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Abstract 26 

Stream and river systems transport and process substantial amounts of dissolved organic matter 27 

(DOM) from terrestrial and aquatic sources to the ocean, with global biogeochemical 28 

implications. However, the underlying mechanisms affecting the spatiotemporal organization of 29 

DOM composition are under-investigated. To understand the principles governing DOM 30 

composition, we leverage the recently proposed synthesis of metacommunity ecology and 31 

metabolomics, termed ‘meta-metabolome ecology.’ Applying this novel approach to a freshwater 32 

ecosystem, we demonstrated that despite similar molecular properties across metabolomes, 33 

metabolite identity significantly diverged due to environmental filtering. We refer to this 34 

phenomenon as ‘thermodynamic redundancy,’ which is analogous to the ecological concept of 35 

functional redundancy. We suggest that under thermodynamic redundancy, divergent 36 

metabolomes can support equivalent biogeochemical function just as divergent ecological 37 

communities can support equivalent ecosystem function. As these analyses are performed in 38 

additional ecosystems, potentially generalizable principles, like thermodynamic redundancy, can 39 

be revealed and provide insight into DOM dynamics. 40 

 41 

 42 
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 46 
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Introduction 49 

Riverine ecosystems receive substantial carbon inputs from terrestrial sources (~1.9 Pg C yr-1), 50 

releasing some into the atmosphere and transporting a large portion to the ocean (~0.95 Pg C yr-51 

1)1,2. Much of this carbon is dissolved and complexed with other elements as organic matter. As 52 

this dissolved organic matter (DOM) travels through watersheds (e.g., along river corridors), it 53 

interacts with resident microbial communities and undergoes significant biochemical 54 

transformations that influence its fate1,3–7. Recent research has suggested that these ongoing 55 

biochemical reactions have a significant influence on river corridor biogeochemistry5,6,8. Despite 56 

the significance of these DOM biochemical reactions, predictive models (e.g., Earth system 57 

models, reactive transport models) generally do not represent these detailed processes because 58 

they are largely unknown4,6. Moreover, the underlying principles governing the detailed 59 

chemistry of DOM are under-investigated5. Our capacity to predict changes in the functioning of 60 

coupled terrestrial-aquatic systems (e.g., watersheds) will be enhanced by resolving these 61 

uncertainties3,7,9. 62 

 63 

Recent studies have continued to elucidate principles governing riverine DOM processing 5,6,10. 64 

Graham et al. 201710 revealed that microorganisms within riverbed sediments preferentially 65 

targeted organic molecules based on their thermodynamic favorability, thereby deterministically 66 

altering DOM chemistry. Stegen et al. 20185 further demonstrated that hyporheic zone 67 

metabolism was governed by mixing effects which removed thermodynamic protection (i.e., a 68 

“priming effect”). Accordingly, Graham et al. 20186 demonstrated that DOM chemistry better 69 

predicted microbial respiration rates than community composition, metabolic potential, or 70 

expressed metabolisms. Together, these studies indicate a strong connection between DOM 71 
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chemistry and realized biogeochemical function, and that deterministic processes underlie 72 

spatiotemporal variation in DOM chemistry. 73 

 74 

The recently proposed synthesis of meta-community ecology and metabolomics, termed “meta-75 

metabolome ecology,” provides new opportunities to deepen understanding of the processes 76 

governing DOM chemistry11. This framework treats organic molecules in the environment as 77 

‘ecosystem metabolites’ that are both resources for and products of microbial metabolism. A 78 

given DOM pool can therefore be thought of as an assemblage of ecosystem metabolites 79 

analogous to ecological communities. The framework further suggests that studying the 80 

contributions of different ecological assembly processes can offer novel interpretations with 81 

biogeochemical implications11. To operationalize the conceptual framework, ecological null 82 

models can be applied to metabolite assemblages to quantify the relative influences of 83 

deterministic and stochastic processes governing metabolome dynamics.  84 

 85 

Understanding the relative contributions of deterministic and stochastic processes can help reveal 86 

mechanisms driving differences in the molecular properties of DOM pools11. Deterministic 87 

processes12 result from forces in the environment that systematically change the probabilities of 88 

observing a given metabolite. This can occur by changing the rates that a given metabolite is 89 

produced or transformed, which is analogous to ecological selection changing the birth or death 90 

rate of a given biological species. In context of the metabolite assemblages comprising DOM 91 

pools, deterministic processes are therefore the outcome of the environment selecting for or 92 

against a given metabolite. In contrast, stochastic processes12 are the result of random events that 93 

lead to uncoordinated increases or decreases in prevalence of individual metabolites. 94 
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Stochasticity can arise through uncoordinated changes in rates of production or transformation 95 

(analogous to random birth/death events in ecological systems) as well as via non-selective 96 

transport (analogous to dispersal in ecological systems). Stochasticity dominates when 97 

deterministic processes (e.g., selective agents) are not applied consistently through space and/or 98 

time, or are too weak to overcome factors such as spatial mixing of metabolites12–14. 99 

 100 

Further analogies can be drawn to ecological systems whereby stochastic and deterministic 101 

processes can be separated into different classes to deepen understanding of the forces governing 102 

the molecular properties of metabolite assemblages11. As in ecological systems, the influences of 103 

deterministic processes can separate into variable and homogenous selection. Variable selection 104 

occurs when selective pressures cause assemblages that are separated in space or time to diverge 105 

in composition. In turn, differences in metabolite composition are greater than would be 106 

expected by random chance12,13. In contrast, homogenous selection occurs when selective 107 

pressures cause assemblages to have similar composition; differences in metabolite composition 108 

are less than expected by random chance12,13. A dominant influence of stochastic processes 109 

results in differences in metabolite composition that do not deviate from a random expectation15. 110 

