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Abstract 

Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of 

unknown cause, with no effective therapeutic options, and no cure. Limited work to date 

has attempted to characterize the transcriptional changes associated with the disease, 

which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) 

symptoms. We report here the results of RNA expression profiling of cerebellar white 

matter (CWM) tissue from two independent cohorts of MSA patients (n=66) and healthy 

controls (HC; n=66). RNA samples from bulk brain tissue and from oligodendrocytes 

obtained by laser capture microdissection (LCM) were sequenced. Differentially 

expressed genes (DEGs) were obtained and were examined before and after stratifying by 

MSA clinical sub-type. 

We detected the highest number of DEGs in the MSA-C group (n = 747) while 

only one gene was noted in MSA-P, highlighting the larger dysregulation of the 

transcriptome in the MSA-C CWM. Results from both bulk tissue and LCM analysis of 

MSA-C showed a downregulation of oligodendrocyte genes and an enrichment for 

myelination processes with a key role noted for the QKI gene. Additionally, we observed 

a significant upregulation of neuron-specific gene expression in MSA-C and an 

enrichment for synaptic processes. A third cluster of genes was associated with the 

upregulation of astrocyte and endothelial genes, two cell types with a key role in 

inflammation processes. Finally, network analysis in MSA-C showed enrichment for β-

amyloid related functional classes, including the known Alzheimer’s disease (AD) genes, 

APP and PSEN1.  

This is the largest RNA profiling study ever conducted on post-mortem brain 

tissue from MSA patients. We were able to define specific gene expression signatures for 

MSA-C highlighting the different stages of the complex neurodegenerative cascade of the 

disease that included alterations in several cell-specific transcriptional programs. Finally, 

several results suggest a common transcriptional dysregulation between MSA and AD-

related genes despite the clinical and neuropathological distinctions between the two 

diseases.  
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Introduction 

Multiple-system atrophy (MSA) is a rare neurodegenerative disorder characterized by 

autonomic dysfunction, ataxia, and parkinsonism. The prevalence is estimated to be 

between 1.9 to 4.9 per 100,000 (Bhidayasiri and Ling, 2008; Stefanova et al., 2009). The 

disease affects both sexes equally with onset typically in the sixth decade of life and with 

an average survival after diagnosis of less than ten years [53]. There are no effective 

long-term therapeutic options for the MSA patient, and no cure.  

MSA as a unifying diagnostic terminology was developed to encapsulate three 

neurological entities: striatonigral degeneration, olivopontocerebellar atrophy, and Shy-

Drager syndrome (Goedert, 2001; Quinn and Wenning, 1995; Vanacore, 2005; 

Wakabayashi et al., 1998). Two different clinical subtypes have been described based on 

the predominating motor features noted during the early stages of the disease: the MSA-P 

subtype (dominated by parkinsonism) and the MSA-C subtype (dominated by cerebellar 

ataxia). However, in the later stages of the disease, the phenotypic characteristics of both 

subtypes are typically noted in the patient [16]. A definitive diagnosis of MSA is 

obtained through autopsy confirmation of a high density of α-synuclein-containing 

protein aggregates, known as glial cytoplasmic inclusion (GCI) bodies, in 

oligodendrocytes along with striatonigral degeneration and/or olivopontocerebellar 

atrophy (Bhidayasiri and Ling, 2008; Papp et al., 1989; Stefanova et al., 2009).  

GCIs are primarily comprised of aggregated α-synuclein, therefore MSA can be 

classified as an oligodendroglial α-synucleinopathy, which is a point of distinction 

compared to neuronal α-synucleinopathies like Parkinson’s disease. Interestingly, work 

investigating the earliest molecular changes associated with MSA has suggested that 

oligodendrocyte intracellular accumulation of p25α, a protein associated with 

myelination, may be altered before α-synuclein aggregation is observed [53]. The 

aggregation of α-synuclein is thought to lead to a disruption of the role of the 

oligodendrocyte in the process of neuronal myelination leading to microglial activation 
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and subsequent release of mis-folded α-synuclein by the increasingly dysfunctional 

oligodendrocytes. Neighboring neurons may uptake this extracellular α-synuclein and it 

could thereby initiate new aggregation inside the neuronal cell. Additionally, the toxic α-

synuclein species may spread to neurons in other synaptically-connected brain regions in 

a prion-like fashion. The lack of effective oligodendrocyte support for the local neurons, 

and the neuronal effects of the α-synuclein inclusions, eventually results in axonal 

dysfunction, neuronal cell death, and a reactive astrogliosis [16].  

The cause of MSA is not known, however it is generally believed to be sporadic. 

Several genomic studies have been performed to shed light on the molecular pathogenesis 

of the disease. Three SNPs located in the α-synuclein gene (SCNA) have been associated 

with the risk of developing MSA [48]. In an independent study conducted by evaluating 

32 SNPs in the SNCA gene, one SNP associated with MSA and one haplotype associated 

with the MSA-C subgroup were noted [2]. Whole genome sequencing analysis identified 

COQ2 genetic variants associated with both sporadic and familial MSA [37]. However, 

this finding has not been replicated in other cohorts [49].  In another GWAS, including 

MSA patients and healthy controls, several SNPs located in different genes (FBX047, 

ELOVL7, EDN1, and MAPT) were found to be potentially associated, but were not 

significant after multiple test correction [47]. Finally, the presence of an expansion of one 

allele in SCA3 (a gene associated with spinocerebellar ataxia) was observed in a patient 

showing clinical features consistent with MSA-C [38]. Recently, epigenetic 

modifications, such as DNA methylation changes, have also been identified in 

neurodegenerative diseases. A recent study reported white matter tissue DNA 

methylation changes associated with MSA, including changes in HIP1, LMAN2 and 

MOBP [8].  

Three different gene expression profiling studies conducted on 

neuropathologically verified human brain samples have been reported to date. The first 

study [35] utilized transcriptome profiling by RNA-sequencing of the white and grey 

matter of the frontal cortex from 6 MSA patients and 6 controls. In the grey matter they 

detected 5 genes differentially expressed (HLA-A, HLA-B, HLA-C, TTR and 

LOC389831). In the white matter they identified 7 genes, including the 3 HLA genes 

detected in the grey matter. The additional genes were: HBA1, HBA2, HBB and IL1RL1. 
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The SNCA gene was detected to be upregulated in both comparisons but it was not 

statistically significant. They also compared the white matter versus the grey matter in 

patients, detecting a total of 1,910 differentially expressed genes. A second study was 

conducted using the same 12 samples, but using strand-specific RNA-sequencing [36], 

detecting a total of 123 differentially expressed genes. Most detected genes were 

lincRNAs or un-annotated transcripts. Some of the genes found in the previous study [35] 

were confirmed; HBB, IL1RL1, TTR and LOC389831. Finally, a study determining the 

differential expression of circular RNA (circRNA) in the MSA frontal cortex was 

conducted [12], identifying 5 circRNAs produced by backsplicing of the precursor 

mRNAs from the IQCK, EFCAB11, DTNA, MAP4K3, and MCTP1 genetic loci. No other 

RNA sequencing studies have been conducted thus far.  

