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bDivision of Statistics & Machine Learning, Department of Computer and Information Science, Linköping University, Linköping, Sweden
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Abstract

Analyzing resting state fMRI data is difficult due to a weak signal and several noise sources. Head motion is also a
major problem and it is common to apply motion scrubbing, i.e. to remove time points where a subject has moved more
than some pre-defined motion threshold. A problem arises if one cohort on average moves more than another, since the
remaining temporal degrees of freedom are then different for the two groups. The effect of this is that the uncertainty
of the functional connectivity estimates (e.g. Pearson correlations) are different for the two groups, but this is seldom
modelled in resting state fMRI. We demonstrate that group differences in motion scrubbing can result in inflated false
positives, depending on how the temporal auto correlation is modelled when performing the Fisher r-to-z transform.
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1. Introduction

Motion scrubbing is commonly applied in resting state
fMRI, to remove volumes where the head motion is greater
than some threshold (Power et al., 2012). Motion scrub-
bing is performed independently for every subject, mean-
ing that some subjects can have 90% of the fMRI volumes
left after motion scrubbing, while other subjects may only
have 50% of the volumes left. As an example, in the paper
by Power et al. (2012) it is reported that 58% ± 20% and
26% ± 14% of the volumes were removed for two groups of
children, but only 12% ± 6% of the volumes were removed
for a group of adults. Siegel et al. (2014) reported 4% ±
5% scrubbing for typical adults and 16% ± 11% scrubbing
for children. Similarly, Parkes et al. (2018) reported a sig-
nificant difference in loss of temporal degrees of freedom
between healthy controls and schizophrenics.

Group differences in motion scrubbing means that the
average uncertainty of the functional connectivity estimates
(e.g. Pearson correlations) can differ between the two groups,
since the estimates are based on different number of mea-
surements. Propagating subject uncertainty to the group
analysis is, however, uncommon in resting state fMRI (an
exception is the work by Fiecas et al. (2017)). This is in

∗Corresponding author
Email address: anders.eklund@liu.se (Anders Eklund)

contrast to task fMRI, where the variance of each subject
is commonly used in the group analysis (Woolrich et al.,
2004; Chen et al., 2012), to for example downweight sub-
jects with a higher variance. The problem of variable
temporal degrees of freedom in resting state fMRI has
been mentioned previously (Yan et al., 2013; Satterthwaite
et al., 2013; Power et al., 2014; Pruim et al., 2015; Parkes
et al., 2018), but to the best of our knowledge no study
has investigated how it affects false positives in a group
analysis. Here, we demonstrate that group differences in
motion scrubbing can lead to inflated false positives rates
for functional connectivity studies.

2. Data

We used the ABIDE preprocessed dataset (Di Mar-
tino et al., 2014; Craddock et al., 2013a)1, which contains
preprocessed resting state fMRI data from 539 individuals
diagnosed with autism spectrum disorder and 573 typi-
cal controls. The data were preprocessed using four dif-
ferent preprocessing pipelines (Connectome Computation
System (CCS) (Xu et al., 2015), Configurable Pipeline for
the Analysis of Connectomes (CPAC) (Craddock et al.,
2013b), Data Processing Assistant for Resting-State fMRI
(DPARSF) (Yan & Zang, 2010), NeuroImaging Analysis

1http://preprocessed-connectomes-project.org/abide/

Preprint submitted to Elsevier February 12, 2020

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.12.944454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.944454
http://creativecommons.org/licenses/by/4.0/


Kit (NIAK) (Bellec et al., 2011)), and are available for
several preprocessing options (such as with and without
bandpass filtering, and with and without global signal re-
gression (GSR)2). Motion scrubbing has been applied for
the NIAK pipeline, but not for the other pipelines, and we
therefore used preprocessed data from CCS, CPAC and
DPARSF. Mean timeseries were extracted for 7 regions
of interest (ROI) atlases, and we focused our analyses on
the Craddock 200 (CC200) atlas (Craddock et al., 2012),
which consists of 200 ROIs. To lower the processing time,
and to improve partial correlation estimates, we only per-
formed the calculations for 50 of the 200 ROIs.

The ABIDE data were collected at 17 different sites,
and all group analyses reported in this paper only used
data from one site at a time. We focused on data col-
lected at Michigan and New York, as these datasets con-
tain the highest number of subjects (110 and 184, respec-
tively). The downloaded data contains 82 subjects for
Michigan and 171 subjects for New York, which is mainly
explained by the fact that subjects with a mean frame-
wise displacement larger than 0.2 are by default discarded
by the ABIDE preprocessed download script. The Michi-
gan datasets contain 296 volumes per subject, while the
New York datasets contain 176 volumes per subject. All
datasets were collected with a TR of 2 seconds.

