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ABSTRACT 

The potential association between rare germline genetic variants and prostate cancer (PrCa) 

susceptibility has been understudied due to challenges with assessing rare variation. 

Furthermore, although common risk variants for PrCa have shown limited individual effect sizes, 

their cumulative effect may be of similar magnitude as high penetrance mutations. To identify 

rare variants associated with PrCa susceptibility, and better characterize the mechanisms and 

cumulative disease risk associated with common risk variants, we analyzed large population-

based cohorts, custom genotyping microarrays, and imputation reference panels in an 

integrative study of PrCa genetic etiology. In particular, 11,649 men (6,196 PrCa cases, 5,453 

controls) of European ancestry from the Kaiser Permanente Research Program on Genes, 

Environment and Health, ProHealth Study, and California Men’s Health Study were genotyped 

and meta-analyzed with 196,269 European-ancestry male subjects (7,917 PrCa cases, 188,352 

controls) from the UK Biobank. Six novel loci were genome-wide significant in our meta-

analysis, including two rare variants (minor allele frequency < 0.01, at 3p21.31 and 8p12). 

Gene-based rare variant tests implicated a previously discovered PrCa gene (HOXB13) as well 

as a novel candidate (ILDR1) highly expressed in prostate tissue. Haplotypic patterns of long-

range linkage disequilibrium were observed for rare genetic variants at HOXB13 and other loci, 

reflecting their evolutionary history. Furthermore, a polygenic risk score (PRS) of 187 known, 

largely common PrCa variants was strongly associated with risk in non-Hispanic whites (90th vs. 

10th decile OR = 7.66, P = 1.80*10-239). Many of the 187 variants exhibited functional signatures 

of gene expression regulation or transcription factor binding, including a six-fold difference in 

log-probability of Androgen Receptor binding at the variant rs2680708 (17q22). Our finding of 

two novel rare variants associated with PrCa should motivate further consideration of the role of 

low frequency polymorphisms in PrCa, while the considerable effect of PrCa PRS profiles 

should prompt discussion of their role in clinical practice. 
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INTRODUCTION 

For a number of diseases, including prostate cancer (PrCa), there has been limited success in 

detecting associated rare genetic variants, some of which may have substantial effect sizes [1]. 

This is in part due to the difficulty of measuring or imputing rare variants in adequately powered 

studies. Still, some rare germline variants associated with prostate cancer have been detected, 

such as in the DNA damage repair gene BRCA2 [2] and the developmental transcription factor 

HOXB13 [3]. While relatively few rare variants have been discovered, in aggregate they may 

comprise a substantial portion of PrCa risk heritability [4]. In contrast, genome-wide association 

studies (GWAS) of more common variants have identified over 150 independent genetic 

variants associated with PrCa [5]. Each variant is typically associated with only a modest 

increase in PrCa risk, and thus not of sufficient magnitude to be clinically significant. However, 

combining all associated variants together into a single polygenic risk score (PRS) may 

distinguish men with a meaningfully increased risk of PrCa.  

 

To investigate the impact of rare and common variants on PrCa, we undertook a large scale 

genome-wide study of over 200,000 male subjects from two large cohorts: Kaiser Permanente 

(KP) in California [6] and the UK Biobank (UKB) [7]. Genotype microarrays, including GWAS 

backbones and custom rare variant content, were assayed in both cohorts, and unmeasured 

genotypes were imputed using a reference panel of over 27,000 phased Haplotype Reference 

Consortium (HRC) genomes [8]. We evaluated associations between individual rare and 

common variants and PrCa risk and interpreted the evolutionary origin and functional 

mechanisms of novel findings using multi-omics data. We also performed PRS modeling and 

functional characterization for the known common risk variants. 
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METHODS AND MATERIALS 

Study Populations 

We studied two cohorts of PrCa cases and non-diseased controls: 1) KP subjects from the 

Northern California Research Program on Genes, Environment and Health (RPGEH), the 

California Men’s Health Study (CMHS) and the ProHealth Study; and 2) the UKB. The KP 

cohort included 6,196 male cases and 5,453 male controls of European-ancestry (mean age at 

diagnosis for cases = 68.1 years, mean age at baseline among controls = 71.5). The UKB 

cohort included 7,917 cases and 188,352 controls of European ancestry (mean age at diagnosis 

= 64.1, mean age among controls = 57.1). Subject demographics and characteristics are 

described in detail in Supplementary Table 1. 

 

Custom Microarray Design and Genotyping 

To directly assay or tag putatively functional rare variation in samples from KP, we collaborated 

with Affymetrix Inc. on the design of a custom Axiom DNA microarray (Supplementary Figure 

1a) that was complementary to the GWAS array previously genotyped in the KP population [9]. 

The algorithm used to select variants on the custom array (Supplementary Figure 1b) resulted in 

416,047 variant probesets comprising 54 distinct modules, including missense and loss-of-

function mutations, rare exonic mutations from The Cancer Genome Atlas (TCGA) and dbGaP 

prostate cancer tumor exomes [10, 11], and variants to supplement the previously genotyped 

GWAS array [6] (Table 2). Many modules and most of the design content overlapped with the 

probesets on the UKB Affymetrix Axiom array, for which the array design, sample processing, 

and genotyping have been detailed [7]. 

 

Saliva biospecimens from KP participants were processed for DNA extraction using a protocol 

previously reported [9]. DNA samples from KP were processed using Samasy [12], a sample 
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management system providing a visual and machine interface to facilitate robot liquid handling 

automation from source plates to destination plates matched by age, case status, and ethnicity. 

The algorithm implemented for destination plate randomization is described in the 

Supplementary Materials. A total of 173 96-well destination plates were amplified to increase 

DNA yields, and 200 ng of input DNA per well were array hybridized for 48 hours at 48 °C and 

genotyped using an Affymetrix GeneTitan Multi-Channel instrument. 

 

Quality Control and Imputation  

Detailed descriptions of the sample and genotype quality control (QC) procedures are given in 

the Supplementary Materials. Briefly, for the KP samples, we excluded specimens with poor 

resolution fluorescent measurements (DQC < 0.75) or call rate < 0.95 (Supplementary Figure 

2a). Based on heterozygosity rate, call rate, and plate call rate, samples were further stratified 

into three tiers that were used to guide genotype quality control. Specifically, genotype calls and 

posterior cluster locations from higher tier samples (as a consequence of higher input DNA 

quantities) were prioritized and used as empirical priors for resolving genotypes of lower tier 

samples using the Affymetrix AxiomGT1 algorithm (Supplementary Figure 2b) [13]. Genotypes 

were also filtered based on batch differences across the RPGEH, CMHS, and ProHealth, and 

based on the fold-difference in minor allele frequency (MAF) relative to the HRC and 1000 

Genomes Project reference panels. These genotypes were then merged with previously 

assayed GWAS genotypes for the KP subjects, whose QC was described in a prior publication 

[6]. 

 

The KP data were phased using Eagle v2.3 (cohort-based) [14], and imputed using Minimac3 to 

two reference panels: (1) a subpopulation of 27,165 HRC genomes accessible via the European 

Genome Archive (EGAS00001001710, which includes the 1000 Genomes Project Phase III 
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samples), and (2) the 1000 Genomes Project Phase III reference panel (2,514 genomes). 

Single nucleotide variant calls were imputed using the union of (1) and (2), and indel 

polymorphisms were imputed using (2) (not yet part of the HRC due to additional difficulty in 

harmonizing indels; Supplementary Figure 3). Variants with r2
INFO < 0.3 and with a minor allele 

frequency less than 1/NREF, where NREF represents the total number of chromosomes in the 

reference panel, were removed from the imputed genotypes. Individuals were ultimately 

classified into ethnic analysis groups (African, East Asian, European, or Hispanic ancestry) 

based on self-reported ethnicity [15, 16], although only European ancestry subjects were 

retained for this study due to the sample size necessary to detect rare genetic variant 

associations.  

 

For the UKB data, pre-imputation QC protocols have been previously described [7]. Genotypes 

were imputed using two reference panels: the complete HRC reference (64,976 haplotypes) [8], 

and the combined UK10K plus 1000 Genomes Project Phase III reference panels (9,746 

haplotypes). We similarly excluded poorly imputed (r2
INFO < 0.3) and excessively rare (MAF < 

3*10-5) genotypes from the UKB. 

 

Association Analyses  

Associations between variant genotypes and prostate cancer were evaluated for European-

ancestry subjects using logistic regression with adjustment for age (for PrCa cases, age at 

diagnosis, versus age at time of study enrollment for controls), body mass index, genotyping 

array, and principal components of ancestry (PCs). The KP models controlled for 20 PCs using 

PLINK v2.00 [17], and the UKB models were adjusted for 10 PCs. The KP and UKB data were 

combined by fixed-effect meta-analysis using Metasoft v2.0.0 [18]. Gene-based rare variant 

tests (observed MAF < 1%) were conducted with the Sequence Kernel Association Test (SKAT) 
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using the rvtests package (v20171009) [19], and meta-analyzed by Fisher’s method [20] using 

R v3.3.3. 