While stochastic processes can also be separated into two classes12,13, doing so is beyond the 111 

scope of the current study. 112 

 113 

Linking the relative influences of variable selection, homogenous selection, and stochastic 114 

processes to system dynamics (i.e., hydrology, geochemistry) provides opportunities to better 115 

understand spatiotemporal dynamics of metabolite assemblages and inform the representation of 116 

DOM chemistry in predictive models. A primary analytical challenge is quantifying the relative 117 
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influences of deterministic and stochastic processes. As shown in Danczak et al.11, this challenge 118 

can be overcome using metabolite null modeling, which borrows directly from ecological null 119 

modeling through the use of dendrograms representing biochemical relationships among 120 

metabolites. In ecological systems, null models are often based on phylogenetic and/or functional 121 

trait relationships (e.g., Swenson et al. 201216, Siefert et al. 201317, and Dini-Andreote et al. 122 

201514). Using metabolite null modeling, Danczak et al.11 found that biochemical relationships 123 

among metabolites can strongly influence spatial variation in river corridor metabolite 124 

assemblages. This points to an opportunity to leverage metabolite null modeling to reveal new 125 

principles governing the molecular properties of metabolite assemblages comprising DOM. 126 

 127 

Here we use concepts (e.g., stochastic/deterministic processes) and analytical tools (e.g., null 128 

models) derived from community ecology to investigate fundamental aspects of metabolite 129 

assemblages with respect to (1) within and among assemblage diversity (i.e., alpha and beta 130 

diversity), (2) stochastic and deterministic processes governing assemblage composition, and (3) 131 

the relationship between stochastic and deterministic processes and metabolite chemistry (e.g., 132 

thermodynamic properties and elemental composition). For this, we study the temporal dynamics 133 

of both stream and streambed pore water from a low-order river corridor within the HJ Andrews 134 

Experimental Forest which has long been the focus of river corridor research18–21. This system is 135 

representative of steep, low-order river corridors, which dominate headwater river networks both 136 

in terms of abundance and relative drainage area22 and where riverbed (e.g., hyporheic zone) 137 

biogeochemical processes can dominate total respiration23–25. We find that despite very similar 138 

molecular and thermodynamic properties in bulk DOM pools given by high resolution mass 139 

spectrometry (i.e., elemental composition, double-bond equivalent, etc.), deterministic processes 140 
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drove divergence in the biochemical transformations connecting metabolites, both between and 141 

within surface and pore waters. Furthermore, our results point to a new concept referred to as 142 

‘thermodynamic redundancy’ in which spatially or temporally separate metabolite assemblages 143 

have indistinguishable thermodynamic properties despite divergence in other metabolome 144 

characteristics. 145 

 146 

Results 147 

Metabolite properties were similar across surface and pore water. Given that the sampled 148 

surface water had likely passed through the subsurface multiple times within the studied field 149 

system21,26,27, we expected metabolite assemblages within the surface and pore water to share 150 

some molecular properties. This was borne out with respect to properties inferred directly from 151 

assigned molecular formulae. More specifically, the surface and pore water metabolite 152 

assemblages had similar thermodynamic and molecular properties (Figure 2). The standard 153 

Gibb’s Free Energy of carbon oxidation (ΔG°cox), double-bond equivalents (DBE), and modified 154 

aromaticity index (AIMod) did not significantly differ between surface and pore water (p-value > 155 

0.05). While the thermodynamic and molecular properties varied through time, they did not 156 

clearly follow diel hydrological dynamics (Figure 1). Similarities in thermodynamic and 157 

molecular properties between surface and pore water may be due to significant hydrologic 158 

connectivity in the study system19–21. This mixing has the potential to minimize the signatures of 159 

organic matter processing within surface or subsurface domains. Follow-on analyses reveal that 160 

mixing does not, however, fully overcome the signatures of localized processes (as discussed 161 

below). 162 

 163 
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Conserved alpha diversity and molecular properties contrast with divergence in 164 

composition, revealing thermodynamic redundancy. Additional analyses examining both 165 

within metabolome diversity (i.e., alpha diversity) and among metabolome differences in 166 

composition (i.e., beta diversity) presented an apparent contradiction; metabolomes with similar 167 

within-metabolome properties and diversity had divergent composition. This leads to the 168 

proposed concept of thermodynamic redundancy, discussed below. More specifically, the 169 

dendrogram-based alpha diversity values were largely similar between surface and subsurface 170 

metabolomes mirroring dynamics in molecular and thermodynamic properties (Figure 3). 171 

Patterns of Faith’s PD mostly followed molecular property patterns, indicating that there were no 172 

major differences in dendrogram structure between surface and pore water metabolomes (p-173 

value: 0.063). Other alpha diversity metrics that use dendrogram-based relational information 174 

(i.e., MPD, MNTD, VNTD, VPD) followed similar trends between surface and pore water 175 

metabolomes (p-value: > 0.1). These results indicate that across surface and porewater there are 176 

conserved molecular properties and biochemical transformation network topologies, both of 177 

which are used to estimate the dendrogram used for alpha diversity analyses. Alpha diversity 178 

analyses do not, however, directly evaluate variation in composition across metabolomes. Beta-179 

diversity metrics can be used to make such comparisons. 180 

 181 

Comparison of metabolome assemblages using beta diversity metrics revealed significant 182 

divergence in metabolome composition, despite the high degree of similarity in alpha diversity. 183 

