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Abstract

Virtual delineation of white matter bundles in the human brain is of paramount importance for multiple applications,
such as pre-surgical planning and connectomics. A substantial body of literature is related to methods that automat-
ically segment bundles from diffusion Magnetic Resonance Imaging (dMRI) data indirectly, by exploiting either the
idea of connectivity between regions or the geometry of fiber paths obtained with tractography techniques, or, directly,
through the information in volumetric data. Despite the remarkable improvement in automatic segmentation methods
over the years, their segmentation quality is not yet satisfactory, especially when dealing with datasets with very diverse
characteristics, such as different tracking methods, bundle sizes or data quality. In this work, we propose a novel, super-
vised streamline-based segmentation method, called Classifyber, which combines information from atlases, connectivity
patterns, and the geometry of fiber paths into a simple linear model. With a wide range of experiments on multiple
datasets that span from research to clinical domains, we show that Classifyber substantially improves the quality of
segmentation as compared to other state-of-the-art methods and, more importantly, that it is robust across very diverse
settings. We provide an implementation of the proposed method as open source code, as well as web service.

Keywords: white matter bundle segmentation, supervised learning, linear classification, diffusion Magnetic Resonance
Imaging (dMRI).

1. Introduction

Accurate delineation of anatomical structures in the
human brain is essential to numerous scientific disciplines.
In particular, white matter bundle segmentation can pro-
vide information to multiple applications, e.g. the char-
acterization of neurodevelopmental disorders, pre-surgical
planning, or connectomic studies (Yeatman et al. (2012);
O’Donnell et al. (2017); Yeh et al. (2018)).

In the last decade, several automatic methods for
white matter bundle segmentation have been developed
to mimic the manual segmentation done by expert neu-
roanatomists (Catani et al. (2002); Mori et al. (2005);
Wakana et al. (2007)), which is very time consuming and
difficult to reproduce. Automatic methods can be di-
vided into three main groups: (i) Connectivity-based, (ii)
Streamline-based, and (iii) Direct.

Connectivity-based methods aim to extract bundles
by filtering the entire set of streamlines with inclu-
sion/exclusion Regions of Interest (ROIs) that the bun-
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dle is assumed to pass / not to pass through (Oishi et al.
(2008); Zhang et al. (2010); Yeatman et al. (2012); Wasser-
mann et al. (2016)). These ROIs frequently come from
atlases that have to be registered into the individual sub-
ject space. A significant drawback to this approach is that
the segmentation is inherently limited by the anatomical
variability of the subject, by the quality of the atlas, and
by the process of registration.

Streamline-based methods group together streamlines
according to some similarity measure. Unsupervised
streamline-based methods, such as those in Brun et al.
(2004); Maddah et al. (2005); O’Donnell and Westin
(2007); Guevara et al. (2012); Tunç et al. (2014); Siless
et al. (2016); Zhang et al. (2018), perform whole brain
segmentation through clustering, without prior knowledge
about the anatomy of the bundles and without leverag-
ing examples of expert-made segmented bundles, limit-
ing the quality of segmentation. In contrast, supervised
streamline-based methods require one or more examples
of the bundle to learn from, in order to segment such bun-
dle in the target subject, such as those in Mayer et al.
(2011); Olivetti and Avesani (2011); Vercruysse et al.
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(2014); Yoo et al. (2015); Labra et al. (2016); Garyfal-
lidis et al. (2018) and Sharmin et al. (2018). It has been
shown that streamline-based methods like those presented
in Garyfallidis et al. (2018), referred to as RecoBundles,
and in Sharmin et al. (2018), referred to as LAP, outper-
form connectivity based methods in terms of quality of
segmented bundles.

Direct methods are voxel-based methods that segment
bundles directly from diffusion images without the need
for streamlines, see Wasserthal et al. (2018a) for a brief
review. In contrast to the limited quality of segmenta-
tion reached by these methods, a recent direct method
proposed in Wasserthal et al. (2018a) presented evidence
of remarkably better segmentation quality in comparison
with a large selection of other segmentation methods, in-
cluding connectivity-based and streamline-based methods.
This method, called TractSeg, is based on convolutional
neural networks (Ronneberger et al. (2015)) and has set
the new standard in terms of quality of bundle segmenta-
tion.

Despite the remarkable improvement in automatic seg-
mentation methods over the years, the resulting bundles
can be unsatisfactory. The quality of segmentation may
be strongly affected by some properties of the bundles,
for example by their size; by the tractography technique,
e.g. probabilistic or deterministic tracking algorithm; or
by the data quality, e.g. research (high-resolution) or clin-
ical quality, see Figure 1 for some examples.

As of today, no single method for bundle segmenta-
tion has been demonstrated to be robust, to bundle size,
tracking method and data quality. The choice of the most
appropriate pipeline for tractography is not unequivocal,
but rather is strongly affected by the quality of the avail-
able diffusion Magnetic Resonance Imaging (dMRI) data,
and changes according to the specific application, depend-
ing on the desired level of sensitivity/specificity (Thomas
et al. (2014)). Similarly, even though the interest in large
bundles is well established in multiple applications (Wan-
dell (2016); Pestilli (2018)), small and short bundles, which
we here call minor bundles, have recently received increas-
ing attention, see Guevara et al. (2011); Wu et al. (2016b);
Guevara et al. (2017); Bullock et al. (2019). For example,
the relatively smaller bundles connecting the human dor-
sal and posterior cortices have been recently proven to be
of great help in understanding how information flows in
the human brain (Wu et al. (2016b); Bullock et al. (2019);
Sani et al. (2019)). For these reasons, we believe that
automatic methods for white matter bundle segmentation
must be able to maintain a high quality of results across
different settings.

The main contribution of the present work is a novel
method for bundle segmentation that is robust to all prop-
erties described in Figure 1. We call the method Classify-
ber. Classifyber is a supervised streamline-based method,
and is based on a linear classification model that predicts
whether or not individual streamlines belong to the bun-
dle of interest. It combines the current knowledge in bun-

Figure 1: Examples of different properties of bundles. A. Two bun-
dles with different size, on the left a large bundle (inferior-fronto-
occipital fascicle) and on the right a small bundle (posterior arcuate).
B. Two bundles (corticospinal tracts) obtained using different track-
ing algorithms, on the left with probabilistic and on the right with
deterministic tracking. C. Two bundles (arcuate fascicles) segmented
from diffusion data of different quality, on the left at research quality
and on the right at clinical quality. In each panel it is reported the
fractal dimension (FD) of the voxel mask of the respective bundle.

dle segmentation, exploiting both the similarity between
streamlines, typical of streamline-based methods, and the
anatomical information from ROIs, typical of connectivity-
based methods. In contrast to state-of-the-art automatic
segmentation methods, we claim that Classifyber is robust
to different data settings.

As a second contribution, we present an extensive com-
parison between Classifyber and multiple other automatic
bundle segmentation methods available in the literature,
across a diverse set of conditions: major bundles vs mi-
nor bundles, different tractography techniques, and bun-
dles from healthy subjects vs brain tumor patients. The
results of these experiments support our claims that Clas-
sifyber is able to adapt to different data settings and sets
a new standard with respect to the current literature by
substantially improving the segmentation quality reached
by other methods.

As a third contribution, we show that some segmenta-
tion methods are deeply affected by a geometrical property
of the shape of the bundles: the fractal dimension (FD)
(Zhang et al. (2006); Esteban et al. (2007)). Bundles with
high fractal dimension are in general larger, more rounded,
and have a smooth shape. Alternatively, bundles with
low fractal dimension are generally smaller, flattened, and
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have a less smooth shape, see Figure 1. We observe that
the tracking algorithm used to generate the tractography
and the size of the bundles are among the main factors in
the change of fractal dimension. The concept of the frac-
tal dimension of a bundle is a key concept to discuss the
experiments presented in this work.

This paper is structured as follows. In Section 2, we
present the materials, which constitute four diverse as
datasets, and describe the proposed method, Classifyber.
In Section 3, we report the design and the results of a
number of experiments that we conducted to verify our hy-
potheses. In Section 4, we discuss the results that suggest
that practitioners should adopt the proposed Classifyber
method as the leading standard for bundle segmentation.

2. Materials and Methods

In Section 2.1, we describe in detail the data materials
used and those produced for this work. In Section 2.2 we
present Classifyber, the proposed segmentation method.

2.1. Materials

In order to test different automatic bundle segmen-
tation methods across a wide range of settings, we con-
ducted extensive experiments across four different datasets
of tractograms and bundles, three of which are novel. The
description of these datasets, which we denote as HCP-
minor, HCP-IFOF, HCP-major and Clinical, is provided
in the following sections, together with the atlases used to
derive the ROIs for the proposed method.

2.1.1. Data sources

The first three datasets are built on top of diffu-
sion data freely available from the Human Connectome
Project (HCP) (Van Essen et al. (2013); Sotiropoulos et al.
(2013)), 3T scanner, image resolution of 1.25 mm isotropic,
270 gradient directions with b-values=1000, 2000, and
3000 s/mm2 and 18 volumes with b=0. Data have already
been preprocessed with the minimal pipeline of Glasser
et al. (2013), which includes brain extraction and correc-
tion for motion, distortion and eddy-currents. The fourth
dataset is an in-house clinical dataset built from patients
with brain tumors, 1.5T scanner, image resolution 0.9 x
0.9 x 2.4 mm, 60 gradient directions with b-value=1000
s/mm2 and 1 volume with b=0. Data were corrected for
eddy-current and motion, and an additional step of rescal-
ing was applied to obtain an isotropic voxel resolution of
2 mm.

2.1.2. Datasets of tractograms and expert-based segmented
bundles

A comprehensive description of the four different
datasets considered in this work is given in Table 1 and
can be summarized as follows:

(i) HCP-minor. Probabilistic ensemble tractograms
with 750K streamlines of 105 HCP subjects with a
collection of 8 minor bundles validated by expert neu-
roanatomists, such as the posterior arcuate fasciculus
(pArc), see Bullock et al. (2019).

