) Here we display the significant main effects of session. Tile color codes a linear
regression coefficient (β), for all main session effects: (a) from ‘Naive’ to ‘Early’, (b) from ‘Naive’ to ‘Middle’, and (c) from ‘Naive’ to ‘Late’.
(bottom panel) Here we display the significant session × group interaction effects. Tile color codes a linear regression coefficient between
groups and sessions: (c) from ‘Naive’ to ‘Early’, (d) from ‘Naive’ to ‘Middle’, and (e) from ‘Naive’ to ‘Late’. Abbreviations: auditory (AU),
cerebellum (CER), cingulo-opercular (CO), default mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM), salience
(SAL), somatomotor (SOM), subcortical (SUB), uncertain (UNC), ventral attention (VA), and visual (VIS). Source data are provided as
a Source Data file.
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mode recruitment increased steadily in both groups and
we observed the largest increase between ‘Naive’ and
‘Late’ sessions (β = 0.09, t(123) 5.00, p < 0.0001). The
experimental group displayed a higher default mode re-
cruitment than the control group (t(165.6) = -3.03, p
= 0.003). We found a significant session × group in-
teraction effect on the integration between the fronto-
parietal and default mode systems (χ2(3) = 14.25, p =
0.0025) (Figure 5d). The integration between these two
systems decreased from ‘Naive’ to ‘Late’ sessions only
in the experimental group (β = 0.07, t(120) = 4.37, p
= 0.0002, Bonferroni-corrected). However, groups dif-
fered from ‘Naive’ to ‘Early’ (β = 0.07, t(120) = 2.16,
p = 0.03) and from ‘Early’ to ‘Middle’ sessions (β =
-0.06, t(120) = -2.70, p = 0.02, Bonferroni-corrected):
whereas the experimental group displayed an inverted
U-shaped curve of integration with training, the con-
trol group displayed the opposite pattern. Collectively,
these results suggest that the increase of fronto-parietal
system recruitment and the decrease of integration be-
tween the default mode and fronto-parietal systems re-
flect training-specific changes in dual n-back task au-
tomation. In contrast, the increase in default mode
system recruitment may reflect more general effects of
behavioral improvement, as it was observed in both ex-
perimental and control groups.

Next, we asked whether changes in dynamic topol-
ogy could be observed in other large-scale systems. Us-
ing multilevel modeling, we observed three distinct types
of changes occurring over time regardless of the group
(p < 0.05, FDR-corrected; Figure 6a-c): an increase in
system recruitment, (2) an increase in the integration
between task-positive systems, and (3) a decrease in the
integration between default mode and task-positive sys-
tems (Supplementary Figure 7, Supplementary Table 1-
2). First, we observed an increase in the recruitment
beyond the default mode system – in salience, and au-
ditory systems (Supplementary Figure 7a-c). Second,
we observed an increase in the integration between task-
positive systems, including fronto-parietal and salience,
dorsal attention and salience, and dorsal attention and
cingulo-opercular (Supplementary Figure 7d-f). Third,
for the default mode system, we observed a decrease
in integration with other task-positive systems: salience
and cingulo-opercular (Supplementary Figure 7g-i). Ad-
ditionally, we also observed a decrease in integration
between the memory and somatomotor systems, and
between the default mode and auditory systems (Sup-
plementary Figure 7j-k). We observed a similar pat-
tern of changes for the Schaefer parcellation (Supple-
mentary Figure 17, Supplementary Figure 18a). These
results suggest that the increase of within-module sta-
bility, the increase of default mode system independence
from task-positive systems, and the decrease of integra-
tion between task-positive systems reflect general effects
of task training.

We also investigated the relationship between across-

session change in system recruitment or integration and
across-session change in behavioral performance for all
large-scale systems. For both brain and behavioral vari-
ables, we measured the change from the first (‘Naive’) to
the last (‘Late’) training sessions (see Figure 7a, Sup-
plementary Table 6). We found a significant positive
correlation between change in behavior, as operational-
ized by a change in d′ (2-back minus 1-back), and change
of the default mode (r = 0.33, p = 0.03, uncorrected)
and salience (r = 0.34, p = 0.03; uncorrected) systems
recruitment. Greater behavioral improvement was also
associated with a higher increase of integration between
fronto-parietal and salience systems (r = 0.35, p = 0.02,
uncorrected) and a higher decrease of integration be-
tween default mode and task-positive systems: fronto-
parietal (r = -0.31, p = 0.04, uncorrected) and salience
(r = -0.41, p = 0.006, uncorrected). Analogous relation-
ships for default mode recruitment and default mode –
fronto-parietal integration with behavioral improvement
were observed for an alternative measure of performance
(pRT; Supplementary Figure 9a). Note, that the corre-
lation for the change in the d′ measure has opposite
sign when compared to the correlation with the change
of pRT, consistent with the fact that these two measures
have different interpretations (the lower pRT, the bet-
ter; the higher the d′, the better). In summary, a higher
increase of stability in the default mode and salience
systems, together with a decrease of default mode –
task-positive systems integration may support behav-
ioral improvement in the task, regardless of whether the
task was additionally trained or not.

Finally, we also observed session × group interac-
tion effects beyond the default mode and fronto-parietal
systems (p < 0.05, uncorrected, Figure 6d-e, Supple-
mentary Table 3-4). Specifically, in the experimental
group, we observed a non-linear change in the inte-
gration of the subcortical system with the dorsal at-
tention, ventral attention, cingulo-opercular, and audi-
tory systems. An initial increase in integration with
the subcortical system (from ‘Naive’ to ‘Early’) was fol-
lowed by a decrease in the integration at later time
intervals. Interestingly, we observed the reverse pat-
tern for the change in integration between the subcor-
tical and default mode systems: the integration first
decreased from ‘Naive’ to ‘Early’ sessions, and then in-
creased from ‘Early’ to ‘Middle’ sessions for the experi-
mental group (Supplementary Figure 8; Supplementary
Table 5). The pattern of changes in integration also
differed between the groups, particularly so for the inte-
gration between cingulo-opercular and memory systems,
cingulo-opercular and uncertain systems, and dorsal at-
tention and somatomotor systems. These results sug-
gest that task automation during initial stages of work-
ing memory training might also be supported by an in-
creased communication between subcortical and other
large-scale systems.

We further tested whether changes in systems re-
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Figure 7: Relationship between the change in network dynamics and the change in behavior. Colored tiles represent all
significant correlations (p < 0.05, uncorrected; *p < 0.05 FDR-corrected). (a) Pearson correlation coefficient (r) between the across-session
changes in recruitment (or integration) and the across-session changes in d′ (∆d′) observed for both experimental and control group. (b)
Relationship between the changes in recruitment (or integration) and the changes in d′ during early phase of training of the experimental
group. Abbreviations: auditory (AU), cerebellum (CER), cingulo-opercular (CO), default mode (DM), dorsal attention (DA), fronto-
parietal (FP), memory (MEM), salience (SAL), somatomotor (SOM), subcortical (SUB), uncertain (UNC), ventral attention (VA), and
visual (VIS).Source data are provided as a Source Data file.

cruitment or integration from ‘Naive’ to ‘Early’ ses-
sions were associated with performance improvement
displayed by the experimental group. Interestingly, we
found that the behavioral change was positively corre-
lated with change of integration between multiple sys-
tems, in particular: dorsal attention and somatomo-
tor, dorsal attention and subcortical, fronto-parietal and
somatomotor, dorsal attention and cingulo-opercular,
salience and default mode. In contrast, the increase of
integration of subcortical system and cingulo-opercular
systems was negatively correlated with the change in
task performance (Figure 7b, Supplementary Table 7).
This pattern of associations between behavioral and net-
work changes suggests that inter-systems communica-
tion might be necessary for efficient task performance
during initial stages of training.

In summary, we observed two patterns of dynamic
changes in network topology following working memory
training. The first pattern reflects improved behavioral
performance and is characterized by a gradual increase
in default mode autonomy and in the integration be-
tween task-positive systems. The second pattern reflects
changes related to task automation specifically in the
experimental group and is characterized by non-linear
changes in default mode – fronto-parietal integration,
and in the integration with the subcortical system.

DISCUSSION

In the present study, we aimed to verify the hypothe-
sis that training on an effortful cognitive task – a dual
n-back – increases the segregation of task-related func-
tional brain networks. We examined these training-
related changes utilizing both static and dynamic net-

work approaches. While performing a dual n-back task,
participants were scanned four times using fMRI: prior
to training, after two weeks of training, after four weeks
of training, and after six weeks of training. We exam-
ined the effect of training on whole-brain modularity,
as well as on the dynamic expression of that modular-
ity through measures of segregation and integration in
large-scale systems. We found that whole-brain modu-
larity significantly differed between task conditions, be-
ing the highest in the resting state, lower in the 1-back
condition, and even lower in the 2-back condition. In the
experimental group, modularity increased in response
to working memory training. We also observed two
patterns of changes in the dynamic network topology
following training: (i) a gradual increase in the segre-
gation of default mode and task-positive systems, and
(ii) a non-linear change in the default mode - fronto-
parietal integration and integration of the subcortical
system. The general behavioral improvement in the
task in response to training was positively correlated
with an increase in the recruitment of the default mode
system and a decrease in its integration with the fronto-
parietal system. Collectively, these findings suggest that
segregation of the default mode and task-positive sys-
tems supports general improvement in the task, while
dynamic communication of the default mode with the
fronto-parietal and subcortical systems supports more
specific network changes related to automation of the
working memory task.

The balance between segregated and integrated
brain states is constantly re-negotiated in the face of
challenges posed by the external world11. Together
with the existence of inter-modular connections, mod-
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ular organization of the brain network provides a basis
for the emergence of segregated and integrated neuronal
states22. The degree of modularity in functional brain
networks can change over a variety of time scales23,
from that of seconds as probed by intracranial record-
ings24 to that of years as driven by development25 or
aging26,27. Modularity can also be modulated at an
intermediate temporal scale, by task demands and cog-
nitive effort. Several studies have reported a decrease in
functional brain network modularity during increasing
demands on executive function, for example by varying
the level of the n-back task2,5. Here, we were curious
to understand whether and how whole-brain network
modularity changes when a demanding n-back task is
intensively trained. We expected that network modu-
larity would gradually increase during dual n-back task
training, suggesting more segregated, and therefore less
costly, information processing, after task automation.