More specifically, Jaccard dissimilarity and β-mean nearest taxon distance (βMNTD) principal 184 

coordinate analysis (PCoA) plots showed clear separation between surface and subsurface 185 

metabolomes (Figure 4; Jaccard p-value – 0.005; βMNTD p-value – 0.02). Furthermore, the 186 
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Jaccard-based analyses reveal significantly greater differences than did βMNTD. This reflects 187 

patterns observed within the dendrograms used in the estimation of βMNTD, but not used to 188 

estimate Jaccard; similarities in molecular properties were captured in the dendrogram resulting 189 

in decreased separation across the βMNTD ordination, relative to the Jaccard-based PCoA. 190 

Taken together, these results demonstrate that metabolite profiles with indistinguishable 191 

molecular and thermodynamic characteristics, as well as similar levels of alpha diversity, can 192 

nonetheless be composed of different metabolites when viewed at the level of specific 193 

metabolites. This opens the possibility that localized—and potentially temporally variable—194 

deterministic processes drive spatiotemporal variation in metabolite assemblages, which 195 

ultimately result in habitat-specific metabolomes. 196 

 197 

Results discussed above present an apparent contradiction whereby there is divergence in 198 

composition, but consistency in thermodynamic/molecular properties and alpha-diversity 199 

metrics. To reconcile these outcomes, we propose the concept of thermodynamic redundancy. 200 

Conceptually, thermodynamic redundancy is similar to the ecological observation of functional 201 

redundancy, whereby different biological taxa can fill the same functional role. In the case of 202 

thermodynamic redundancy, different metabolite assemblages are comprised of different 203 

metabolites (analogous to biological taxa) but have similar thermodynamic and molecular 204 

properties. Given strong influences of DOM thermodynamics in river corridors, we propose the 205 

hypothesis that thermodynamic properties of individual metabolites are analogous to functional 206 

roles of biological taxa.  207 

 208 
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From an ecological perspective, functional redundancy has been observed repeatedly in both 209 

microbial communities (with respect to metagenomic profiles) and macro-organisms such as 210 

plant communities (with respect to functional traits such as specific leaf area)28–31. For example, 211 

the human gut can have numerous different steady state microbial communities that all exhibit 212 

healthy function due to redundant metabolisms32. We hypothesize that this analogy extends to 213 

metabolites in that different assemblages may support the same biogeochemical function (e.g., 214 

net rate of denitrification) by meeting some given thermodynamic requirements. Alternatively, 215 

thermodynamic redundancy may instead capture the biogeochemically-relevant historical 216 

processes that led to metabolomes with similar molecular properties but divergent composition, 217 

rather than true functional diversity. 218 

 219 

The degree to which thermodynamic redundancy is observed across metabolite assemblages will 220 

require data from a broad suite of environmental systems. It will be important to evaluate this 221 

concept with paired measured biogeochemical rates and with more detailed metabolome data that 222 

include information on molecular structure to assess its impact on the potential functional role of 223 

organic metabolites. Regardless of the degree to which thermodynamic redundancy indicates true 224 

functional redundancy, extending the general concept of redundancy to metabolomes further 225 

emphasizes the significant breadth of conceptual parallels between ecological communities and 226 

metabolite assemblages. 227 

 228 

Divergence in metabolite assemblages was associated with biochemical transformations. 229 

The concept of thermodynamic redundancy indicates conserved thermodynamic properties 230 

despite strong divergence in metabolite composition. Through additional multivariate analyses 231 
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we found that this divergence was driven by transformations that were used to define 232 

biochemical relationships among metabolites in our analyses. More specifically, through a 233 

Jaccard dissimilarity-based NMDS analysis we found that profiles of biochemical 234 

transformations were divergent between surface and subsurface metabolomes (Figure 5; p-value: 235 

0.0082). Examining the transformations by elemental composition showed that transformations 236 

containing only C, H, and O were significantly more frequent within surface water (p-value: 237 

0.014) while N-containin transformations (including the loss or gain of amino acids) occurred 238 

more frequently within the pore water (p-value: 0.008). Previous work has also shown greater 239 

abundance of N-based transformations in pore water, relative to surface water5. While we can 240 

only speculate, these results suggest that generalizable principles might exist in terms of how 241 

biochemical transformations vary between surface and pore water.  242 

 243 

As in Stegen et al.5, we suggest that the subsurface has a greater capacity for biomass turnover 244 

and proteolytic activity due to increased microbial load as compared to the surface water. We 245 

also suggest that the higher frequency of N-transformations in the pore water were not due to 246 

differences in N limitation causing enhanced N mining given that N concentrations (e.g., NO3, 247 

NO2, and total N) were below our limit for detection in both surface and pore water 248 

(Supplemental File 1). However, we did not measure organic N, so we cannot exclude the 249 

possibility that N was more limited in the subsurface than the surface due to potentially greater 250 

microbial load. Alternatively, these differences could arise from hotspot activity which has been 251 

reported within other riverbed sediments/hyporheic zones6. Regardless of the mechanism, the 252 

consistency between this study and previous work suggests that shallow subsurface domains 253 

(often associated with hyporheic zones) may consistently be characterized by greater abundance 254 
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of N-containing biogeochemical transformations. Multi-system comparative studies will be 255 

needed to evaluate this possibility, which could emerge as a principle that is transferable across 256 

river corridor systems, providing an opportunity to inform the structure of mechanistic predictive 257 

models. 258 

 259 

Deterministic processes drove differences between surface and pore water metabolite 260 

assemblages. Divergence in metabolite assemblage composition through space or time can be 261 

due to stochastic processes, deterministic processes, or some combination of the two. 262 