(ii) HCP-IFOF. Deterministic tractograms with ap-
proximately 500K streamlines of 30 HCP subjects,
with manual segmentations by one expert neuro-
surgeon of the inferior fronto-occipital fasciculus
(IFOF).

(iii) HCP-major. Probabilistic tractograms with 10
million streamlines of 105 HCP subjects, with a col-
lection of major bundles, such as the corticospinal
tract (CST) and the arcuate fasciculus (AF), seg-
mented through a semi-automatic procedure, see
Wasserthal et al. (2018a).

(iv) Clinical. Deterministic tractograms with approx-
imately 100K streamlines of 10 patients with brain
tumors, with segmented IFOF and AF in the lesioned
hemisphere, manually delineated by one expert neu-
rosurgeon.

2.1.3. Data preprocessing

For the three HCP datasets, we computed the non-
linear warp to register the structural T1-weighted im-
ages of every subject of each dataset to the MNI152 T1
template using the Advanced Normalization Tool (ANTs)
(Avants et al. (2008)). For the clinical dataset, we com-
puted a streamline linear registration (SLR) to the whole
brain template of Yeh et al. (2018)1, because non-linear
registration of clinical data is debated, as reported in Gary-
fallidis et al. (2015). In both cases, we applied the regis-
trations to tractograms and bundles.

2.1.4. Atlases

We exploited the following freely available atlases in
order to derive the ROIs used by Classifyber, which were
then registered to the MNI152 T1 template.

MNI152 ICBM2009c reconstructed atlas. This atlas2,
is a curated FreeSurfer parcellation of the ICBM2009c non-
linear asymmetric template, see Gorgolewski (2016) and
Fonov et al. (2011). These ROIs are used to define the
terminal regions of minor bundles.

MNI JHU tracts ROIs atlas. This atlas3 is composed
of two planar waypoint ROIs for each of 20 major bundles,
which delineate the path of each bundle before it diverges
towards the cortex. Each ROI was drawn on a group-
average dataset in MNI space, see Wakana et al. (2007).

1Available at http://brain.labsolver.org.
2Available at https://figshare.com/articles/FreeSurfer_

reconstruction_of_the_MNI152_ICBM2009c_asymmetrical_

non-linear_atlas/4223811.
3Available at https://github.com/vistalab/vistasoft/tree/

master/mrDiffusion/templates/MNI_JHU_tracts_ROIs.
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HCP-minor HCP-IFOF

Number of subjects. 105 from HCP.

Tractography. 90 directions, single shell b=2000
s/mm2, constraint spherical deconvolution (CSD),
ensemble probabilistic tracking (Takemura et al.
(2016)) with curvature parameters=0.25, 0.5, 1, 2
and 4 mm, step size=0.625 mm, 750K streamlines.

Bundles. Left and right posterior arcuate fasciculus
(Left pArc and Right pArc), left and right temporo-
parietal connection to the superior parietal lobule
(Left TP-SPL and Right TP-SPL), left and right
middle longitudinal fasciculus–superior parietal lob-
ule component (Left MdLF-SPL and Right MdLF-
SPL), left and right middle longitudinal fascicu-
lus–superior angular gyrus component (Left MdLF-
Ang and Right MdLF-Ang).

Expert-based segmentations. We obtained the seg-
mentations of 192 randomly selected HCP subjects
using the procedure proposed in Bullock et al. (2019).
We then filtered out segmented bundles that were
not considered plausible from the neuroanatomical
point of view with a semi-automatic technique, as
described in Appendix A, remaining with 105 sub-
jects.

Number of subjects. 30 from HCP.

Tractography. 90 directions, single shell b=2000
s/mm2, constraint spherical deconvolution (CSD),
deterministic local tracking (Garyfallidis et al.
(2014); Berman et al. (2008)), step size=0.625 mm,
white matter seeding, approximately 500K stream-
lines.

Bundles. Left and right inferior fronto-occipital fas-
ciculus (Left IFOF and Right IFOF).

Expert-based segmentations. One expert neurosur-
geon, A.D.B, manually segmented the bundles in
30 random HCP subjects following the guidelines
in Sarubbo et al. (2013) and Hau et al. (2016),
who proposed a classification of the IFOF in differ-
ent subcomponents based on microdissection stud-
ies. Specifically, the bundle is composed of two lay-
ers: the first layer is superficial and antero-superiorly
directed, with terminations in the inferior frontal
gyrus, while the second layer is deeper and consists of
three components (anterior, middle and posterior).

HCP-major Clinical

Number of subjects. 105 from HCP.

Tractography. 270 directions, multi-shell multi-tissue
(msmt) constraint spherical deconvolution (CSD),
iFOD2 probabilistic anatomically constrained trac-
tography (ACT), variable step size, white matter
seeding, 10 million streamlines.

Bundles. Left and right corticospinal tract
(Left CST and Right CST), left and right in-
ferior fronto-occipital fasciculus (Left IFOF and
Right IFOF), left and right inferior longitudinal fas-
ciculus (Left ILF and Right ILF), left and right un-
cinate fasciculus (Left UF and Right UF), left and
right arcuate fasciculus (Left AF and Right AF).

Expert-based segmentations. We considered a por-
tion of the semi-automatically segmented bundles
from the freely available benchmark dataset of
Wasserthal et al. (2018a).

Number of patients. 10 with brain tumor.

Tractography. 60 directions, single shell b=1000
s/mm2, diffusion tensor imaging (DTI) reconstruc-
tion, Euler Delta Crossing (EuDX) tracking method
(Garyfallidis et al. (2014)), 106 seeds, approximately
100K streamlines.

Bundles. Left inferior fronto-occipital fasciculus
(Left IFOF) and left arcuate fasciculus (Left AF).

Expert-based segmentations. One expert neurosur-
geon (S.S.) manually segmented the bundles in the
lesioned hemisphere of the patients, who were af-
fected by brain tumors. The lesion however did not
affect the shape of the bundles consistently. Bundles
where successively refined to remove outliers using
the interactive segmentation tool Tractome (Porro-
Muñoz et al. (2015)) and visually inspected, remain-
ing with 7 instances for each bundle.

Table 1: Comprehensive description of the four datasets of tractograms and expert-based segmented bundles, i.e. HCP-minor, HCP-IFOF,
HCP-major and Clinical datasets.

2.2. Methods

Classifyber is a novel method that performs automatic
bundle segmentation as a supervised learning problem,
meaning that the algorithm learns how to segment from
expert-based examples. The name Classifyber is the lin-
guistic blend of Classify and fiber, which explains the basic
principle of its functioning: to classify whether or not a
given streamline/fiber4 belongs to the bundle of interest.

4In some literature, the name fiber refers to axon and in other
literature to streamline. Here we refer to the latter for linguistic

Below, we provide a formal description of Classifyber,
from the basic concepts to the key element of the proposed
method, i.e., the vectorial representation of a stream-
line that merges geometrical information typically used by
streamline-based segmentation methods, and anatomical
information, typically used by connectivity-based segmen-
tation methods. We conclude the section by introducing
the notion of the fractal dimension (FD) of a bundle, which

convenience.
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will be used to discuss the experimental results in Sec-
tion 4.

2.2.1. Basic concepts

A streamline s = [x1, . . . ,xn] is an ordered sequence
of 3D points, xi = [xi, yi, zi] ∈ R3, i = 1 . . . n, that ap-
proximates a group of axons with a similar path in the
white matter of the brain. A tractogram T is the en-
tire set of streamlines of the white matter of a brain:
T = {s1, . . . , sM}, where M typically ranges from hun-
dreds of thousands to several millions. A white matter
bundle, b ⊂ T , is a subset of the tractogram with a spe-
cific anatomical meaning, such as the corticospinal tract.

Experts neuroanatomists manually segment a given
bundle b in a tractogram adopting several strategies, which
may comprise the definition of inclusion/exclusion ROIs to
obtain the desired streamlines. From the point of view of
an algorithm, a convenient way to model that segmen-
tation process is to consider each streamline individually
and to decide whether or not the streamline belongs to the
bundle:

e(s) =

{
1 if s ∈ b
0 otherwise

(1)

where e(s) denotes the expert deciding on the stream-
line s.

2.2.2. Classifyber

Classifyber implements a classifier that accurately pre-
dicts whether or not a given streamline s belongs to the
bundle b. In analogy to the previous work of Olivetti and
Avesani (2011), in this work we propose a linear classifier
method as core algorithm for Classifyber, for multiple rea-
sons: it is extremely well known and easy to understand,
it is very fast and requires minimal resources, software im-
plementations are commonly available and, as opposed to
non-linear methods, it can be interpreted. Generally, a lin-
ear classifier l takes as input a vector of real values v ∈ Rd
and returns its predicted category, i.e. 0 or 1:

l(v) =

{
1 if a1v1 + · · ·+ advd + a0 > 0

0 otherwise
(2)

where the weights of the linear classifier a0, . . . , ad are
estimated by minimizing the errors in classification on a
training set (plus regularization terms that may differ be-
tween different algorithms).

In order to use a linear classifier on a streamline s, it
is necessary to transform the streamline into a vector v
which contains the necessary information for the task of
bundle segmentation. In other words, we need to define
an effective feature space to represent streamlines as vec-
tors. This is a key step in the proposed method, where we
extract geometrical and anatomical information from the
streamline and create this vector.