We observed that modularity during the resting
state was higher than during performance of the dual n-
back task. Moreover, we found that the modularity dur-
ing the low-demand task condition (1-back) was higher
than the modularity during the high-demand task con-
dition (2-back). Our results are consistent with previous
studies providing evidence that network segregation is
lowest (while integration is highest) during a demanding
n-back task, when compared to a less demanding motor
task or resting state3,4. Moreover, the observed differ-
ence between working memory loads is consistent with
a previous study from2 who reported higher modularity
during the 3-back condition compared to the 0-back con-
dition, and also consistent with a previous study from5

who reported higher modularity during the 2-back con-
dition compared to the 1-back condition. Collectively,
the findings also support the Global Workspace The-
ory (GWT)13, by showing that less demanding, highly
automated tasks can be performed within segregated
modules, while more challenging tasks require integra-
tion between multiple modules.

Despite the consistency between our findings and
prior work, it is important to note that these previ-
ous studies did not address the question of whether a
fully mastered demanding cognitive task would still re-
quire a costly integrated workspace or could instead be
executed within specialized brain modules. Here, our
study expands upon prior work by offering the first ev-
idence supporting the latter hypothesis. We observed
that although modularity of the network generally in-
creased through n-back training, as measured during
both 1-back and 2-back conditions in the experimental
group, the modularity difference between the two condi-
tions was preserved. This finding suggests that training
resulted in the increase of the baseline network segre-
gation during the task, which supports our hypothesis
that mastered cognitive tasks can be executed within a
segregated network. Modularity measured during the
high-demand 2-back condition after training exceeded

the modularity during the low-demand 1-back condition
before training. However, even if the baseline network
segregation increased after the training, some level of
modularity breakdown during increasing cognitive de-
mands seems to be induced.

Importantly, modularity is also altered in patients
with disorders of mental health or patients sustaining
brain injury. Studies have found that modular organiza-
tion of a network is disrupted in patients with cognitive
control deficits28, and increases over the early stage of
stroke recovery in a manner that is related to the recov-
ery of higher cognitive functions29. Further longitudinal
studies in these patient populations could provide clar-
ity on the role of modularity – and its variation over
a range of time scales – in higher-order cognitive func-
tion. Our findings suggest that there is a possibility to
increase brain network modularity via intensive working
memory training. This phenomenon may have potential
beneficial implications for designing cognitive training
interventions to prevent aging-related cognitive decline,
reduce cognitive control deficits, or intensify effects of
neurorehabilitation through increasing brain plasticity.
To verify this conjecture, future studies should examine
the direct effect of training-induced increase of brain
modularity in healthy ageing and clinical populations.

Interestingly, we did not observe differences between
the experimental and control group in the increase of
network modularity. The control group displayed a
small increase of modularity in the 1-back condition,
suggesting that the segregation of the functional brain
network may increase rapidly, also in response to re-
peated exposure to the task. The control group per-
formed the dual n-back task four times during scanning
sessions, which resulted in a small behavioral improve-
ment. This result suggests that the increase of net-
work segregation may be sensitive to varying intensity of
training in the task. Future studies with a larger sample
size should examine whether such gradation exists.

The modular structure of functional brain networks
is not static, but instead undergoes dynamic reconfigu-
ration throughout a range of cognitive processes1,30–34.
Recently developed dynamical approaches to study
brain networks are sensitive to the temporal nature of
the underlying neural signal, and therefore can be used
to probe the fluctuating patterns of connectivity elicited
by task performance. Using just such a dynamical ap-
proach, Bassett et al.7 showed that the modular struc-
ture of human brain functional networks fluctuates ap-
preciably during motor-visual learning, and moreover
that the degree of fluctuations changes during a 6-week
training paradigm. Task-relevant, motor and visual net-
works exhibited increasing autonomy as the duration of
training increased, marking the emergence of automatic
behavioral responses. In light of this prior work, we
hypothesized that networks relevant to working mem-
ory function – including the fronto-parietal and default
mode systems – would increase their autonomy after ex-
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Figure 8: Schematic diagram summarizing the main changes in recruitment and integration of large-scale systems ob-
served over the course of working memory training. We observed a gradual increase of the integration between task-positive systems
(fronto-parietal - FP, salience - SAL, dorsal attention - DA, and cingulo-opercular - CO), greater recruitment of the default mode (DM)
system, and decreased DM-CO and DM-SAL integration. In the early phase of training (a) the experimental group displayed an increased
FP-DM integration, and increased integration of the subcortical (SUB) system with the DA and CO systems. In the late stage of training
(b), the FP system reduced its integration with the DM system and the SUB system increased its integration with the DM system, while
decreasing coupling with task-positive systems.

tensive training on a working memory task.

Here, we used a multilayer community detection
algorithm to determine whether modular structure of
large-scale systems change in response to n-back train-
ing. We further applied multilevel modeling35 to test
for possible group and session differences in the dy-
namic network measures while controlling for differ-
ences in individual baseline values. In testing our hy-
pothesis, we held in mind the observations of previ-
ous studies, which have noted that the fronto-parietal
and default mode systems can both cooperate and com-
pete during tasks that require cognitive control, such
as the n-back task15,36. Understanding the nature of
interactions between these two systems is therefore es-
sential for explaining the neural adaptation that oc-
curs in response to evolving cognitive demands. It is
also not known whether dynamic interactions between
these two networks may evolve during cognitive train-
ing. Using dynamic network metrics, we showed that
the default mode system increased its recruitment in
both groups, indicating that regions within this system
were coupled with other communities less often. More-
over, the experimental group displayed an increased
fronto-parietal recruitment and an inverted U-shaped
curve of integration between the default mode and
fronto-parietal systems with training. Enhanced de-
fault mode intra-communication and decreased inter-
communication with the fronto-parietal system were as-
sociated with better behavioral outcomes after training.
We also observed significant changes in dynamic net-

work topology beyond the fronto-parietal and default
mode systems. In particular, regardless of the group,
we observed an increased recruitment of the salience and
auditory systems, decreased integration between the de-
fault mode and other task-positive systems (including
salience and cingulo-opercular), and increased integra-
tion between task-positive systems (including fronto-
parietal and salience, dorsal attention and salience, dor-
sal attention and cingulo-opercular). These results sug-
gest the existence of the trade-off between segregation
and integration: whereas segregation increases between
some systems, the integration increases or decreases be-
tween others.

Some studies suggest that competitive interactions
between the task-positive fronto-parietal system and the
task-negative default mode system might be essential
for higher order cognitive functions15,36. The fronto-
parietal system is composed of spatially distributed
brain areas including the lateral prefrontal cortex, an-
terior cingulate, and inferior parietal cortex37. Its ac-
tivity is commonly linked to the performance of tasks
requiring cognitive control, such as the n-back work-
ing memory task37,38. Prior work offers evidence that
the fronto-parietal system is highly flexible and dynam-
ically interacts with other systems in response to the
changing demands of cognitive tasks1,31. In contrast,
the default mode system exhibits high activity during
internally directed cognition, such as mind wandering
and autobiographical memory39. The default mode sys-
tem is composed of spatially distributed brain areas in-
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cluding the medial prefrontal cortex, posterior cingu-
late, lateral parietal cortex, and both lateral and me-
dial temporal cortices39,40. The default mode’s activ-
ity is frequently anticorrelated with the activity of sys-
tems that engage in demanding cognitive tasks such as
the fronto-parietal and dorsal attention systems41. Re-
cent studies, however, challenge a common view about
existing antagonism between default mode and fronto-
parietal systems, suggesting that the interaction be-
tween these two systems is necessary for efficient be-
havioral control42,43. Recent findings confirm that de-
fault mode regions display a positive coupling with task-
positive brain systems during working memory task per-
formance44,45 and may dynamically switch their connec-
tions to support inter-module communication in high-
demand n-back task conditions5,46. By using dynamic
network approach, we were able to track both task-
related and training-related fluctuations of modular net-
work structure during the working memory task perfor-
mance. Our observations expand upon prior studies by
demonstrating that the increase in default mode segre-
gation and decrease of integration between the default
mode and fronto-parietal systems may be an indicator of
behavioral improvement during working memory train-
ing. Moreover, the previous study reported the relation-
ship between the default mode connectivity changes and
static modularity changes during n-back task5. In our
exploratory analysis, we also showed that default mode
recruitment fluctuated between task conditions and was
significantly higher in the 1-back condition than in the
2-back condition (Supplementary Figure 19) and, sim-
ilar to modularity, increased steadily in both groups.
Here we also observed a positive relationship between
the change in default mode recruitment and change of
modularity from ‘Naive’ to ‘Late’ session (Supplemen-
tary Figure 21). As we did not observe the relationship
between changes of modularity and behavioral improve-
ment, we may conclude that studying the dynamics of
modular network structure enables a better prediction
of behavioral outcomes in response to training.

Our results are also consistent with prior observa-
tions that the default mode and fronto-parietal sys-
tems may interact in a task-dependent manner with
the salience, cingulo-opercular, and dorsal attention sys-
tems15,47. Bressler and Menon47 proposed a model
whereby efficient cognitive control is supported by
the dynamic switching between functionally segregated
fronto-parietal and default mode systems mediated by
cingulo-opercular and salience systems. Cocchi et al.15
proposed that task-related reconfiguration is possible
through flexible interactions within and between over-
lapping meta-systems: (i) the executive meta-systems,
responsible for the processing of sensory information,
and (ii) the integrative meta-system, responsible for
flexible integration of brain systems. These two meta-
systems are composed of transient coupling between
three large-scale systems: the frontoparietal system, the

cingulo-opercular/salience system, and the default mode
system. During high-demand task conditions the exec-
utive meta-system is formed by extensive interactions
between fronto-parietal and cingulo-opercular/salience
systems, and the default mode system is more segre-
gated and less integrated with the fronto-parietal sys-
tem48. Our results extend these findings by present-
ing the evolving reconfigurations of large-scale networks
during mastery of the working memory task. We showed
that regardless of the group the default mode system re-
duced coupling with the cingulo-opercular and salience
systems. These results suggest that increased segrega-
tion of the default mode and task-positive networks may
be a consequence of more efficient task performance. A
similar pattern of changes was observed across two dif-
ferent subdivisions of the cortex into systems (Power
and Schaefer), together suggesting that the salience
and cingulo-opercular systems that are thought to be
responsible for switching between antagonistic fronto-
parietal and default mode systems, appear to be more
integrated with the fronto-parietal system and less in-
tegrated with the default mode system. This pattern
of relations may be due to diminished requirements for
switching between these two systems when the task is
well learned.