Deterministic processes can have strong influences when biotic or abiotic features cause 263 

systematic differences in organismal reproductive success or metabolite expression across 264 

assemblages15. Stochastic processes can arise due to spatiotemporal differences whereby random 265 

or uncoordinated ‘demographic events’ (i.e., organismal birth/death or metabolite 266 

expression/transformation) lead to divergence in composition that is not due to systematically 267 

imposed deterministic factors13,33. Stochastic processes can also be dominant when there is 268 

significant movement or mixing of organisms/metabolites across spatial locations (i.e., across 269 

ecological communities or metabolite assemblages). The β-nearest taxon index (βNTI) metric, a 270 

phylogenetic null modeling approach, has been shown to quantitatively estimate the relative 271 

contributions of these stochastic and deterministic processes12,13,15. This provides much deeper 272 

insight into the mechanisms driving observed spatiotemporal patterns in community/assemblage 273 

composition when compared to more traditional methods such as ordinations, redundancy 274 

analysis, or regressions. 275 

 276 
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Applying null modeling approaches to metabolite assemblages showed that divergences 277 

observed through ordination analysis (Figure 3) were overwhelmingly due to deterministic 278 

processes that arise from differences in abiotic and/or biotic features. Specifically, the 279 

deterministic processes observed here were akin to the concept of ‘variable selection’ in 280 

ecological communities. Variable selection can dominate the assembly of communities when 281 

features of the environment systematically drive divergence in composition by causing spatial or 282 

temporal shifts in the relative fitness of different biological taxa. We infer that an analog to 283 

variable selection driven by features in the biotic and/or abiotic environment is causing 284 

divergence in metabolite assemblages within our study system despite conserved levels of alpha-285 

diversity and molecular properties (Figures 2 and 3). It is important to recognize that this is not 286 

a pre-determined outcome of sampling different locations within the river corridor. The 287 

divergence between surface and porewater metabolite assemblages could have been due to 288 

limited exchange enabling compositional divergence to arise through uncoordinated (i.e., 289 

stochastic) changes in metabolite production and transformation. Such a scenario would have 290 

been akin to dispersal limitation enabling ecological drift, which is itself akin to genetic drift 291 

within the theory of population genetics34. Recent application of the βNTI null model to river 292 

corridor metabolite assemblages from the mainstem of the Columbia River showed that such 293 

stochastic scenarios are possible and potentially likely11. 294 

 295 

Examining dynamics within surface or porewater revealed stronger influences of deterministic 296 

processes in porewater (relative to surface water), suggesting highly localized biotic or abiotic 297 

processes with very strong influences over assemblage composition. Furthermore, porewater 298 

metabolomes were more consistently governed by variable selection than those in surface water 299 
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(Figure 6; p-value: < 0.001). This was true despite the study system appearing to be well-mixed, 300 

whereby advective transport of water-soluble metabolites could overwhelm deterministic 301 

processes causing compositional divergence (akin to ‘mass effects’ in ecological meta-302 

communities)13,35. Based on correlations with other physical and chemical variables, 303 

deterministic pressures within the surface water seem to be associated with geochemical 304 

conditions, including sulfate and dissolved oxygen concentrations (Supplemental File 2). No 305 

physical or chemical variables were significantly related to the level of determinism associated 306 

with porewater metabolite assemblages. These results suggest that different biogeochemical 307 

processes are at play in surface and subsurface domains, despite the surface water being an 308 

integration of pore water through space and time18–21. 309 

 310 

One of the key biogeochemical differences between surface and subsurface domains in the study 311 

system and in other river corridors5 is the variation of putative biochemical transformations. This 312 

inference is supported through analyses linking these putative biochemical transformations to 313 

influences of deterministic processes. The relative frequencies of many individual biochemical 314 

transformations, regardless of the molecule gained or lost, were significantly correlated to the 315 

level of determinism. For most transformations, these correlations were similar between surface 316 

and pore water metabolite assemblages (Supplemental File 3). Grouping transformations by 317 

elemental compositions as above, however, revealed that determinism in the surface water was 318 

positively associated with N-, S-, and P-containing transformations and negatively related to 319 

those transformations containing only C, H, and O. These results indicate that as N-, S-, and P-320 

containing transformations become more frequent within the surface water, overall metabolome 321 

composition begins to diverge. Within the porewater, only S-containing transformations were 322 
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significantly positively related to deterministic processes. The absence of a strong N-containing 323 

transformation correlation within the porewater contrasts with the overall frequency dynamics 324 

discussed earlier and likely points to more complex organic N metabolism. To further reveal 325 

underlying processes and their dynamics will require more detailed geochemical (e.g., dynamics 326 

of vertical redox gradients) and molecular investigations (e.g., metatranscriptomics of microbial 327 

communities), likely across other river corridors and longer time periods. 328 

 329 

Discussion 330 

A key element limiting accurate representation of DOM cycling in predictive models is 331 

understanding the processes governing spatiotemporal variation in metabolite assemblages and 332 

the follow-on impacts to emergent biogeochemical function. To address this challenge, we took a 333 

novel approach based on concepts and methods from metacommunity ecology. We find that 334 

deterministic processes drive divergence in metabolite assemblage composition through both 335 

space and time. This divergence was observed despite similar alpha diversity and 336 

molecular/thermodynamic properties. We also provide evidence that deterministic processes 337 

which cause metabolome divergence are associated with organic transformations. This indicates 338 

that expressed microbial metabolisms should be highly dynamic in time and should diverge 339 

between surface and subsurface components of the river corridor. Given strong similarity in 340 

molecular properties across surface and subsurface domains, we further propose that divergent 341 

metabolite assemblages have the potential to be thermodynamically equivalent.  342 