 

Evolutionary History of Rare Variants 

To quantify the recency in origin of rare prostate cancer risk variants, we examined the 

extended haplotype homozygosity (EHH), or the length of a haplotype on which a variant allele 

resides, using the reference panel of 27,165 phased HRC genomes and the selscan package 

[21]. We also quantified the integrative haplotype score (iHS), or log ratio between a variant’s 

major and minor alleles of the area under the EHH curves for each allele [21], to reflect 

differences in allelic age or selective pressure between the derived and ancestral alleles. The 

iHS was computed using an EHH cutoff of 0.05, including both upstream (iHSL) and 

downstream (iHSR) of the query position.  

 

Polygenic Risk Score Analyses 

For each individual, their PRS was computed by multiplying the out-of-sample effect sizes [5,6] 

for each of the 187 previously reported PrCa risk loci (log ORs) by their genotype dosages, and 

then summing the resulting 187 values together (Supplementary Table 3). The odds ratios and 

95% confidence intervals for associations between standardized PRS values (mean = 0, 

standard deviation = 1) and prostate cancer case-control status were estimated using logistic 

regression with adjustment for the same covariates modeled in our association analyses, with 

the exception of genotyping array so they could be compared. 

 

Functional Annotation 

To consider the functional relevance of the known PrCa risk variants, we integrated two different 

analyses and sources of data. We trained elastic net regression models of normal prostatic 
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gene expression [22], with a linear combination of germline genotypes as the predictor, using 

GLMNet [23] and a dataset of 471 subjects with normal prostate tissue RNA expression and 

genotype data [24]. Among the 187 previously reported prostate cancer risk variants, as well as 

the novel genome-wide significant variants identified here, those directly modeled or in linkage 

disequilibrium (LD r2 > 0.5) with a modeled variant in our expression models were reported. For 

the same set of variants, allele-specific differential transcription factor binding affinity was also 

estimated using sTRAP transcription factor affinity prediction [25] with the major and minor 

alleles. 

 

RESULTS 

Variant Association Analysis and Evolutionary Characterization 

Genome-wide significant associations (PMeta < 5*10-8) were observed at six novel loci (>3 Mb 

away and LD r2 < 0.005 in all 1000 Genomes Phase III populations, relative to known loci). 

Among the six loci (Figure 1; Table 1), three variants (rs557046152, rs555778703, and 

rs62262671) were at least nominally significant with consistent directions of effect in both the 

KP and UKB data, and two of these were rare imputed variants in European ancestry 

populations: rs557046152 (MAF = 0.003) and rs555778703 (MAF = 0.009). The remaining three 

variants were associated only in the UK Biobank. An additional gene-based rare variant meta-

analysis of KP and UKB, using the sequence kernel association test (SKAT) and variants with 

MAF < 0.01, yielded a significant association at HOXB13 (P = 1.72*10-7; Supplementary Figure 

4), a well-characterized prostate cancer risk locus harboring a rare yet highly penetrant 

missense founder mutation rs138213197 [3]. SKAT also identified a suggestive P-value for 

ILDR1 (P = 7.46*10-6), a gene primarily expressed in prostate tissue [26]. 
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We observed atypically long-range LD for the previously identified rare HOXB13 rs138213197, 

beyond a 1Mb window from the lead variant (Supplementary Figure 5). This observation was 

substantiated by considerable extended haplotype homozygosity for the rare missense allele 

(Figure 2a). In particular, rs138213197 had an integrated haplotype score (iHS) equal to 2.87 

(iHSL: 3.53, iHSR: 2.54) in our HRC haplotype data, greater than the nominal |iHS| > 2 threshold, 

reflecting the recent origin or selective constraint at the rs138213197 locus. Likewise, for the 

novel rare variant rs555778703, the rare G risk allele (Figure 2b) had an iHS equal to 2.31 

(iHSL: 2.00, iHSR: 2.79). For a proxy variant rs57029021 (LD r2 = 0.666 in 1000 Genomes 

Project Phase III EUR) of the novel rare variant rs557046152 (which was unmeasured in the 

EGA HRC reference genomes), the rare A allele had an iHS equal to 0.87 (iHSL: 1.60, iHSR: 

0.77; Figure 2c). 

 

Polygenic Risk Scores and Functional Interpretation  

For European-ancestry subjects in KP and UKB, there was a strong association between being 

in the top versus bottom decile of the PRS and prostate cancer (Supplementary Figure 6, 

Supplementary Table 4; OR [95% CI] = 7.66 [6.78, 8.64], P = 1.80*10-239; ORKP_EUR = 6.54 [5.45, 

7.85], P = 1.32*10-90; ORUKB_EUR = 8.63 [7.18, 10.4], P = 5.49*10-117). 

 

To characterize the functional consequences of common variants, we examined their effects on 

gene expression and transcription factor binding. Among the 187 previously reported PrCa risk 

variants and 3 novel risk variants identified, 28 were in linkage disequilibrium (LD r2 > 0.5 in 

1000 Genomes Project Phase III EUR) with an expression quantitative trait locus (eQTL) variant 

in our regularized models of normal prostatic expression levels (Table 2). Furthermore, 21 

variants were predicted to significantly alter transcription factor binding site (TFBS) affinities 
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(Table 3). rs2680708 (17q22) showed the greatest fold change in predicted binding affinity (log-

difference PBinding = 6.09) of any variant-TF pair analyzed (Table 3).  

 

DISCUSSION 

We combined imputed genotype data from two large cohorts totaling 14,113 PrCa cases and 

201,722 controls, with a reference panel of over 27,000 phased genomes, to investigate the 

effects of rare genetic variants and the mechanisms and cumulative impact of common variants 

on PrCa risk. Three novel loci, including two rare variants (rs557046152 at 8p12, rs555778703 

at 4q31.21) and one common variant (rs62262671 at 3p21.31), were associated with PrCa in 

our meta-analysis of European-ancestry subjects across cohorts. Likewise, an additional three 

novel variants were associated with PrCa in our meta-analysis, although this finding was driven 

primarily by the UKB participants. 

 

Furthermore, the PRS associations we observed for European ancestry men were of larger 

magnitude of effect than reported previously, when there were only 105 known PrCa risk 

variants [6]. Namely, the nearly 8-fold increase in PrCa risk for men in the top vs. lowest decile 

of the PRS suggests that such a score may have similar predictive ability as high penetrance 

genes used to predict cancer risk in clinical practice, such as BRCA1 (OR [95% CI]: 5.91 [5.25, 

6.67]) and BRCA2 (OR [95% CI]: 3.31 [2.95, 3.71]) for breast cancer risk [27]. Although the PRS 

effect is of relatively large magnitude, the scores may not be transferable to subjects of non-

European descent [6], can be biased by genetic drift between ethnic groups [28], and could 

potentially widen existing health disparities [29]. 

 

Integration of gene expression and transcription factor binding site affinity data suggested novel 

mechanisms for many of the common PrCa variants previously reported. One example is a 
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highly significant change in binding affinity at rs2680708. This finding is especially interesting 

given that rs2680708 abrogates a binding site for Androgen Receptor, a master regulator of 

prostatic gene expression. While our functional analyses did not nominate any genes whose 

expression may be affected as a consequence of eliminating this particular binding site, further 

study may reveal the effect of rs2680708 on the dysregulation gene expression or additional 

molecular processes. We also identified a putative mechanism of Oct1 binding for the newly 

implicated rs62262671 risk variant (3p21), which was predicted to have a large impact (log-

difference PBinding = 3.03) on binding affinity for Oct1, a TF with a known impact on PrCa and 

Androgen Receptor signaling [30]. Given that rs62262671 was also identified as an eQTL 

affecting the expression of RBM6 and UBA7, these findings suggest that Oct1 may be involved 

in the regulation of the expression of these two genes, and provides a hypothesis for future 

functional follow-up regarding the involvement of these genes in prostate cancer development. 

 

The mechanisms through which the rare, noncoding variants we identified are associated with 

prostate cancer remain somewhat unclear, with a lack of precise functional evidence regarding 

mechanism of action or close proximity to genes or known risk loci in cis. This underscores the 

challenge of not only detecting—but also interpreting—how rare variants impact the genetic 

etiology of complex traits using existing gene-based methodology and functional genomic 

datasets. Improved functional datasets may clarify the effects of rare variants on expression, 

splicing, or methylation. 

 

Selective scans, which use population genetics metrics (such as EHH and iHS) to identify 

signatures of positive or negative natural selection [21], face similar challenges—rare variants 

naturally reside on longer haplotypes and obscure the direction of any selective forces that may 

act upon them [31]. If polymorphisms more exclusive, or even private, to a particular lineage or 
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family comprise a substantial portion of disease risk for PrCa (or other traits), then new 

approaches and assays for both detecting and characterizing the relevant anomalies of these 

causal variants will be needed. These considerations are of particular importance given the 

proliferation of rare polymorphisms as a result of recent explosive human population expansion 

[32]. Hence, with the majority of all human variation shifting towards the low end of the allele 

frequency spectrum, identifying operative aberrations poses a significant challenge. 

 

In spite of these challenges, over a decade of GWAS efforts [33] has advanced the genetic 

characterization of prostate cancer considerably. Our implementation of a PRS model for PrCa 

demonstrates this remarkable progress and the predictive power of aggregating PrCa risk loci.  