3. Methods

3.1. Motion scrubbing
To investigate the effect of group differences in motion

scrubbing on functional connectivity analyses, we used the
same idea as in our previous work (Eklund et al., 2016,
2019); to perform many random group analyses with real
fMRI data to empirically estimate false positives. Two
random groups, of 20 subjects each, were first created by
randomly shuffling all subjects and selecting the 40 first
subjects. Preprocessed ABIDE data were then randomly
motion scrubbed for every subject, where the proportion
of scrubbing for each subject was randomly drawn from
a normal distribution (at least 50 volumes were always
saved). The mean proportion of scrubbing for the (fake)
control group was set to 10%. For the (fake) diseased
group, the mean proportion of scrubbing varied from 5%
to 50%, in steps of 5% units. The standard deviation was
set to 5% for the control group and 15% for the diseased
group (Power et al., 2012). To reflect the fact that mo-
tion contaminated volumes often appear in clusters, rather
than appearing randomly, a simulation script was used to
create more realistic motion scrubbing, see Figure 1.

3.2. ROI to ROI correlation estimation
Pairwise correlations (both full and partial) between all

ROI time series were calculated using the motion scrubbed
data (using the function nets netmats in FSLNets3 (Smith

2http://preprocessed-connectomes-
project.org/abide/Pipelines.html

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets

et al., 2011)). For partial correlation we used L2 norm reg-
ularization (Tikhonov), since L1 regularization is rather
slow, and the default setting in FSLNets (0.1). In rest-
ing state fMRI the correlation values are normally Fisher
r-to-z transformed before applying a t-test. Note that
the Fisher transformation on its own will not produce z-
scores, since it does not involve division with a standard
error. The temporal auto correlation present in fMRI data
complicates the variance estimation (Eklund et al., 2012;
Arbabshirani et al., 2014; Afyouni et al., 2019), which can
lead to inflated z-scores. FSLNets uses a global AR(1)
model (the same for all ROI to ROI correlations) to model
the temporal auto correlation. The AR parameter is esti-
mated using a Monte Carlo simulation (and not through
prewhitening (Bright et al., 2017; Honari et al., 2019)).
Other softwares (such as REST (Song et al., 2011) and
Conn (Whitfield-Gabrieli & Nieto-Castanon, 2012)) do not
mention any model for the auto correlation. We therefore
decided to perform the analyses with uncorrected (raw)
and corrected (FSLNets global AR(1)) r-to-z transforma-
tion.

3.3. Group analysis

The group analysis consisted of applying a two sam-
ple t-test (using ttest2 in Matlab) to every element below
the diagonal in the (r-to-z transformed) correlation matrix,
to test if there is a difference in mean functional connec-
tivity between the two randomly created groups (controls
> diseased). Bonferroni correction was used to correct
for multiple comparisons over correlation matrix elements,
and should be conservative since the tests are not inde-
pendent. A total of 96 different parameter combinations,
listed in Table 1, were tested to understand how different
parameters affect the results. The whole procedure was
repeated 1000 times for every parameter combination, to
empirically estimate the (familywise error corrected) de-
gree of false positives (defined as the proportion of times a
significant group difference was found, after correcting for
multiple comparisons).

3.4. Reproducibility

As for our previous work (Eklund et al., 2015, 2016,
2019), our results are fully reproducible since we used open
data and share the processing scripts on GitHub4. Other
researchers can thereby reproduce our findings and extend
the analyses to other settings (Eklund et al., 2017b; Pol-
drack et al., 2017).

4https://github.com/wanderine/GroupDifferencesMotionScrubbing
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(a) (b)

Figure 1: Comparing random scrubbing (left, obtained by the function randperm in Matlab) and more realistic scrubbing (right, obtained
through a more advanced simulation) for a time series with 200 time points and 30% scrubbing (black time points represent time points to
be removed).

Table 1: Parameters tested for the different processing pipelines. One thousand random group analyses were performed for each parameter
combination.