In this study we utilized RNA sequencing to characterize the cerebellar white 

matter transcriptome from neuropathologically verified MSA cases and controls using 

two independent sample sets and two different profiling technologies.  
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Material and methods 

 

Extended methods are reported in the Supplementary Appendix 

 

Human samples 

We analyzed two independent cohorts of postmortem cerebellar white matter (CWM) 

that included both MSA-P and MSA-C subtypes. Cohort 1 (C1) was obtained from the 

New South Wales (NSW) brain bank (Sidney, AU) and from the Brain and Body 

Donation Program (Sun City, AZ) to yield a total of 19 pathologically-proven cases MSA 

and 10 Healthy Controls (HC) (Table 1A). Cohort 2 (C2) was obtained from the Queen 

Square Brain Bank for Neurological Disorders (London, UK) and included 48 

pathologically proven MSA cases and 47 HC (Table 1B). 

 

RNA extraction and RNA sequencing 

For C1, total DNAse-treated RNA was extracted using the Qiagen RNAeasy kit (Qiagen). 

Quality was assessed by Bioanalyzer (Agilent). Sequencing libraries were prepared with 

250 ng of total RNA using Illumina’s Truseq RNA Sample Preparation Kit v2 (Illumina, 

Inc.) following the manufacturer’s protocol. The final library was sequenced by 50 bp 

paired-end sequencing on a HiSeq 2500 (Illumina, Inc.). For C2, total DNAse-treated 

RNA was extracted in TRI Reagent from ~5 mg of tissue using Rino Tubes (Next 

Advance) (TempO-Seq Assay User Guide version 2.0). The final library was sequenced  

by 50 bp single-end sequencing on a NextSeq 500 (Illumina, Inc.). 

 

Laser Capture Microdissection (LCM) 

Twelve samples (6 MSA, 6 HC) from C1 were used for laser capture microdissection 

(LCM) of oligodendrocytes from cerebellar white matter (Ordway et al., 2009). 

Oligodendrocytes were stained by using a modified H&E staining protocol adapted from 

Ordway et al. [39]. A total of 300 oligodendrocytes per sample were captured using 

Arcturus CapSure Macro LCM Caps (Applied Biosystems) with the following settings: 

UV speed at 676 um/s and UV current at 2%. RNA was extracted immediately after cell 

capture using the Arcturus PicoPure RNA Isolation Kit (Applied Biosystems). For library 
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preparation the SMARTer® Stranded Total RNA-Seq Kit - Pico Input (Clontech/Takara) 

was used. Samples were sequenced (2 x 75 bp paired-end run) on the Illumina 

HiSeq2500. 

 

Data Analysis 

Quality controls on FASTQ files were conducted using MultiQC software v0.9 [22]. The 

reads were aligned to the human reference genome (GRCh37) using the STAR software 

v2.5 [20] and summarized as gene-level counts using featureCounts 1.4.4 [32]. For both 

datasets (C1 and C2) PCA analysis was used to assess the presence of outliers and to 

detect any batch effects. Four samples were deemed to be outliers and were removed 

(detailed below in Results). Gene expression differential analyses between MSA cases 

and HC were conducted using the R package DESeq2 v1.14.1 (Love et al., 2014), 

including age, sex (only C2), PMI and sample source (only C1) as covariates. Sex was 

not included as a covariate for C2 because the sexes were balanced and sample source 

was not included as a covariate for C1 because the tissue sources were balanced. The p-

values were corrected for multiple testing using the False Discovery Rate (FDR) method 

(Benjamini and Hochberg, 1995), considering as significant all the genes with adjusted p-

value (adj-p) < 0.05.  

The results from the two cohorts were combined using a meta-analysis approach 

based on the weighted-Z method [62] as implemented in the R-package survcomp [50] 

 

Cell specific Expression 

We classified the genes detected in the differential expression analysis using an external 

database of expression values from different types of cells isolated from mouse cerebral 

cortex [63]. We computed an enrichment score for each cell type and gene, assigning 

each gene to a specific cell type according to the relative expression in the other cell 

types. The enrichment of cell specific genes was investigated across DEGs and co-

expression modules using a hypergeometric statistic (R function phyper). 
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Enrichment and functional Network analysis 

Lists of DEGs were analyzed for Gene Ontology (GO) enrichment using the R-package 

anRichmentMethods, adjusting the p-value with the FDR method. The same gene lists 

were also analyzed using HumanBase (https://hb.flatironinstitute.org/gene), constructing 

tissue-specific functional networks [25]. 

The enrichment of Alzheimer’s disease genes in MSA was conducted using the 

data from the Accelerated Medicine Partnership – Alzheimer’s Disease (AMP-AD) 

portal. We downloaded the differential expression results from 7 different brain regions 

from the Mayo, Mount Sinai and ROSMAP cohorts [3, 6, 61]. Specifically, the brain 

regions included were: temporal cortex (TCX), cerebellum (CBE), dorsolateral pre-

frontal cortex (DLPFC), inferior frontal gyrus (IFG), frontal pole (FP), parahippocampal 

gyrus (PHC), and superior temporal gyrus (STG). The DEGs from these 7 brain regions 

were used as gene set references for the list of MSA genes ranked by log2 FC. The 

analysis was conducted using R-package fgsea adjusting the p-values with the FDR 

method.  

 

Weighted Correlation Network Analysis  

We conducted Weighted Correlation Network Analysis (WGCNA) in the MSA-C cohorts 

with the aim of identifying modules of co-expressed genes associated with the disease 

and enriched for specific biological processes [31].  We computed the co-expression 

networks using the data from C1 and then we estimated the module preservation in C2, 

using only MSA-C and HC. The analysis was conducted using the WGCNA R-package 

[31]. Genes for both C1 and C2 with less than 10 average counts were filtered out due to 

low expression and data were normalized using the vst function of the DESeq2 package 

[33]. The matrix of expression values was adjusted for age, sex, source and PMI using the 

function removeBatchEffect as implemented in the limma R-package [45]. Finally, we 

filtered out the 50% of genes having lower Median Absolute Deviation (MAD). We 

generated a signed co-expression network for C1 using the function blockwiseModules, 

with the option mergeCutHeight = 0.25. Then, we computed the module eigengenes and 

we investigated their relationship with disease status using a linear model as implemented 

in the limma package. We calculated the module membership and gene-trait significance 
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(MSA-C disease status) with the goal of ranking genes in each co-expression modules. 

Modules associated with disease status were further investigated using GO enrichment 

analysis. The enrichment for genes expressed in specific cell types was conducted using 

as reference gene sets the gene specifically expressed in the 5 cell types from Zhang et al. 