 

CONCLUSIONS 

By undertaking a GWAS in the large KP and UKB population-based cohorts, we detected 

multiple novel PrCa risk loci, including two rare variants, rs557046152 and rs555778703. Our 

PRS analysis of known common PrCa risk variants indicated that European ancestry men in the 

highest PRS decile have a substantially increased risk that may be of clinical importance; 

however, the result was greatly attenuated in other ancestries. Functional characterization of 

PrCa risk variants using gene expression and transcription factor binding affinity data revealed 

putative mechanisms. However, further study is needed to more fully illuminate the biological 

interactions that facilitate the influence of PrCa risk loci, in particular for rare variants. 
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APPENDIX A. Supplementary data 

Supplementary data associated with this article can be found at the journal online. 
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TABLES 

Table 1. Novel Prostate Cancer Susceptibility Associations from the Meta-Analysis of European 
Ancestry Subjects from Kaiser Permanente and UK Biobank 
 

Risk Variant 
dbSNP rsid 

Genomic Locus 
gnomAD MAF 
Risk Allele (Ref) 

Kaiser Permanente (KP) 
EUR Subjects 

(6,196 cases, 5,453 controls) 

UK Biobank (UKB) 
EUR Subjects 

(7,917 cases, 188,352 controls) 

Meta-Analysis 
KP + UKB EUR Subjects 

Odds Ratio 
[95% CI] P-value r2

INFO Odds Ratio 
[95% CI] P-value r2

INFO Odds Ratio 
[95% CI] P-value 

rs557046152 
Locus: 8p12 
MAF: 0.003* 

G (GTT) 

2.26 
[1.72, 2.96] 

3.70*10-9 0.94 
1.40 

[1.06, 1.85] 
0.019 0.85 

1.79 
[1.47, 2.17] 

4.50*10-9 

rs555778703 
Locus: 4q31.21 

MAF: 0.009 
G (A) 

1.54 
[1.08, 2.17] 0.016 0.50 

2.00 
[1.54, 2.58] 1.64*10-7 0.74 

1.82 
[1.48, 2.24] 1.65*10-8 

rs62262671 
Locus: 3p21.31 

MAF: 0.133 
G (A) 

1.18 
[1.09, 1.27] 

3.47*10-5 0.98 
1.10 

[1.05, 1.15] 
7.56*10-5 1.0 

1.12 
[1.07, 1.16] 

3.55*10-8 

Significantly Associated Variants in Meta-Analysis, Absent Nominal Significance in Both Cohorts 

rs80242938 
Locus: 16p13.3 

MAF: 0.0002 
G (A) 

7.10 
[9.5*10-5, 
5.3*106] 

0.73 0.67 
11.7 

[5.17, 26.7] 
4.18*10-9 0.80 

11.7 
[5.16, 26.6] 

3.95*10-9 

rs149892036 
Locus: 8q12.1 

MAF: 0.001 
T (C) 

1.53 
[0.81, 2.88] 0.19 0.80 

2.31 
[1.71, 3.12] 5.37*10-8 0.85 

2.14 
[1.63, 2.81] 4.32*10-8 

rs139191981 
Locus: 3q26.33 

MAF: 0.0005 
A (G) 

0.88 
[0.19, 4.09] 

0.88 0.90 
7.62 

[3.93, 14.8] 
1.87*10-9 0.92 

5.43 
[2.95, 9.97] 

4.96*10-8 

 
* rs557046152 (merged into rs78795568 in dbSNP build 151) minor allele frequency from 1000 
Genomes Project Phase III EUR (not present in gnomAD). Remaining minor allele frequencies 
from gnomAD European (non-Finnish) frequency. 
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Table 2. Normal Prostate Tissue Expression eQTLs Correlated with PrCa Risk Variants 

Previously 
Reported  
PrCa Risk 

Variant 

Gene 
Name 

Number of eQTL 
Variants Targeting 

Gene and with 
LD r2 > 0.5 with 

Risk Variant 

eQTL Variants (chr.hg19pos.ref.alt) 

rs17599629 LYSMD1 1 eQTLs rs17599629 (chr1.150658287.A.G) 

rs1775148 RAB7L1 1 eQTLs rs1775148 (chr1.205757824.C.T) 

rs13385191 C2orf43 1 eQTLs rs13385191 (chr2.20888265.A.G) 

rs2430386 EHBP1 3 eQTLs 
rs201697978 (chr2.62876580.A.C), 
rs12713462 (chr2.62804482.C.T), 

rs142973842 (chr2.63056706.TTG.T) 

rs13016083 ACVR2A 4 eQTLs 

rs7423878 (chr2.148689369.T.C), 
rs7600869 (chr2.148551232.C.G), 

rs70992173 (chr2.148570502.AT.A), 
rs1424949 (chr2.148542963.T.G) 

rs62262671 
RBM6 1 eQTLs rs62262671 (chr3.49649873.A.G) 

UBA7 1 eQTLs rs62262671 (chr3.49649873.A.G) 

rs12653946 IRX4 1 eQTLs rs12653946 (chr5.1895829.C.T) 

rs1983891 FOXP4 5 eQTLs 

rs913074 (chr6.41538545.T.C), 
rs4714486 (chr6.41542417.C.T), 
rs4714485 (chr6.41536587.T.G), 
rs1886816 (chr6.41544494.A.G), 
rs6458228 (chr6.41543793.C.A) 

rs9469899 UHRF1BP1 1 eQTLs rs9469899 (chr6.34793124.G.A) 

rs1933488 RGS17 1 eQTLs rs6557267 (chr6.153433701.C.T) 

rs9364554 SLC22A3 2 eQTLs 
rs1112444 (chr6.160835192.C.A), 
rs9364554 (chr6.160833664.C.T) 

rs6465657 BHLHA15 1 eQTLs rs6465657 (chr7.97816327.C.T) 

rs1182 C9orf78 5 eQTLs 

rs55946414 (chr9.132583289.A.T), 
rs1043186 (chr9.132573290.C.T), 

rs3842225 (chr9.132575426.GC.G), 
rs11787741 (chr9.132578284.A.G), 
rs13283469 (chr9.132582014.C.T) 

rs10993994 

MSMB 1 eQTLs rs10993994 (chr10.51549496.T.C) 

NCOA4 1 eQTLs rs10993994 (chr10.51549496.T.C) 

AGAP7 1 eQTLs rs10993994 (chr10.51549496.T.C) 

rs4962416 CTBP2 5 eQTLs 

rs4962416 (chr10.126696872.T.C), 
rs12769019 (chr10.126697327.A.G), 
rs4962720 (chr10.126696840.G.T), 

rs12769682 (chr10.126697494.G.C), 
rs4962419 (chr10.126697114.G.A) 

rs61890184 PPFIBP2 1 eQTLs rs61890184 (chr11.7547587.G.A) 

rs12785905 SYT12 2 eQTLs 
rs12785905 (chr11.66951965.G.C), 
rs12785906 (chr11.66951966.G.C) 
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Previously 
Reported  
PrCa Risk 

Variant 

Gene 
Name 

Number of eQTL 
Variants Targeting 

Gene and with 
LD r2 > 0.5 with 

Risk Variant 

eQTL Variants (chr.hg19pos.ref.alt) 

rs11568818 MMP7 1 eQTLs rs11568818 (chr11.102401661.T.C) 

rs11214775 TMPRSS5 1 eQTLs rs11214775 (chr11.113807181.G.A) 

rs138466039 PKNOX2 1 eQTLs rs138466039 (chr11.125054793.C.T) 

rs80130819 COL2A1 1 eQTLs rs80130819 (chr12.48419618.A.C) 

rs684232 
FAM57A 2 eQTLs 

rs2474694 (chr17.618039.G.A), 
rs684232 (chr17.618965.T.C) 

GEMIN4 2 eQTLs 
rs2474694 (chr17.618039.G.A), 
rs684232 (chr17.618965.T.C) 

rs142444269 C17orf79 1 eQTLs rs142444269 (chr17.30098749.C.T) 

rs12956892 SEC11C 16 eQTLs 

rs4940816 (chr18.56745159.A.G),  
rs4940817 (chr18.56745263.T.G), 
rs4940815 (chr18.56745144.A.G), 
rs4940812 (chr18.56742965.G.A), 
rs4940810 (chr18.56742446.T.C), 
rs4940811 (chr18.56742904.A.G), 
rs12956892 (chr18.56746315.G.T), 
rs12327532 (chr18.56744666.T.G), 
rs12326997 (chr18.56743138.A.G), 
rs12327517 (chr18.56744475.T.C), 
rs12327515 (chr18.56744457.T.C),  

s10579935 (chr18.56742710.GTAAA.G), 
rs12327308 (chr18.56743208.T.G), 
rs4940809 (chr18.56742291.T.C), 

rs34192989 (chr18.56744092.T.C), 
rs4940442 (chr18.56742873.A.G) 

rs7241993 ATP9B 1 eQTLs rs9967549 (chr18.76774276.A.C) 

rs8102476 
CATSPERG 2 eQTLs 

rs8102476 (chr19.38735613.C.T), 
rs8102454 (chr19.38735480.G.A) 

PPP1R14A 2 eQTLs 
rs8102476 (chr19.38735613.C.T), 
rs8102454 (chr19.38735480.G.A) 

rs5945572 NUDT11 5 eQTLs 

rs1327304 (chrX.51214176.C.A), 
rs1327302 (chrX.51210615.G.A), 
rs5945572 (chrX.51229683.A.G), 
rs58498379 (chrX.51223415.C.T), 
rs1327303 (chrX.51214169.C.T) 

rs4844289 NLGN3 1 eQTLs rs4844289 (chrX.70407983.A.G) 
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Table 3. Predicted Impact of PrCa Risk Variants on Transcription Factor Binding Affinity 