Parameter Values used
fMRI data New York (171 subjects), Michigan (82 subjects)
Pipeline CCS, CPAC, DPARSF

Bandpass filtering (0.01 - 0.1 Hz) No, Yes
Global signal regression No, Yes
Fisher r-to-z transform Without autocorrelation correction (raw), With autocorrelation correction (AR(1))

Analysis type Full correlation, partial correlation (Tikhonov regularization)
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4. Results

Figure 2 shows estimated FWE rates for different amounts
of motion scrubbing per group and different preprocessing
strategies, for the CCS pipeline and the New York data.
Figures 3 and 4 show corresponding FWE rates for the
CPAC and DPARSF processing pipelines. Figures 5 to 7
show corresponding results for the Michigan data. Clearly,
using the r-to-z transform with auto correlation correction
in FSLNets leads to inflated false positive rates for large
group differences in motion scrubbing. Applying no cor-
rection for auto correlation leads to nominal results for all
parameter combinations, and this is explained by the fact
that the correlation (and the raw Fisher transformed cor-
relation) are not test statistics, since they have not been
divided by a standard error.

The FWE rate is in general lower when bandpass fil-
tering is applied (mean 7.3%, compared to 12.5% without
filtering). Global signal regression has a small effect on
the mean FWE rate; 9.7% with GSR and 10.1% with-
out GSR. The FWE rate is slightly higher for the New
York data (mean 11.1%, compared to 8.8% for Michi-
gan), which is expected since the Michigan data contains
296 time points per subject, compared to 176 time points

per subject for the New York data. Furthermore, the
FWE rate is in general higher for partial correlation (mean
12.3%, compared to 7.5% for full correlation). The mean
FWE rate per pipeline is 5.7% (CCS), 12.5% (CPAC) and
11.5% (DPARSF). A possible explanation is that the CCS
pipeline includes a despiking step, which will reduce ROI
correlations due to spikes (as a spike will be present in
most ROIs).
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(a) (b)

(c) (d)

Figure 2: Estimated familywise error rates, for different proportions of motion scrubbing for two groups of randomly selected subjects, for
the CCS processing pipeline. Left: Results with Fisher r-to-z transform with auto correlation correction Right: Results with Fisher r-to-z
transform without auto correlation correction Top: Results for full correlation. Bottom: Results for partial correlation.
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(a) (b)

(c) (d)

Figure 3: Estimated familywise error rates, for different proportions of motion scrubbing for two groups of randomly selected subjects, for
the CPAC processing pipeline. Left: Results with Fisher r-to-z transform with auto correlation correction Right: Results with Fisher r-to-z
transform without auto correlation correction Top: Results for full correlation. Bottom: Results for partial correlation.
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(a) (b)

(c) (d)

Figure 4: Estimated familywise error rates, for different proportions of motion scrubbing for two groups of randomly selected subjects, for the
DPARSF processing pipeline. Left: Results with Fisher r-to-z transform with auto correlation correction Right: Results with Fisher r-to-z
transform without auto correlation correction Top: Results for full correlation. Bottom: Results for partial correlation.
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(a) (b)

(c) (d)

Figure 5: Estimated familywise error rates, for different proportions of motion scrubbing for two groups of randomly selected subjects, for
the CCS processing pipeline. Left: Results with Fisher r-to-z transform with auto correlation correction Right: Results with Fisher r-to-z
transform without auto correlation correction Top: Results for full correlation. Bottom: Results for partial correlation.
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(a) (b)

(c) (d)

Figure 6: Estimated familywise error rates, for different proportions of motion scrubbing for two groups of randomly selected subjects, for
the CPAC processing pipeline. Left: Results with Fisher r-to-z transform with auto correlation correction Right: Results with Fisher r-to-z
transform without auto correlation correction Top: Results for full correlation. Bottom: Results for partial correlation.
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(a) (b)

(c) (d)

Figure 7: Estimated familywise error rates, for different proportions of motion scrubbing for two groups of randomly selected subjects, for the
DPARSF processing pipeline. Left: Results with Fisher r-to-z transform with auto correlation correction Right: Results with Fisher r-to-z
transform without auto correlation correction Top: Results for full correlation. Bottom: Results for partial correlation.
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5. Discussion