 343 

This highlights a major, unresolved question that is fundamental to understanding the role of 344 

environmental metabolites—as both reactants and products—in emergent biogeochemical 345 
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function. That is, what are the processes that give rise to observed metabolite assemblages and 346 

what is the interplay of these processes with biogeochemical function? Future work should focus 347 

on understanding the degree to which variation in the composition of metabolite assemblages 348 

influences variation in biogeochemistry irrespective of changes in molecular properties. This is 349 

analogous to the question of how important microbial community composition is to realized 350 

biogeochemical function6,36,37. It is often found that microbial composition itself is not a primary 351 

driver of biogeochemical function, which indicates a significant amount of functional 352 

redundancy6,38,39. In other cases, however, microbial community composition corresponds well 353 

with ongoing biogeochemical processes. For example, arsenic mobilization within contaminated 354 

soils in Bangladesh was driven by the presence and distribution of diverse taxa associated with 355 

arsenic and iron reducing bacteria40.  356 

 357 

Similar functional profiles despite divergent taxonomic composition is a common feature in 358 

ecological systems31,37,41. Different microbial communities within the human gut or in soil 359 

environments will provide similar (if not indistinguishable) contributions to overall ecosystem 360 

function32. Analogously, divergent metabolite assemblages can have indistinguishable 361 

thermodynamic and molecular properties, though this does not necessarily indicate that the 362 

metabolite assemblages are identical with respect to biogeochemical function. Both the surface 363 

and pore water metabolite assemblages had conserved thermodynamic and molecular properties 364 

but were compositionally divergent due to strong deterministic processes (Figure 6). This 365 

suggests that compositionally divergent metabolite assemblages could be redundant with respect 366 

to bulk biogeochemical processes (e.g., respiration rates) that have been shown to be influenced 367 

by metabolite thermodynamics6,42. Whether these outcomes are driven by differential substrate 368 
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preference across the riverbed or common labile carbon depletion, the divergence in metabolite 369 

assemblages suggests that these environments can take different paths while maintaining similar 370 

bulk chemical and thermodynamic properties. In other words, redundancy appears to exist at 371 

higher levels of metabolite properties, but not at the lower levels associated with biochemical 372 

linkages among metabolites. An open question is the degree to which net biogeochemical rates 373 

respond to higher-level properties (e.g., thermodynamics of individual metabolites) versus lower-374 

level biochemical mechanisms. Evaluating this question is fundamental to understanding 375 

whether and how thermodynamic redundancy is association with redundancy of biogeochemical 376 

function.  377 

 378 

Metabolite assemblages are examined as snapshots of the organic compounds at a given point in 379 

time and space. By analyzing assemblages together and viewing them as analogs to ecological 380 

communities, we can draw upon the concepts, theory, and tools developed with meta-community 381 

ecology. Doing so provides novel insight into the processes that shape spatiotemporal dynamics 382 

of metabolite assemblages. Here, using this approach we found that variable selection can 383 

dominate spatial and temporal dynamics of metabolite assemblages, potentially via underlying 384 

biochemical processes associated with dynamic organic N, S, and P metabolism. Similarities 385 

between this study and previous work hint at the potential to elucidate generalizable principles 386 

that could be used to enhance the predictive capacity of process-based simulation models (e.g., 387 

reactive transport codes). Applying our analytical framework to ecosystem metabolomes from a 388 

broad suite of river corridors and pairing these analyses with biogeochemical rate measurements 389 

will provide exciting opportunities to test and reveal generalizable principles. 390 

 391 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.946459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.946459
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 392 

Site Description. Samples for this study were collected from Watershed 1 (WS01) in the HJ 393 

Andrews Experimental Forest, Oregon, USA (Figure 1)19,21. For a detailed description of this 394 

study site, please refer to Ward et al.21 and Wondzell et al.19. Briefly, WS01 is a shallow, low-395 

order, headwater stream which is hydrologically connected to the surrounding terrestrial 396 

environment19,21. The river corridor is forested, and evapo-transpiration drives diel fluctuations 397 

in stream discharge (Figure 1)26,27. Given that these hydrologic dynamics occur with regular 398 

frequency, they offer an opportunity to study changes in DOM composition through time in both 399 

the surface water and pore water. This study was conducted under low-discharge conditions 400 

during July 23-25, 2018, when diel stage fluctuations can cause spatially intermittent flows, the 401 

proportion of total down valley flow passing through the hyporheic zone is maximized, and 402 

connectivity between the subsurface and surface was the highest. Therefore, the surface water 403 

collected at the sampling location has likely passed through the hyporheic zone multiple 404 

times21,26,27. 405 

 406 

Sample Collection. Three points separated by ~4 meters were selected along the river corridor to 407 

collect pore water samples. Approximately 20 mL of pore water was collected from each of these 408 

locations every 3 hours for 48 hours. Concurrently, surface water was collected in triplicate from 409 

the same spatial position as the central pore water location. In total, 102 total samples were 410 

collected over 17 time points. Surface water was collected using a 60 mL syringe through Teflon 411 

tubing while the pore water was collected using a syringe attached via Teflon tubing to a 30 cm 412 

long stainless-steel sampling tube (MHE Products, MI, USA) with a slotted screen across the 413 

bottom ~5cm. One sampling tube was installed to 30cm depth at each pore water sampling 414 
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location; these tubes remained in place during the 48-hour time course of sampling. Prior to 415 

sampling a given location, the syringe was flushed 3 times with the source water to ensure only 416 

the desired water was collected. All samples were filtered through a 0.2 μm Sterivex filter 417 

(Millipore, MA, USA). At each time point, one filter was used for all pore water samples, and a 418 

different filter was used for the surface water. To minimize contamination, water passing through 419 

a given filter was collected for analysis using a needle attached to the filter and injected through 420 

a septum. During sampling, water temperature, approximate water stage, and pH were measured. 421 