Similar to modularity, the lack of group differences in
the pattern of these changes suggests that the increased
DM autonomy and increased integration of task-positive
systems might be related to a general improvement in
task performance. Such behavioral improvement, al-
though much smaller than in the experimental group,
was also observed in the control group during the 2-
back condition. As participants performed the task four
times in the scanner, they inevitably trained the task to
a small extent. The presence of network reorganization
in the control group may suggest that changes in DM
autonomy and integration of task-positive systems oc-
cur relatively fast, even when the training is not intense.
As participants of our study were scanned in 2-week in-
tervals, we could not capture what behavioral improve-
ment is necessary to invoke such network reorganization.
To better understand the dynamics of these neuroplas-
tic changes, future studies should examine day-to-day
network reorganization in response to training with dif-
ferent intensities.

We also observed that groups differed in patterns of
changes in the subcortical system coupling. Specifically,
the experimental group displayed an inverted U-shaped
curve of changes in (i) the integration between the sub-
cortical system and the dorsal attention system, and
(ii) the integration between the ventral attention sys-
tem and the cingulo-opercular system; notably, the con-
trol group displayed the opposite pattern. We observed
the opposite effect for coupling between the subcortical
and default mode systems. Non-linear changes in sub-
cortical activity were also observed in previous studies
of the effects of working memory training49. Consistent
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with our results, Kühn et al.49 found that activity in the
subcortical regions increased after one week of working
memory training and decreased after 50 days of training.
Previous studies suggested that subcortical activity can
mediate changes in working memory ability50. Because
an inverted U-shaped curve of changes in fronto-parietal
activity was also observed following working memory
training49,51, we speculate that subcortical activity may
influence changes in the fronto-parietal system. Yet,
results based on observation of brain activity changes
cannot provide information on how these two systems
interact. Our results show that in the initial training
phase, the subcortical system switched coupling from
task-positive systems to the default mode system. We
observed the opposite pattern for the fronto-parietal sys-
tem, which instead first increased and then decreased its
interaction with the default mode system. We speculate
that the subcortical system supports segregation of the
task-positive and default mode systems. Future stud-
ies using effective connectivity approach could examine
whether such a cause and effect relationship exists.

The dynamic network approach extends our under-
standing of training-related changes in brain function.
Studies focusing on changes in brain activity during a
working memory training reported a decrease of task-
positive systems activation49,51, commonly interpreted
as a reflection of increased neural efficiency within sys-
tems engaged in the task52. Here, we reported a sim-
ilar effect using a standard GLM-based approach (see
Supplementary Figure 10-11, Supplementary Table 8-
9). However, we also showed that our findings on the
dynamic network changes can not be simply explained
by the changes in brain activity (Supplementary Fig-
ure 12). The fronto-parietal system dynamically in-
teracts with other large-scale systems15, and it is rea-
sonable to expect that working memory training might
influence interactions in the whole network. We ob-
served training-related increases in the segregation of
the default mode and task-positive systems that suggest
more efficient and less costly processing within these sys-
tems after training. Accordingly, greater segregation of
the default mode system and task-positive systems and
smaller integration between these systems were associ-
ated with behavioral performance improvement. More-
over, we showed that an increase of integration between
multiple large-scale systems in early phase of training
was related to a greater behavioral improvement in the
experimental group, indicating that some level of net-
work integration is necessary when the task is not fully
automated. Taken together, the dynamic network ap-
proach provides a unique insight into the plasticity and
dynamics of the human brain network.

METHODS

Subjects

Fifty-three healthy volunteers (26 female; mean age:
21.17; age range: 18–28 years) were recruited from the
local community through word-of-mouth and social net-
works. All participants were right-handed, had nor-
mal or corrected-to-normal vision, and had no hearing
deficits. Seven participants did not complete the study:
one due to brain structure abnormalities detected at the
first scanning session, and six due to not completing
the training procedure. The final sample consisted of
forty-six participants who completed the entire training
procedure, participated in all four fMRI scanning ses-
sions, and had no history of neurological or psychiatric
disorders nor gross brain structure abnormalities. Af-
ter the first fMRI scan, participants were matched by
sex and randomly assigned to one of the two training
groups: experimental and control (see next section on
Experimental Procedures). Each group consisted
of 23 subjects with no group differences in age (two-
sample t-test: t(42.839) = 0.22, p = 0.83) or fluid intel-
ligence (two-sample t-test: t(42.882) = 0.51, p = 0.61)
as measured by Raven’s Advanced Progressive Matrices
(RAPM)53. Informed consent was obtained in writing
from each participant, and ethical approval for the study
was obtained from the Ethics Committee of the Nico-
laus Copernicus University Ludwik Rydygier Collegium
Medicum in Bydgoszcz, Poland, in accordance with the
Declaration of Helsinki.

Experimental Procedures

The study was performed at the Centre for Modern In-
terdisciplinary Technologies, Nicolaus Copernicus Uni-
versity in Toruń (Poland). Each participant who com-
pleted the entire study procedure attended a total of
24 meetings at the laboratory. During the first meet-
ing, participants were familiarized with the study pro-
cedure and timeline, and were asked to provide basic
demographic information and informed consent. Dur-
ing the second meeting, participants performed fluid
intelligence testing with RAMP53. Then, participants
were scheduled for fMRI testing, which was performed
before training, after two weeks of training, after four
weeks of training, and after 6 weeks of training. Each
fMRI session was scheduled to be on the same day of the
week and at the same hour for each participant. These
schedules varied in exceptional cases (holidays, illness of
participant, emergency). However, scanning procedures
were always performed between 24h to 48h after the
last training session. After the first fMRI session, par-
ticipants were randomly assigned to one of two training
groups: (1) experimental, which trained working mem-
ory with an adaptive dual n-back task14, and (2) a pas-
sive control group which interchangeably performed an
auditory and spatial 1-back task. We included this sec-
ond group to control for differences in the effect of train-
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ing on task performance and fMRI signatures driven by
repeated exposure to a task.

Two versions of the dual n-back task were used: (1)
an adaptive dual n-back was used in the training ses-
sions of the experimental group only, and (2) an identi-
cal dual n-back task with two conditions (1-back and 2-
back) used during fMRI scanning of both groups. Both
scanning and training versions of the dual n-back task
consisted of visuospatial and auditory tasks performed
simultaneously. Visuospatial stimuli consisted of 8 blue
squares presented sequentially for 500 ms on the 3 × 3
grid with a white fixation cross in the middle of the black
screen; auditory stimuli consisted of 8 Polish consonants
(b, k, w, s, r, g, n, z) played sequentially in headphones.
Participants were asked to indicate by pressing a but-
ton with their left index finger whether the letter heard
through the headphones was the same as the letter n-
back in the sequence, and by pressing a button with
their right index finger to indicate whether the square
on the screen was in the same location as the square
n-back in the sequence.

In the training version of the task the n-level of the
dual n-back task increased adaptively when participants
achieved 80% correct responses in the trial, and the
n level decreased when participants made more than
50% errors in the trial. After each trial, the n level
achieved by a participant was recorded, and the mean
n level during each of 18 training session was used later
to calculate the total training progress (Supplementary
Figure 1, Supplementary Figure 2). Participants from
the control group performed a single 1-back with audi-
tory or visuospatial stimuli variants. To minimize bore-
dom of participants, the order of the 1-back variants
was randomly selected at the beginning of each train-
ing session. Therefore, each participant from the con-
trol group had the same number of training trials on
single auditory and visuospatial n-back tasks. Partic-
ipants completed a total of 18 sessions (30 min each)
under the supervision of the experimenter. Each par-
ticipant completed 20 blocks (each consisting of 20 + n
trials, depending on the n level achieved by the partic-
ipant) of the n-back task during each training session.
The study was double-blind; the experimenter perform-
ing the fMRI examination was not aware of the group
assignment of the participants, and participants were
not aware that the study was designed in a way that
there were two groups (experimental and control). The
apparatus used in the study consisted of two 17” Dell
Inspiron Laptops, and two pairs of Sennheiser head-
phones. Stimulus delivery was controlled by a Python
adaptation of the dual n-back task used by Jaeggi et
al.14 (http://brainworkshop.sourceforge.net/).

In the fMRI scanning version of the task, partici-
pants performed the dual n-back task with two levels
of difficulty: 1-back and 2-back. Each session of the
task consisted of 20 blocks (30 s per block; 12 trials
with 25% of targets) of alternating 1- and 2-back condi-

tions. To enable for dynamic network comparison across
blocks, we did not add any systematic variation to block
length and block order. The instruction screen was dis-
played for 4,000 ms before each block, informing the
participant of the upcoming condition. Both visual and
auditory stimuli were presented in a pseudo-random or-
der. Participants were asked to push the button with
their right thumb if the currently presented square was
in the same location as the previous square (1-back)
or two squares back in the sequence (2-back) and, at
the same time, push the button with their left thumb
when the currently played consonant was the same as
the previous consonant (1-back) or two consonants back
(2-back). The participants had 2,000 ms to respond, and
were instructed to respond as quickly and accurately as
possible. The experimental protocol execution and con-
trol (stimulus delivery and response registration) em-
ployed version 17.2. of Presentation software (Neurobe-
havioral Systems, Albany, NY), as well as MRI com-
patible goggles (visual stimulation), headphones (audi-
tory stimulation), and response grips (response registra-
tion) (NordicNeuroLab, Bergen, Norway). Before each
scanning session, participants performed a short dual
n-back training session outside the fMRI scanner to (re-
)familiarize them with the rules of the task.

All participants received equal monetary remunera-
tion (200 PLN) for study participation together with
a radiological description and a CD containing their
anatomical brain scans.