 

Previously 
Reported 
PrCa Risk 

Variant 
Genomic Locus 
Risk Allele (Alt) 

 
Transcription 

Factor 

PBinding 
Risk Allele 

PBinding 
Alt Allele 

 
Log-Difference 
in Transcription  
Factor Binding 

P-value Between 
Risk Allele and 
Alternate Allele 

 

TRANSFAC 

Vertebrate 2010.1 
Matrix Name 

rs2680708 
17q22 
G (A) 

AR 0.49 3.91E-07 6.09 AR_Q6 

DBP 0.13 3.91E-07 5.53 DBP_Q6 

rs5799921 
12q21.33 
GA (G) 

HMGIY 0.37 3.38E-07 6.04 HMGIY_Q6 

rs2660753 
3p12.1 
T (C) 

AP1 
0.55 2.10E-06 5.42 AP1_Q6_01 

0.42 2.10E-06 5.3 AP1_Q4_01 

rs7210100 
17q21.33 

A (G) 
DELTAEF1 0.57 2.31E-06 5.39 DELTAEF1_01 

rs9600079 
13q22.1 

T (G) 
TATA 8.98E-07 0.15 5.22 TATA_C 

rs742134 
22q13.2 

G (A) 

STAT5A 0.01 4.03E-08 5.12 STAT5A_03 

HNF1 2.70E-03 4.03E-08 4.83 HNF1_Q6_01 

rs9625483 
22q12.1 

A (G) 
MAFB 1.56E-06 0.2 5.1 MAFB_01 

rs5759167 
22q13.2 

G (T) 
DBP 0.07 9.55E-07 4.84 DBP_Q6 

rs10086908 
8q24.21 

T (C) 
GATA3 2.39E-06 0.07 4.47 GATA3_01 

rs59308963 
2q33.1 

- (ATTCTGTC) 
TCF11 1.44E-05 0.37 4.41 TCF11_01 

rs1935581 
10q23.31 

C (T) 

STAT1 3.43E-06 0.06 4.27 STAT1_03 

STAT4 3.43E-06 0.05 4.16 STAT4_01 

rs4245739 
1q32.1 
A (C) 

HNF4 6.83E-05 0.98 4.16 HNF4_Q6_02 

rs1283104 
3q13.12 

G (C) 
FXR 7.42E-04 5.35E-08 4.14 FXR_Q2 
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Previously 
Reported 
PrCa Risk 

Variant 
Genomic Locus 
Risk Allele (Alt) 

 
Transcription 

Factor 

PBinding 
Risk Allele 

PBinding 
Alt Allele 

 
Log-Difference 
in Transcription  
Factor Binding 

P-value Between 
Risk Allele and 
Alternate Allele 

 

TRANSFAC 

Vertebrate 2010.1 
Matrix Name 

rs76551843 
5q35.1 
A (G) 

IPF1 4.73E-05 0.58 4.09 IPF1_Q6 

rs6869841 
5q35.2 
A (G) 

HOXA3 0.29 4.25E-05 3.84 HOXA3_01 

rs13385191 
2p24.1 
G (A) 

NFAT1 0.39 5.95E-05 3.82 NFAT1_Q6 

rs1571801 
9q33.2 
A (C) 

ZNF333 4.16E-05 0.27 3.82 ZNF333_01 

rs339331 
6q22.1 
T (C) 

IRF8 0.37 6.58E-05 3.75 IRF8_Q6 

rs1283104 
3q13.12 

G (C) 
PNR 2.66E-04 5.35E-08 3.7 PNR_01 

rs182314334 
3q25.1 
T (C) 

POU1F1 0.04 7.81E-06 3.69 POU1F1_Q6 

rs17694493 
9p21.3 
G (C) 

STAT 0.34 8.04E-05 3.62 STAT_Q6 
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FIGURES 
 
Figure 1. Prostate Cancer Risk Meta-Analysis Manhattan Plot for Kaiser Permanente and UK
Biobank European-Ancestry Subjects 
 

 
Figure 1 Legend: Genome-Wide Manhattan Plot of Prostate Cancer Risk. Manhattan plot
depicting the results of a meta-analysis of male European-ancestry subjects from the Kaiser
Permanente (KP; N = 6,196 PrCa cases, 5,453 controls) and UK Biobank (UKB; N = 7,917
PrCa cases, 188,352 controls) cohort genome-wide associations with prostate cancer (PrCa)
risk. The associations (-log10(P-value), Y-axis) are plotted against the chromosome (1-22, X, Y,
XY-pseudoautosomal region XY-PAR, and mitochondrial chromosome MT) and position (X-
axis) of the genotyped or imputed genetic variants, with thresholds for significant (P < 5.0*10-8)
and suggestive (5.0*10-7 < P < 5.0*10-8) associations illustrated by dashed grey lines. Non-
significant loci on odd and even chromosomes are colored in alternating shades, and all
variants with P > 0.05 are excluded from the plot. Triangular data points illustrate variants that
were meta-analyzed between KP and UKB, while squares and circles indicate variants present
exclusively in the KP or UKB summary statistics, respectively. Previously discovered PrCa loci
are highlighted in pink for a 2 Mb window around the reported lead variant, which is highlighted
in red, and previously unreported loci reaching genome-wide significance in our meta-analysis
are colored in teal. 
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Figure 2. Extended Haplotype Homozygosity of Prostate Cancer Associated Rare Variants 
 

 
Figure 2 Legend: “Haplotype Lengths for Rare PrCa Risk Variants. Extended haplotype
homozygosity (EHH) plots illustrating the decay in non-recombinant linkage (Y-axis) with
increasing distance along the length of the haplotypes centered at two alleles of a “core” query
variant (X-axis). Differences in EHH, iHH (the area under the EHH curve), and iHS (the log-ratio
between the iHH for the derived and ancestral allele) may reflect a difference in allelic age
between the derived and ancestral alleles, or alternatively the selective pressure to retain a
particular allele with preference to the alternative. 2a. EHH curves for the rare HOXB13 G84E
missense variant and Northern European founder mutation rs138213197, for which the iHS
value of 2.87 (iHSL: 3.53, iHSR: 2.54) reflects the more recent origin of the derived G84E allele
rs138213197-T. 2b. EHH curves for the novel rare variant association rs555778703, with an iHS
value of 2.31 (iHSL: 2.00, iHSR: 2.79). 2c. EHH curves for rs57029021, an LD proxy variant for
the novel rare indel association rs557046152 (LD r2 = 0.666 in 1000 Genomes Project Phase III
EUR) with an iHS value of 0.87 (iHSL: 1.60, iHSR: 0.77).” 
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SUPPLEMENTARY MATERIALS 

Custom Microarray Design and Genotyping 

In our design of a DNA microarray with predominantly custom, functionally relevant markers, the 

SNP selection procedure was conducted as follows. First, a set of target markers was 

constructed. This target set included variants previously associated in genome-wide association 

studies (GWAS), significant and suggestive, of prostate cancer (PrCa) associated traits (PSA 

level, gene-by-gene interactions), other correlated traits (breast cancer, height, body mass 

index, obesity, diabetes, and others), and also uncorrelated traits (all NHGRI GWAS catalog 

traits). Additionally, a set of pan-cancer candidate genes was compiled by experimental 

colleagues, and all rare variants in windows centered around these genes were included in the 

target set. Rare variant in windows around highly mutated genes from the somatic cancer 

database COSMIC were also included. Furthermore, rare variants from a series of whole 

genome and whole exome sequence analyses (of African American PrCa case normal 

genomes [1], The Cancer Genome Atlas (TCGA) [2] and dbGaP [3] normal exomes, and 

ENCODE PrCa DNAse I hypersensitive regions) were put into the target set. 

 

Second, variant selection was conducted with complementarity to the GWAS array previously 

assayed in the study population in order to limit redundancy (Supplementary Figure 1b), 

drawing from a candidate set disjoint from the GWAS array markers. This produced a set of 

primarily rare selected markers optimized for coverage of the target set, through tagging and 

direct genotyping (Supplementary Figure 1a; Supplementary Table 2). 

 

Genotyping sample DNA plates without special attention to matching case and control 

covariates can lead to batch effects. In order to minimize batch effects and expedite genotyping, 

a sample management system (Samasy) [4] and sample selection algorithm were designed and 
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implemented to robot-automate DNA sample allocation. The greedy sample selection algorithm 

for moving case and control DNA samples from source plates to destination plates was 

designed with the following objectives: 1) Use all available PrCa cases on source plates, 2) 

Select equal numbers of controls and cases, 3) Frequency match the distribution of race and 

age in controls and cases, while oversampling African American controls and rare (race and 

age) strata to improve power, 4) Select all required samples from a source plate at one time so 

lab workers will only have to locate and handle a source plate once, 5) Optimize work flow so 

sets of source and destination plates can be simultaneously loaded and unloaded from the 

Biomek liquid handling robot. 

 

Quality Control and Imputation 

The quality control (QC) process is described in Supplementary Figures 2a and 2b. 