[63] and test sets including all of the genes ranked by module memberships for the 

module associated with the disease status. Finally, we checked the module preservation in 

C2 using the modulePreservation function with 1,000 permutations. Relevant 

coexpression networks were exported and visualized using Cytoscape v3.7.2 [51]. 
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Results 

Quality controls 

For C1 (Illumina), we sequenced a total of 470 Million (M) reads (average: 12.4 M; 

range: 3.8 – 32.6 M) with a 76.7% average mapping rate. PCA analysis did not show the 

presence of outliers (Fig. S1). For C2 (TempO-Seq) we sequenced a total of 162 M reads 

(average: 1.7 M; range: 0.12 – 3.8 M), with a 90.2% average mapping rate. PCA analysis 

showed the presence of one outlier in the C2 group and it was removed from all 

subsequent analyses. The final sample size was: MSA = 47 and HC = 47 (Fig. S2A and 

Fig. S2B). For the LCM sample (a subsample from C1) we sequenced a total of 353 M 

reads (average: 29.4 M; range: 23.4 – 33.3 M) with an average 64.4% mapping rate. We 

detected the presence of three outliers that were also removed. The final sample size used 

for the differential analysis from the LCM dataset was: MSA = 4 and HC = 5 (Fig. S3A 

and Fig. S3B).  

 

Differential expression results: bulk tissue human samples (MSA, MSA-P and MSA-

C) 

Differentially expressed genes (DEGs) were obtained by combining the results from both 

cohorts using a meta-analysis approach. Details about the specific results for each cohort 

are reported in Tables S1-S3 and Fig. S4. The comparison of the log2 FC obtained in the 

differential analyses for the two independent cohorts for MSA, MSA-P and MSA-C was 

statistically significant (ρ range = 0.204 – 0.456; p < 2.2E-16). The largest correlation 

coefficient (ρ = 0.456) was obtained for the MSA-C subtype probably due to the larger 

significance and effect size of the genes detected (Fig. S5). 

After p-value combination, we obtained a set of DEGs ranging from 1 (MSA-P) 

to 747 (MSA-C) depending on the MSA sub-type (Fig. 1A – 1C). The complete results 

are reported in Tables S4-S6. The top 3 DEGs for MSA in general were ACTN1, EMP1 

and NFIL3 (adj p < 0.01; all upregulated). In the MSA-P clinical sub-type we detected 

only one DEG (GPNMB), whereas in MSA-C the top genes were: PGAM2, ST5, STON1, 

RFTN1, ACTN1 and MMP14 (adj p < 1.0E-04; all upregulated) (Table 2; Fig. 2). We 

explored the differential expression between SND vs HC, and OPCA vs HC, detecting a 

total of 7 and 58 genes, respectively. MLPH, detected in SND, was also detected when 
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analyzing the clinical subtype MSA-P in C2, whereas a total of 47 genes detected in 

OPCA were also observed in the MSA-C clinical subtype in C2 (Table S7; Fig. S6). 

Correlation of the log2 FC between the differential analysis for clinical and 

neuropathological classification criteria were ρ = 0.622 (MSA-P/SND) and ρ = 0.830 

(both p < 2.2E-16) (Fig. S7). 

We explored the functional significance of the DEGs by applying a functional 

network analysis specific for the cerebellum and a GO enrichment analysis. Using the 35 

MSA DEGs (Table S4) we detected a small network with 2 modules enriched for “cell-

cell adhesion” (SELL and BCL6 genes) and “angiogenesis” (COL4A1 and COL4A2 

genes) (both q < 0.01) (Fig. S8). The GO analysis yielded significant enrichment of the 

Biological Process “collagen-activated signaling pathway” (adj p = 0.030; genes: 

COL4A1, COL4A2, ITGA11). Using all of the 747 MSA-C DEGs (Table S6) we detected 

a large network including 9 different modules (Fig. 3). We observed the highest 

enrichment significance in module 1 (M1) which was amyloid-β metabolism (top GO 

process: q = 5.3E-05, Table S8), including the Alzheimer’s disease (AD) relevant genes: 

APP, PSEN1, CLU, ROCK2 and DYRK1. The central role of APP was confirmed by a 

separate protein-protein interaction analysis showing this gene as the most important hub 

in a network that included 30% of the DEGs generated using WEBGESTALT [60] (Fig. 

S9). The second highest significance was reached in module 2 (M2) for respiratory chain 

complex assembly (top GO process: q = 8.2E-03) (Table 3, Table S8). With the GO 

analysis we detected 625 significant functional classes, mostly related to cellular and 

cytoplasmatic components, neuro and gliogenesis (Fig. S10). 

 

Enrichment of AD genes in MSA-C 

After we observed the presence of the AD-related process (amyloid-β metabolism) and 

genes in MSA-C, we tested the enrichment of AD genes in MSA-C. We used data from 

AMP-AD, running an enrichment analysis by brain region using as reference sets the 

DEGs from each brain region. The results showed a significant enrichment of TCX (adj p 

= 7.4E-05) and PHG (adj p = 2.0E-02) AD DEGs among upregulated MSA-C genes (Fig. 

S11) which were also confirmed when we used more conservative cutoffs to select AD 

genes (adj p < 0.01, < 0.001, and < 0.0001) (Table S9A). As further validation, we used 
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the less variable genes between AD and non-demented controls (ND) (adj p > 0.950). As 

expected, we did not observe any significant enrichment of TCX or PHG AD DEGs 

genes (Table S9B). We compared the DEGs detected in MSA-C, with the DEGs detected 

in TCX and PHG, only selecting genes having the same log2 FC direction, considering 

the comparison: affected vs non-affected. We detected 201 genes in TCX, 152 in PHG 

and 103 common between both regions TCX, PHG and MSA-C (Table S10). 

 

Differential expression in LCM oligodendrocytes 

We detected a total of 187 differentially expressed genes in oligodendrocytes (90 

upregulated and 97 downregulated) (Fig. 1D). Details for the complete list of genes are 

reported in Table S11. The top 4 significant genes (adj p < 1.0E-05) were: GGCX, 

MOCS1, NF1 and LINC01572 (Table 4). Using the functional module discovery analysis 

we detected a network including 4 modules (72 genes in total) enriched for telomere 

maintenance (M1: q = 1.9E-03; genes: PTGES3 and WRAP53) and ncRNA processing 

(M2: q = 0.0025; genes: DIMT1, INTS8, and MTREX). Modules 3 and 4 are weakly 

enriched for immune processes and cell growth (q < 0.05) (Fig. S12). Using the GO 

analysis in the complete gene list, we detected a significant enrichment in the myelination 

process mostly due to downregulated genes (Fig. S13). 