Data acquisition

Neuroimaging data were collected using a GE Dis-
covery MR750 3 Tesla MRI scanner (General Electric
Healthcare) with a standard 8-channel head coil. Struc-
tural images were collected using a three-dimensional
high resolution T1-weighted gradient-echo (FSPGR
BRAVO) sequence (TR = 8.2 s, TE = 3.2 ms, FOV =
256 mm, flip angle = 12 degrees, matrix size 256× 256,
voxel size = 1 × 1 × 1 mm, 206 axial oblique slices).
Functional scans were obtained using a T2*-weighted
gradient-echo, echo-planar imaging (EPI) sequence sen-
sitive to BOLD contrast (TR = 2,000 ms, TE = 30 ms,
FOV = 192 mm, flip angle = 90 degrees, matrix size =
64× 64, voxel size 3× 3× 3 mm, 0.5 mm gap). For each
functional run, 42 axial oblique slices were acquired in
an interleaved acquisition scheme, and 5 dummy scans
(10 s) were obtained to stabilize magnetization at the
beginning of the EPI sequence. Resting state (10 min
10 s, 305 volumes) data was acquired at the beginning of
each scanning session. During the resting state, partici-
pants were asked to focus their eyes on the fixation cross
in the middle of the screen. The dual n-back task data
(11 min 30 s; 340 volumes) were acquired using the same
data acquisition settings (see Experimental Procedures
for the task description.
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Behavioral performance

To measure behavioral performance in the dual n-back
scanning sessions, we incorporated d’, a signal detec-
tion theory statistic16. This measure combines both
response sensitivity and response bias. For every sub-
ject, session, task condition, and stimulus modality, we
first divided all responses into four categories: (1) hits –
button press for targets, (2) misses – lack of response for
targets, (3) false alarms – button press for non-targets
and (4) correct rejections – lack of response for non-
targets. We defined hit rate H and false alarm rate F
as:

H =
#hits

#hits+#misses
(1)

F =
#false alarms

#false alarms+#correct rejections
(2)

We calculated d′ measure as:

d′ = Z(H)− Z(F ), (3)

where Z(x) is the inverse of the cumulative Gaussian
distribution. To get finite values of d′ for the situa-
tions in which H or F was equal to 0 or 1, we used
modified values of either 0.01 or 0.99 instead. For each
participant, we calculated average d′ for both modali-
ties to represent a cumulative measure of performance
during the dual n-back task. We also calculated behav-
ioral performance using an alternative measure, penal-
ized reaction time (pRT), which incorporates a measure
of accuracy (see Supplementary Figure 4 for variability
changes for these measures).

Data processing

After converting from DICOM to NifTI format, func-
tional and anatomical data were structured according
to the BIDS (Brain Imaging Data Structure) stan-
dard54 and validated with BIDS Validator (https://
bids-standard.github.io/bids-validator/). Neu-
roimaging data was preprocessed using fMRIPrep
1.1.155 a Nipype56 based tool. See Supplementary
Methods for details on anatomical data processing.
Functional data was slice time corrected using 3dT-
shift from AFNI v16.2.0757 and motion corrected us-
ing MCFLIRT (FSL v5.0.9,58. This process was fol-
lowed by co-registration to the corresponding T1w using
boundary-based registration59 with 9 degrees of free-
dom, using bbregister (FreeSurfer v6.0.1). Motion cor-
recting transformations, BOLD-to-T1w transformation
and T1w-to-template (MNI) warp were concatenated
and applied in a single step using antsApplyTransforms
(ANTs v2.1.0) employing Lanczos interpolation.

Physiological noise regressors were extracted by ap-
plying CompCor60. Principal components were esti-
mated for the two CompCor variants: temporal (tCom-
pCor) and anatomical (aCompCor). A mask to exclude
signal with cortical origin was obtained by eroding the

brain mask, ensuring that it only contained subcortical
structures. Six tCompCor components were then calcu-
lated including only the top 5% variable voxels within
that subcortical mask. For aCompCor, six components
were calculated within the intersection of the subcor-
tical mask and the union of the CSF and WM masks
calculated in T1w space, after their projection to the
native space of each functional run. Frame-wise dis-
placement61 (FD) was calculated for each functional run
using the implementation of Nipype. The internal op-
erations of fMRIPrep use Nilearn62, principally within
the BOLD-processing workflow. For more details of
the pipeline see https://fmriprep.readthedocs.io/
en/latest/workflows.html.

Non-smoothed functional images were denoised us-
ing Nilearn62 and Nistats. We implemented voxel-
wise confound regression by regressing out (1) signals
from six aCompCor components, (2) 24 motion param-
eters representing 3 translation and 3 rotation time-
courses, their temporal derivatives, and quadratic terms
of both, (3) outlier frames with FD > 0.5mm and
DVARS (Derivative of rms VARiance over voxelS)63
with a threshold of ± 3 SD, together with their temporal
derivatives, (4) task effects and their temporal deriva-
tives64, and (5) any general linear trend. Time-series
were filtered using 0.008-0.25 Hz band-pass filter. We
excluded four high motion participants (2 from the con-
trol group, and 2 from the experimental group) with a
mean FD larger than 0.2 mm and more than 10% of
outlier volumes in any scanning session (Supplementary
Figure 5).

Functional connectivity estimation

Functional connectivity is a measure of the statistical re-
lation between time-series of spatially distinct brain re-
gions. Time-series can be defined as signals from single
voxels or as the mean of the signals from anatomically
or functionally defined groups of voxels, also known as
brain parcels65. Here, we used a functional brain par-
cellation composed of 264 regions of interests (ROIs)
provided by Power et al.19. This parcellation was
based on meta-analysis and has previously been used
in many studies focused on task-based network reor-
ganization2,5,31. To validate our results, we also used
a 300-ROI parcellation provided by Schaefer et al.66,
which is based on transitions of functional connectivity
patterns.

We created N × N correlation matrices by calcu-
lating the Pearson’s correlation coefficient between the
mean signal time-course of region i and the mean sig-
nal time-course of region j, for all pairs of ROIs (i,j).
We retained only positive correlations for further anal-
ysis. In the case of the dual n-back task, we employed a
weighted correlation measure, to control for delays due
to the hemodynamic response function (HRF)64. In this
procedure, we first convolved task block regressors with
the HRF and applied a filter to retain only positive val-
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ues of the resultant time-series. Then, original time-
series were filtered according to the task condition and
positive values of the HRF-convolved time-series. Next,
the weighted correlation coefficient was calculated be-
tween the concatenated block time series, with weights
taken from the corresponding HRF-convolved signals.
Finally, Fisher’s transformation was employed to con-
vert Pearson’s correlation coefficients to normally dis-
tributed z-scores. This procedure resulted in 264× 264
(Power parcellation) and 300 × 300 (Schaefer parcella-
tion) correlation matrices for each subject, session, and
task condition (resting-state, 1-back, 2-back). For the
dynamic network analyses, we calculated the weighted
correlations for each block of the n-back task, resulting
in 264×264×20 and 300×300×20 matrices, where the
third dimension represents the number of task blocks
(20 interleaved blocks of 1-back and 2-back).

Static modularity

To calculate the extent of whole-brain network segrega-
tion, we employed a Louvain-like community detection
algorithm67 to optimize a common modularity quality
function17. This algorithm partitions the network into
communities, where nodes in a given community are
highly interconnected among themselves, and sparsely
interconnected to the rest of the network. The modu-
larity quality index, Q, to be optimized was defined as
follows:

QS =
1

2µ

∑
ij

(Aij − γVij)δ(gi, gj), (4)

where µ = 1
2

∑
ij Aij is the total edge weight of the net-

work, Aij is the strength of the edge between node i
and node j, and γ is the structural resolution parame-
ter. The Kronecker delta function δ(gi, gj) equals one
if nodes i and j belong to the same module, and equals
zero otherwise. The term Vij represents the connectiv-
ity strength expected by chance in the configuration null
model:

Vij =
kikj
2m

, (5)

where ki and kj are the weighted degrees of nodes i and
j, respectively, and m = 1

2

∑
ij Aij is the sum of all

nodal weighted degrees.
Since the Louvain algorithm is non-deterministic, we

run it 100 times, and then consider the network partition
with the highest modularity score across these runs. It
is important to note that the values of graph theoretical
metrics can vary markedly depending on the sum of con-
nection strengths in the network68. To take this effect
into account, we normalized each individual modularity
value against a set of modularity values calculated for
randomly rewired networks18. For this purpose, we cre-
ated 100 null networks using random rewiring of each
original functional network. Then, modularity scores
were calculated for each null network, thereby creating
a null distribution. Finally, we normalized modularity

values by dividing them by the mean of the correspond-
ing null distribution.

Multilayer modularity

To calculate measures of recruitment and integration,
we performed multilayer modularity maximization used
a generalized Louvain-like community detection algo-
rithm introduced by20. This algorithm allows the opti-
mization of a modularity quality function on a network
with multiple layers. In our study, networks calculated
for each separate block were considered as consecutive
layers of the multilayer network. For each subject, ses-
sion, and multilayer network, we ran 100 optimizations
of the modularity quality function, defined as:

QML =
1

2µ

∑
ijsr

[(Aijs − γsVijs)δsr + δijωsr]δ(gis, gir),

(6)
where Aijs represents the element of the adjacency ma-
trix at slice s, Vijs represents the element of the null
model matrix at slice s, gir provides the community as-
signment of node i in slice r, µ = 1

2

∑
ij κjr is the total

edge weight of the network, where κjs = kjs + cjs is
the strength of node j in slice s, the kjs is the interslice
strength of node j in slice s, and cjs =

∑
r ωjsr. For

all slices we used the Newman-Girvan null model, also
known as the configuration model, defined as:

Vijs =
kiskjs
2ms

, (7)

where ms = 1
2

∑
ij Aijs is the total edge weight of slice

s. In this optimization, there are two free-parameters:
γs and ωjsr. The parameter γs is the structural res-
olution parameter for slice s, and the parameter ωisr

represents the connection strength between node j in
slice s and node j in slice r. These two parameters
can be used to tune the size of communities within each
layer and the number of communities detected across
all layers, respectively. Here, in line with previous stud-
ies we set γ = 121. Due to the interleaved nature of
our experimental design, ω = 1 for slices from the same
task condition, and ω = 0.5 for slices from different task
conditions.