We have presented results showing that group differ-
ences in motion scrubbing can lead to inflated false positive
rates for functional connectivity studies, depending on how
the r-to-z transform is performed. The problem of varying
temporal degrees of freedom has been mentioned previ-
ously (Yan et al., 2013; Satterthwaite et al., 2013; Power
et al., 2014; Pruim et al., 2015; Parkes et al., 2018), but
we are not aware of any study that investigates how it af-
fects false positives. Yendiki et al. (2014) investigated how
group differences in motion affect diffusion MRI results,
but did not use motion scrubbing or censoring. We have
here focused on scrubbing (Power et al., 2012), but the
results may also apply for spike regression (Satterthwaite
et al., 2013) since adding one covariate per censored vol-
ume will also reduce the temporal degrees of freedom. It is
not clear if scrubbing and spike regression would have the
same effect on the autocorrelation structure of the time se-
ries. Instead of completely removing time points with too
large motion, a heteroscedastic model can be used to auto-
matically downweight affected time points (Eklund et al.,
2017a). As in task fMRI, the uncertainty of each subject
should also be propagated to the group analysis (Wool-
rich et al., 2004; Chen et al., 2012; Fiecas et al., 2017), to
downweight subjects with a higher uncertainty.

5.1. False positives

Our results show that group differences in motion scrub-
bing only leads to inflated false positive rates if the z-score
calculation in FSLNets accounts for the temporal auto cor-
relation. As mentioned in the Methods section, the rea-
son for this is that the correlation (and raw Fisher trans-
formed correlation) are not test statistics, since they have
not been divided by a standard error. The raw Fisher
r-to-z transform, used in REST (Song et al., 2011) and
Conn (Whitfield-Gabrieli & Nieto-Castanon, 2012), does
not consider the number of time points in the time series,
and will therefore produce the same z-score for a certain
Pearson correlation, regardless if the number of time points
used to estimate the correlation is 50 or 500 (and regard-
less of the temporal auto correlation in the data). As for
task fMRI, where unbiased beta coefficients from the first
level analyses are used in the group analysis (and not test
statistics like t- or z-scores), the correlation as well as the
raw Fisher transformed correlation will be (approximately)
unbiased and will therefore lead to nominal results (even
for large group differences in motion scrubbing).

The mean FWE rate for CCS is lower compared to
CPAC and DPARSF. A possible explanation is that the
CCS pipeline includes a despiking step, which will reduce
ROI correlations due to spikes (as a spike will be present
in most ROIs).

5.2. Limitations

The motion scrubbing used in this paper is completely
random, which means that low motion time points can be

removed while high motion time points are still present
in the data. The reason for using this approach is that
the ABIDE preprocessed dataset does not contain motion
metrics for each time point. In future work we will perform
more realistic motion scrubbing, based on different motion
metrics, such that high motion time points are the most
likely to be removed.

The group analyses are based on using data from both
individuals diagnosed with autism spectrum disorder and
typical controls. Ideally the group analyses should be per-
formed using only controls, but this will lead to a small
number of subjects from each site.

We have here only looked at false positives, but false
negatives are also important (Noble et al., 2020). To esti-
mate statistical power using real fMRI data is not a triv-
ial task. For group analyses involving a single group, the
brain activity or connectivity of a large cohort of subjects
(e.g. 400) can be seen as the ground truth, and power can
then be estimated as the number of times a group analysis
with a smaller number of subjects (e.g. 20) results in the
same significant activity or connectivity (Lohmann et al.,
2018). For group analyses involving two groups of subjects
(our case), it is necessary to start with an analysis that pro-
vides a significant difference between the two groups, or to
artificially add a difference and count how many times it is
detected (Dansereau et al., 2017). In future work we will
investigate how this can be done for resting state fMRI.

In the function nets glm in FSLNets a permutation test
is used to perform the group analysis and to obtain cor-
rected p-values. We intend to try the permutation based
approach, to see if it reduces the degree of false posi-
tives, but without GPU acceleration it is rather time con-
suming to use for so many group analyses and parameter
combinations. We will investigate if BROCCOLI (Eklund
et al., 2014) can be used instead of randomise, to speedup
the permutations. Furthermore, a bug was detected in
nets glm5 and we are waiting for this bug to be fixed.

5.3. Impact

It is difficult to estimate the impact of our findings,
since resting state fMRI entails many different preprocess-
ing choices (e.g. bandpass filtering, global mean regression,
nuisance regression) and it is not clear how common differ-
ent parameters, softwares and pipelines are. For example,
it is unknown how common FSLNets (with auto correla-
tion corrected Fisher r-to-z) is compared to REST (Song
et al., 2011) and Conn (Whitfield-Gabrieli & Nieto-Castanon,
2012) (both without auto correlation correction). It is also
not clear if full correlation is more popular than partial
correlation, and how common it is with group analyses
where the motion scrubbing substantially differs between
two groups. Carp (2012) reviewed methods reporting in
the fMRI literature, but did not cover aspects specific to
resting state fMRI.

5http://tiny.cc/n0wwjz
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