Water samples for DOM analysis were injected into amber borosilicate glass vials. Samples for 422 

cations and anions were injected into clear borosilicate glass vials.  Once collected, samples were 423 

stored in a cooler on blue ice until they could be frozen until they were processed in the lab.  424 

 425 

Geochemistry. Anion concentrations were measured using a Dionex ICS-2000 anion 426 

chromatograph with AS40 autosampler using an isocratic method (guard column: IonPac AG18 427 

guard, 4x50mm; analytical column: IonPac AS18, 4x250mm; suppressor: RFIC ASRS, 300 428 

rmm, self-regenerating; suppressor current: 57mA). The isocratic method was a 15-minute run 429 

with a 1 mL/min flow rate with 22 mM KOH at 30 degrees C and 25 μL injection volume. 430 

Standards were made from Spex CertiPrep (Metuchen, NJ, 08840) 1000 mg/L anion standards. 431 

NO2 standard was diluted in the range of 0.04 to 20 ppm. F standard was diluted in the range of 432 

0.2 to 10 ppm. Cl and SO4 standards were diluted in the range of 0.16 to 80 ppm. NO3 standard 433 

was diluted in the range of 0.12 to 60 ppm. Ion peaks were identified and integrated manually in 434 

the software.  435 

 436 
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Cations samples were prepared with nitric acid. Samples were measured with a Perkin Elmer 437 

Optima 2100 DV ICP-OES with an AS93 auto sampler. A Helix Tracey 4300 DV spray chamber 438 

and SeaSpray nebulizer were used with double distilled 2 % nitric acid (GFS Chemicals, Inc. 439 

Cat. 621) and a flow rate of 1.5 mL/min. Calibration standards were made with Ultra Scientific 440 

ICP standards (Kingstown, RI). P, Mg, Ca, K, and Na standards were diluted in the range of 5-441 

4000 ppm.  Fe standard was diluted in the range of 0.5-400 ppm.   442 

 443 

Non-purgeable organic carbon (NPOC) was determined by a Shimadzu combustion carbon 444 

analyzer TOC-L CSH/CSN E100V with ASI-L auto sampler. An aliquot of sample was acidified 445 

with 15% by volume of 2N ultra-pure HCL. The acidified sample was then sparged with carrier 446 

gas for 5 minutes to remove the inorganic carbon component. The sparged sample was injected 447 

into the TOC-L furnace at 680°C using 100 uL injection volumes. The best 3 out of 4 injections 448 

replicates were averaged to get final result. The NPOC organic carbon standard was made from 449 

potassium hydrogen phthalate (Nacalia Tesque, lot M7M4380). The calibration range was 0.5 to 450 

10 ppm NPOC as C.   451 

 452 

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Sample Preparation, Data 453 

Collection, and Data Preprocessing. Fourier Transform Ion Cyclotron Resonance Mass 454 

Spectrometry (FTICR-MS) was used to provide ultrahigh resolution characterization of 455 

metabolite assemblages within each DOM sample. Aqueous samples (NPOC 0.33-0.99 mg C/L) 456 

were acidified to pH 2 with 85% phosphoric acid and extracted with PPL cartridges (Bond Elut), 457 

following Dittmar et al.43. Subsequently, high-resolution mass spectra of the organic matter were 458 

collected using a 12 Tesla (12T) Bruker SolariX Fourier transform ion cyclotron resonance mass 459 
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spectrometer (Bruker, SolariX, Billerica, MA) located at the Environmental Molecular Sciences 460 

Laboratory in Richland, WA.  Samples were directly injected into the instrument using a custom 461 

automated direct infusion cart that performed two offline blanks between each sample. The 462 

FTICR-MS was outfitted with a standard electrospray ionization (ESI) source, and data was 463 

acquired in negative mode with the needle voltage set to +4.4kV, resolution was 220K at 464 

481.185 m/z. Data were collected with an ion accumulation time of 0.08 sec and 0.1 sec from 465 

100 m/z – 900 m/z at 4M. One hundred forty-four scans were co-added for each sample and 466 

internally calibrated using OM homologous series separated by 14 Da (–CH2 groups). The mass 467 

measurement accuracy was typically within 1 ppm for singly charged ions across a broad m/z 468 

range (100 m/z - 900 m/z). BrukerDaltonik Data Analysis (version 4.2) was used to convert raw 469 

spectra to a list of m/z values by applying the FTMS peak picker module with a signal-to-noise 470 

ratio (S/N) threshold set to 7 and absolute intensity threshold to the default value of 100. 471 

Chemical formulae were assigned using Formularity44, an in-house software, following the 472 

Compound Identification Algorithm 45–47. Chemical formulae were assigned based on the 473 

following criteria: S/N >7, and mass measurement error < 0.5 ppm, taking into consideration the 474 

presence of C, H, O, N, S and P and excluding other elements. This in-house software was also 475 

used to align peaks with a 0.5 ppm threshold.  476 

 477 

The R package ftmsRanalysis48 was then used to remove peaks that either were outside the 478 

desired m/z range (200 m/z – 900 m/z) or had an isotopic signature, calculate a number of 479 

derived statistics (Kendrick defect,  double-bond equivalent, aromaticity index, nominal 480 

oxidation state of carbon, standard Gibb’s Free Energy of carbon oxidation), and organize the 481 

data into a common framework 49–52. Samples that were run at both ion accumulation times were 482 

combined; given that different IATs will detect different compounds53, by combining the two 483 
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IATs we can gain a more complete characterization of the metabolite assemblages. Replicates 484 

were further combined such that if a metabolite was present in one replicate, it was included in 485 

the composite assemblage. Because peak intensities cannot be used to infer concentration, all 486 

peak intensities were changed to binary presence/absence. In turn, observing a metabolite in 487 

multiple replicates was equivalent to observing it in a single replicate; the absence of a peak is 488 

defined as below the limit of detection. One sample (PP48_000012) was considered an outlier 489 