The proposed feature space is based on the general con-
cept of dissimilarity representation, see Pekalska and Duin
(2005) and Olivetti et al. (2012), which states that an ob-
ject, i.e. a streamline, can be accurately represented by its
distances from a fixed set of objects called landmarks, i.e.
a fixed set of streamlines, that acts as reference system.
The feature space is composed of four parts, which we
describe here in an intuitive way and illustrate in Figure
2. Two parts, set 1 and set 3, are composed of global fea-
tures independent from the definition of bundle of interest,
while the other two parts, set 2 and set 4, are composed
of bundle-specific features. We provide a comprehensive
description of the procedure adopted to build the feature
space in Appendix B.1. Given a streamline s, the four sets
of feature values are:

(i) Set 1: streamline distances from 100 global
landmarks. The global landmarks are 100 stream-
lines evenly spread over a whole tractogram. The
minimum average direct flip distance (dMDF) is one
of the most commonly adopted distance function be-
tween streamlines, see Garyfallidis et al. (2012) and
Olivetti et al. (2017).

(ii) Set 2: streamline distances from 100 local
landmarks. The local landmarks are 100 stream-
lines evenly spread locally to the area of the bundle.

(iii) Set 3: endpoint distance from 100 global land-
marks. This part of the feature space describes the
anatomical connectivity pattern of the streamlines.
The endpoint distance (dEND) is the distance be-
tween endpoints of the two streamlines, because two
streamline with neighboring endpoints connect the
same areas, see Bertò et al. (2019).

(iv) Set 4: 2 ROI distances. All bundles considered
in this work can be normatively defined through two
cortical ROIs or two waypoint ROIs. The ROI dis-
tance between a streamline and an ROI (dROI) is the
minimum among the distances between the points of
the streamline and the voxels of the ROI, see Bertò
et al. (2019).

Overall, the proposed feature space consists of d = 302
features, meaning that each streamline can be transformed
into a vector of 302 values.

Therefore, given the tractograms and the expert-based
segmented bundles of Section 2.1 of multiple subjects, we
first transform all streamlines into vectors and label them
with 1 or 0, to indicate whether or not they belong to the
bundle of interest, and then train a classifier to segment a
specific bundle, e.g. the corticospinal tract (CST). Notice
that, in order to segment different kinds of bundles, it is
necessary to train different instances of Classifyber, each
with a set of examples of the desired kind of bundle. Af-
terwards, given a tractogram of a new subject, we predict
whether or not the streamlines belong to that bundle. This
procedure, which we divided into a training phase and a
test phase, is summarized below and illustrated in Figure
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 100 global landmarks             100 local landmarks             100 global landmarks                       2 ROIs 

distances computation with

set 1 set 2 set 3 set 4

dMDF dMDF dEND dROI

streamline 

Figure 2: Feature definition and extraction. Set 1 and set 2 contain the distances (dMDF) of the streamline with 100 global and 100 local
landmarks, respectively. Set 3 contains the distances (dEND) between the endpoints of the streamline and the 100 global landmarks. Set 4
contains the distances (dROI) between the streamline and the two ROIs pertaining to the bundle of interest.

3. A more comprehensive description is given in Appendix
B.2.

2.2.3. Classifyber: training phase

The training phase is composed of three steps, which
are schematically illustrated in Figure 3 (A).

Step (a1) Bundle superset. We reduce the number of
streamlines in the training set by considering only the
streamlines of the example bundles and their neighboring
streamlines. This step helps to increase the classification
accuracy and to reduce the computational cost of the next
steps.

Step (a2) Feature extraction. Each streamline of the
superset is then transformed into a vector, as described in
Section 2.2.2. To the vector is assigned a class label 1 if
it belongs to the bundle, 0 otherwise, see Figure 3 (A),
where they are represented in green and red respectively.

Step (a3) Training. A binary Logistic Regression clas-
sifier is trained using the fast stochastic average gradient
(SAG) solver (Schmidt et al. (2017)), which returns the
vector of weights a0, . . . , ad.

2.2.4. Classifyber: test phase

The test phase is performed on one subject of the test
set at the time, called the target subject. Similarly to the
training phase, the test phase comprises three steps, which
are schematically illustrated in Figure 3 (B).

Step (b1) Bundle superset. We reduce the whole target
tractogram to a superset of the target bundle, which we
estimate from training examples. The main reason for this
step is to reduce the computational cost of the next steps.

Step (b2) Feature extraction. Each streamline of the
bundle superset is then transformed into a vector, as de-
scribed in Section 2.2.2. In this case, the class labels are
unknown.

Step (b3) Test. By exploiting the linear classifier ob-
tained from the training phase in step (a3), each streamline
of the superset is predicted to be either part of the bun-
dle or not, obtaining the predicted bundle in the target
subject.

2.2.5. Other bundle segmentation methods

In Section 3.1 we compare Classifyber to state-of-the-
art automatic segmentation methods. We selected two
methods based on the recent extensive comparison pre-
sented in Wasserthal et al. (2018a), where TractSeg ob-
tained the highest quality of bundle segmentation and Re-
coBundles ranked as the second best method among those
freely available. In our comparison we also included LAP,
see Sharmin et al. (2018), because it was not compared in
Wasserthal et al. (2018a) but proved to be superior to near-
est neighbor methods, the category to which RecoBun-
dles belongs. In some cases, we used variants of TractSeg
and RecoBundles, referred to as TractSeg-retrained and
RecoBundles-atlas. We provide details on these other seg-
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Figure 3: Training and test of Classifyber. A. Schematic illustration of the training phase of Classifyber for a given bundle (CST) over N
different subjects. Step (a1): bundle superset. Streamlines belonging to the bundle are depicted in green (class 1), while those not belonging
to the bundle are depicted in red (class 0). Step (a2): feature extraction. Step (a3): training of a linear Logistic Regression (LR) classifier.
The outcome of this phase is a vector of weights. B. Schematic illustration of the test phase of Classifyber on a single target subject. Step
(b1): bundle superset. All the streamlines are depicted in orange because the labels are unknown. Step (b2): feature extraction. Step (b3):
test using the resulting weights of the training phase. The outcome of this phase is the predicted bundle (CST) in the target subject.

mentation methods in Section 3.1.2.

2.2.6. Evaluation procedure

To quantitatively evaluate the performance of the dif-
ferent segmentation methods we use a procedure com-
monly adopted in this literature, see for example Gary-
fallidis et al. (2018); Sharmin et al. (2016); Wasserthal
et al. (2018a). We compute the degree of voxel overlap

between the automatically segmented bundle b̂ and the
expert-based segmented bundle b, through the Dice Simi-
larity Coefficient (DSC) (Dice (1945)): DSC = 2· (|v(b̂) ∩
v(b)|)/(|v(b̂)|+|v(b)|) where |v()| is the number of voxels in
the mask. The DSC ranges from 0 to 1 and the closer the
score is to 1, the more the two bundles b̂ and b are similar.
The evaluation is conducted in the subject’s native space.

2.2.7. Fractal dimension

The concept of fractal dimension (FD) (Mandelbrot
(1982)) can be used to quantify the degree of irregularity
of a 3D shape. This notion has already been applied to the
shape of the brain white matter (Zhang et al. (2006)) and
to characterize multiple sclerosis (Esteban et al. (2007)).

Intuitively, for standard objects like straight lines, a 2D
flat square or a 3D cube, the FD is 1, 2 and 3, respectively.
Irregular lines can have FD greater than 1 and asymptot-
ically 2, if their resulting shape is close to a 2D surface.
In the same way, a convoluted 2D shape that resembles a
3D shape, or a 3D shape with several holes, both have FD
between 2 and 3. For example, Zhang et al. (2006) esti-
mated the FD of the 3D voxel mask of the white matter
of human brains and obtained values between 2.1 and 2.5.

In this work, we determine the FD of the voxel mask
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of white matter bundles via the box-counting dimension,
see Falconer (2014). The box-counting dimension is based
on the idea of covering a given shape with boxes of size σ
and it quantifies how the number of boxes changes when
σ changes, in double-log scale:

FDbox = − lim
σ→0

log count(σ)

log σ
(3)

where count(σ) is the number of the necessary boxes.
As an example, see the FD of some bundles in Figure 1.

2.2.8. Data and code availability

We provide the source code of Classifyber and the code
to estimate the box-counting dimension (with examples)
as open source software, see Table 2. Moreover, Classi-
fyber can be freely used as web application on the online
platform brainlife.io. In Table 2 we list the web links
related to all the implementations of the bundle segmenta-
tion methods considered in this work. Moreover, we freely
share tractograms and expert-based segmented bundles of
the HCP-minor dataset through the brainlife.io plat-
form at https://doi.org/10.25663/brainlife.pub.11.
The HCP-major dataset is available at https://doi.org/
10.5281/zenodo.1477956. The HCP-IFOF is available
upon formal data sharing agreement with the authors.
The access to the Clinical dataset is limited by ethical
and privacy issues and requires formal agreement with the
neurosurgery unit involved in this study.

3. Experiments and Results

The results described below compare Classifyber with
other segmentation methods to demonstrate that the pro-
posed one substantially increases the quality of segmen-
tation with respect to other methods, consistently across
different data settings. To this end, in Section 3.1, we
describe the experimental design of Classifyber and of the
other state-of-the-art methods considered in this work, fol-
lowed by the experiments conducted on the fractal dimen-
sion of bundles. To conclude, in Section 3.2, we report the
results of all the experiments.

3.1. Experiments

The experiments were conducted on the four datasets
described in Section 2.1: HCP-minor, HCP-major, HCP-
IFOF and Clinical. For each dataset, the entire pool of
subjects was randomly divided into two groups: the train-
ing set and the test set. Bundles of the training set were
used as examples to learn from, while bundles of the test
set were used to assess the performance of the different
methods. Notice that the exact same test sets were kept
for all the methods compared. In this way, we could com-
pare both the quality of segmentation obtained by each
method averaged over the pool of test subjects, such as
in an unpaired test, and the subject-by-subject compari-
son in segmenting each bundle, such as in a paired test,

e.g. how frequently one method obtained better quality of
segmentation than another method.