 

Bioinformatic-based cell specific expression profiling 

We classified the DEGs obtained in the MSA-C group according to their expression in 

five brain cell types [63]. We selected only the MSA-C results because the large number 

of DEGs makes it possible to identify robust cell-specific upregulation/downregulation 

trends. Most of the DEGs were not cell specific (“mixed”: 74.7% of the total DEGs), 

whereas the remaining genes were: astrocyte (6.6%), oligodendrocyte (5.8%), endothelial 

cell (5.1%), neuron (4.1%) and microglia (3.7%) specific. We found a significant 

overrepresentation of astrocyte and oligodendrocyte genes (both: adj p = 2.9E-04). (Fig. 

S14). We observed a strong downregulation of oligodendrocyte genes and upregulation 

of microglia, neuron and astrocyte genes (Fig. 4A). To investigate if these patterns are 

disease specific, we compared the log2 FC of genes differentially expressed (adj p < 

0.05) with those non-differentially expressed (adj p ≥ 0.05) for each cell type. We 
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observed the highest significance for oligodendrocyte (downregulated in MSA) and 

neuronal genes (upregulated in MSA) (p < 0.001). Similar results were obtained when we 

relaxed the gene inclusion cutoff to adj p < 0.10 (Fig. S15). We conducted GO 

enrichment analysis on the cell-specific DEGs. The highest significance was reached for 

oligodendrocyte genes, enriched for myelination and oligodendrocyte development 

processes. Astrocytes were enriched for transport of ion across the membrane, plasma 

membrane components, and ATPase complex (FDR < 0.01).  Endothelial cell genes were 

enriched for cell migration and angiogenesis. Neuronal genes were enriched for 

neurogenesis and post-synapse organization (Fig. 5; Table S12).  

 

WGCNA analysis 

Considering the large number of DEGs for the MSA-C subtype, we further investigated 

this group using WGCNA analysis. We computed a coexpression network using the data 

from C1 and validated the results in C2 by means of the module preservation analysis. 

After filtering (see Methods), a network was generated using the 7,650 genes with larger 

MAD using “9” as threshold power (Fig. S16). We obtained nine co-expression modules 

in total including 2,675 genes (35.0% of the genes), whereas the remaining were not 

significantly co-expressed and then were included in the grey module (Fig. 6A). The 

number of the genes in each module ranged from 78 (magenta) to 917 (turquoise). In Fig. 

S17 we show the heatmap and the dendrogram indicating the correlation between 

modules. A total of 4 modules (yellow, green, brown and blue) were associated with 

disease status, all showing an increase in MSA-C with the exception of the blue module 

(Fig. 6B). The number of genes in these 4 modules ranged from 160 (green) to 485 

(blue). Two of the significant modules (brown and green) were highly correlated with 

each other (Fig. S17). We computed the module membership (correlation of each gene 

with the module eigengenes), and the gene-trait significance (correlation with disease 

status). As expected, the gene-trait significance was highly correlated with the log2 FC (r 

= 0.846; p < 2.2E-16). We represented the correlation of the module membership with 

gene-trait significance in the scatterplots in Fig. S18 and Fig. S19. As expected, we 

detected a significant positive correlation for the 4 modules associated with MSA 

(yellow, green, brown, and blue in the Figures) but not for the others (not shown). The 
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genes for these 4 significant modules are reported in Tables S13 ranked by module 

membership p-value. The most important hubs for the 4 modules were: TGFB2 (yellow), 

SYNGAP1 (green), TIAM1 (brown) and QKI (blue). These networks are represented in 

Fig. 7. 

We conducted GO enrichment analysis and observed the most significant and 

specific enrichment in the brown and blue modules (Fig. S20 and Table S14). The yellow 

module (upregulated) showed a heterogeneous enrichment, including immune response 

but also tissue and organ development and response to stress. The green module 

(upregulated) was enriched for membrane proteins, ribosome and translation. The brown 

module (upregulated) was enriched for synaptic functional classes (top class: FDR = 

1.2E-33), and the blue module (downregulated) was enriched for myelination and 

oligodendrocyte classes (top class: FDR = 3.1E-09).  

We explored the enrichment for specific brain cell types gene expression using 

the data from [63]. Accordingly with the GO enrichment we observed, we found a 

significant enrichment of astrocyte (adj p = 3.3E-19) and endothelial genes (adj p = 2.8E-

04) in the yellow module (upregulated, enriched for immunity and organ development), 

and a significant enrichment of neuronal genes (adj p = 2.5E-60) in the brown module 

(upregulated, enriched for synaptic processes). Furthermore, we detected a significant 

enrichment of oligodendrocyte genes (adj p = 7.7E-33) in the blue module 

(downregulated, enriched for myelination) (Fig. S21). 

We validated the results conducting module preservation analysis, using C2 as the 

test sample. We observed strong evidence of preservation for the blue (myelination) and 

brown (synapse) modules, and moderate evidence of preservation in the green module 

(translation). No evidence of preservation was detected for the yellow module (Fig. S22).  

 

Discussion 

Overview 

We conducted a genome-wide expression profiling study using cerebellar white matter 

(CWM) homogenates and LCM purified oligodendrocytes from MSA patients and 

healthy controls (HC). Two independent cohorts were analyzed using different 

expression profiling approaches and the differentially expressed genes were prioritized 
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using meta-analysis techniques. WGCNA was applied to find clusters of genes 

functionally related and associated with the disease. This is the largest RNA profiling 

study conducted on post-mortem brain samples from MSA patients to date. 

 

Differential dysregulation in MSA subtypes demonstrates more CWM 

transcriptional changes in MSA-C than in MSA-P 

After p-value combination, we obtained the largest number of DEGs in the MSA-C 

subgroup comparison (n = 747). Only one gene was noted to be differentially expressed 

in the MSA-P sub-type analysis. Of note, the majority of the MSA-P patients had 

demonstrable GCIs in the CWM and 35 DEGs were identified when the MSA cohort was 

utilized as a single group in a case/control analysis (MSA-C plus MSA-P vs. HC). Of 

note, the ratio of MSA-P:MSA-C was 2.6:1 therefore the decreased number of DEGs 

noted in the combined MSA analysis is likely due to the higher number of MSA-P 

patients in our study. These results agree with the larger involvement of CWM alterations 

in MSA-C compared to MSA-P during the early stages of the disease [18, 46]. It is 

possible that due to the early involvement of CWM in MSA-C there is a longer time for 

the disease-related transcriptional changes to develop in the CWM in these patients. [46] 

found more cerebellar and pontine involvement in MSA-C compared to MSA-P. Dash et 

al. used voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) to assess 

the WM and GM changes in the two MSA subtypes and healthy controls. In comparison 

to controls, MSA-C showed widespread WM changes in supratentorial and infratentorial 

regions, whereas MSA-P only showed the involvement of association tracts. Their 

comparison between MSA-C and MSA-P confirmed a greater prevalence of cerebellar 

changes in MSA-C patients.  