Network diagnostics

Multilayer community detection results in a single mod-
ule assignmentN×T matrix, where each matrix element
represents the module assignment of a given node for a
given slice. To summarize the dynamics of module as-
signments for each subject and session, we calculated an
N ×N module allegiance matrix, P , where the element
Pij represents the fraction of network layers for which
node i and node j belong to the same community7,21:

Pij =
1

OT

O∑
o=1

T∑
t=1

ak,oi,j , (8)
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where O is the number of repetitions of the multilayer
community detection algorithm (here, O = 100), and T
is the number of slices (here 20 task blocks). For each
optimization o and slice t,

ak,oi,j =

{
0, if nodes i and j are in the same module
1, otherwise.

(9)
To characterize the dynamics of large-scale systems re-
cruitment and integration, we employed methods of
functional cartography7,21. These measures allow us to
summarize how often regions from the system of inter-
est are assigned to the same module. We can define the
recruitment of system S as:

RS =
1

n2S

∑
i∈S

∑
j∈S

Pi,j . (10)

The recruitment of system S is high when regions within
the system tend to be assigned to the same module
throughout all task blocks. Similarly, we can define the
integration coefficient between system Sk and system Sl

as:
ISkSl

=
1

nSk
nSl

∑
i∈Sk

∑
j∈Sl

Pij . (11)

Systems of interest are highly integrated when regions
belonging to two different systems are frequently as-
signed to the same community.

To remove potential bias introduced by the differ-
ences in the number of nodes within each system, we
used permutation approach to normalize values of re-
cruitment and integration coefficients. For each subject
and session, we created Nperm = 1000 null module alle-
giance matrices by randomly permuting correspondence
between ROIs and large-scale systems. We then calcu-
lated functional cartography measures for all permuted
matrices. This procedure yielded null distributions of
recruitment and integration coefficients resulting solely
from the size of each system. In order to obtain nor-
malized values of Rs and ISkSt we divided them by
the mean of the corresponding null distribution. We
also calculated recruitment and integration coefficients
based on multilevel community detection for signed net-
works (Supplementary Methods, Supplementary Figure
13-15).

Statistical modeling

Due to the nested nature of the study data, we used
two-level (trials nested within participants) and three-
level (trials nested within sessions nested within partici-
pants) multilevel models35 (MLM) at four points during
our analysis of the data. In all cases, random inter-
cepts were estimated. The significance of models was
estimated with chi-square tests, where models with in-
creasing complexity were compared and the resulting
value of Likelihood Ratio Test (χ2) and corresponding
p-value were reported69. The MLM analysis was per-
formed using nlme 70 R package.

Behavioral changes during training. To investigate
behavioral changes in behavioral performance depend-
ing on the session, task condition, and group, we used
a three-level multilevel model with d′ as the dependent
variable and with group (2 factors: experimental and
control), condition (2 factors: 1-back and 2-back, refer-
ence category: 1-back), and session (4 factors: Naive,
Early Middle, Late; reference category: Naive) as in-
dependent variables. In addition to the main effects
(group, condition, session), we included the following
interaction terms: group × session, condition × session,
group × condition, and group × condition × session.

Modularity at baseline. To investigate the depen-
dence of static modularity at baseline on task condition,
we used a two-level multilevel model with static mod-
ularity as the dependent variable and with task con-
dition (3 factors: rest, 1-back, 2-back, two orthogonal
contrasts: rest vs. 1-back and 2-back, 1-back vs. 2-
back) as the independent variable. The main effect of
condition was tested.

Training-dependent changes in static modularity. To
investigate the dependence of static modularity on the
session, task condition, and group, we used a three-level
multilevel model with static modularity as the depen-
dent variable and with group (2 factors: experimental
and control), condition (2 factors: 1-back and 2-back),
and session (4 factors: Naive, Early Middle, Late, refer-
ence category: Naive) as independent variables. In ad-
dition to the main effects (group, condition, session), we
included the following interaction terms: group × ses-
sion, condition × session, group × condition, and group
× condition × session.

Changes in dynamic network metrics. To investigate
changes in the integration and recruitment of large scale
systems, we used a two-level multilevel model with the
diagnostic measure (recruitment or integration) as the
dependent variable and with group (2 factors: experi-
mental and control) and session (4 factors: Naive, Early
Middle, Late, reference category: Naive) as independent
variables. In addition to the main effects (group, ses-
sion), we included the following interaction term: group
× session.

Data availability

The raw behavioral data and fMRI results are avail-
able for download at https://osf.io/wf85u/ (DOI
10.17605/OSF.IO/WF85U). The source data underly-
ing Figures 2-7, and Supplementary Figures 1-21 are
provided as a Source Data file. The raw fMRI data are
available from the corresponding author on request.

Code availability

All code used for neuroimaging and behavioral
data processing and statistical data analyses are
publicly available at https://osf.io/wf85u/ (DOI
10.17605/OSF.IO/WF85U).
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Supplementary Figure 1: Behavioral performance during dual n-back training. The performance was measured as a mean
n-back level achieved during each trial of 18 training sessions. This measure was estimated only for the experimental group. (a)
Boxplots represent values of mean n-level achieved during 18 sessions of training. Error bars represent 95% confidence intervals. On
average, participants improved their initial performance by 60.3%. Maximum n-back levels achieved by participants varied from 3-back
to 7-back. (b) Growth model fitted to mean n-values. We fitted both linear and quadratic models to predict the behavioral score
(mean n-back level) monitored across the 18 training sessions. Training session significantly predicted mean n-back level achieved by
participants, χ2(2) = 111.21, p < 0.0001. Including a quadratic term in the model based on session significantly improved the model
fit, χ2(1) = 24.12, p < 0.0001. Orange lines represent models of behavioral improvement fitted to each participant’s performance. The
black line represents the prototype model fitted to the experimental group. Source data are provided as a Source Data file.
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Supplementary Figure 2: Individual values of mean n-back level achieved in each session of the dual n-back training. The
black line represents a quadratic model fitted to individual data. Source data are provided as a Source Data file.
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Supplementary Figure 3: Behavioral performance modulated by training. (a, b) Line plots represent mean behavioral perfor-
mance measured as pRT, calculated for all training phases (Naive, Early, Middle, Late), dual n-back conditions (1-back and 2-back),
and groups (experimental, (a); control, (b). Participants exhibited significantly different pRT, depending on the training stage (Naive,
Early, Middle, Late), condition (1-back versus 2-back), and group (experimental versus control), as indicated by a χ2-test (χ2(3) =
21.25, p < 0.0001). (c) In the 1-back condition, the experimental group displayed a 14.2% reduction in pRT (Bonferroni-corrected,
t(20) = 3.90, p = 0.003); no improvement was found in the control group (t(20) = 1.77, p = 0.08). The change in pRT during the
1-back condition did not differ between the two groups (t(39.91) = 1.41, p = 0.17). (d) The greatest improvement was observed in
the experimental group when comparing ‘Naive’ to ‘Late’ training phases during the 2-back condition (mean 46 % pRT improvement;
Bonferroni-corrected, t(20) = 10.16, p < 0.0001). For comparison, the control group exhibited only a 12.2 % decrease of pRT during
the 2-back condition (Bonferroni-corrected, t(20) = 3.95, p = 0.003). The decrease in pRT was significantly larger for the experimental
group than for the control group (Bonferroni-corrected, t(38.95) = 5.19, p < 0.0001). After training, the experimental group exhibited
no difference in performance between the 1-back condition and the 2-back condition after training (t(20) = 1.52, p = 0.14), while in
control group, the difference in performance between conditions remained substantial (Bonferroni-corrected, t(20) = -5.71, p < 0.001).
Error bars represent 95% confidence intervals. *** p < 0.001 Bonferroni-corrected; ** p < 0.01 Bonferroni-corrected. Source data are
provided as a Source Data file.
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c d