3.1.1. Classifyber: experimental setup

We retrieved the ROIs pertaining to each bundles in
order to build the feature space of Classifyber, using
the available atlases described in Section 2.1.4. For the
dataset HCP-minor, the two ROIs considered for each
bundle are the two terminal ROIs, i.e. the cortical re-
gions that the bundle of interest connects, derived from
Bullock et al. (2019). Specifically, the MdLF-Ang and
MdLF-SPL connect the parietal region to the lateral-
temporal region, while the TP-SPL and pArc connect
the parietal region to the temporal region. Each region
was built by merging specific cortical parcellations of the
MNI152 ICBM2009c reconstructed atlas. For the other
three datasets, the ROIs considered are the two planar
waypoint ROIs defined in the MNI JHU tracts ROIs atlas,
see Wakana et al. (2007).

HCP-minor. We considered only subjects for which all
bundles received an expert-made score of 3 or higher, ac-
cording to the procedure explained in Section Appendix A,
resulting in a set of 40 subjects. We randomly split this
pool of subjects into a group of 15 for training and a group
of 25 for testing. Additionally, within this dataset, we also
studied how much the quality of segmentation of Classify-
ber was affected when changing the number of subjects in
the training set from 1 to 60. In this case, we considered
also subjects for which all bundles received an expert-made
score of at least of 2.

HCP-IFOF. We randomly split the pool of subjects into
a group of 15 for training and a group of 15 for testing.

HCP-major. For this dataset, which is part of the dataset
used in Wasserthal et al. (2018a), we selected the same
21 test subjects used in the experiments presented there.
In this way, we could directly compare our new results on
the major bundles with theirs and, at the same time, we
could test the reproducibility of their results. Of the 84
remaining subjects, 15 were randomly selected and used as
training set for Classifyber. The kinds of bundles consid-
ered are those for which the two waypoint ROIs are avail-
able in the MNI JHU tracts ROIs atlas. In preliminary
experiments, we observed that the 10 million streamlines
of each tractogram in HCP-major were extremely redun-
dant for training Classifyber and just using 10% of them,
randomly selected, did not significantly change the results.
By using just 10% of the streamlines we reduced the train-
ing time by a factor of 10 and the RAM usage by a factor
of 4.

Clinical. Due to the small number of subjects in the
dataset, instead of splitting the pool of 7 subjects into
training and test sets, we ran Classifyber in two different
ways: (i) we trained Classifyber on the IFOFs and AFs of
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code / web app web link contribution of this work

Classifyber code https://github.com/FBK-NILab/app-classifyber yes (original)

Classifyber web app https://doi.org/10.25663/brainlife.app.228 yes (original)
https://doi.org/10.25663/brainlife.app.265 yes (original)

TractSeg code https://github.com/MIC-DKFZ/TractSeg no, already available

TractSeg web app https://doi.org/10.25663/brainlife.app.186 no, already available

TractSeg-retrained web app https://doi.org/10.25663/brainlife.app.204 yes (adapted)
https://doi.org/10.25663/brainlife.app.205 yes (adapted)

RecoBundles(-atlas) code http://nipy.org/dipy no, already available

LAP web app https://doi.org/10.25663/brainlife.app.209 yes (adapted)

Box-counting dimension https://github.com/FBK-NILab/fractal_dimension yes (original)

Table 2: Where to find the code and web apps of the methods considered in this work.

the HCP-major dataset and then segmented the 7 patients
in the Clinical dataset. We chose this dataset because it
is part of the exact same dataset used for training Tract-
Seg, to have fair comparison between the two methods.
We refer to this case as Classifyber-major. (ii) We per-
formed a cross-validation study with the leave-one-subject-
out (LOSO) strategy, using only 6 subjects from the Clin-
ical dataset as training set and the remaining subjects as
test set, repeatedly. We refer to this case as Classifyber-
LOSO. In this latter case we also aimed to show the ability
of Classifyber to accurately segment bundles even when
trained on a very small number of segmentations, in this
case only 6. To conclude, for the IFOF, we ran one ad-
ditional experiment where Classifyber was trained on the
HCP-IFOF dataset. We refer to this case as Classifyber-
IFOF.

3.1.2. State-of-the-art methods: experimental setup

Here we describe the state-of-the-art automatic seg-
mentation methods that we considered in our comparison,
their necessary variants to experiment on all datasets, and
their experimental setup.

TractSeg. TractSeg, a voxel-based method recently pro-
posed by Wasserthal et al. (2018a), is based on fully con-
volutional neural networks (FCNNs) and segments 72 bun-
dles simultaneously. Its output are the voxel masks of the
segmented bundles. We adopted the openly available pre-
trained network, which was trained on 84 subjects, and
tested it on the dMRI data of the target subjects. We
used the default parameters and the postprocessing option,
which removes holes and isolated voxels in the predicted
voxel mask of the bundles.

TractSeg-retrained. When the bundle to be segmented was
not available among those covered by TractSeg, we re-
trained the FCNN on new examples with a procedure dis-
cussed in a private communication with the authors of
Wasserthal et al. (2018a). We refer to this variant as
TractSeg-retrained. First, we trained a single FCNNs per
dataset with default parameters, 250 epochs, fraction of
validation subjects = 0.2 and data augmentation. Then,

we tested the method enabling the postprocessing option.
For the HCP-minor dataset, we trained the model both
with the same 15 subjects used in the other methods, and
also with 69 additional subjects by considering as well
those subjects for which all bundles received a score of
at least 2 (84 subjects in total). We provide evidence of
the successful training in Appendix C.1.

RecoBundles-atlas. Garyfallidis et al. (2018) proposed a
streamline-based segmentation method, called RecoBun-
dles, that takes as input one example bundle which is used
to estimate the corresponding bundle in a new tractogram
by means of linear registration and nearest-neighboring
streamlines. We contacted the authors of RecoBundles
and received the indication to use the bundle models pro-
vided by the atlas of Yeh et al. (2018)5 as the example bun-
dles and specifically 30 (out of 80) of them. We denote as
RecoBundles-atlas this use of the RecoBundles algorithm.
We used the best configuration of parameter values found
from an extensive preliminary assessment analogous to the
one reported in Appendix C.2. This configuration uses
default parameter values with the exception of disabling
the local streamline linear registration (SLR) option (most
probably because all the datasets were already coregistered
in MNI space) and using the minimum average mean dis-
tance (dMAM ) instead of the minimum average direct flip
distance (dMDF ).

RecoBundles. When the bundle to be segmented is not
available among the 30 selected bundles from the atlas of
Yeh et al. (2018), we fell back to the original indication in
Garyfallidis et al. (2018) and used the same example bun-
dles adopted as input for the other methods. We denote
this use of the algorithm plainly as RecoBundles. Due to
the fact that RecoBundles accepts only one bundle as ex-
ample, to quantify the quality of segmentation when mul-
tiple bundles are available in the training set, we adopted
a procedure similar to the one used in the experiments
of Wasserthal et al. (2018a). Specifically, we treated the
N example bundles as models for N separate runs of the

5Available at http://brain.labsolver.org.
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algorithm over the target subject, thus obtaining N dif-
ferent predictions of the same bundle. We then evaluated
the segmentation accuracy by computing the mean DSC
across the N bundles. As for RecoBundles-atlas, we used
the best configuration of parameter values found from an
extensive preliminary assessment described in Appendix
C.2.

LAP. Sharmin et al. (2018) proposed a streamline-based
segmentation method that takes as input multiple exam-
ple bundles which are used to estimate the corresponding
bundle in a target tractogram by means of finding corre-
sponding streamlines through the solution of a Linear As-
signment Problem (LAP) and a refinement step. We ran
the algorithm following the original procedure and we set
the parameter k, the only parameter of the method, corre-
sponding to the number of nearest neighbors streamlines
to compute the superset, equal to 2000 (default k = 500),
since the total number of streamlines of the tractograms
considered in our experiments are approximately 4 times
higher than in the original study of Sharmin et al. (2018).
One limitation of LAP is that it is computationally too
expensive for supersets larger than 100 thousands stream-
lines, both for memory and time requirements.

3.1.3. Experiments on Fractal Dimension (FD)

In this experiment, we studied how the performance
of the different segmentation methods is affected by the
FD of the target bundles. We computed the FD of the
voxel mask of each target bundle as segmented by experts
and compared it with the quality of segmentation (DSC)
obtained for that bundle by each automatic segmentation
method, across all experiments (approximately 500 bun-
dles). For TractSeg and RecoBundles, that number was
larger because we investigated also the variants TractSeg-
retrained and RecoBundles-atlas, while for LAP it was
smaller because it was not possible to execute the method
on the HCP-major dataset, where supersets substantially
exceeded 100 thousands streamlines.

3.2. Results

3.2.1. Results on HCP-minor dataset

In Table 3 and Figure 6, we quantify the mean quality
of segmentation in terms of DSC across the minor bun-
dles considered in this set of experiments for RecoBun-
dles, TractSeg-retrained, LAP and Classifyber across 25
subjects. TractSeg and RecoBundles-atlas were excluded
because they do not address minor bundles. The quality of
segmentation obtained by Classifyber is very high and out-
performs all the other methods. Moreover, given that the
target subjects are exactly the same across all methods,
we can also summarize the results with a direct compari-
son on the individual bundles: over the 200 segmentations
(8 different bundles for each of the 25 test subjects) per-
formed by each method during the test phase, Classifyber
obtained higher quality of segmentation (higher DSC) than

RecoBundles and TractSeg-retrained in 100% of the cases,
and than LAP in 99% of the cases.

TractSeg-retrained, when trained on 84 subjects, per-
formed better than TractSeg-retrained on 15 subject, ob-
taining a marginal increase in DSC between 0 and 0.03.
For a fair comparison with the other methods, this result
is not reported in Table 3 and Figure 6.