 

In order to produce the highest confidence genotype calls for the greatest number of samples 

and probesets, sample quality was first evaluated to screen for and eliminate potential outliers 

that may negatively impact downstream genotype clustering. Sample QC was executed in three 

stages. First, signal-to-noise (DishQC (DQC), ranging from 0 to 1) was computed for each 

sample based on intensity data calculated from the raw microarray fluorescence images. A 

threshold was drawn to exclude samples with low signal-to-noise (DQC < 0.75) based on the 

inflection point of the empirical distribution of DQC values. Second, 20,000 diagnostic Step 1 

probesets were genotyped using 5 sample batches (grouped chronologically based on sample 

processing dates) to obtain empirical distributions of sample call rates for each batch. A call rate 

threshold was drawn based on the inflection points of these distributions to exclude samples 

with low call rates (CR < 0.95) or missing covariates from further analyses, leaving 14,818 

samples. Third, the remaining samples were re-genotyped at all 416,047 Step 2 probesets 
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using the same chronological packaging. Correlations between heterozygosity rate and call rate 

were used to define three clustered tiers (Supplementary Figure 2a) of sample quality: higher 

quality samples (HQ, with Call Rate > 97% and Heterozygosity Rate < 15%), lower quality 

samples (LQ), and plate quality control (PQC) samples (Plate Call Rate < 96.5%). Finally, 

among 80 pairs of samples with a high, 1st degree level of relatedness (kinship coefficient > 

0.35), one of each pair of individuals was removed from further analysis, preferentially retaining 

prostate cancer cases. This concluded sample QC and provided a basis for evaluating QC of 

probesets through additional re-genotyping. 

 

Given the remaining 14,818 samples, each labeled according to three tiers of sample quality 

outlined above, re-genotyping was performed to separate well resolved probesets from those 

susceptible to batch effects, and strategies were implemented to correct for these batch effects 

for the greatest number of probesets. First, all 14,818 samples, regardless of tier, were 

genotyped across all 416,047 probesets. Genotype clusters were next evaluated across all 

probesets, and classified as being either well resolved across all samples (i.e. not susceptible to 

batch effects, n=327,703), well resolved across only HQ samples (n=6,672), or poorly resolved 

(n=81,672). In order to remedy batch effects, first the probesets resolved in the HQ samples 

were considered. An Empirical Bayes genotyping strategy was implemented in which the well 

resolved HQ genotype clusters were used to sequentially guide the genotyping of samples in 

the lower quality LQ and PQC tiers. By packaging LQ tiers with HQ tiers, and using the posterior 

HQ cluster centers as AxiomGT1 [5] priors for re-genotyping, genotype calls were produced for 

each probeset across all sample tiers. Minor allele frequency (MAF) was compared among 

sample tiers in order to identify probesets where call frequencies were in agreement and in 

disagreement. Genotype calls for which MAF agreed among tiers (within 10% of HQ samples 

MAF) were retained as final genotypes for their respective probesets, while those probesets 
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exhibiting MAF disagreements among tiers were combined with the other poorly resolved 

probesets for a series of procedures. 

 

These procedures included re-thresholding the genotype cluster metric Heterozygous Strength 

Offset, which measures the displacement of the heterozygous cluster in relation to the 

homozygous clusters, as well as using linear regression to normalize probeset intensities across 

plates. The latter procedure led to the reclassification of 15,319 probesets as well resolved, and 

65,177 as poorly resolved. These poorly resolved variants were processed through additional 

steps (Supplementary Figure 2b) to identify monomorphic probesets based on a genotype 

cluster metric Homozygote Ratio Offset (HomRO) and isolate calls for only HQ samples. The 

probesets well resolved in only HQ samples, in addition to those reclassified by plate-

normalization, were combined with the remaining well-resolved probesets for optimization of 

both polymorphic probeset detection sensitivity (Minor Homozygote, Het Cluster Strengthening) 

and also rare variant detection sensitivity (Rare Variant Per-Plate Re-Genotyping). 

 

After the conclusion of the preceding raw genotype QC steps described above and outlined in 

Supplementary Figure 2b, several additional QC steps were performed on the called genotypes 

for the genotype-resolved variants (n=356,671). First, variants that deviated from Hardy-

Weinberg Equilibrium (p < 1e-4) in European ancestry controls were removed (n=30,632), 

leaving n=326,039 variants. Next, to further control for batch effects, variants where genotype 

was associated with sample quality tier (HQ vs. LQ; p < 1e-4) were further excluded (n=1,376). 

Furthermore, variants where European ancestry minor allele frequency deviated from the 

Thousand Genomes Project EUR MAF [6] by greater than 10% (n=164) or that were 

monomorphic (n=69,431) were filtered out, leaving n=255,068 variants remaining. Furthermore, 

variants with low AxiomGT1 genotype clustering confidence scores (less than 0.2) were 
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identified (n=22,560) and excluded from further analysis. Finally, variants which evaded prior 

QC but whose cluster plots upon visual inspection raised suspicion of a cluster split (i.e. 

misclustering by the AxiomGT1 algorithm, leading to misclassification of homozygotes as 

heterozygotes, or vice versa) were excluded (n=100), yielding a final total of 232,408 variants 

for phasing, imputation, and downstream analysis. 

 

Evolutionary History of Rare Variants 

For generating a genetic map to be used in calculating EHH and iHS, the predictGMAP program 

[7] was used to interpolate genetic map positions, using 1000 Genomes Project OMNI genetic 

map files as a reference [8]. The selscan package [9] was run with the settings “--keep-low-

freq”, “--max-extend 0”, “--threads 8”, and “--ehh-win 500000,” with the exception that “--ehh-win 

1000000” was invoked for the HOXB13 G84E mutation rs138213197 to account for longer 

range LD. The integrative haplotype score (iHS) was computed manually using a python script 

implementing equations (4) and (5) from the selscan publication [9]. 

 

Polygenic Risk Score Analyses 

Polygenic risk scores (PRS) of PrCa risk were computed by taking sum of the effect sizes for 

187 previously reported PrCa risk loci [10-31] (Table 3). This included the 105 variants 

previously modeled by Hoffmann et al. in 2015 [32], the 63 novel variants discovered by 

Schumacher et al. in 2018 in the European-ancestry PRACTICAL consortium [33], as well as 

summary statistics reported for an additional 20 independent variants (LD r2 ≤ 0.3 in 1000 

Genomes Project Phase III EUR) [34-38]. 

 

Functional Annotation 
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To interpret the functional relevance of the known PrCa risk variants, we trained elastic net 

regression models of normal prostatic gene expression [39]. Training samples with paired 

genotype and gene expression data were drawn from the National Center for Biotechnology 

Information (NCBI) publicly available database of Genotypes and Phenotypes (dbGaP 

phs000985.v1.p1). Training data derived from a study which collected histologically normal 

prostate tissue from consenting subjects (471 European-ancestry men; mean age [SD]: 60.1 

[7.15] for the 249 men with age available) having undergone radical prostatectomy treatment for 

prostate cancer (N = 453; 63.6% Gleason 6, 36.4% Gleason 7) or cystoprostatectomy treatment 

for bladder cancer (N = 18). Inclusion criteria, histopathological assessment, sample 

processing, and quality control were described previously for these data [40]. 

 

We imputed unobserved training data genotypes to the 1000 Genomes Project Phase III 

reference panel using a pre-phasing workflow to match the strand and reference allele recorded 

in the data with those observed in the reference panel, while excluding ambiguous variants and 

indel mutations. Next, samples were phased and imputed using Eagle v2.3 [41] (cohort-based) 

and Beagle v4.1 [42], respectively. Gene boundaries (hg38) for 17,233 transcripts were 

downloaded from the NCBI Gene database using the Biopython Entrez eutils REST API [43]. 

Genomic coordinates were converted from hg38 to hg19 (GRCh37) via UCSC liftOver. For each 

transcript, well-imputed (r2
INFO > 0.8) training data genetic variants located (a) in the within 

500kb of the start position, (b) between the start and end positions, inclusive, or (c) within 500kb 

of the end position, were extracted. Next, following the PrediXcan gene expression model 

training procedure [44], a regularized regression model was fit with the R (v3.2.2) package 

GLMNet [45], with genetic variants in cis to a given transcript as the design matrix, and the 

transcript RNA-Seq RPKM levels as the response variable. Models with at minimum one non-

intercept explanatory variable retained were produced for 13,258 genes, and leave-one-out 
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cross validation (LOOCV) was utilized (loss function: R cv.glmnet type.measure = “mse”) to 

select coefficients minimizing mean cross-validated error (regularization parameter: R predict s 

= “lambda.min”). 