 

Oligodendrocyte genes are downregulated and enriched for myelination processes in 

MSA-C CWM 

Results from multiple analyses in our study converge on strong evidence of the 

dysregulation of oligodendrocyte genes in MSA-C. WGCNA analysis showed the 

presence of a coexpression module (blue, n = 485 genes) negatively associated with 

disease status in MSA-C, enriched for myelination processes, and showing a very large 
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prevalence of oligodendrocyte genes in comparison to the other modules. Additionally, 

this module showed a strong preservation in the independent C2 dataset. The top hub 

gene in this blue coexpression network was QKI. This gene (downregulated in MSA-C) 

encodes for an RNA-binding protein involved in myelination and oligodentrocyte 

differentiation [1]. Darbelli et al., (2017) conducted a transcriptomic analysis of 

oligodendrocyte-specific QKI conditional knock-out mouse brain and found 

approximately 1,800 genes differentially expressed and the underlying functional 

annotation of these genes were enriched for axon ensheathment and myelination. 

Moreover, they detected 810 alternatively spliced genes in the conditional knock-out 

animals. These results suggest a potential key role of QKI as a regulator of RNA 

metabolism and alternative splicing in oligodendrocytes. 

Interestingly, key myelin genes, including MBP, MAG, MOBP, and PLP1 were 

found significantly downregulated in MSA-C patients in our study. The study by 

Bettencourt et al., (2019) reported MSA-associated DNA methylation changes in MOBP, 

suggesting that the observed downregulation of this gene in MSA might be regulated by 

changes in DNA methylation levels. 

As mentioned in the Introduction, the relocalization of p25α from the myelin 

sheath to the oligodendrocyte soma is one of the earliest molecular events that may 

trigger α-synuclein aggregation. This process may also slow oligodendrocyte precursor 

cell maturation by the α-synuclein mediated downregulation of myelin-gene regulatory 

factor and myelin basic protein [34]. Interestingly, the gene coding for p25α (TPPP), 

which is expressed in oligodendrocytes, was detected to be significantly downregulated 

in MSA-C patients in our study (adj p < 0.05). Additionally, SNCA was significantly 

downregulated after p-value combination in MSA-C (adj p < 0.05). The same result was 

found in another study [30], but not confirmed in other work [28, 42]. Other studies based 

on oligodendrocyte isolation and qPCA analysis described a basal expression and a trend 

of an increased expression in MSA patients [4, 19]. 

Other relevant genes from the LCM study also associated with the myelination 

process were NF1, PLP1 and ERMN. NF1 (Neurofibromin 1) was downregulated in MSA 

and it encodes for a protein specialized in the formation of myelin sheaths. Mutations in 

this gene causes Neurofibromatosis type 1, which is characterized by the growth of 
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tumors along nerves in various parts of the body including the brain. PLP1 (Proteolipid 

Protein 1) is specifically expressed in oligodendrocytes and it was downregulated in 

MSA-C patients in our sample. The protein product is a predominant component of 

myelin, and it also has a role in the maintenance of the myelin sheath as well as in 

oligodendrocyte development and axonal maintenance. Groh et al. [26] showed that mice 

with a loss of function PLP1 mutation exhibit neuroinflammation that leads to axonal 

degeneration and neuronal cell loss. Finally, ERMN (Ermin), downregulated in MSA-C, 

is involved in myelinogenesis and in maintenance and stability of the myelin sheath. 

It is worth mentioning other genes highly differentially expressed in the LCM 

study even if not directly functionally associated with myelination: GGCX, and MOCS. 

GGCX (Gamma-Glutamyl Carboxylase) was upregulated in MSA patients, and it is 

essential for activating vitamin K-dependent proteins [55]. Mutations in this gene cause 

the “GGCX Syndrome” (OMIM: 137167). It has been observed in vitro that Vitamin K 

delays α-synuclein fibrillization through its interaction at specific sites at the N-terminus 

of α-synuclein [52]. MOCS1 (Molybdenum Cofactor Synthesis 1) was downregulated 

and it is involved in the biological activation of molybdenum. Mutations in MOCS1 

causes molybdenum cofactor deficiency which is characterized by neurodegeneration and 

seizures [5]. 

 

Neuron cell-specific genes are upregulated in MSA CWM and are enriched for 

biological pathways related to synaptic processes 

Two different analytical approaches suggested significant upregulation of neuronal cell-

specific genes in MSA-C and these genes were enriched for biological roles in synaptic 

and neurogenesis processes. When we classified the DEGs from MSA-C according to our 

cell-specific gene analysis approach, we detected an upregulation of neuronal genes and 

an enrichment for synaptic and neuronal processes. Using WGCNA analysis we detected 

a module of 451 co-expressed genes (brown) significantly upregulated in MSA tissue and 

enriched for synaptic processes. The genes in this “brown” module demonstrated a higher 

prevalence of neuronal-specific genes in comparison to the other significant modules. As 

was the case with the blue module (discussed above), the brown module showed strong 

model preservation in our independent C2 dataset. The hub gene in the brown module co-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.944306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944306


 18

expression network was TIAM1 (T Cell Lymphoma Invasion And Metastasis 1). This 

gene (upregulated in MSA-C CWM) encodes a RAC1-specific guanine nucleotide 

exchange factor that is involved in the control of excitatory synapse development [57]. 

Interestingly, the green module (significantly upregulated in MSA-C CWM) was 

correlated with the brown module and showed an enrichment in protein transport and 

translation. The hub gene in this module was SYNGAP1 (Synaptic Ras GTPase 

Activating Protein 1, upregulated in MSA-C) which, like TIAM1, is also involved in 

synaptogenesis [7, 15]. The upregulation of neuron-specific genes and the enrichment for 

synaptogenesis is surprising in the context of a neurodegenerative disease like MSA. 

Monomeric α-synuclein is normally located in the presynaptic nerve terminals and is 

involved in synaptogenesis [64, 65]. Perhaps, the enrichment of the synaptogenesis 

process in MSA-C CWM in our study might be a consequence of an abnormal 

accumulation of α-synuclein in the synapse of MSA patients. This elevated synaptic 

accumulation was previously described to precede the re-localization of α-synuclein from 

neurons to oligodendrocytes and may represent one of the earliest and ongoing molecular 

events associated with the disease [54]. Alternatively, this upregulation of synaptogenesis 

in the context of neurodegeneration in the MSA-C brain may represent a transcriptional 

attempt by the remaining neurons to compensate for the overall synaptic losses within the 

CWM. 

 

The importance of neuroinflammation in MSA-C 

The combined relocalization of p25α and the ectopic presence of α-synuclein in 

oligodendrocytes are thought to trigger the formation of α-synuclein and p25α inclusions. 