The superiority of Classifyber over the other segmen-
tation methods is also evident from the qualitative com-
parison in Figure 4, in which the segmentations provided
by the proposed method are, for all the bundles consid-
ered, the most anatomically similar to the expert-based
segmentations. When using other methods, we observe a
consistent bias in the predictions: RecoBundles and LAP
tend to overestimate the bundle producing several false
positives streamlines. On the other hand, for the majority
of the bundles of this dataset, TractSeg-retrained correctly
identifies the core part of the bundles, but fails to retrieve
part of the cortical terminations. Illustrative examples of
this behavior are in the last row of Figure 4, in which the
Right MdLF-SPL is overestimated by RecoBundles (first
panel), and it is missing most of the terminations in the
latero-temporal ROI by TractSeg-retrained (second panel).

3.2.2. Results on HCP-IFOF dataset

In Table 4 and Figure 6 we report the result of com-
paring Classifyber with all other methods and variants:
RecoBundles-atlas, RecoBundles, TractSeg, TractSeg-
retrained and LAP. The average DSC across 15 subjects
shows the superiority of Classifyber. Moreover, in all indi-
vidual cases, i.e. the 30 segmented bundles of the test set,
Classifyber always obtained the highest DSC as compared
to all other methods.

Additionally, a qualitative visual comparison is re-
ported in Figure 5, which illustrates that the Left IFOF
estimated with RecoBunldes-atlas (first panel), is clearly
missing the middle and posterior subcomponents with re-
spect to the expert-based segmented bundle (last panel).
A very similar behavior is observed in the bundle predicted
by TractSeg (third panel).

3.2.3. Results on HCP-major dataset

In Table 5 and Figure 6 we report the mean quality of
segmentation as DSC for RecoBundles-atlas, TractSeg and
Classifyber over the major bundles considered, across 21
subjects. Over the 210 individual segmentations generated
by each method in the test phase, Classifyber obtained a
higher DSC than RecoBundles-atlas in 99% of the cases
and higher than TractSeg in 86% of the cases.

3.2.4. Results on Clinical dataset

In Table 6 we report the quantitative comparison in
terms of mean DSC for Classifyber and TractSeg. The
comparison is focused on TractSeg because in Wasserthal
et al. (2018a) it is stated that the method is effective on
clinical quality data as well, without the need for retraining
the network. Individually, over the 14 segmented bundles,
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RecoBundles TractSeg-ret. LAP Classifyber

Right pArc 0.76 ± 0.04 0.77 ± 0.03 0.80 ± 0.03 0.88± 0.03
Left MdLF-Ang 0.71 ± 0.04 0.72 ± 0.06 0.79 ± 0.05 0.87± 0.03
Left pArc 0.73 ± 0.05 0.75 ± 0.03 0.79 ± 0.04 0.85± 0.05
Right MdLF-Ang 0.68 ± 0.04 0.70 ± 0.03 0.76 ± 0.03 0.84± 0.03
Left MdLF-SPL 0.63 ± 0.06 0.67 ± 0.05 0.73 ± 0.04 0.82± 0.04
Right TP-SPL 0.62 ± 0.08 0.68 ± 0.06 0.72 ± 0.05 0.82± 0.05
Left TP-SPL 0.63 ± 0.06 0.67 ± 0.04 0.70 ± 0.05 0.81± 0.04
Right MdLF-SPL 0.60 ± 0.05 0.64 ± 0.04 0.70 ± 0.03 0.80± 0.04

Table 3: Quantitative comparison over HCP-minor dataset: DSC (mean ± sd) across 25 target subjects for RecoBundles, TractSeg-retrained,
LAP and Classifyber. Highest quality of segmentation in bold face.
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Figure 4: Qualitative comparison of segmented bundles in one target subject. Bundles on the rows: Left TP-SPL (first row), Left MdLF-Ang
(second row) Right pArc (third row), and Right MdLF-SPL (fourth row). Automatic segmentation methods on the columns: RecoBundles
(first column), TractSeg-retrained (second column), LAP (third column) and Classifyber (fourth column) and expert-based segmentation
(fifth column). Highest quality of segmentation in bold face.

RecoBundles-atlas RecoBundles TractSeg TractSeg-retrained LAP Classifyber

Left IFOF 0.45 ± 0.14 0.80 ± 0.04 0.48 ± 0.04 0.61 ± 0.03 0.81 ± 0.04 0.91± 0.03
Right IFOF 0.62 ± 0.18 0.72 ± 0.06 0.41 ± 0.06 0.57 ± 0.04 0.73 ± 0.05 0.89± 0.03

Table 4: Quantitative comparison over the HCP-IFOF dataset: DSC (mean ± sd) across 15 target subjects for RecoBundles-atlas, RecoBun-
dles, TractSeg, TractSeg-retrained, LAP and Classifyber. Highest quality of segmentation in bold face.
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RecoB.-atlas RecoBundles TractSeg TractSeg-ret. LAP Classifyber expert-based

DSC=0.64 DSC=0.79 DSC=0.46 DSC=0.58 DSC=0.81 DSC=0.94

Figure 5: Qualitative comparison of segmented bundles in one target subject. One istance of Left IFOF for RecoBundles-atlas, RecoBundles,
TractSeg, TractSeg-retrained, LAP and Classifyber with the expert-based segmented bundle. Highest quality of segmentation in bold face.
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Figure 6: Summary of the quantitative comparison across the three HCP datasets. Top: mean DSC across 25 subjects of the HCP-minor
dataset. Middle: mean DSC across 15 subjects of the HCP-IFOF dataset. Bottom: mean DSC across 21 subjects of the HCP-major
dataset. The methods compared are depicted in different colors: RecoBundle-atlas (light blues), RecoBundles (blue), TractSeg (green),
TractSeg-retrained (light green), LAP (yellow) and Classifyber (red).
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RecoB.-atlas TractSeg Classifyber

Right CST 0.62 ± 0.07 0.85± 0.02 0.87± 0.02
Left CST 0.62 ± 0.11 0.85± 0.03 0.86± 0.10
Right UF 0.57 ± 0.24 0.79 ± 0.03 0.86± 0.03
Right AF 0.53 ± 0.11 0.83± 0.02 0.86± 0.03
Left UF 0.55 ± 0.27 0.77 ± 0.03 0.84± 0.04
Left IFOF 0.67 ± 0.06 0.80 ± 0.02 0.84± 0.03
Left ILF 0.57 ± 0.07 0.77 ± 0.02 0.84± 0.04
Right IFOF 0.76 ± 0.04 0.80 ± 0.02 0.84± 0.03
Left AF 0.71 ± 0.05 0.84± 0.03 0.83± 0.04
Right ILF 0.42 ± 0.13 0.75 ± 0.03 0.82± 0.04

Table 5: Quantitative comparison over HCP-major dataset: DSC
(mean ± sd) across 21 target subjects for RecoBundles-atlas, Tract-
Seg and Classifyber. Highest quality of segmentation in bold face.

Classifyber always obtained a higher DSC than TractSeg,
for all the different training sets, i.e. for all three dif-
ferent variants: Classifyber-major, Classifyber-IFOF and
Classifyber-LOSO. In Figure 7 we show a qualitative com-
parison between the different cases.

3.2.5. Results on Fractal Dimension (FD)

In Figure 8, we present the relationship between the
FDs and the DSC scores of each method when segment-
ing all bundles in the experiments over the four datasets
described above, i.e. on approximately 500 bundles. In
the same figure, we also show the linear interpolation of
such values as a summary of all experiments presented in
this work, reporting the Pearson correlation coefficient (R)
between FD and DSC. The results show that the quality
of segmentation of TractSeg is strongly dependent on the
FD of the bundle to be segmented. LAP also shows some
degree of dependency, while RecoBundles and Classifyber
are not affected by the FD of bundles. Additionally, in
Table 7, we report the different range of FD values across
the four datasets described in Section 2.1. Bundles of the
HCP-major dataset have on average the highest FD, while
bundles of the clinical dataset the lowest.

3.2.6. Classifyber: the size of the training set

For all automatic segmentation methods that learn
from examples, the higher the number of training subjects,
the better the resulting quality of segmentation. Neverthe-
less, in practice, the cost of time and effort by an expert
to prepare a curated training set severely limits this num-
ber. In Figure 9 we show how the mean DSC of Classifyber
over multiple bundles changes with the number of training
subjects. We observe that the quality of segmentation has
no substantial increase beyond approximately 15 subjects
and plateaus at 30 subjects.

3.2.7. Analysis of the computing time

In Table 8 we report the time required by each seg-
mentation method for the training phase and for segment-
ing one bundle of the HCP-IFOF dataset. We chose this
dataset because it is the only dataset on which we com-
pared all segmentation methods and variants.

In Figure 10 we show how the 37 minutes indicated
in Table 8, needed to train Classifyber and to segment
one bundle, are partitioned across the 6 steps (3 for the
training phase and 3 for the test phase) described in Sec-
tion 2.2.3 and Section 2.2.4. We observed that the train-
ing time is linearly correlated with the number of training
streamlines. For example, in the experiments of on the
HCP-major dataset, by using only 10% of the training
set, the training time was reduced 10 times as well. When
trained, Classifyber segments bundles in just 3 minutes.
The main cost of the computation in both the training
and test phases is the preparation of the feature space.
For the test phase, almost all of the 3 minutes were spent
preparing the target tractogram for the linear classifier
(steps (b1) and (b2)), while the actual prediction (step
(b3)) only required less than 1 second.

In contrast to Classifyber, RecoBundles and LAP do
not require training time, because their underlying learn-
ing algorithms, i.e. nearest neighbor and linear assignment
respectively, are lazy learning algorithms that postpone
the computation to when the testing/segmentation step is
required. In the case of RecoBundles, the segmentation
step requires between 0.5 and 3 minutes, on the example
discussed above. LAP requires 130 minutes and is thus
the slowest of the methods compared.