Supplementary Figure 4: Block-to-block variability in behavioral performance modulated by training. (a) Standard deviation
of d′ (σd′ ) estimated across task blocks, for which we found a significant main effect of session (χ2(3) = 9.61, p = 0.02). Specifically,
the standard deviation of d′ decreased from ’Naive’ to ’Early’ sessions for all participants (β = -0.14, t(39) = -2.46, p = 0.02). Both
group and session × group interaction effects were not significant (p > 0.05). Error bars represent the 95% confidence intervals. (b)
Standard deviation of penalized reaction time (σpRT ), for which we found a significant group effect effect(χ2(1) = 7.39, p = 0.006). In
general, participants from the experimental group had lower pRT variability (β = -29.00, t(40) = -2.80, p = 0.008) than participants
from the control group. Both the effect of session and the session × group interaction were not significant (p > 0.05). (c, d) correlation
between the across-session change in behavioral variability measured as standard deviation of d′ and the across-session change in (c)
somatomotor and (d) subcortical systems recruitment (p < 0.05, uncorrected). Source data are provided as a Source Data file.
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Supplementary Figure 5: Head motion during the dual n-back task. In addition to including 24 motion parameters in the
denoising procedure, we also excluded high motion subjects from subsequent analyses. We defined a high motion subject as one with
mean frame displacement (FD) larger than 0.2 mm and more than 10% of outlier volumes in any scanning session. This criterion
was applied when considering the total time courses, as well as when considering time courses of the 1-back and 2-back conditions,
separately. As a result we excluded four participants (2 from the control group, and 2 from the experimental group). One subject
displayed excessive motion during three scanning sessions, while another displayed excessive motion during two scanning sessions, and
two subjects displayed excessive motion in only one scanning session. After excluding high motion subjects, we compared the mean
FD and mean percent of outlier scans between sessions, groups, and conditions (see S1 for further details). We did not find significant
differences between any of these variables between sessions (all p < 0.05), groups (all < 0.05), and most of the condition comparisons.
The only difference that passed an uncorrected threshold of significance (p < 0.05) was found between the 1-back and 2-back conditions
of the control group during the third scanning session. Source data are provided as a Source Data file.
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Supplementary Figure 6: Between-group differences in module allegiance matrices for the default mode and fronto-
parietal systems. Each ij-th element of the matrix represents a difference between groups (experimental minus control) in the
probability that node i and node j are assigned to the same module within a single layer of the multilayer network. Systems are defined
using the Power et al.1 parcellation. Source data are provided as a Source Data file.
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Supplementary Figure 7: Session-to-session changes in recruitment and integration of large-scale systems. We observed
three main categories of large-scale system reorganization: (a-c) an increase in system recruitment, (d-f) an increase in integration
between task-positive systems (TP), (g-i) a decrease in integration between the default mode (DM) system and task-positive systems,
and (j-k) other. Error bars represent 95% confidence intervals. Remaining abbreviations: salience (SAL), auditory (AU), fronto-parietal
(FP), dorsal attention (DA), cingulo-opercular (CO), memory (MEM), and somatomotor (SOM). Source data are provided as a Source
Data file.
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Supplementary Figure 8: Session × group interaction effects for across-session changes in recruitment and integration of
large-scale systems. We observed group differences in the changes in (a-e) integration of subcortical (SUB) system with other systems,
(f-h) integration of task-positive (TP) systems with other systems, (i) integration of the default mode (DM) with the fronto-parietal
(FP) system, (j-k) changes in dorsal attention (DA) and FP recruitment. Error bars represent 95% confidence intervals. Remaining
abbreviations: salience (SAL), auditory (AU), memory (MEM), and somatomotor (SOM). Source data are provided as a Source Data
file.
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Supplementary Figure 9: Relationship between the change in network dynamics and the change in behavior. Colored
tiles represent all correlations (p < 0.05, uncorrected; *p < 0.05 FDR-corrected). (a) Pearson correlation coefficient (r) between the
across-session changes in recruitment (or integration) and the across-session changes in penalized reaction time (∆ pRT) observed for
both experimental and control group. (b) Relationship between the changes in recruitment (or integration) and the changes in pRT
during early phase of training of the experimental group. Abbreviations: auditory (AU), cerebellum (CER), cingulo-opercular (CO),
default mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM), salience (SAL), somatomotor (SOM), subcortical
(SUB), uncertain (UNC), ventral attention (VA), and visual (VIS). Source data are provided as a Source Data file.
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Supplementary Figure 10: Brain activity for 2-back vs. 1-back contrast (two-sided) estimated with a standard GLM
for all subjects and sessions. (a) Glass brain visualization of activity thresholded at a z-score level ± 8. (b) Brain activity
plotted on 264 ROIs from the Power et al.1 parcellation. (c) Barplot representing the z-score values averaged over ROIs belonging to
predefined large-scale systems. The most active ROIs belonged to the fronto-parietal (FP), dorsal attention (DA), and salience systems
(SAL). The most deactivated ROIs belonged to the auditory (AU), somatomotor (SOM), and default mode (DM) systems. Remaining
abbreviations: cerebellum (CER), cingulo-opercular (CO), memory (MEM), uncertain (UNC), somatomotor (SOM), subcortical (SUB),
ventral attention (VA), and visual (VIS). Source data are provided as a Source Data file. Source data are provided as a Source Data
file.
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Supplementary Figure 11: Cross-sessions changes in brain activity for 2-back vs. 1-back contrast (two-sided) esti-
mated with a standard GLM. Groups differed significantly by session for the salience (SAL) and visual (VIS) systems (p < 0.05,
FDR-corrected). Specifically, compared to the control group, participants from the experimental group displayed significantly greater
decreases in the activation of the salience system from the ’Naive’ to ’Early’ sessions (β = -1.10, t(120) = -3.44, p = 0.0008), from the
’Naive’ to ’Middle’ sessions (β = -1.32, t(120) = -4.12, p = 0.0001), and from the ’Naive’ to ’Late’ sessions (β = -0.96, t(120) = -2.99,
p = 0.003). The experimental group also displayed a larger decrease in the activation of the visual system from the ’Naive’ to ’Middle’
sessions: β = -0.80, t(120) = -2.69, p = 0.008). Source data are provided as a Source Data file.
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Supplementary Figure 12: Relationship between systems recruitment and systems activation estimates. (a) There was no
significant relationship between systems activation (z-score; 2-back minus 1 back) and systems recruitment values when considering all
systems, all sessions, and all subjects. We further tested whether changes (δ) in systems activity from ‘Naive’ to ‘Late’ sessions were
correlated with changes in systems recruitment. We did not find any significant correlation between these two variables, either when
considering (b) all subjects, or (c) when considering only the experimental group. Source data are provided as a Source Data file.
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a cb

Supplementary Figure 13: Relationship between recruitment and integration values calculated based on unsigned and
signed functional connectivity matrices. Unsigned and signed recruitment (a) and integration (b) coefficients estimated for all
large-scale systems were highly correlated. (c) Values of integration between fronto-parietal (FP) and default mode (DM) systems were
also highly correlated. Source data are provided as a Source Data file.
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Supplementary Figure 14: Changes in module allegiance of the fronto-parietal (FP) and default-mode (DM) systems
calculated based on signed functional connectivity matrices. We observed a significant session × group interaction effect when
considering changes in the recruitment of the fronto-parietal system during training (χ2(3) = 9.31, p = 0.025) (a). The largest increase
in fronto-parietal recruitment was observed in the experimental group when comparing ‘Early’ to ‘Late’ training phases (β = -0.07,
t(120) = -3.057, p = 0.016, Bonferroni-corrected). No significant changes from ‘Naive’ to ‘Late’ training phases were observed in the
control group (β = -0.05, t(120) = -2.35, β = 0.12, Bonferroni-corrected). (b) Turning to an examination of the default mode, we found
a significant main effect of session (χ2(3) = 23.89, p < 0.0001) on system recruitment However, the interaction effect between session
and group was not significant (χ2(3) = 2.00, p = 0.57). Planned contrasts revealed that the default mode recruitment increased steadily
in both groups and we observed the largest increase between ‘Naive’ and ‘Late’ sessions (β = 0.08, t(123) = 5.02, p < 0.0001). (c) We
found a significant session × group interaction effect on the integration between the fronto-parietal and default mode systems (χ2(3) =
13.30, p = 0.004). The integration between these two systems decreased from ‘Early’ to ‘Late’ sessions only in the experimental group
(β = 0.08, t(120) = 4.86, p = 0.0035, Bonferroni-corrected). However, groups differed from ‘Naive’ to ‘Early’ (β = 0.05, t(120) = 2.13,
p = 0.03) and from ‘Early’ to ‘Middle’ sessions (β= -0.06, t(120) = -2.81, p = 0.02. Source data are provided as a Source Data file.
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Supplementary Figure 15: Changes of the recruitment and integration of large-scale systems calculated based on signed
functional connectivity matrices. Colored tiles represent all significant effects (p < 0.05, uncorrected; *p < 0.05 FDR-corrected). (a)
Here we display the significant main effects of session. Tile color codes a linear regression coefficient (β), for all main session effects (from
‘Naive’ to ‘Late’). (b) Here we display the significant session group interaction effects. Tile color codes a linear regression coefficient
between groups and sessions (from ‘Naive’ to ‘Late’). Abbreviations: auditory (AU), cerebellum (CER), cingulo-opercular (CO), default
mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM), salience (SAL), somatomotor (SOM), subcortical (SUB),
uncertain (UNC), ventral attention (VA), and visual (VIS). Source data are provided as a Source Data file.
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Supplementary Figure 16: Whole-brain modularity obtained for the Schaefer parcellation. (a) Modularity differences between
the resting state and the dual n-back task, as well as between the 1-back task condition and the 2-back task condition. (b, c) Line
plots representing mean values of modularity for each scanning session (Naive, Late, Middle, Late) and condition, separately for the
experimental group (b) and for the control group (c). Source data are provided as a Source Data file.
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Supplementary Figure 17: Training-related changes in module allegiance for the subgraph of the network composed of
the default mode and fronto-parietal control (CON) systems calculated using the Schaefer parcellation. (a) Module
allegiance matrices of the default mode system and the fronto-parietal control system (CON). Each ij-th element of the module allegiance
matrix represents the probability that node i and node j are assigned to the same community within a single layer of the multilayer
network representing task conditions pooled across all scanning sessions. (b) Mean CON recruitment across sessions. (c) Mean default
mode system recruitment across sessions. (d) Mean integration between the default mode and CON systems across sessions. Only
CON recruitment exhibited a significant main effect of session (p < 0.002). Source data are provided as a Source Data file.
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Supplementary Figure 18: Changes of the recruitment and integration of large-scale systems calculated for Schaefer
parcellation2. Colored tiles represent all significant effects (p < 0.05, uncorrected; *p < 0.05 FDR-corrected). (a) Here we display
the significant main effects of session. Tile color codes a linear regression coefficient (β), for all main session effects (from ‘Naive’ to
‘Late’). (b) Here we display the significant session × group interaction effects. Tile color codes a linear regression coefficient between
groups and sessions (from ‘Naive’ to ‘Late’). Abbreviations: control (CON), dorsal attention (DA), default mode (DM), limbic (LIM),
salience (SAL), somatomotor (SOM), visual (VIS). Source data are provided as a Source Data file.
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Supplementary Figure 19: Fluctuations in the recruitment of the default mode system across task blocks. We examined
changes in the default mode recruitment by calculating allegiance matrices for each task block. We found a significant effect of condition
(χ2(3) = 83.97, p < 0.00001), such that the recruitment of the default mode fluctuated between task conditions and was significantly
higher in the 1-back condition (M = 0.40) than in the 2-back condition (M = 0.36; t(167) = -10.43, p < 0.00001). However, the
session × condition interaction was not significant (χ2(3) = 2.82, p = 0.40). Collectively, these results suggest that the default mode
recruitment is not only modulated by working memory training, but also by the changing demands of the cognitive task. Across-block
fluctuations in default mode recruitment in (a) the experimental group and (b) the control group. Differences between task conditions
for (c) the experimental group and (d) the control group, across training stages. Source data are provided as a Source Data file.
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c da b Naive vs. Late (experimental; n = 21)

p = 0.51
r = 0.15

p = 0.71
r = -0.08

Naive vs. Late (all subjects; n = 42)

p = 0.73
r = 0.05

p = 0.71
r = -0.06

All sessions (all subjects; n = 42)

p = 0.04
r = -0.30

p = 0.44
r = 0.77

p = 0.34
r = -0.07

Naive (all subjects; n = 45)

p = 0.80
r = 0.02

g he f

Supplementary Figure 20: Relationship between modularity and behavioral performance. (a) We observed a weak negative
correlation between the change (∆) of modularity (2-back - 1-back) and the change in penalized reaction time (∆ pRT) during ‘Naive’
session. (b) Change of modularity was not related to the changes in pRT when considered all scanning sessions. (e, f) We did not
observe any relationship between the change in d’ and the change in modularity for ‘Naive’ and for all scanning sessions. (c, d, g, h)
The change of modularity during 2-back was not correlated to the changes in pRT or d′ from ‘Naive’ to ‘Late’ session.
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Supplementary Figure 21: Relationship between default mode recruitment and static modularity. Correlation between DM
recruitment and modularity during (a) 1-back and (b) 2-back conditions calculated for all subjects and all sessions. Correlation between
the change (∆) of DM recruitment and change of modularity during (c) 1-back condition and (d) 2-back condition. Source data are
provided as a Source Data file.
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2 Supplementary Tables