These inclusions and resulting oligodendrocyte dysfunction, activate microglia and 

astrocytes contributing to the neurodegenerative process through neuroinflammation 

(Fanciulli and Wenning, 2015). These phenomena may explain our finding of the 

upregulated yellow module (314 genes). This module includes a large prevalence of 

astrocyte and microglia genes compared to the other significant modules and it is 

enriched for inflammatory and tissue/organ developmental processes. We found that 

astrocyte and endothelial specific genes were significantly upregulated in the DEGs from 

bulk tissue. The top hub gene in the yellow module was TGFB2 (Transforming Growth 
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Factor Beta 2). This gene encodes a secreted ligand of the TGF-beta (transforming 

growth factor-beta) superfamily of proteins that are involved in the recruitment and 

activation of SMAD family transcription factors. Interestingly, the levels of TGFβ-2 were 

previously found to be increased in the neocortex of AD and dementia with Lewy bodies 

and were positively correlated with neuropathological markers of disease severity [14]. 

This finding may suggest that TGF-beta is a key regulator of the inflammatory processes 

that may be more generalizable to neurodegenerative diseases regardless of the 

underlying causes and resulting neuropathologies. In the yellow module we found also 

MASP1 (log2 FC = 0.944; adj p 0.380), whose mRNA expression was found upregulated 

in a separate study conducted using frontal lobe post-mortem brains from MSA patients 

and controls [29]. 

 

Collagen genes are upregulated in MSA 

In the combined MSA group after p-value combination we detected 35 genes, most of 

them upregulated in patients. In both enrichment analyses we detected a key role of 

collagen genes: COL4A1, COL4A2, and ITGA11; all upregulated. COL4A1 (collagen 

type IV alpha 1 chain) and COL4A2 (collagen type IV alpha 1 chain) encode respectively 

for the alpha 1 and alpha 2 chains of type IV collagen which are important components of 

the basement membrane in all tissues, especially blood vessels. ITGA11 (Integrin Subunit 

Alpha 11) is functionally related as it is a collagen receptor. Mutations in COL4A1 and 

COL4A2 have been associated with sporadic brain small vessel disease [44] and 

porencephaly [10]. Recently Paiva et al., (2018) found COL4A2 upregulated in both 

A30P aSyn mice and dopaminergic neurons expressing A30P aSyn, suggesting a key role 

of collagen-related genes in α-synuclein induced toxicity. In the same study, they 

demonstrated a regulation of COL4A2 expression by miR-29a-3p, known to target 

COL4A4 mRNA. In a separate study the loss of miR-29a was correlated with increased 

levels of BACE1 and amyloid-β in sporadic Alzheimer’s Disease [27]. Finally, lack of 

collagen VI has been related to neurodegeneration in mice models [11], and its presence 

has been related to a neuroprotective role against β-Amyloid toxicity [13]. 

Beside the collagen related pathway, the top genes detected in the differential 

expression analysis were: ACTN1 (Actinin Alpha 1), EMP1 (Epithelial Membrane 
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Protein 1), and NFIL3 (Nuclear Factor, Interleukin 3 Regulated). Expression changes of 

ACTN1 were associated with AD in hippocampus [24], whereas NFIL3 was associated 

with neuroprotection in models of Amyotrophic Lateral Sclerosis [56]. EMP1 protein was 

also found upregulated in 5xFAD AD model [21]. 

 

MSA-C shows a common transcriptional background with Alzheimer’s Disease 

We detected a large functional network in MSA-C patients that included APP and other 

AD-related genes that included PSEN1, CLU, ROCK2, EFNA1 and DYRK1. The module 

(M1) including these genes was enriched for amyloid-β metabolism. The strongest 

enrichment between MSA-C and AD DEGs was found in the temporal cortex and 

parahippocampal gyrus (AMP-AD data).  

 

Study Limitations 

We note some limitations of our study. First, MSA is a rare disease and although our 

cohort is the largest that has been expression profiled to date it is still likely that we are 

underpowered to detect small effect sizes that could be functionally important. Secondly, 

we acknowledge that the findings would be improved by the inclusion of additional brain 

regions that may be altered by the disease.  For example, it isn’t particularly surprising 

that we noted the most significant cerebellar transcriptional changes in MSA-C, a clinical 

subtype of MSA with predominating cerebellar symptoms. It would be interesting to 

compare the transcriptomic changes in the striatum, olivary nuclei, and pontine nuclei as 

well. Thirdly, we assessed C1 and C2 using different profiling approaches. This could be 

considered a positive aspect of our work as the identified transcriptional changes that 

cross-validate are likely not specific to a particular gene expression measurement 

approach and therefore may have higher reproducibility, however, this could also be 

considered a limitation as some true associations may be unreported due to their failure in 

one of the profiling chemistries and not due to the underlying biology. Lastly, layering 

additional genomic information – like DNA sequence information – would also enhance 

the study as it could facilitate more detailed analyses such as allele specific expression or 

epigenetic regulation of transcription. 
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Conclusions 

This is the largest study ever conducted on the MSA brain transcriptome. We utilized two 

different cohorts that were each assessed by different gene expression analysis 

chemistries that we propose increases the robustness of DEG and co-expression network 

detection. 

The main findings of this study are the multiple evidence of oligodendrocyte gene 

downregulation associated with the loss of myelination. We detected the QKI gene as a 

master regulator of this associated gene network. Additionally, we showed an 

upregulation of neuronal-specific gene expression possibly as a consequence of the initial 

accumulation of monomeric α-synuclein in neurons, with TIAM1 and SYNGAP1 as top 

hubs in the two networks. An additional coexpression network highlighted the later 

stages of the neurodegenerative cascade with activation of microglia and astrocytes. 

Finally, our results suggest a common transcriptional background between MSA and AD, 

potentially through APP-mediated mechanisms. 
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Tables.  

Table 1. Sample characteristics of the different cohorts analyzed. Differences in age and 

PMI between cases and controls were assessed using t-test or Wilcoxon test, according to 

the data distribution. Sex distribution was assessed using the Fisher's Exact test. 

* One MSA-P sample was removed after the PCA analysis (Final sample size: MSA = 

47; MSA-P = 36; MSA-C = 11; HC = 47) 

** Two MSA and one HC samples were removed after PCA analysis (Final sample size: 

MSA = 4; HC = 5) 

 

A (Cohort 1) 

  MSA (n = 19) HC (n = 19) P 

Age 70.2 ± 7.4 69.6 ± 6.5 t = -0.311; p = 0.757 

PMI 10.6 ± 10.1 12.0 ± 10.8 W = 175, p = 0.884 

Males 10 10 
p = 1.000 

Females 9 9 

  MSA-P (n = 5) HC (n = 19) P 

Age 66.8 ± 5.8 69.6 ± 6.5 t = -1.168; p = 0.255 

PMI 15.2 ± 5.9 12.0 ± 10.8 W = 60.5; p = 0.374 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.944306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.944306


 32

Males 3 (60.0) 10 (52.6) 
p = 1.000 

Females 2 (40.0) 9 (47.4) 

  MSA-C (n = 5) HC (n = 19) P 

Age 72.2 ± 6.6 69.6 ± 6.5 t = 0.366; p = 0.718 

PMI 19.4 ± 13.2 12.0 ± 10.8 W = 66.5; p = 0.188 

Males 4 (80.0) 10 (52.6) 
p = 0.356 

Females 1 (20.0) 9 (47.4) 