TractSeg adopts a different approach because it seg-
ments 72 bundles in parallel. The training time of Tract-
Seg is vastly larger than all other methods, requiring 7
hours on a GPU. When the bundle of interest is not in-
cluded in those 72 bundles, or when the training examples
differ from the ones used in Wasserthal et al. (2018a), we
re-trained TractSeg (called TractSeg-retrained): for exam-
ple, on the examples of HCP-IFOF, the training phase re-
quired approximately 3 hours on GPU, see Table 8. Both
TractSeg and TractSeg-retrained required approximately
5 minutes to segment a new bundle.

All computations of all experiments described in this
work were executed on the high-performance computing
(HPC) cluster provided by Indiana University, allocat-
ing 16 cores of Intel Xeon CPU E5-2680 2.50GHz and
32Gb of RAM, a setup equivalent to a powerful personal
workstation typically available in research labs and clinics.
For TractSeg, we also allocated one NVIDIA GPU RTX
2080Ti.

4. Discussion and Conclusions

In this section, we start with general comments on the
whole set of experiments with respect to the claims of this
work. We then discuss each experiment individually, the
effect of segmenting bundles with respect to their fractal
dimension (FD), the computational resources needed by
each segmentation method, and, before the conclusions,
we briefly discuss the issue of reproducing results reported
in the literature.
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TractSeg Classifyber-major Classifyber-IFOF Classifyber-LOSO

Left IFOF 0.42 ± 0.05 0.71 ± 0.09 0.82 ± 0.07 0.89± 0.03
Left AF 0.23 ± 0.02 0.74 ± 0.13 - 0.92± 0.03

Table 6: Quantitative comparison over the Clinical dataset: DSC (mean ± sd) across 7 target subjects for TractSeg, Classifyber-major,
Classifyber-IFOF and Classifyber-LOSO. Highest quality of segmentation in bold face.

TractSeg Classifyber-major Classifyber-IFOF Classifyber-LOSO expert-based

L
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Figure 7: Qualitative comparison of segmented bundles in one of the patients. Bundles on the rows: Left IFOF (first row) and Left AF
(second row). Automatic segmentation methods on the columns: TractSeg (first column), Classifyber-major (second column), Classifyber-
IFOF (third column), Classifyber-LOSO (forth column) and expert-based segmentation (fifth column). Highest quality of segmentation in
bold face.

dataset FD min FD max FD mean ± sd

HCP-major 2.09 2.44 2.30 ± 0.08
HCP-minor 1.89 2.26 2.10 ± 0.08
HCP-IFOF 1.74 2.08 1.99 ± 0.06

Clinical 1.75 1.96 1.86 ± 0.06

Table 7: FD values of the 4 datasets used in this work. The dataset
are sorted according to their mean FD.

training phase segmentation total

RecoBundles-atlas 0 0.5 0.5
RecoBundles 0 3 3
Classifyber 34 3 37
LAP 0 130 130
TractSeg-ret.(*) 175(**) 5 180
TractSeg(*) 720(***) 5 725

Table 8: Time in minutes required to train each method and to
segment one IFOF for: RecoBundles-atlas, RecoBundles, TractSeg,
TractSeg-retrained, LAP and Classifyber, when having 15 training
examples. (*) GPU accelerated. (**) segmenting 2 kinds of bundles
at the same time. (***) Training on 84 subjects to segment 72 kinds
of bundles at the same time.

4.1. General Comments

At the global level, all the results on the comparison
among automatic segmentation methods presented in Sec-
tion 3.1 indicate one main message: Classifyber clearly
outperforms other methods in all cases, by a substantial
margin, and segments bundles very accurately. This is ob-
served to occur across different kinds of bundles, tractog-
raphy techniques, expert-made segmentations, and quality
of dMRI data, i.e., research vs clinical quality. The sum-
mary results in Figure 8, which report on the y-axes the
DSC score for each of the hundreds of individual bundles

segmented across all the experiments of Section 3.1, show
that Classifyber obtained scores ranging from 0.65 to 0.96,
with a mean and standard deviation of 0.85 ± 0.05. This
is the highest quality of segmentation among the different
automatic segmentation methods by a large or substantial
margin, in almost all cases, see the results at the level of
individual target bundles reported in Section 3.2.1, 3.2.2,
3.2.3 and 3.2.4 and in Figure 6.

Figure 8 also reports that the results obtained by LAP
are consistently superior to those obtained by RecoBun-
dles and TractSeg, at least on the datasets HCP-minor and
HCP-IFOF. Moreover, the figure shows that RecoBundles
and TractSeg have a large amount of variability in the
quality of segmentation across the different experiments:
their DSC scores range from 0.07 to 0.90, with means of
0.64±0.14 and 0.71±0.13 respectively. Surprisingly, Tract-
Seg reaches a low (or very low) quality of segmentation on
small bundles. We discuss this point in detail below, in
Section 4.3, where we discuss the FD of bundles.

4.2. Discussion of the comparison across datasets

HCP-minor. Figure 6 and Table 3 show that the quality
of segmentation obtained by Classifyber is very high (DSC
≥ 0.80) across all kinds of small bundles and distinctively
superior to all other methods6. This result is of particular
importance because minor bundles are notoriously harder
to segment due to their size and high variability across
subjects (Guevara et al. (2017)).

In the qualitative comparison in Figure 4 we observe
that TractSeg-retrained is not very precise in segmenting

6The mean improvement in terms of DSC with respect to the
second-best method is 0.09.
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Figure 8: DSC vs FD across all methods for all the predicted bundles of the experiments in this work. From the left: RecoBundles and
RecoBundles-atlas (blue and light blue), TractSeg and TractSeg-retrained (green and light green), LAP (yellow), and Classifyber (red).
R is the Pearson correlation coefficient and related p-value between FD and DSC over all the predicted bundles, i.e. approximately 500
segmentations.

fine-grained structures of the bundles, in particular their
terminal portions. We believe that this is due to an inher-
ent bias of FCNNs, which we discuss in Section 4.3.

HCP-IFOF. When segmenting the IFOFs of the HCP-
IFOF dataset, Classifyber reaches an extremely high qual-
ity of segmentation, with DSC around 0.9, as reported in
Table 4. RecoBundles and LAP ranked second with DSC
around 0.8. TractSeg-retrained, despite being trained on
the IFOFs of that dataset, ranked third with DSC around
0.6. Also in this case we believe that this is evidence of
an inherent bias of the method, which we discuss in Sec-
tion 4.3. TractSeg and RecoBundles-atlas ranked last with
DSC around 0.5, most probably because the IFOFs in their
training set partly differ from the ones in HCP-IFOF, as
explained below.

A possible explanation of the poor performances of
TractSeg and RecoBundles-atlas is that the anatomical
shape of the bundles used as examples differs from the
shape of the manually expert-based segmented bundles of
the HCP-IFOF dataset. Specifically, the example used

by RecoBundles-atlas, i.e. the IFOF of the atlas of Yeh
et al. (2018), comes from clustering followed by expert
labeling. The examples used by TractSeg come from a
semi-automatic refinement of the segmentation provided
by TractQuerier (Wassermann et al. (2016)), while the ex-
amples in HCP-IFOF are manually segmented by an ex-
pert neurosurgeon and follow the definition in Sarubbo
et al. (2013) and Hau et al. (2016). These anatomical
differences are justified by the fact that the anatomical
definition of some white matter bundles, among which the
IFOF, is in evolution (Sarubbo et al. (2013); Forkel et al.
(2014); Wu et al. (2016a)).

HCP-major. Even for the segmentation of major bun-
dles, Classifyber obtained very high quality of segmen-
tation, ranging from DSC = 0.82 for the Right ILF, to
DSC = 0.87 for the Right CST, see Table 5 and Fig-
ure 6, outperforming in most of the cases all other meth-
ods. Nevertheless, TractSeg reached comparable segmen-
tation quality, with an average DSC ranging from 0.75 to
0.85, even though it used a much larger training set of 84
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Figure 9: DSC (mean ± sd of the mean) across 25 test subjects of
the HCP-minor dataset when varying the number of examples, from
1 to 60. Each of the bundle is depicted with a different color.

Figure 10: Time to run Classifyber, partitioned into the six steps
composing the training phase on 15 subjects and the test phase to
predict one IFOF. Total running time: 37 minutes.

subjects instead of 15. Due to their size, major bundles
are generally easier to segment (Guevara et al. (2017)).
On the contrary, RecoBundles-atlas obtained more modest
and highly-variable results, with an average DSC ranging
from 0.42 to 0.76, although we used the bundle models
from Yeh et al. (2018) as suggested by the authors of Re-
coBundles.

Clinical. On the Clinical dataset, i.e. on the white mat-
ter of patients with a brain tumor in the same hemisphere
as the bundles of interest, Classifyber reached extremely
high quality of segmentation, i.e. DSC around 0.9 as re-
ported in Table 6, when the training examples came from
the same clinical dataset (see Classifyber-LOSO in the ta-
ble). When examples partly different from the ones in the
Clinical dataset, the DSC dropped accordingly to around
0.8 for Classifyber-IFOF and to 0.7 for Classifyber-major,
see for an example Figure 7 (first row). Specifically, in
Classifyber-IFOF, the tractography of the training bundles

is built on research-quality data instead of clinical-quality
and the reconstruction step of the tractography is CSD
instead of DTI. In Classifyber-major the differences are
even greater: the training data is research-quality and the
tractography is probabilistic instead of the deterministic
tractography featured in the Clinical dataset. Moreover,
in this case, the definition of the IFOF is the classical one
provided by TractQuerier (Wassermann et al. (2016)) in-
stead of the more refined from Sarubbo et al. (2013) and
Hau et al. (2016) used in the Clinical dataset.

It is well known that training classification algorithms
on examples that systematically differ from the examples
in the test set substantially reduces the quality of classifi-
cation. This problem, called domain adaptation or domain
shift, was previously mentioned for bundle segmentation in
Wasserthal et al. (2018a) and has no simple solution.