 

To examine allele-specific effects on transcription factor binding site affinity for the set of known 

PrCa variants, 25 base pair 3’ and 5’ flanking sequences were downloaded from the UCSC 

table browser [46] via Selenium webdriver automation. Next, FASTA sequences containing both 

the major and minor variant alleles were automatically analyzed through the sTRAP 

Transcription Factor Affinity Prediction webserver [47], with parameters “matrix file” = 

“transfac_2010.1 vertebrates”, “background model” = "human_promoters", and “Multiple test 

correction” = "Benjamini-Hochberg." 
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Supplementary Table 1. Description of the Study Cohort  
 

Ethnic Group 

Kaiser Permanente UK Biobank 

Cases Controls Cases Controls 

European 
Ancestry 

N 6,196  5,453  7,917  188,352 

Age [SD] 68.1 [7.9] 71.5 [10.8]  64.1 [5.6] 57.1 [8.1] 

BMI [SD] 26.9 [4.2] 27.0 [4.4] 27.6 [4.0] 27.8 [4.6] 

 
* Subjects restricted to unrelated individuals. 
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Supplementary Table 2. Custom Microarray Design Modules 
 

Module Name Number of 
Variants* Module Description 

Missense 67,846 Nonsynonymous coding mutations 

Tag 57,607 Variants tagging targeted content in other modules 

Bad (EUR) 33,646 GWAS markers that did not previously pass QC on Affy EUR Array [1] 

Bad (AFR) 33,584 GWAS markers that did not previously pass QC on Affy AFR Array [2] 

Fine Mapping 29,096 Variants selected from previously reported prostate cancer GWAS loci 

LOF 24,783 Loss-of-function coding mutations 

WES_TCGA 24,167 Rare variants from TCGA prostate cancer patient normal tissue exomes [3] 

Witte_somatic 17,792 Rare variants in windows around genes from important cancer pathways 

CandGene4 17,095 Rare variants in windows around cancer-related candidate genes (4th tier) 

Exome319_tier2 16,366 Variants from the Affy Exome319 exome chip (2nd tier) 

CandGene1 13,586 Rare variants in windows around cancer-related candidate genes (1st tier) 

CandGene3 9,465 Rare variants in windows around cancer-related candidate genes (3rd tier) 

A_A_Rare 9,394 Rare variants from African American prostate cancer patient normal exomes 

HSS 9,081 Rare variants from ENCODE PrCa cell line DNAse I hypersensitive regions 

HGMD 8,557 Rare variants from HGMD database gene regions 

Cosmic 7,233 Rare variants from recurrently somatically mutated cancer genes  

CandGene5 7,095 Rare variants in windows around cancer-related candidate genes (5th tier) 

tier2 eQTL 6,918 Variants associated with gene expression levels 

cancer 6,706 UK Biobank cancer variation module 

Exome319_tier1 6,402 Variants from the Affy Exome319 exome chip (1st tier) 

Neanderthal 5,680 Variants thought to be introduced during Human-Neanderthal introgression 

LOF novel 5,194 Loss-of-function coding mutations 

HGMD novelprescue 5,132 Rare variants from HGMD database gene regions 

8k eQTL 4,662 Variants associated with gene expression levels in different tissues 

GWAS compatibility 3,992 Variants for boosting GWAS coverage 

CandGene2 2,597 Rare variants in windows around cancer-related candidate genes (2nd tier) 

WES_dbgap 1,426 Rare variants from dbGaP prostate cancer patient normal tissue exomes [4] 

HLA/KIR 1,408 Variants in HLA / KIR genes 

ADME 1,183 Pharmacogenomics variants 

chrY 806 Variants located on chromosome Y 

ASHG 742 Variants from cancer genes presented at 2013 ASHG conference 

AfAmrImputed 583 African American GWAS imputed variants 

GWAS_enrichment_tier1.4 454 Variants from the NHGRI GWAS catalog (4th tier) 

KIR 418 Variants in the KIR gene 

BioBank1_LoF_tier1 367 Loss-of-function coding mutations 

Kaiser GWAS 283 Variants associated in GWAS in the Kaiser Permanente RPGEH cohort 

Diabetes_Metabochip 274 Variants related to metabolic, cardiovascular, and anthropometric traits 

Telomere 261 Variants associated with leukocyte telomere length 

GWAS_enrichment_tier1.1 243 Variants from the NHGRI GWAS catalog (1st tier) 
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Module Name Number of 
Variants* Module Description 

Height 221 Variants associated with height 

Diabetes_GWAS 211 Variants associated with diabetes 

ApoE 203 Variants in the ApoE gene 

BrCa 183 Variants associated with breast cancer risk 

chrMT 180 Variants located on the mitochondrial chromosome 

GWAS_enrichment_tier1.3 140 Variants from the NHGRI GWAS catalog (3rd tier) 

Ovarian 137 Variants associated with ovarian cancer risk 

Blood eQTL 125 Variants associated with gene expression levels in blood cells 

GWAS_enrichment_tier1.2 51 Variants from the NHGRI GWAS catalog (2nd tier) 

CandGene0 50 Rare variants in windows around cancer-related candidate genes (0th tier) 

CandGene6 24 Rare variants in windows around cancer-related candidate genes (6th tier) 

Radiogen 4 Variants associated with radiogenomic phenotypes 

special 2 Variants to be forced on the array 

Alzheimers 2 Variants associated with Alzheimer’s risk 

CandGene1 1 Variants from 1st list of cancer-related candidate genes 

* Total sums to greater than the number of genotyped probesets because certain probesets 
were members of multiple modules. 
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Supplementary Table 3. Information and Summary Statistics for 187 Variants Modeled in 
Prostate Cancer Polygenic Risk Score 
 
dbSNP rsid Cytogenetic 

Band hg19 Position Risk Allele Ref Allele Odds Ratio Source of Summary Statistics 

rs636291 1p35 10556097 A G 1.18 Hoffmann et al. 2015 

rs56391074 1p22.3 88210715 A AT 1.05 Schumacher et al. 2018 

rs17599629 1q21 150658287 G A 1.08 Hoffmann et al. 2015 

rs34579442 1q21.3 153899900 C CT 1.07 Schumacher et al. 2018 

rs1218582 1q21 154834183 G A 1.06 Hoffmann et al. 2015 

rs4245739 1q32 204518842 A C 1.1 Hoffmann et al. 2015 

rs1775148 1q32 205757824 C T 1.06 Hoffmann et al. 2015 

rs62106670 2p25.1 8597123 T C 1.05 Schumacher et al. 2018 

rs11902236 2p25 10117868 A G 1.07 Hoffmann et al. 2015 

rs9287719 2p25 10710730 C T 1.06 Hoffmann et al. 2015 

rs13385191 2p24 20888265 G A 1.07 Hoffmann et al. 2015 

rs1465618 2p21 43553949 A G 1.08 Hoffmann et al. 2015 

rs721048 2p15 63131731 A G 1.15 Hoffmann et al. 2015 

rs2430386 2p15 63178111 T C 1.14 Berndt et al. 2015 

rs74702681 2p14 66652885 T C 1.17 Schumacher et al. 2018 

rs10187424 2p11 85794297 A G 1.09 Hoffmann et al. 2015 

rs11691517 2q13 111893096 T G 1.07 Schumacher et al. 2018 

rs13016083 2q22.3 148570945 T C 1.13 Hoffmann et al. 2015 

rs12621278 2q31 173311553 A G 1.33 Hoffmann et al. 2015 

rs34925593 2q31.1 174234547 C T 1.05 Schumacher et al. 2018 

rs59308963 2q33.1 202123479 T TATTCTGTC 1.05 Schumacher et al. 2018 

rs2292884 2q37 238443226 G A 1.14 Hoffmann et al. 2015 

rs3771570 2q37 242382864 A G 1.12 Hoffmann et al. 2015 

rs2660753 3p12 87110674 T C 1.13 Hoffmann et al. 2015 

rs7629490 3p11 87241497 T C 1.15 Schumacher et al. 2011 

rs2055109 3p11 87467332 C T 1.2 Hoffmann et al. 2015 

rs1283104 3q13.12 106962521 G C 1.05 Schumacher et al. 2018 

rs7611694 3q13 113275624 A C 1.1 Hoffmann et al. 2015 

rs10934853 3q21 128038373 A C 1.12 Hoffmann et al. 2015 

rs6763931 3q23 141102833 T C 1.04 Hoffmann et al. 2015 

rs182314334 3q25.1 152004202 T C 1.09 Schumacher et al. 2018 

rs142436749 3q26.2 169093100 G A 1.25 Schumacher et al. 2018 

rs71277158 3q26.2 169999216 T G 1.22 Berndt et al. 2015 

rs10936632 3q26 170130102 A C 1.11 Hoffmann et al. 2015 

rs10009409 4q13 73855253 T C 1.08 Hoffmann et al. 2015 

rs1894292 4q13 74349158 G A 1.1 Hoffmann et al. 2015 

rs12500426 4q22 95514609 A C 1.08 Hoffmann et al. 2015 

rs17021918 4q22 95562877 C T 1.11 Hoffmann et al. 2015 

rs7679673 4q24 106061534 C A 1.1 Hoffmann et al. 2015 

rs6825684 4q24 106084643 G A 1.17 Fehringer et al. 2016 

rs2242652 5p15 1280028 G A 1.15 Hoffmann et al. 2015 

rs12653946 5p15 1895829 T C 1.1 Hoffmann et al. 2015 

rs2121875 5p12 44365545 G T 1.05 Hoffmann et al. 2015 

rs10793821 5q31.1 133836209 T C 1.05 Schumacher et al. 2018 

rs76551843 5q35.1 169172133 A G 1.31 Schumacher et al. 2018 
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dbSNP rsid Cytogenetic 
Band hg19 Position Risk Allele Ref Allele Odds Ratio Source of Summary Statistics 