B (Cohort 2)* 

  MSA (48) HC (47) P 

Age  64.5 ± 8.0  84.2 ± 9.1 W = 159.5; p = 5.6E-13 

PMI  61.7 ± 24.0 59.9 ± 28.2 W = 1172; p = 0.746 

Males (%) 21 (43.8) 16 (34.0) 
p = 0.402 Females 

(%) 27 (56.3) 31 (66.0) 

  MSA_P (37) HC (47) P 

Age  64.8 ± 8.5  84.2 ± 9.1 W = 129.5; p = 2.6E-11 

PMI 63.2 ± 24.6 59.9 ± 28.2 W = 930; p = 0.589 

Males (%) 14 (37.8) 16 (34.0) 
0.820 Females 

(%) 23 (62.1) 31 (66.0) 

  MSA_C (11) HC (47) P 

Age  63.5 ± 6.4  84.2 ± 9.1 W = 30; p = 6.0E-06 

PMI 56.9 ± 22.2 59.9 ± 28.2 W = 242; p = 0.751 

Males (%) 7 (63.6) 16 (34.0) 
0.093 Females 

(%) 4 (36.4) 31 (66.0) 

C (Cohort 1 - 
LCM)** 

  MSA (n = 6) HC (n = 6) P 

Age 70.0 ± 7.7 72.0 ± 7.0 t = -0.469; p = 0.650 

PMI 16.3 ± 14.4 9.4 ± 11.0 W =26.5; p = 0.199 

Males 4 2 
p = 0.547 

Females 2 4 
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Table 2. Top genes for the different MSA subtypes after p-value combination. Downregulated genes are reported in grey. 

 

Group 
Genes Info Differential Expression Cohort 1 Differential Expression Cohort 2 

Combined P 
values Averaged 

Log2 FC 
Symbol Ensembl ID 

Base 
Mean 

Log2 
(FC) p adj p 

Base 
Mean 

Log2 
(FC) p adj p p Adj p 

MSA 

ACTN1 ENSG00000072110 120.266 1.309 2.3E-06 1.4E-02 152.163 1.055 1.4E-04 2.0E-01 1.2E-07 1.4E-03 1.182 

EMP1 ENSG00000134531 59.778 1.636 7.4E-06 1.6E-02 240.880 1.254 7.3E-04 4.9E-01 5.8E-07 3.5E-03 1.445 

NFIL3 ENSG00000165030 68.525 1.019 1.1E-04 4.6E-02 21.457 1.567 5.1E-04 4.1E-01 2.4E-06 9.8E-03 1.293 

PI15 ENSG00000137558 13.120 1.086 2.3E-02 3.7E-01 11.510 2.273 9.8E-06 5.1E-02 6.0E-06 1.8E-02 1.679 

TUBB6 ENSG00000176014 31.136 1.426 4.5E-06 1.5E-02 0.696 1.885 8.8E-02 1.0E+00 9.0E-06 2.2E-02 1.656 

VIM ENSG00000026025 297.903 0.701 7.8E-03 2.5E-01 1841.955 1.240 7.0E-05 1.5E-01 1.1E-05 2.2E-02 0.971 

COL4A1 ENSG00000187498 94.979 1.424 1.6E-04 5.6E-02 71.659 1.008 4.3E-03 7.6E-01 1.3E-05 2.2E-02 1.216 

NFKBIA ENSG00000100906 280.164 0.672 9.7E-05 4.1E-02 8.006 0.932 8.9E-03 8.8E-01 1.5E-05 2.2E-02 0.802 

MAT2A ENSG00000168906 766.718 0.641 6.1E-03 2.4E-01 1065.143 0.902 1.6E-04 2.0E-01 1.6E-05 2.2E-02 0.771 

AEBP1 ENSG00000106624 238.300 1.638 2.1E-06 1.4E-02 14.682 0.328 4.5E-01 1.0E+00 1.9E-05 2.2E-02 0.983 

MSA-P GPNMB ENSG00000136235 87.507 1.798 1.5E-03 3.0E-01 34.116 1.773 2.2E-05 7.7E-02 1.7E-06 2.0E-02 1.785 

MSA-C 

PGAM2 ENSG00000164708 64.618 1.906 4.7E-04 3.6E-02 230.022 3.193 3.5E-08 4.8E-05 2.7E-08 5.6E-05 2.549 

ST5 ENSG00000166444 140.163 1.216 6.0E-07 7.8E-04 79.401 1.146 8.8E-05 6.7E-03 4.8E-08 5.6E-05 1.181 

STON1 ENSG00000243244 59.570 1.560 1.1E-03 5.7E-02 433.908 2.177 1.0E-08 2.7E-05 2.3E-08 5.6E-05 1.868 

RFTN1 ENSG00000131378 53.043 2.423 7.5E-07 8.6E-04 66.900 1.345 6.2E-05 6.0E-03 4.5E-08 5.6E-05 1.884 

ACTN1 ENSG00000072110 101.733 1.939 2.9E-05 9.3E-03 141.214 1.905 5.7E-06 1.5E-03 8.6E-08 7.0E-05 1.922 

MMP14 ENSG00000157227 68.018 1.740 1.5E-04 2.0E-02 270.406 2.128 1.2E-06 5.8E-04 9.0E-08 7.0E-05 1.934 

ITGB4 ENSG00000132470 425.361 1.491 1.2E-04 1.8E-02 109.863 1.650 6.0E-06 1.5E-03 1.8E-07 1.2E-04 1.570 

MAPK4 ENSG00000141639 274.832 1.561 3.6E-09 6.0E-05 53.534 0.402 3.6E-01 6.5E-01 2.9E-07 1.7E-04 0.981 

OMG ENSG00000126861 431.926 -1.384 2.3E-03 8.0E-02 56.937 -2.185 2.5E-06 9.7E-04 6.0E-07 2.3E-04 -1.785 

FAM107A ENSG00000168309 2370.587 0.848 9.9E-03 1.6E-01 2751.910 1.754 3.5E-07 2.7E-04 4.6E-07 2.3E-04 1.301 
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Table 3. Top results of the functional module discovery analysis using the DEGs identified in MSA-C 

CLUSTER 
(Genes) TERM_NAME GO_ID 

Q 
VALUE 

GENE 
COUNT TERM_GENES 

M1 (152) 

amyloid-beta formation GO:0034205 5.3E-05 6 ROCK2,DYRK1A,CLU,PSEN1,EFNA1,APP 

amyloid precursor protein catabolic process GO:0042987 1.0E-04 6 ROCK2,DYRK1A,CLU,PSEN1,EFNA1,APP 

amyloid-beta metabolic process GO:0050435 1.0E-04 6 ROCK2,DYRK1A,CLU,PSEN1,EFNA1,APP 

amyloid precursor protein metabolic process GO:0042982 2.8E-04 6 ROCK2,DYRK1A,CLU,PSEN1,EFNA1,APP 

amyloid fibril formation GO:1990000 1.0E-03 4 CLU,GSN,APP,PSEN1 

M2 (85) 