Although in Wasserthal et al. (2018a) they claim that
their pre-trained network works properly also on clinical
settings, the results of TractSeg on the Clinical dataset
are surprisingly low, with DSC around 0.3, as reported
in Table 6. These results should be comparable to those
of Classifyber-major, which instead reached a DSC around
0.7. We believe that the main reason of this behavior is the
low FD of the clinical bundles, which has a strong impact
on TractSeg as explained in detail below in Section 4.3.

4.3. The fractal dimension of bundles

While conducting hundreds of automatic segmenta-
tions with different methods, we noticed that TractSeg had
consistent success or consistent failure on specific datasets.
TractSeg very accurately segmented the bundles in HCP-
major, but obtained only medium or poor results in other
datasets, see Figure 6. Figure 8 shows that the segmen-
tation quality reached by TractSeg is deeply affected by a
specific geometric property of the voxel mask of the tar-
get bundle: its fractal dimension (FD, see Section 2.2.7).
Tractseg accurately segmented bundles which are smooth
and rounded, i.e., with high FD, while it produced poor
segmentations when they are wrinkled and irregular, i.e.,
with low FD. By Combining the information of Table 7 and
the trends in Figure 8, we can indeed expect TractSeg to
accurately segment bundles in the HCP-major dataset and
to consistently fail in the HCP-IFOF or Clinical datasets.

We believe that this tendency is related to the opera-
tions of convolution and max-pooling of the fully convolu-
tional neural networks (FCNNs) within TractSeg. In the
domain of computer vision, it has been observed multiple
times that FCNNs are biased towards rounded segmenta-
tions of objects, which can loose details and fine-grained
structure, in particular because of the max-pooling oper-
ation, see for example Sabour et al. (2017); Kim et al.
(2018); Wei et al. (2019). This problem is inherent in U-
net (Ronneberger et al. (2015)), which is at the core of
TractSeg.

As an example, consider the experiments related to the
segmentation of the IFOFs and Figure 5. The IFOFs in
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the HCP-IFOF dataset were manually segmented by ex-
perts and, according to Table 7, have FD = 1.99 ± 0.06.
The IFOFs predicted by TractSeg have FD = 2.3 ± 0.1,
and appear substantially more rounded and smoother than
the expert-based segmented IFOFs, see Figure 5 (third
and last panels). Even re-training TractSeg only on exam-
ples of HCP-IFOF did not solve this problem but instead
merely mitigated it: the IFOFs predicted by TractSeg-
retrained have FD = 2.1±0.1, which is still systematically
higher than the expert-based segmentations, confirming
the bias, see for example Figure 5 (fourth panel).

Figure 8 shows that LAP is also slightly affected by the
FD of bundles, though much less than TractSeg. However,
such result might not be entirely reliable because a large
portion of the segmentations are missing due to the limi-
tation of LAP to address large tractograms.

In contrast to TractSeg and LAP, both RecoBundles
and Classifyber are insensitive to the FD of the voxel
masks of bundles, as clearly shown in Figure 8. We spec-
ulate that the reason for this is related to the streamline-
based nature of such methods and, more specifically, to
the fact that they operate via single streamline classifica-
tion. By predicting whether or not each streamline of the
tractogram belongs to the target bundle, there is not a spe-
cific constraint to produce round/smooth voxel-structures
as observed with TractSeg or to jointly consider all target
streamlines during the prediction as in LAP.

4.4. Size of the training set

As an additional result of this work, we observed that
Classifyber requires only a small number of example bun-
dles to obtain high quality of segmentation. In fact, Fig-
ure 9 shows that, on the HCP-minor dataset, there is no
substantial gain in the quality of segmentation beyond 15
training examples. In the experiments on the Clinical
dataset, Classifyber reached an extremely high segmen-
tation quality using only 6 example subjects, with a mean
DSC around 0.9, see Table 6.

Both RecoBundles and LAP require a very small num-
ber of training subjects: 1 bundle/model for RecoBun-
dles and around 5-10 for LAP, according to Sharmin et al.
(2018). On the contrary, TractSeg was trained on 84 sub-
jects. Although in Wasserthal et al. (2018a) there are no
clear guidelines on the number of subjects to be used for
training, it is well known that deep learning models need
a very large training set, which is often not available in
clinical settings.

4.5. Time required to segment a bundle

Among the methods compared in this work, deciding
which one is faster is not straightforward: on the one hand,
streamline-based methods like Classifyber, RecoBundles
and LAP require the tractogram as input. In our expe-
rience and applications, the tractogram is always already
available and provided by neurosurgeons/neuroscientists,
because they decide the reconstruction and tracking al-
gorithms specifically for their desired task, the available

MR scanner and sequence of acquisition. If only raw
dMRI data is provided, the time to build the tractogram
should be accounted for the total time of the computation.
On the other hand, TractSeg uses the GPU and requires
a specific pre-processing of dMRI data as input, which
needs approximately 30 minutes of computation per sub-
ject. Moreover, to obtain the predicted bundle as stream-
lines, bundle-specific tracking must be computed after-
wards (Wasserthal et al. (2018b)).

Overall, if the target tractogram is available, RecoBun-
dles is the fastest segmentation method in our comparison,
see Table 8. Alternatively, if pre-trained methods are avail-
able, like in the case of TractSeg and Classifyber, TractSeg
and Classifyber are also similarly as fast as RecoBundles.
LAP is the slowest segmentation method but, if training
has to be done, TractSeg ranks last.

4.6. Reproducibility

The results on large bundles that we present in Table
5 and Figure 6 accurately reproduce those in Wasserthal
et al. (2018a) for what concerns TractSeg and RecoBun-
dles. TractSeg has a distinctively higher quality of seg-
mentation than RecoBundles. However, when considering
the dataset HCP-minor, see Figure 6 and Table 3, and the
dataset HCP-IFOF, see Table 4, RecoBundles shows com-
parable quality of segmentation to TractSeg. This result
is novel because Wasserthal et al. (2018a) did not consider
bundles with low FD.

The better performances of LAP than those of Re-
coBundles and Tractseg on the dataset HCP-minor and
HCP-IFOF are shown in the same tables and figures just
mentioned. With respect to RecoBundles, this result is
consistent with what was demonstrated in Sharmin et al.
(2018), i.e., that LAP outperforms the nearest-neighbor-
based segmentation, which is the category in which Re-
coBundles belongs. With respect to TractSeg, the result
of our comparison is novel, because LAP was not included
in the extensive comparison presented in Wasserthal et al.
(2018a).

The sharing of code and data is becoming standard
practice in neuroscience and facilitates both accelerated
scientific discovery and reproducibility, see Avesani et al.
(2019). For this reason, Classifyber is freely available
on the online platform https://brainlife.io both as
the full algorithm that implements the training and test
phases, and as a pre-trained method ready to segment bun-
dles in the highest quality fashion available.

4.7. Conclusions

In this work we present Classifyber, a streamline-based
linear classifier that segments white matter bundles from
dMRI data and expert-made examples. Classifyber is the
first automatic classification segmentation method that ex-
ploits both the shape of streamlines, obtained with trac-
tography techniques from dMRI data, and the anatomical
information of the bundles, in the form of connectivity pat-
terns and specific ROIs. Classifyber substantially raises
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the quality of segmentation as compared to the current
state-of-the-art methods described in the literature, by a
large margin, and more importantly, across very diverse
settings. Maintaining a high quality of bundle segmenta-
tion regardless of the type of input tractography or the
quality of dMRI data is nowadays of paramount impor-
tance for a vast number of applications. For example, the
practitioner may not be able to anticipate whether the
bundle to be segmented will have high or low FD.

As opposed to voxel-based methods, like the one pre-
sented in Wasserthal et al. (2018a), we believe that accu-
rate segmentation of bundles from dMRI data must lever-
age tractography techniques and also include information
about streamlines. Streamlines represent a spatial statis-
tic of the dMRI signal that approximates the underlying
anatomical connectivity, though it does so with a sub-
stantial problem of false positives (Pestilli et al. (2014);
Daducci et al. (2015); Maier-Hein et al. (2017); Jeurissen
et al. (2019)).

Additionally, Classifyber is fast to train on new
datasets/bundles and requires only a small number of ex-
amples. This specific feature is of great importance for
bundle-specific applications like in pre-surgical planning,
because Classifyber can be tailored to the specific task,
dMRI data and tractography technique at the cost of
a small amount of manual segmentation by expert neu-
roanatomists.

In future, we plan to test nonlinear classification algo-
rithms in order to investigate potential improvements in
the segmentation quality of Classifyber. The current lin-
ear model used within Classifyber is indeed a limitation of
the proposed method. Nevertheless, linear models are fast
and light and, according to the results presented in this
work, sufficient to substantially advance the state-of-the-
art in automatic white matter bundle segmentation.
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Appendix A. Semi-automatic technique to curate
the HCP-minor bundle dataset

In this Section, we describe the semi-automatic tech-
nique adopted to filter out bundles considered not anatom-
ically plausible.

First, we automatically discarded those subjects which
had at least one bundle that deviated more than ±2 stan-
dard deviations from the mean of the bundle distribution
of the number of voxels and number of streamlines of the
population across the 192 subjects. After this step, the
number of subjects retained was 121. Then, an expert
(D.B.) performed visual inspection of each individual bun-
dle to detect anomalies in the segmentations. Bundles were
assigned an omnibus score corresponding to their degree
of anatomical plausibility. These scores ranged from 1 to 5
such that 1 indicated a rating of bad, 2 indicated a rating
of poor, 3 indicated a rating of OK, 4 indicated a rating of
good, 5 indicated a rating of great. Finally, we kept those
subjects whose all bundles obtained a score of 2 or higher,
remaining with a total of 105 subjects.

Appendix B. Further insights about Methods

Appendix B.1. Vectorial Representation of a Streamline

Here we provide a comprehensive description of the
procedure adopted to transform each streamline into a vec-
tor.