Repeated measures MLM: main effect of session

Systems Statistics

χ2 puncorr. pFDR

Recruitment

SAL 24.3038 0.0000 0.0005
DM 24.1711 0.0000 0.0005
AU 14.7401 0.0021 0.0208

MEM 9.8965 0.0195 0.1181
SUB 8.5157 0.0365 0.1747

Integration with default mode (DM) system

DM-SAL 31.3720 0.0000 0.0001
DM-AU 20.1747 0.0002 0.0024
DM-FP 19.7550 0.0002 0.0025
DM-CO 15.8257 0.0012 0.0140

Integration with task-positive systems

FP-SAL 28.8229 0.0000 0.0001
DA-SAL 21.8571 0.0001 0.0013
CO-DA 14.0292 0.0029 0.0261

MEM-SOM 13.1715 0.0043 0.0354
SAL-MEM 11.0954 0.0112 0.0785
SAL-SUB 10.0385 0.0182 0.1181
FP-CO 9.7186 0.0211 0.1201
CO-VIS 9.499441 0.023337 0.124923
SAL-CO 8.9760 0.0296 0.1497
FP-AU 8.2521 0.0411 0.1869
VA-UNC 7.9361 0.0474 0.2032

Other

AU-SOM 11.6143 0.0088 0.0669

Supplementary Table 1: Results of the multilevel modeling (MLM) analysis reflecting main session effects for systems
recruitment or integration (4 sessions). In all cases, random intercepts were estimated. The significance of models was estimated
with chi-square tests, where models with increasing complexity were compared and the resulting value of Likelihood Ratio Test (χ2) and
corresponding p-value (uncorrected and FDR-corrected) were reported3. Abbreviations: auditory (AU), cerebellum (CER), cingulo-
opercular (CO), default mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM), salience (SAL), somatomotor (SOM),
subcortical (SUB), uncertain (UNC), ventral attention (VA), and visual (VIS).
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Planned contrasts: main effect of session

Systems Naive vs. Early Naive vs. Middle Naive vs. Late

β p β p β p

Recruitment

SAL 0.0259 0.0279 0.041229 0.0006 0.057214 0.0000
DM 0.0358 0.0528 0.052197 0.0051 0.091959 0.0000
AU 0.0377 0.0127 0.0314 0.0369 0.0572 0.0002

MEM 0.0292 0.1145 0.016409 0.3740 0.05636 0.0027
SUB 0.0409 0.0145 0.015256 0.3569 0.039226 0.0190

Integration with default mode (DM) system

DM-SAL -0.0378 0.0008 -0.047378 0.0000 -0.0623 0.0000
DM-AU -0.0237 0.0579 -0.0174 0.1633 -0.0560 0.0000
DM-FP -0.0116 0.3310 -0.021237 0.0758 -0.051636 0.0000
DM-CO -0.0273 0.0399 -0.0323 0.0154 -0.0529 0.0001

Integration with task-positive systems

FP-SAL 0.0395 0.0120 0.062749 0.0001 0.082824 0.0000
DA-SAL 0.0420 0.0009 0.05039 0.0001 0.051894 0.0001
CO-DA 0.0271 0.0512 0.0356 0.0109 0.0511 0.0003

MEM-SOM -0.0408 0.0201 -0.030599 0.0798 -0.062644 0.0004
SAL-MEM 0.0109 0.4989 0.015714 0.3298 0.050995 0.0019
SAL-SUB 0.0364 0.0037 0.029535 0.0179 0.027495 0.0272
FP-CO 0.0276 0.0736 0.0349 0.0240 0.0459 0.0032
CO-VIS 0.024047 0.0535 0.022812 0.0668 0.037705 0.0027
SAL-CO 0.0257 0.0152 0.0192 0.0683 0.0285 0.0072
FP-AU -0.0167 0.1912 -0.0025 0.8442 0.0196 0.1242
VA-UNC -0.0103 0.1671 -0.020728 0.0059 -0.008145 0.2726

Other

AU-SOM 0.0407 0.0056 0.0337 0.0213 0.0446 0.0025

Supplementary Table 2: Planned contrasts for all significant main session effects, reflecting changes of systems recruit-
ment or integration (4 sessions). Contrasts: ’Naive’ vs. ’Early’, ’Naive’ vs. ’Middle’, ’Naive’ vs. ’Late’. Abbreviations: auditory
(AU), cerebellum (CER), cingulo-opercular (CO), default mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM),
salience (SAL), somatomotor (SOM), subcortical (SUB), uncertain (UNC), ventral attention (VA), and visual (VIS).
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Repeated measures MLM: session × group interaction

Systems Statistics

χ2 puncorr. pFDR

Recruitment

FP 6.831 0.029 0.327
DA 2.697 0.041 0.339

Integration with default mode (DM) system

DM-FP 19.755 0.003 0.235

Integration with subcortical (SUB) system

SUB-DM 5.999 0.015 0.278
SUB-AU 5.843 0.02 0.309
SUB-VA 4.868 0.037 0.334
SUB-DA 1.193 0.026 0.327
SUB-CO 0.257 0.011 0.244

Integration with other task-positive systems

DA-SOM 2.514 0.011 0.244
CO-MEM 0.865 0.034 0.334
CO-UNC 2.437 0.005 0.236

Supplementary Table 3: Results of the multilevel modeling (MLM) analysis reflecting session × group interaction effects
for systems recruitment or integration (4 sessions, 2 groups). In all cases, random intercepts were estimated. The significance
of models was estimated with chi-square tests, where models with increasing complexity were compared and the resulting value of
Likelihood Ratio Test (χ2) and corresponding p-value (uncorrected and FDR-corrected) were reported3. Abbreviations: auditory
(AU), cerebellum (CER), cingulo-opercular (CO), default mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM),
salience (SAL), somatomotor (SOM), subcortical (SUB), uncertain (UNC), ventral attention (VA), and visual (VIS).
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Planned contrasts: session × group interaction

Systems Naive vs. Early Naive vs. Middle Naive vs. Late

β p β p β p

Recruitment

FP -0.0690 0.0740 -0.0020 0.9570 0.0450 0.2490
DA -0.0670 0.0200 -0.0160 0.5700 0.0050 0.8560

Integration with default mode (DM) system

DM-FP 0.0490 0.0330 -0.0120 0.5890 -0.0340 0.1380

Integration with subcortical (SUB) system

SUB-DM -0.0380 0.1010 0.0360 0.1230 0.0040 0.8630
SUB-AU 0.0720 0.0230 -0.0200 0.5150 0.0250 0.4250
SUB-VA 0.0330 0.1970 -0.0090 0.7180 -0.0400 0.1180
SUB-DA 0.0140 0.6090 -0.0460 0.0850 -0.0510 0.0540
SUB-CO 0.0570 0.0350 -0.0280 0.2940 0.0270 0.3140

Integration with other task-positive systems

DA-SOM -0.0500 0.0690 0.0290 0.2850 -0.0420 0.1250
CO-MEM -0.0530 0.0980 -0.0600 0.0630 -0.0920 0.0050
CO-UNC 0.0440 0.0040 0.0410 0.0080 0.0460 0.0030

Supplementary Table 4: Planned contrasts for all significant session × group interaction effects, reflecting group differ-
ences in changes of systems recruitment or integration (4 sessions, 2 groups). Contrasts: ’Naive’ vs. ’Early’, ’Naive’ vs.
’Middle’, ’Naive’ vs. ’Late’. Abbreviations: auditory (AU), cerebellum (CER), cingulo-opercular (CO), default mode (DM), dorsal
attention (DA), fronto-parietal (FP), memory (MEM), salience (SAL), somatomotor (SOM), subcortical (SUB), uncertain (UNC),
ventral attention (VA), and visual (VIS).
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Post-hoc tests: session × group interaction

Systems Early vs. Middle Middle vs. Late

β pbonferroni β pbonferroni

Recruitment

FP 0.0673 0.2499 0.0467 0.6842
DA 0.0506 0.2245 0.0212 1.0000

Integration with default mode (DM) system

DM-FP -0.0613 0.0237 -0.0216 1.0000

Integration with subcortical (SUB) system

SUB-DM 0.0739 0.0052 -0.0318 0.5121
SUB-AU -0.0919 0.0114 0.0453 0.4462
SUB-VA -0.0418 0.2997 -0.0305 0.6836
SUB-DA -0.0593 0.0786 -0.0055 1.0000
SUB-CO -0.0854 0.0055 0.0554 0.1229

Integration with other task-positive systems

DA-SOM 0.0790 0.0130 -0.0711 0.0300
CO-MEM -0.0068 1.0000 -0.0321 0.9536
CO-UNC -0.0033 1.0000 0.0054 1.0000

Supplementary Table 5: Post-hoc tests for all significant session × group interaction effects, reflecting group differences in
changes of systems recruitment or integration (4 sessions, 2 groups). Tests: ’Naive’ vs. ’Early’, ’Early’ vs. ’Middle’, ’Middle’
vs. ’Late’. Abbreviations: auditory (AU), cerebellum (CER), cingulo-opercular (CO), default mode (DM), dorsal attention (DA),
fronto-parietal (FP), memory (MEM), salience (SAL), somatomotor (SOM), subcortical (SUB), uncertain (UNC), ventral attention
(VA), and visual (VIS).
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Correlation with behavior: Naive vs. Late (both groups)