 490 

Metabolite Dendrogram Estimation. A transformation-weighted characteristics dendrogram 491 

(TWCD) was generated following the protocol outlined in Danczak et al.11. First, biochemical 492 

transformations were identified within the dataset according to the procedure employed by 493 

Breitling et al.54, Bailey et al.55, Graham et al.6,10, and Garayburu-Caruso et al.42. The pairwise 494 

mass differences between each detected metabolite were determined and matched to a database 495 

of 1298 frequently observed biochemical transformations (Supplemental File 4). For example, 496 

if the mass difference between two metabolites was 18.0343, that would putatively indicate a 497 

loss or gain of an ammonium group, while a mass difference of 103.0092 would putatively 498 

indicate loss or gain of a cysteine. This calculation is enabled by the ultrahigh mass resolution of 499 

FTICR-MS data; given this resolution, we considered any between-metabolite mass difference 500 

within 1 ppm of the expected mass of a transformation to be a match. This analysis provides two 501 

outputs: a transformation profile outlining the number of times a putative transformation could 502 

occur in a given sample and pairwise mass difference between every peak. Multivariate 503 

similarities between the transformation profiles of each sample were visualized by generating a 504 

Jaccard dissimilarity-based non-metric multidimensional scaling (NMDS) ordination (metaMDS, 505 

‘vegan’ package v2.5-6)56. Using these pairwise mass differences and transformation 506 
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associations, we then generated a transformation network in which nodes are metabolites and 507 

edges are transformations (Supplemental Figure 1)11,57,58. Relationships between metabolites 508 

were determined by first selecting the largest cluster of interconnected nodes (discarding 509 

everything not within this cluster) and measuring the stepwise distance between each pair of 510 

metabolites (i.e., the minimum number of transformations required to connect one metabolite to 511 

another metabolite within the largest cluster of the biochemical transformation network). These 512 

pairwise distances were then standardized between 0 and 1.  513 

 514 

Relationships among metabolites were also evaluated using a number of metabolite 515 

characteristics estimated from inferred molecular formulae. To do so elemental composition (C-, 516 

H-, O-, N-, S-, P-content), double-bond equivalents (DBE), modified aromaticity index (AImod), 517 

and Kendrick’s defect were used as metabolite characteristics indicating molecular composition 518 

and structure of the metabolites. These metrics were combined to generate a pairwise Euclidean 519 

distance matrix with each distance representing approximate dissimilarity (i.e., further distances 520 

indicate less similar metabolites). These molecular differences were then weighted by the 521 

previously measured transformation distances that were themselves scaled to be between 0 and 1. 522 

A UPGMA hierarchical clustering analysis was then used to convert this combined distance 523 

matrix into a dendrogram which approximates the relationships among metabolites 524 

(Supplemental File 5). This resulted in the transformation weighted molecular characteristics 525 

dendrogram (TWCD). While Danczak et al.11 used three different dendrograms, doing so is 526 

beyond the scope of the current study and we chose to use the TWCD as it integrates more 527 

information relative to other dendrogram methods. 528 

 529 
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Diversity Analyses. The metabolite data were treated as an assemblage of ecological units 530 

following the methodology outlined in Danczak et al.11. All metabolites were treated on a 531 

presence/absence basis – peak intensities were not used due to charge competition47,52. Richness 532 

measurements and Jaccard-based dissimilarity metrics (vegdist, ‘vegan’ package 2.5-6)56 were 533 

used to assess the compositional differences among metabolite assemblages. The TWCD was 534 

used to measure dendrogram-based alpha-diversity indices including Faith’s PD (pd, ‘picante’ 535 

package v1.8)59, mean nearest taxon distance (MNTD), mean pairwise distance (MPD), variance 536 

in nearest taxon distance (VNTD), and variance in pairwise distance (VPD) (generic.metrics, 537 

‘pez’ package v1.2-0)60–65. β-mean nearest taxon distance (βMNTD) was measured using the 538 

comdistnt function in the picante R package59. Jaccard dissimilarity and βMNTD results were 539 

visualized using a principal coordinates analysis (PCoA; pcoa, ‘ape’ package v5.3)66. 540 

 541 

Ecological Null Modeling. Null modeling was performed to quantify the relative influences of 542 

variable selection, homogeneous selection, and stochastic processes over metabolite 543 

assemblages11. Specifically, the β-Nearest Taxon Index (βNTI) was calculated to measure the 544 

influence of stochastic and deterministic assembly processes12,13,15. βNTI was estimated for each 545 

pairwise assemblage comparison. To do so, a null distribution of 999 βMNTD values were 546 

generated and compared to the observed βMTND value for a given pair of assemblages. Pairwise 547 

comparisons with |βNTI| > 2 indicate that deterministic processes were responsible for observed 548 

differences in metabolite composition. In contrast, pairwise comparisons with |βNTI| < 2 indicate 549 

that stochastic processes were responsible for observed differences in metabolite composition.  550 

 551 
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Furthermore, the deterministic processes can be separated into two classes. When βNTI > 2, 552 

differences in metabolite composition are greater than would be expected by random chance (i.e., 553 

greater than the stochastic expectation). This is analogous to ‘variable selection,’ which occurs 554 

when deterministic processes drive divergence in composition between a pair of 555 

assemblages13,14. When βNTI < 2, differences in metabolite composition are less than the 556 

stochastic expectation. This is analogous to ‘homogeneous selection,’ which occurs when 557 

deterministic process drive convergence in composition between a pair of assemblages. Mean 558 