rs6869841 5q35 172939426 A G 1.07 Hoffmann et al. 2015 

rs4976790 5q35.3 177968915 T G 1.08 Schumacher et al. 2018 

rs4713266 6p24 11219030 C T 1.06 Hoffmann et al. 2015 

rs7767188 6p22 30073776 A G 1.07 Hoffmann et al. 2015 

rs12665339 6p21.33 30601232 G A 1.06 Schumacher et al. 2018 

rs130067 6p21 31118511 G T 1.05 Hoffmann et al. 2015 

rs3096702 6p21 32192331 A G 1.07 Hoffmann et al. 2015 

rs115306967 6p21 32400939 G C 1.06 Hoffmann et al. 2015 

rs9296068 6p21.32 32988695 T G 1.05 Schumacher et al. 2018 

rs9469899 6p21.31 34793124 A G 1.05 Schumacher et al. 2018 

rs1983891 6p21 41536427 T C 1.09 Hoffmann et al. 2015 

rs4711748 6p21.1 43694598 T C 1.05 Schumacher et al. 2018 

rs9443189 6q14 76495882 G A 1.08 Hoffmann et al. 2015 

rs2273669 6q21 109285189 G A 1.07 Hoffmann et al. 2015 

rs339331 6q22 117210052 T C 1.08 Hoffmann et al. 2015 

rs1933488 6q25 153441079 A G 1.12 Hoffmann et al. 2015 

rs651164 6q25.3 160581374 G A 1.14 Marzec et al. 2016 

rs4646284 6q25.3 160581544 TG T 1.18 Hoffmann et al. 2015 

rs9364554 6q25 160833664 T C 1.08 Hoffmann et al. 2015 

rs138004030 6q27 170475879 G A 1.27 Schumacher et al. 2018 

rs527510716 7p22.3 1944537 C G 1.06 Schumacher et al. 2018 

rs11452686 7p21.1 20414110 T TA 1.05 Schumacher et al. 2018 

rs12155172 7p15 20994491 A G 1.11 Hoffmann et al. 2015 

rs10486567 7p15 27976563 G A 1.19 Hoffmann et al. 2015 

rs17621345 7p14.1 40875192 A C 1.07 Schumacher et al. 2018 

rs56232506 7p12 47437244 A G 1.06 Hoffmann et al. 2015 

rs6465657 7q21 97816327 C T 1.11 Hoffmann et al. 2015 

rs2928679 8p21 23438975 T C 1.05 Hoffmann et al. 2015 

rs1512268 8p21 23526463 A G 1.18 Hoffmann et al. 2015 

rs11135910 8p21 25892142 A G 1.11 Hoffmann et al. 2015 

rs12543663 8q24 127924659 C A 1.08 Hoffmann et al. 2015 

rs1487232 8q24.21 128005247 A G 1.33 Schumacher et al. 2011 

rs10086908 8q24 128011937 T C 1.15 Hoffmann et al. 2015 

rs1016343 8q24 128093297 T C 1.25 Hoffmann et al. 2015 

rs13252298 8q24 128095156 A G 1.19 Hoffmann et al. 2015 

rs6983561 8q24 128106880 C A 1.47 Hoffmann et al. 2015 

rs116041037 8q24 128131809 A G 2.45 Hoffmann et al. 2015 

rs16902094 8q24.21 128320346 G A 1.21 Marzec et al. 2016 

rs445114 8q24 128323181 T C 1.14 Hoffmann et al. 2015 

rs16902104 8q24 128340908 T C 1.21 Hoffmann et al. 2015 

rs6983267 8q24 128413305 G T 1.23 Hoffmann et al. 2015 

rs6999921 8q24 128440928 G A 1.23 Schumacher et al. 2011 

rs7000448 8q24 128441170 T C 1.14 Hoffmann et al. 2015 

rs1447293 8q24 128472320 C T 1.14 Schumacher et al. 2011 

rs11986220 8q24 128531689 A T 1.36 Hoffmann et al. 2015 

rs12549761 8q24 128540776 C G 1.38 Conti et al. 2017 

rs1048169 9p22.1 19055965 C T 1.06 Schumacher et al. 2018 

rs17694493 9p21 22041998 G C 1.08 Hoffmann et al. 2015 
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dbSNP rsid Cytogenetic 
Band hg19 Position Risk Allele Ref Allele Odds Ratio Source of Summary Statistics 

rs10122495 9p13.3 34049779 T A 1.05 Schumacher et al. 2018 

rs817826 9q31 110156300 C T 1.41 Hoffmann et al. 2015 

rs1571801 9q33 124427373 A C 1.07 Hoffmann et al. 2015 

rs1182 9q34.11 132576060 A C 1.06 Schumacher et al. 2018 

rs141536087 10p15.3 854691 GCGCA G 1.08 Schumacher et al. 2018 

rs76934034 10q11 46082985 T C 1.13 Hoffmann et al. 2015 

rs10993994 10q11 51549496 T C 1.23 Hoffmann et al. 2015 

rs1935581 10q23.31 90195149 C T 1.05 Schumacher et al. 2018 

rs3850699 10q24 104414221 A G 1.1 Hoffmann et al. 2015 

rs7094871 10q25.2 114712154 G C 1.04 Schumacher et al. 2018 

rs2252004 10q26 122844709 G T 1.16 Hoffmann et al. 2015 

rs4962416 10q26 126696872 C T 1.09 Hoffmann et al. 2015 

rs1881502 11p15.5 1507512 T C 1.06 Schumacher et al. 2018 

rs7127900 11p15 2233574 A G 1.22 Hoffmann et al. 2015 

rs61890184 11p15.4 7547587 A G 1.07 Schumacher et al. 2018 

rs547171081 11p11.2 47421962 CGG C 1.05 Schumacher et al. 2018 

rs1938781 11q12 58915110 C T 1.16 Hoffmann et al. 2015 

rs2277283 11q12.3 61908440 C T 1.06 Schumacher et al. 2018 

rs12785905 11q13.2 66951965 C G 1.12 Schumacher et al. 2018 

rs12418451 11q13 68935419 A G 1.14 Marzec et al. 2016 

rs11228565 11q13 68978580 A G 1.23 Marzec et al. 2016 

rs10896449 11q13 68994667 G A 1.19 Hoffmann et al. 2015 

rs11228594 11q13 69023087 A G 1.15 Schumacher et al. 2011 

rs7940107 11q13 69027770 A G 1.2 Schumacher et al. 2011 

rs11290954 11q13.5 76260543 AC A 1.06 Schumacher et al. 2018 

rs11568818 11q22 102401661 A G 1.1 Hoffmann et al. 2015 

rs1800057 11q22.3 108143456 G C 1.16 Schumacher et al. 2018 

rs11214775 11q23 113807181 G A 1.07 Hoffmann et al. 2015 

rs138466039 11q24.2 125054793 T C 1.32 Schumacher et al. 2018 

rs878987 11q25 134266372 G A 1.07 Schumacher et al. 2018 

rs2066827 12p13.1 12871099 T G 1.06 Schumacher et al. 2018 

rs10845938 12p13.1 14416918 G A 1.06 Schumacher et al. 2018 

rs80130819 12q13 48419618 A C 1.14 Hoffmann et al. 2015 

rs10875943 12q13 49676010 C T 1.07 Hoffmann et al. 2015 

rs902774 12q13 53273904 A G 1.17 Hoffmann et al. 2015 

rs7968403 12q14.2 65012824 T C 1.06 Schumacher et al. 2018 

rs5799921 12q21.33 90160530 GA G 1.06 Schumacher et al. 2018 

rs1270884 12q24 114685571 A G 1.07 Hoffmann et al. 2015 

rs7295014 12q24.33 133067989 G A 1.05 Schumacher et al. 2018 

rs9600079 13q22 73728139 T G 1.01 Hoffmann et al. 2015 

rs1004030 14q11.2 23305649 T C 1.05 Schumacher et al. 2018 

rs11629412 14q13.3 37138294 C G 1.06 Schumacher et al. 2018 

rs8008270 14q22 53372330 G A 1.12 Hoffmann et al. 2015 

rs7153648 14q23 61122526 C G 1.11 Hoffmann et al. 2015 

rs34582366 14q23.1 61933357 G T 1.42 Hoffmann et al. 2015 

rs7141529 14q24 69126744 G A 1.09 Hoffmann et al. 2015 

rs8014671 14q24 71092256 G A 1.06 Hoffmann et al. 2015 

rs4924487 15q15.1 40922915 C G 1.06 Schumacher et al. 2018 
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dbSNP rsid Cytogenetic 
Band hg19 Position Risk Allele Ref Allele Odds Ratio Source of Summary Statistics 