NADH dehydrogenase complex assembly GO:0010257 8.2E-03 4 NDUFA1,NDUFS5,NDUFB3,NDUFB5 
mitochondrial respiratory chain complex I 

assembly GO:0032981 8.2E-03 4 NDUFA1,NDUFS5,NDUFB3,NDUFB5 

mitochondrion organization GO:0007005 1.6E-02 7 
SLC25A5,NDUFB3,NDUFB5,PARP1,PSMD10,N

DUFS5,NDUFA1 
mitochondrial respiratory chain complex 

assembly GO:0033108 1.8E-02 4 NDUFA1,NDUFS5,NDUFB3,NDUFB5 

negative regulation of centriole replication GO:0046600 2.0E-02 2 RBM14,CHMP2A 

M3 (117) 

regulation of cellular protein localization GO:1903827 1.1E-02 9 
EZR,IWS1,RDX,GPSM2,NUMB,PICALM,RTN4,

BAG3,UHMK1 

regulation of organelle assembly GO:1902115 1.4E-02 6 STAG1,EZR,CCP110,GPSM2,RDX,CHMP5 

sulfur compound biosynthetic process GO:0044272 1.7E-02 4 MTRR,GCLC,MAT2A,PAPSS1 

membrane docking GO:0022406 1.8E-02 3 PDZD8,EZR,ATG14 

regulation of protein export from nucleus GO:0046825 2.3E-02 3 BAG3,IWS1,UHMK1 

M4 (12) 

negative regulation of multi-organism process GO:0043901 1.3E-02 3 IFITM3,TIMP1,ANXA2 

regulation of multi-organism process GO:0043900 2.8E-02 3 IFITM3,TIMP1,ANXA2 

negative regulation of protein catabolic process GO:0042177 3.3E-02 2 TIMP1,ANXA2 

skeletal system development GO:0001501 3.9E-02 2 CD44,ANXA2 

negative regulation of endopeptidase activity GO:0010951 4.0E-02 2 CD44,TIMP1 

M5 (63) 
integrin-mediated signaling pathway GO:0007229 2.2E-02 3 FLNA,LAMA5,ZYX 

positive regulation of cell development GO:0010720 2.8E-02 4 NSMF,FLNA,ARHGEF2,PLXNB2 

(w
hich w

as not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint
this version posted F

ebruary 12, 2020. 
; 

https://doi.org/10.1101/2020.02.11.944306
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/2020.02.11.944306


 35

actin cytoskeleton organization GO:0030036 4.0E-02 5 FSCN1,RHOG,FLNA,ZYX,ARHGEF2 

actin filament organization GO:0007015 4.1E-02 4 FSCN1,FLNA,ARHGEF2,ZYX 

supramolecular fiber organization GO:0097435 4.1E-02 5 FSCN1,FLNA,ZYX,B4GALT7,ARHGEF2 

M6 (10) 
calcium ion transport GO:0006816 4.0E-02 2 CDH23,PRKG1 

divalent metal ion transport GO:0070838 4.1E-02 2 CDH23,PRKG1 

divalent inorganic cation transport GO:0072511 4.1E-02 2 CDH23,PRKG1 

M7 (164) synapse organization GO:0050808 4.4E-02 3 CNTN2,NLGN3,SLITRK1 

M8 (24) 
renal system development GO:0072001 4.7E-02 2 COL4A1,ITGB4 

urogenital system development GO:0001655 4.9E-02 2 COL4A1,ITGB4 
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Table 4. Top genes differentially expressed in oligodendrocytes in MSA vs HC 

Genes Ensembl Gene Id Biotype Base 
Mean 

log2 Fold 
Change Stat p p-adj 

GGCX ENSG00000115486 Protein Coding 803.4 1.691 7.072 1.5E-12 1.1E-08 
MOCS1 ENSG00000124615 Protein Coding 405.2 -1.759 -6.433 1.2E-10 4.4E-07 

NF1 ENSG00000196712 Protein Coding 775.5 -1.532 -6.089 1.1E-09 2.4E-06 
LINC01572 ENSG00000261008 lincRNA 207.2 -2.010 -6.063 1.3E-09 2.4E-06 

PRRG3 ENSG00000130032 Protein Coding 269.3 1.808 5.731 1.0E-08 1.4E-05 
HMBOX1 ENSG00000147421 Protein Coding 124.9 2.247 5.588 2.3E-08 2.7E-05 

PLP1 ENSG00000123560 Protein Coding 383.7 -1.744 -5.494 3.9E-08 3.5E-05 
- ENSG00000249906 antisense 29.0 4.224 5.495 3.9E-08 3.5E-05 

PPP1CA ENSG00000172531 Protein Coding 458.2 -1.617 -5.359 8.4E-08 6.6E-05 
C8orf88 ENSG00000253250 Protein Coding 46.1 -2.657 -5.313 1.1E-07 7.6E-05 
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Figure legends 

Figure 1. Volcano plots representing the differential expression results after p-value 

combination (excluding LCM dataset). In red and blue upregulated and downregulated 

genes, respectively. 

 (A): MSA 

 (B): MSA-P 

 (C): MSA-C 

 (D): Oligodendrocytes 

 

Figure 2. Top differentially expressed genes found in: 

(A) MSA 

(B) MSA-C 

 

Figure 3. Results of the functional network analysis on MSA-C DEGs. Module 1 was 

enriched for amyloid-β metabolism (q = 5.3E-05) including key AD genes as: APP, 

PSEN1, CLU, ROCK2 and DYRK1. 

 

Figure 4. DEGs Log2 FC distribution across the cell-specific genes classes. Upregulated 

and downregulated genes in MSA-C are in red and blue, respectively. 

 

Figure 5. Dot plot reporting the top 10 GO functional classes enriched in each cell-

specific gene class. 

 

Figure 6. WGCNA analysis 

(A) Cluster dendrogram showing the 9 coexpression modules detected in MSA-C (C1) 

(B) Volcano plot representing the results of the differential expression of the eigengene 

modules between MSA-C vs HC.  

 

Figure 7. Coexpression network generated from the significant coexpression modules 

visualized with Cytoscape. The hub genes are the larger nodes. The color intensity of 

each node is proportional to the number of connections. 
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(A) Network for the yellow module, upregulated in MSA-C. We represented edges 

with weight ≥ 0.05. 

(B) Newtork for the blue module, downregulated in MSA-C. We exported edges with 

weight ≥ 0.20. 

(C) Network for the brown module, upregulated in MSA-C. We exported edges with 

weight ≥ 0.20. 

(D) Network for the green module, upregulated in MSA-C. We exported edges with  

weight ≥ 0.01 
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