βNTI values for each sample were obtained and used in all analyses and plots. 559 

 560 

Statistics and Plot Generation. Differences in distributions (i.e., diversity analyses, molecular 561 

properties) were evaluated using Mann Whitney U tests (wilcox.test, ‘stats’ package). 562 

Multivariate differences (i.e., ordinations) were identified using PERMANOVA tests (adonis, 563 

vegan package v2.5-6)56. All correlations were Spearman-based and were performed using the 564 

rcorr function (‘Hmisc’ package v4.2)67. All boxplots and scatter/line plots were generated using 565 

the ‘ggplot2’ R package (v3.2.1)68; three-dimensional ordinations were generated using the 566 

‘plot3D’ R package (v1.1.1)69. 567 

 568 

All R scripts used within this manuscript are available on GitHub at 569 

https://github.com/danczakre/HJA-FTICR-Ecology. The uncalibrated, peak-picked FTICR-MS 570 

files and aqueous geochemistry data are available at https://data.ess-571 

dive.lbl.gov/view/doi:10.15485/150969570. The FTICR-MS report used in this study has been 572 

included as Supplemental Data 1. 573 

 574 
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 765 

Figure Legends 766 

Figure 1: An outline of the study site and associated hydrology. a) Map of Watershed 1 within 767 

the HJ Andrews Experimental Forest in Oregon. b) Hydrograph for Watershed 1 with the 768 

sampling period highlighted in red and expanded upon in the inset. Sampling points are indicated 769 

by the blue dashed lines in the inset. 770 

 771 

Figure 2: Plots of average chemical properties through time, separated by environment (i.e., pore 772 

water and surface water). Abbreviations are as follows - standard Gibb’s Free Energy of carbon 773 

oxidation (ΔG°cox), modified aromaticity index (AIMod), and double-bond equivalents (DBE). 774 

Peak counts refer to the number of peaks within a given sample. 775 

 776 

Figure 3: Boxplots illustrating metabolome alpha diversity. Abbreviations are as follows – 777 

Faith’s Phylogenetic Diversity (PD), species richness (SR), mean pairwise distance (MPD), 778 

mean nearest taxon distance (MNTD), variation of pairwise distance (VPD), and variation in 779 

nearest taxonomic distance (VNTD). If a p-value is listed, significant differences were identified 780 

using a Mann Whitney U test. 781 
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 782 

Figure 4: Metabolome beta diversity principal coordinate analyses (PCoA). a) Jaccard 783 

dissimilarity-based PCoA b) βMNTD-based PCoA. Significant differences between groups (i.e., 784 

pore water and surface water) were determined using PERMANOVA and are indicated in the 785 

bottom graph. 786 

 787 

Figure 5: An investigation of potential biochemical transformations throughout the watershed.  a) 788 

Jaccard-based non-metric multidimensional scaling (NMDS) graph for transformation profiles, 789 

with significant differences between groups determined by PERMANOVA and indicated in the 790 

bottom right. b) Boxplots comparing the relative proportion of transformations with specific 791 

elemental compositions observed within pore or surface water. Significance indicated by Mann 792 

Whitney U tests are indicated in the bottom or top left. For example, the surface water had a 793 

significantly higher proportion of transformations containing only C, H, and O than the pore 794 

water. 795 

 796 

Figure 6: β-nearest taxon index (βNTI) calculations across the watershed. a) Boxplots illustrating 797 

differences in βNTI results. Mann Whitney U test significance is indicated in the upper right 798 

corner. b) Mean βNTI for each time point separated by water type. 799 

 800 

Supplemental Legend 801 

Supplemental Figure 1: Visual representation of the transformation network utilized to generate 802 

the transformation-weighted characteristics dendrogram (TWCD). Each node within the network 803 
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represents an individual metabolite while the edges connecting each node is a transformation. 804 

Note the large cluster of interconnected nodes near the middle of the plot. 805 

 806 

Supplemental File 1: Metadata and geochemistry for the field site at Watershed 1 (WS1) in the 807 

HJ Andrews Experimental Forest. 808 

 809 

Supplemental File 2: Significant Spearman-based correlations between average sample βNTI and 810 

site geochemistry. The table is short given that only significant correlations are provided. 811 

Correlations labeled “Bulk” indicate that both surface water and pore water samples were 812 

considered in correlations (i.e., the entire dataset), correlations labeled “SW48” were performed 813 

only with surface water samples, and correlations labeled “PP48” were performed only using 814 

pore water samples. 815 

 816 

Supplemental File 3: Significant correlations between average sample βNTI and putative 817 

biochemical transformations. Sheet 1 includes those significant correlations between individual 818 

transformation relative proportions and βNTI, while Sheet 2 are all correlations between 819 

transformation groups and βNTI (i.e., not only significant correlations). As in Supplemental File 820 

2, correlations labeled “Bulk” indicate that both surface water and pore water samples were 821 

considered in correlations (i.e., the entire dataset), correlations labeled “SW48” were performed 822 

only with surface water samples, and correlations labeled “PP48” were performed only using 823 

pore water samples. 824 

 825 
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Supplemental File 4: Database of known and frequently observed biochemical transformations. 826 

This file is used to identify putative biochemical transformations using ultrahigh-resolution mass 827 

differences obtained from FTICR-MS datasets. 828 

 829 

Supplemental File 5: The transformation-weighted characteristics dendrogram (TWCD) obtained 830 

using the UPGMA hierarchical clustering method. 831 

 832 

Supplemental Data 1: Aligned and calibrated FTICR-MS report generated using Formularity.  833 
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