rs6493618 15q21 53537453 T C 2 Wang et al. 2015 

rs33984059 15q21.3 56385868 A G 1.19 Schumacher et al. 2018 

rs112293876 15q22.31 66764641 C CA 1.06 Schumacher et al. 2018 

rs11863709 16q21 57654576 C T 1.16 Schumacher et al. 2018 

rs12051443 16q22 71691329 A G 1.06 Hoffmann et al. 2015 

rs201158093 16q23.3 82178893 TAA TA 1.05 Schumacher et al. 2018 

rs684232 17p13 618965 G A 1.1 Hoffmann et al. 2015 

rs28441558 17p13.1 7803118 C T 1.16 Schumacher et al. 2018 

rs142444269 17q11.2 30098749 C T 1.07 Schumacher et al. 2018 

rs11649743 17q12 36074979 G A 1.15 Hoffmann et al. 2015 

rs7501939 17q12 36101156 C T 1.22 Hoffmann et al. 2015 

rs11650494 17q21 47345186 A G 1.15 Hoffmann et al. 2015 

rs7210100 17q21 47436749 A G 1.51 Hoffmann et al. 2015 

rs2680708 17q22 56456120 G A 1.05 Schumacher et al. 2018 

rs1859962 17q24 69108753 G T 1.19 Hoffmann et al. 2015 

rs8093601 18q21.2 51772473 C G 1.05 Schumacher et al. 2018 

rs28607662 18q21.2 53230859 C T 1.08 Schumacher et al. 2018 

rs12956892 18q21.32 56746315 T G 1.05 Schumacher et al. 2018 

rs533722308 18q21.33 60961193 CT C 1.05 Schumacher et al. 2018 

rs10460109 18q22.3 73036165 T C 1.05 Schumacher et al. 2018 

rs7241993 18q23 76773973 G A 1.09 Hoffmann et al. 2015 

rs11666569 19p13.11 17214073 C T 1.05 Schumacher et al. 2018 

rs118005503 19q12 32167803 G C 1.09 Schumacher et al. 2018 

rs8102476 19q13 38735613 C T 1.12 Hoffmann et al. 2015 

rs11672691 19q13 41985587 G A 1.08 Hoffmann et al. 2015 

rs61088131 19q13.2 42700947 T C 1.06 Schumacher et al. 2018 

rs2735839 19q13 51364623 G A 1.15 Hoffmann et al. 2015 

rs103294 19q13 54797848 C T 1.28 Hoffmann et al. 2015 

rs11480453 20q11.21 31347512 C CA 1.05 Schumacher et al. 2018 

rs12480328 20q13 49527922 T C 1.13 Hoffmann et al. 2015 

rs6091758 20q13.2 52455205 G A 1.07 Schumacher et al. 2018 

rs2427345 20q13 61015611 G A 1.06 Hoffmann et al. 2015 

rs6062509 20q13 62362563 A C 1.12 Hoffmann et al. 2015 

rs1041449 21q22 42901421 G A 1.06 Hoffmann et al. 2015 

rs2238776 22q11 19757892 G A 1.08 Hoffmann et al. 2015 

rs9625483 22q12.1 28888939 A G 1.14 Schumacher et al. 2018 

rs9623117 22q13 40452119 C T 1.18 Hoffmann et al. 2015 

rs5759167 22q13 43500212 G T 1.16 Hoffmann et al. 2015 

rs742134 22q13 43518275 G A 1.2 Schumacher et al. 2011 

rs2405942 23p22 9814135 A G 1.14 Hoffmann et al. 2015 

rs17321482 23p22.2 11482634 C T 1.07 Schumacher et al. 2018 

rs5945572 23p11 51229683 A G 1.23 Hoffmann et al. 2015 

rs2807031 23p11 52896949 C T 1.07 Hoffmann et al. 2015 

rs5919432 23q12 67021550 A G 1.06 Hoffmann et al. 2015 

rs6625711 23q13 70139850 A T 1.04 Hoffmann et al. 2015 

rs4844289 23q13 70407983 G A 1.04 Hoffmann et al. 2015 
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Supplementary Table 4. Polygenic Risk Score Performance 
 

Cohort and 
Ethnic Group 

 
Polygenic Risk 

Score Decile 
 

Odds Ratio Lower 
95% CI 

Upper 
95% CI P-Value 

KP + UKB 
European Ancestry 

1 -- -- -- -- 

2 1.55 1.37 1.77 1.54E-11 

3 2.07 1.82 2.35 5.53E-30 

4 2.37 2.09 2.68 2.08E-42 

5 2.62 2.31 2.96 6.78E-53 

6 3.06 2.71 3.46 3.44E-72 

7 3.70 3.27 4.18 2.59E-98 

8 4.24 3.76 4.79 3.97E-121 

9 4.76 4.22 5.37 2.62E-143 

10 7.83 6.94 8.84 1.83E-245 

KP 
European Ancestry 

1 -- -- -- -- 

2 1.50 1.26 1.79 5.87E-06 

3 2.02 1.70 2.40 1.79E-15 

4 2.46 2.07 2.93 1.51E-24 

5 2.53 2.13 3.01 5.99E-26 

6 2.83 2.38 3.37 3.32E-32 

7 3.38 2.84 4.02 3.45E-43 

8 3.95 3.32 4.71 1.38E-53 

9 4.09 3.43 4.87 4.10E-56 

10 7.10 5.90 8.54 1.82E-96 

UKB 
European 
Ancestry 

1 -- -- -- -- 

2 1.61 1.31 1.98 4.41E-06 

3 2.12 1.74 2.59 7.18E-14 

4 2.29 1.89 2.78 4.85E-17 

5 2.79 2.30 3.38 1.36E-25 

6 3.25 2.69 3.93 4.20E-34 

7 4.04 3.34 4.89 1.32E-47 

8 4.37 3.62 5.26 2.84E-54 

9 5.24 4.36 6.30 6.29E-70 

10 8.48 7.07 10.2 1.74E-117 
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Supplementary Figure 1a. Custom Microarray Marker Content 
 

 
 
Supplementary Figure 1b. SNP Selection Algorithm 

 
 
Supplementary Figure 1 Legend. Custom Array Design. S1a. The relative fractions of 
Selected Markers are grouped by their source and illustrated to scale (total of 416,047 
probesets). Teal colored cells derive from the UK Biobank Array modules and include a diverse 
set of curated and functionally relevant mutations. S1b. SNP Selection was conducted 
according to a greedy algorithm. In a single iteration of the algorithm, Candidate Markers are 
ranked for coverage of Target Markers, the best candidate is moved to the set of Selected 
Markers, and the candidates are re-ranked. The algorithm allows for markers to be “pre-
selected” by placement in the Selected Markers set upon initialization, and runs until the 
Selected Markers bin equals a certain maximum value. Probesets for the resulting selected 
markers are included in the fabrication of the custom microarray chip. 
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Supplementary Figure 2a. Sample Quality Control 

 
 
Supplementary Figure 2b. Variant Quality Control 

 
Supplementary Figure 2 Legend. Sample and Variant Quality Control Workflows. 2a. Sample
Quality Control. 2b. Variant Quality Control. 
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Supplementary Figure 3. Genotype Imputation Workflow 

Supplementary Figure 3 Legend. Genotype Imputation Workflow. Depicted is the procedure
implemented for imputing the Kaiser Permanente (KP) genotype data, from four ethnic groups:
European ancestry (EUR), African ancestry (AFR), Latino ancestry (LAT), and East Asian
ancestry (EAS). KP data were phased, reference-free (cohort-based), into haplotype-resolved
genomes using Eagle v2.3. Next, single nucleotide polymorphisms (SNPs) were imputed using
Minimac3 and a combined reference panel of Haplotype Reference Consortium (number of
references, NREF: 27,165) and 1000 Genomes Project Phase III (number of references: 2,504)
reference genomes. Furthermore, indel variants were imputed using the 1000 Genomes Project
Phase III reference. Imputed SNPs and indels were combined, filtered based on imputation r2

(R2
INFO) and minor allele frequency (MAF), and resegregated into analysis groups based on their

self-reported ancestry (as opposed to the array groups with which they were genotyped). 
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Supplementary Figure 4. SKAT Gene-Based Rare Variant (MAF < 1%) Meta-Analysis of KP
and UKB European-Ancestry Subjects 
 

 
Supplementary Figure 4 Legend. Gene-Based Test Manhattan Plot. Manhattan plot of
associations for a gene-based meta-analysis between the Kaiser Permanente and UK Biobank.
The associations (-log10(P-value), Y-axis) are plotted against the chromosome (1-22, X) and
position (X-axis) of the modeled genes, with thresholds for Bonferroni-significant (P < 2.5*10-6)
and suggestive (2.5*10-5 < P < 2.5*10-6) associations illustrated by dashed grey lines. Non-
significant genes on odd and even chromosomes are colored in alternating shades. Triangular
data points illustrate variants that were meta-analyzed between KP and UKB, while squares and
circles indicate genes present exclusively in the KP or UKB summary statistics, respectively.
Previously discovered PrCa loci are highlighted in pink for a 2 Mb window around the reported
lead variant. 
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Supplementary Figure 5a. 17q12 Locus Manhattan Plot 
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Supplementary Figure 5b. Linkage Disequilibrium at rare HOXB13 G84E missense variant
rs138213197 (17q12) 
 

 
Supplementary Figure 5 Legend. Associations and Linkage Disequilibrium at 17q12. S5a.
Manhattan plot for meta-analysis of Kaiser Permanente and UK Biobank genotypes at the
17q12 locus, centered around the HOXB13 G84E missense variant rs138213197. Variants
within 1Mb of the highly significant association at the rs138213197 SNP (P < 1*10-40) are
colored in pink, demonstrating the width of the association peak. S5b. Linkage disequilibrium
(LD) heatmap plot for all 17q12 variants with P < 5*10-6. Long range LD (beyond 1Mb) with
respect to rs138213197 is illustrated. 
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Supplementary Figure 6. Polygenic Risk Score Modeling of Prostate Cancer Across KP and
UKB Subjects 

Supplementary Figure 6 Legend: “Prostate Cancer Polygenic Risk Score Performance. A
polygenic risk score (PRS) of 187 previously reported prostate cancer (PrCa) risk variants was
applied to subjects of European ancestry from two cohorts (Kaiser Permanente and UK
Biobank). The Y-axis illustrates the magnitude of the odds ratio and 95% confidence interval for
the association between PRS values and PrCa case-control status within a given decile of the
PRS, in relation to the bottom decile as a reference group. Models were adjusted for age, body
mass index, and principal components of ancestry.” 
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