Given a streamline s, we compute 4 sets of values that,
concatenated, create the proposed vectorial representation
v of the streamline. The first two sets refer to the geo-
metrical aspects of the streamline, typically exploited by
streamline-based segmentation methods. The remaining
two sets refer to connectivity and anatomical aspects of
the bundle of interest respectively, which are the main fo-
cus of connectivity-based segmentation methods.

Streamline-based segmentation methods group to-
gether streamlines according to some similarity measures,
or distances. Typical distances between two streamlines
are the minimum average direct flip (dMDF) distance or
the minimum average mean (dMAM) distance, which ac-
count for the respective positions and shapes of the two
streamlines, see Garyfallidis et al. (2015); Olivetti et al.
(2017). Based on such concepts, an accurate and easy way
to compute a vectorial representation of streamlines has
been proposed in Olivetti et al. (2012) and since been used
for multiple applications, like clustering, interactive seg-
mentation and fast nearest-neighbor queries, see Olivetti
et al. (2013); Porro-Muñoz et al. (2015); Sharmin et al.
(2016). The transformation from streamline to vector is
built on the general concept of dissimilarity representation,
initially proposed for pattern recognition problems, see
for example the comprehensive Pekalska and Duin (2005).
The dissimilarity representation for streamlines described
by Olivetti et al. (2012), first requires the user to define a
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small group of prototypical streamlines of the tractogram7,
called landmark streamlines, l1, . . . , lL, that summarises
the tractogram and acts as a reference system. Then, given
a streamline s, the set of its distances from the landmarks
is its vectorial representation: v = [d(s, l1), . . . , d(s, lL)],
where d is a streamline distance, like dMDF or dMAM. As
shown in Olivetti et al. (2012) and in Porro-Muñoz et al.
(2015), a vector v or this sort is an accurate vectorial rep-
resentation of the streamline s.

In this work we propose a vectorial representation for
streamlines that extends the one originally proposed in
Olivetti et al. (2012). The first two sets of values are two
dissimilarity representations based on different landmarks:
the first one uses L = 100 landmarks taken globally from a
whole tractogram, as in Olivetti et al. (2012); the second
one is bundle-specific and uses L = 100 landmarks taken
locally in the area of bundle of interest. Both the global
and local landmarks are chosen in one random subject us-
ing the subset farthest first (SFF) policy, which provides
a uniform coverage of the area of interest, as suggested in
Olivetti et al. (2012). Notice that, since the set of land-
marks act as a reference system, they have to be the same
for all subjects.

The third set of values represents connectivity features
and is, again, a dissimilarity representation but now fo-
cused on connectivity patterns instead of the shape of the
streamline. The idea is that, if a streamline represents the
anatomical connection between cortical areas at its end-
points, then two streamlines with neighboring endpoints
represent the same pattern of anatomical connectivity and
serve the same purpose. The dissimilarity representation
of this third set of values is based on a recent streamline
distance that we proposed in Bertò et al. (2019), which
exploits only the endpoints of the streamline: given two
streamlines sA and sB , whose enpoints are {xA1 ,xAnA

} ∈ sA
and {xB1 ,xBnB

} ∈ sB , their endpoint distance is simply the
mean Euclidean distance of the corresponding endpoints:

dEND(sA, sB) =
1

2
(min(||xA1 − xB1 ||2, ||xA1 − xBnB

||2)+

(B.1)

+ min(||xAnA
− xB1 ||2, ||xAnA

− xBnB
||2))

In this work, we propose to use this endpoint distance
from the L = 100 global landmarks as the the third set of
values to describe the connectivity pattern of a streamline.

The fourth set of values refers to anatomical aspects
of the bundle of interest, by means of the ROIs that de-
fine that bundle. Often, a bundle is defined by two ROIs,
see Wakana et al. (2007); Yeatman et al. (2012); Zhang
et al. (2010). In Bertò et al. (2019), we recently proposed
a streamline-ROI distance: given a streamline s and one
ROI represented as a voxel mask ROI = {vox1, . . . , voxM},

7Such streamlines can be just a random subset of the tractogram.

their distance is the minimum among all Euclidean dis-
tances between the points of the streamline and the voxels
of the ROI:

dROI(s,ROI) = min
x∈s,vox∈ROI

||x− vox||2 (B.2)

where with vox we indicate the coordinates of the cen-
ter of the voxel. We use this distance to define the fourth
set of values, i.e., the set of distances of the streamline s
to each of the two ROIs that define the bundle.

In conclusion, given a streamline s, we compute 100
values as the dissimilarity representation from global land-
marks (set 1), then 100 values as the dissimilarity repre-
sentation from local landmarks (set 2), 100 values as the
endpoint distance from global landmarks (set 3) and 2
values as the Euclidean distance from the 2 ROIs relevant
to the bundle of interest (set 4)8. The vector v result-
ing from concatenating those 302 values is the proposed
vectorial representation of the streamline and these 302
variables define the proposed feature space. An illustra-
tion of the proposed feature space is given in Figure 2.

Appendix B.2. Further details about the training and test
phases of Classifyber

In this Section, we describe more in details the train-
ing and test phases of Classifyber. The training phase is
composed of three steps:

Step (a1) Bundle superset. The entire set of stream-
lines in each tractogram is reduced to a subset of those
proximal to the bundle of interest. The main purpose
of this reduction is to avoid extremely imbalanced data,
which decreases the accuracy of classification. Typically,
the ratio between the number of streamlines of a bundle
(class 1) and all the other streamlines in the tractogram
(class 0) is around 1 : 500, so extremely imbalanced. A
typical simple technique to promote effective training is to
remove examples far away from the boundary between the
two classes and to get a more even class ratio, which is
what we obtained by retaining only the streamlines in the
region of the bundle of interest. Such operation is compu-
tationally intensive, but we adopted the very fast solution
described in Sharmin et al. (2018). Specifically, the bundle
superset of an example bundle is computed by considering
the neighboring streamlines belonging to the correspond-
ing tractogram retrieved by a k nearest neighbors (k-NN)
procedure applied to each streamline of the bundle. We
found k = 2000 to be a good compromise between compu-
tational cost reduction and size of the resulting superset
with respect to the bundle and the tractogram. Usually,
with k = 2000, the bundle superset, which is a subset of
the entire tractogram, is approximately 30 times bigger
that the bundle and 20 times smaller than the whole brain
tractogram. Efficient k-NN queries are possible due to the

8Or more than 2 values in case of more than 2 ROIs.
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use of a KDTree, as in Sharmin et al. (2018). Moreover,
this extra cost in time is massively outweighed by the 20x
gain in time when computing the next steps, i.e. steps (a2)
and (a3), see Section 3.2.7 for more details.

Step (a2) Feature extraction. Each streamline of the
superset is then transformed into a vector, as described in
Section 2.2.2. To the vector is assigned a class label 1 if
it belongs to the bundle, 0 otherwise, see Figure 3 (A),
where they are represented in green and red respectively.
The entire set of vectors, i.e. the training set, is z-scored
independently for each feature.

Step (a3) Training. A binary Logistic Regression classi-
fier is trained, using the stochastic average gradient (SAG)
solver (Schmidt et al. (2017)) available in the Python pack-
age scikit-learn (Pedregosa et al. (2011)). We use default
parameters, except for the number of iterations of the
solver, which we increase to 1000 to ensure convergence, as
well as the parameter to lessen the negative effects of the
residual class imbalance, which we set in all cases to 1:3.
These choices are the result of a preliminary investigation
on left out data and are kept for all the experiments.

The test phase is also composed of three steps:
Step (b1) Bundle superset. Similarly to step (a1) of the

training phase, we reduce the whole target tractogram to
a superset of the target bundle. The main reason for this
step is to reduce the computational cost of segmenting the
target bundle. Obviously, in this case we do not know the
target bundle in advance, so the superset is only expected
to contain the target bundle, with very high probability.
In this case, first, a candidate bundle superset is computed
as in step (a1) but considering, in the target tractogram,
the neighboring streamlines of one of the example bundle.
This procedure is repeated using 5 of the example bundles.
Second, the final bundle superset is obtained as the union
of all the candidate bundle supersets. Retrospectively, in
all experiments, the superset obtained in this way was ap-
proximately 40 times larger than the target bundle and
always containing all the streamlines of the target bundle.

Step (b2) Feature extraction. Each streamline of the
bundle superset is embedded into a vector, as described
in Section 2.2.2. All the vectors are z-scored feature-by-
feature using means and standard deviations obtained in
step (a2) of the training phase.

Step (b3) Test. By exploiting the linear classifier ob-
tained from the training phase in step (a3), each streamline
of the superset is predicted to be either part of the bundle
(class 1) or not (class 0).

Appendix C. Further insights about Experiments

Appendix C.1. TractSeg-retrained metrics on HCP-minor
dataset

In Figure C.11, we report the training metrics obtained
when training TractSeg-retrained as explained in Section
2.2.5. Red lines represent the value of the loss function
obtained across all the epochs (y axis labels on the left

side), while green lines represent the f1 score (y axis la-
bels on the right side). The graph shows that we reached
convergence in 250 iterations.

Appendix C.2. Tuning RecoBundles parameters on HCP-
minor dataset

Figure C.12 shows a quantitative comparison in terms
of mean DSC when using RecoBundles with different con-
figuration of parameters across the HCP-minor dataset. In
that specific setting, we found that bundles predicted with
default parameters (depicted in light green) obtained, on
average, lower DSC scores, with respect to bundles seg-
mented using other two configurations (depicted in yellow
and blue). Specifically, the configuration that gave best
DSC scores was the one (depicted in blue) that used the
minimum average mean distance (dMAM ) instead of the
minimum average direct flipped distance (dMDF ) and that
did not use the local streamline linear registration (SLR),
most probably because the bundles were already coregis-
tered in MNI space. The configuration that used the ’re-
fine’ option was the one (depicted in light blue) that gave
the worst results.
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Figure C.11: Metrics to train 15 subjects for TractSeg-retrained on the HCP-minor dataset, data augmentation, 250 epochs.
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