Systems r puncorr. pFDR

∆d′ and ∆ recruitment

SAL 0.3377095 0.028723065 1
DM 0.3354091 0.029898227 1

∆d′ and ∆ integration

FP-SAL 0.3530235 0.021836677 1
MEM-VIS 0.3215687 0.037836231 1
SOM-VA 0.3198655 0.038922327 1
DM-FP -0.3099325 0.04577489 1
DM-SAL -0.4142908 0.006378749 0.5740874
AU-MEM -0.4412674 0.003442311 0.3132503

∆ pRT and ∆ recruitment

DM -0.3478555 0.02398683 1
VIS -0.3378605 0.02864729 1

∆ pRT and ∆ integration

AU-MEM 0.3178699 0.04022718 1
CER-DM 0.3405356 0.02733201 1
CO-UNC -0.3630498 0.01812347 1
CO-VIS 0.3338558 0.03071395 1
DM-FP 0.3560102 0.02066934 1

Supplementary Table 6: Correlations between the change in network dynamics and the change in behavior. Pearson
correlation coefficient (r) between the across-session changes (Naive vs. Late) in recruitment (or integration) and the across-session
changes in d′ (∆d′) and pRT (∆ pRT) observed for both the experimental and control groups. Abbreviations: auditory (AU),
cerebellum (CER), cingulo-opercular (CO), default mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM), salience
(SAL), somatomotor (SOM), subcortical (SUB), uncertain (UNC), ventral attention (VA), and visual (VIS).
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Correlation with behavior: Naive vs. Early (experimental)

Systems r puncorr. pFDR

∆d′ and ∆ integration

AU-VA 0.4903851 0.0240127927 1
CER-DA 0.4585068 0.0365743723 1
CO-DA 0.4957494 0.0222872683 1
CO-SUB -0.515905 0.0166670006 1
DA-SOM 0.710518 0.0003068366 0.02792213
DA-SUB 0.4700412 0.0315444066 1
DM-SAL 0.4558561 0.037814337 1
FP-SOM 0.449137 0.0411045974 1

∆ pRT and ∆ integration

AU-VA -0.4498745 0.04073297 1
CER-DA -0.4463136 0.042551842 1
CO-DA -0.4645735 0.033856106 1
CO-SUB 0.5106186 0.018016262 1
DA-SOM -0.5641078 0.007729913 0.7034221
UNC-VA 0.5189307 0.015932156 1

Supplementary Table 7: Relationship between the change in network dynamics and the change in behavior. Pearson
correlation coefficient (r) between the changes in recruitment (or integration) and the changes in d′ (∆d′) and pRT (∆ pRT) during
early phase of training (Naive vs. Early) of the experimental group. Abbreviations: auditory (AU), cerebellum (CER), cingulo-
opercular (CO), default mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM), salience (SAL), somatomotor
(SOM), subcortical (SUB), uncertain (UNC), ventral attention (VA), and visual (VIS).
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Repeated measures MLM: session × goup interaction (GLM)

System Statistics

χ2 puncorr. pFDR

SAL 19.289622 0.000238 0.003096
VIS 12.21532 0.006681 0.043425
DM 10.220241 0.016784 0.060016
UNC 9.538138 0.022929 0.060016
FP 9.523477 0.023083 0.060016

MEM 8.635576 0.03455 0.074858
VA 7.979876 0.046429 0.086226
DA 5.976738 0.112747 0.183215
SOM 4.77535 0.189006 0.273008
CO 4.233999 0.23728 0.298229
SUB 4.085796 0.252347 0.298229
CER 3.326098 0.344027 0.372696
AU 2.794743 0.424366 0.424366

Supplementary Table 8: Results of the multilevel modeling (MLM) analysis reflecting session × group interaction effects
for systems activity estimated with a standard GLM (2-back vs. 1-back contrast, two-sided). In all cases, random
intercepts were estimated. The significance of models was estimated with chi-square tests, where models with increasing complexity
were compared and the resulting value of Likelihood Ratio Test (χ2) and corresponding p-value (uncorrected and FDR-corrected) were
reported3. Abbreviations: auditory (AU), cerebellum (CER), cingulo-opercular (CO), default mode (DM), dorsal attention (DA),
fronto-parietal (FP), memory (MEM), salience (SAL), somatomotor (SOM), subcortical (SUB), uncertain (UNC), ventral attention
(VA), and visual (VIS).
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Planned contrasts: session × group interaction effect (GLM)

System Naive vs. Early Naive vs. Middle Naive vs. Late

β p β p β p

SAL -1.09808 0.000812 -1.317647 0.000069 -0.956718 0.003351
VIS 0.121433 0.684265 -0.80268 0.00806 -0.002907 0.992229
DM -0.750571 0.01187 -0.759561 0.010918 -0.779999 0.009004
UNC -0.255562 0.27055 -0.689108 0.003441 -0.206578 0.372717
FP -0.679019 0.095265 -1.235466 0.002735 -0.695647 0.087521

MEM -0.574095 0.111209 -1.02874 0.004776 -0.401063 0.264535
VA -0.404449 0.195934 -0.76255 0.01565 -0.732185 0.020184

Supplementary Table 9: Planned contrasts for all significant session × group interaction effects, reflecting group differ-
ences in changes of systems activity estimated with a standard GLM (2-back vs. 1-back contrast, two-sided). Contrasts:
’Naive’ vs. ’Early’, ’Naive’ vs. ’Middle’, ’Naive’ vs. ’Late’. Abbreviations: auditory (AU), cerebellum (CER), cingulo-opercular (CO),
default mode (DM), dorsal attention (DA), fronto-parietal (FP), memory (MEM), salience (SAL), somatomotor (SOM), subcortical
(SUB), uncertain (UNC), ventral attention (VA), and visual (VIS).
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3 Supplementary Methods

3.1 Penalized reaction time calculation

To measure behavioral performance in the dual n-back scanning sessions, we incorporated penalized reaction time
(pRT), which is a measure previously introduced by4. This measure combines both measures of accuracy and
response time. For every subject, session, task condition, and stimulus modality (auditory, spatial), pRT was
defined as:

pRT =
1

n

∑
i=1

xi, (1)

where n is the sum of all subject responses and incorrect response omissions, and xi was obtained from the following
formula:

xi =

 RTi, if answer was correct
2000, if answer was incorrect
2000, if the correct response was omitted

(2)

where RTi is reaction time of the response during the i-th trial and the scalar value of 2000 is a penalty for an
incorrect answer or for the lack of an answer, which is the maximum possible time to respond during each n-back
trial measured in milliseconds. For each participant, we calculated average pRT for both modalities to represent a
cumulative measure of performance during the dual n-back task.

3.2 Behavioral variability analysis

To assess measures of behavioral variability, we calculated (1) block-wise variants of the two behavioral performance
measures, d’ and penalized reaction time (pRT), and (2) the standard deviation of these measures over task blocks.
For consistency with the measures used in the main text, for both block-wise measures we considered the average
value over both stimulus modalities (visual and auditory). This procedure resulted in two measures of block-to-
block behavioral variability for each participant and session: the standard deviation of d’ (σd′) and the standard
deviation of pRT (σpRT ). We then used a multilevel analysis to investigate group × session interactions. Note that
these measures of behavioral variability can potentially capture two distinct effects: (1) more or less consistent
performance during the 1-back or 2-back blocks, and (2) greater or lesser decreases in behavioral performance from
the 1-back to the 2-back condition. Both effects of more consistent performance during a single task condition and
a lesser decrease in performance from the 1-back to the 2-back condition would result in an overall decrease in the
behavioral variability measures of σd′ and σpRT .

3.3 Anatomical data processing in fMRIPrep

Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection
v2.1.05 and skull-stripped using antsBrainExtraction.sh v2.1.0 (employing the OASIS template). Brain surfaces
were reconstructed using recon-all from FreeSurfer v6.0.16, and the brain mask estimated previously was refined
with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the
cortical gray-matter of Mindboggle7. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template
version 2009c8 was performed through nonlinear registration with the antsRegistration tool of ANTs v2.1.09, using
brain-extracted versions of both the T1w volume and template. Brain tissue segmentation of cerebrospinal fluid
(CSF), white matter (WM), and gray matter was performed on the brain-extracted T1w using FAST10(FSL v5.0.9).

3.4 Multilevel community detection for signed networks

We ran multilayer community detection on networks with both positive and negative edges11,12, to investigate
whether the antagonism between large-scale systems (reflected by anticorrlated time-series) could influence the
recruitment and integration values. First, we defined N ×N matrix A+

ijs by zeroing negative elements of Aijs and
N ×N matrix A−ijs by zeroing positive elements of Aijs. We used this decomposition to represent both Aijs and
the corresponding null model pijs as a linear combination of networks with positive and networks with negative
edges:

Aijs = A+
ijs −A−ijs (3)

γspijs = γ+s p
+
ijs − γ−s p

−
ijs (4)
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Then, we maximized following modularity quality function:

Q± =
1

µ

∑
ijsr

[(
A+

ijs − γ+s
k+isk

+
js

2m+
s

)
−

(
A−ijs − γ−s

k−isk
−
js

2m−s

)]
δisδir (5)

With this approach we consider the negative network edges as separate networks when calculating within-layer
modularity.

3.5 Standard GLM analysis

To enable reference to the prior literature on the effects of working memory training on activation patterns, we
additionally performed a standard General Linear Model (GLM) analysis. In the first level of the GLM analysis,
we compared 2-back vs. 1-back activation patterns (two-sided) for all subjects to identify brain areas activated
and deactivated in a more difficult 2-back condition. Then, we ran a second-level GLM analysis to investigate
consistent patterns of task activation in all sessions and both groups. To make GLM analysis comparable with our
functional connectivity analysis, we calculated the mean z-score for the first-level /beta maps for each ROI from
the Power et al.1 parcellation (Supplementary Figure 10). Then, for all large-scale systems we calculated the mean
z-score that reflected the effect size for each network, and sorted them from the lowest to the highest. Next, we
used multilevel modelling to test for session × group interactions for each system (see Supplementary Figure 11
and Supplementary Table 8-9).
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