bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.937391; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1	Expression quantitative trait methylation analysis reveals methylomic associations with
2	gene expression in childhood asthma
3	
4	Soyeon Kim, PhD ¹ , Erick Forno, MD, MPH ¹ , Rong Zhang ² , Qi Yan, PhD ¹ , Nadia Boutaoui,
5	PhD ¹ , Edna Acosta-Pérez, PhD ³ , Glorisa Canino, PhD ³ , Wei Chen, PhD ¹ , Juan C. Celedón, MD,
6	DrPH ¹
7	
8	¹ Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of
9	Pittsburgh, University of Pittsburgh, Pittsburgh, PA
10	² Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
11	³ Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, PR
12	
13	Corresponding Author: Juan C. Celedón, MD, DrPH
14	Division of Pediatric Pulmonary Medicine
15	UPMC Children's Hospital of Pittsburgh
16	4401 Penn Avenue, Pittsburgh, PA 15224
17	Phone: 412.692.8429; Fax: 412.692.7636
18	Email: juan.celedon@chp.edu
19	
20	

21 Abstract

23	Nasal airway epithelial methylation profiles have been associated with asthma, but the effects of
24	such profiles on expression of distant cis-genes are largely unknown. We identified 16,867
25	significant methylation-gene expression pairs in nasal epithelium from Puerto Rican children and
26	adolescents (with and without asthma) in an expression quantitative trait methylation (eQTM)
27	analysis of cis-genes located within 1 Mb of the methylation probes tested. Most eQTM
28	methylation probes were distant from their target genes, and more likely located in enhancer
29	regions of their target genes in lung tissue than control probes. The top 500 eQTM genes were
30	enriched in pathways for immune processes and epithelial integrity, and also more likely to be
31	differentially expressed in atopic asthma. Moreover, we identified 5,934 paths through which
32	methylation probes could affect atopic asthma through gene expression. Our findings suggest
33	that distant epigenetic regulation of gene expression in airway epithelium plays a role in atopic
34	asthma.
35	
36	
37	
38	
39	
40	
40	
41	
42	
43	

44 Introduction

45 Asthma is affected not only by genetic variants but also by environmental factors such as 46 second-hand smoke. Since DNA methylation is determined by both genetics and environment, 47 studying methylation in relevant tissues may be key to understanding asthma pathogenesis. 48 49 A growing body of evidence suggests that abnormalities in airway epithelial integrity and 50 function leads to interactions between injurious agents (such as pollutants and viruses) and 51 dendritic cells, altered immune responses, and -ultimately- asthma. DNA methylation and gene 52 expression in nasal (airway) epithelium are well correlated with those in bronchial (airway) 53 epithelium¹. 54 55 Because bronchial epithelial sampling requires a bronchoscopy (an invasive and costly procedure 56 with non-trivial risks), nasal epithelial sampling is an attractive and safe approach for studies of the airway epithelium and childhood asthma¹. Indeed, a few epigenome-wide association studies 57 58 (EWAS) have identified links between DNA methylation in nasal airway epithelium and asthma. 59 For example, we reported 7,104 CpGs associated with atopic (allergic) asthma in Puerto Ricans, 60 an ethnic group disproportionately affected with this disease². 61 62 In our prior EWAS, we estimated the effect of CpGs associated with atopic asthma on the expression of nearby genes (i.e. those adjacent to or containing a CpG of interest)². More 63 64 recently, we showed that most single nucleotide polymorphisms (SNPs) associated with asthma 65 in a large meta-analysis of genome-wide association studies (GWAS) are not associated with 66 expression of nearby genes, but rather that of more distant cis-genes within 1 Mb. Given such

67	findings, we were interested in examining whether methylation of specific CpG sites is
68	associated with expression of non-nearby cis-genes. We thus conducted an expression
69	quantitative trait methylation (eQTM) analysis in nasal airway epithelium from 455 Puerto
70	Ricans ages 9 to 20 years, including 219 subjects with asthma (cases) and 236 control subjects.
71	
72	Results
73	Location of eQTM-methylation probes relative to paired genes
74	By testing associations between methylation probes within 1 Mb of transcription start sites (TSS)
75	of genes and gene expression, we identified 16,867 significant methylation-expression pairs
76	(FDR-P < 0.01 , see Methods), comprising 9,103 methylation probes associated with expression
77	of 3,512 genes. We then investigated the position of significant methylation probes in this eQTM
78	analysis in relation to their paired genes. If a methylation probe was associated with expression
79	of multiple genes, we counted such probe for each gene. We found that 11% and 89% of
80	significant eQTM probes were located within and outside genes, respectively -including 4% of
81	eQTM probes in promoter regions (Figure 1a). Most eQTM methylation probes were distant
82	from their target genes (371,840 bp on average) (Figure 1b).
83	
84	Because we found distant relationships between methylation and their target genes, we assessed
85	whether eQTM methylation probes in nasal epithelium are enriched in the enhancer regions of

86 their paired genes. For this, we checked the enhancer database for lung tissue

87 (<u>http://enhanceratlas.org/</u>)³, since nasal epithelial tissue was not available in that database, and

88 nasal and bronchial epithelial methylation and expression are well correlated¹. We found that

89	eQTM methylation probes are more likely to be located in enhancer regions of their paired genes
90	than randomly selected control probes (p-value: 1.3×10^{-213}) (Figure 1c, Table 1).
91	
92	While most methylation probes near TSS were negatively correlated with gene expression, more
93	distant pairs tended to be positively correlated (Figure 1d). Of the eQTM methylation probes
94	associated with expression of the gene they were located in, 81.9% were negatively correlated
95	with expression (85.3% if in promoter regions) (Figure 1e). In contrast, only 40.2 % of eQTM
96	methylation probes associated with expression of a distant gene (i.e. methylation probes outside
97	of the associated gene) were negatively correlated with expression levels (Figure 1f).
98	
99	Most of the top eQTM genes (by eQTM P-value) have been implicated in lung disease (Figure
100	2). <i>PAX8</i> is associated with bronchodilator response in children with asthma ⁴ , <i>ECHDC3</i> is
101	associated with obesity and asthma in children ⁵ , <i>LSP1</i> is associated with acute lung inflammation
102	⁶ , <i>HLA-DQB1</i> is associated with asthma ⁷ and total IgE ⁸ , <i>FRG1B</i> is highly mutated in lung
103	adenocarcinoma ⁹ , and <i>KANSL1</i> is associated with pulmonary function ¹⁰ .
104	
105	Gene Ontology enrichment analysis
106	We performed a Gene Ontology enrichment analysis including the top 500 eQTM genes. In this
107	analysis, 34 (69.4%) of the 49 most significant gene ontology categories were related to immune
108	processes (Figure 3a); the second most enriched category was cell adhesion/activation.

- 109 We then investigated whether the top 500 eQTM genes are enriched for various diseases by
- 110 examining significant SNPs from the GWAS catalog (<u>https://www.ebi.ac.uk/gwas/</u>). Most

enriched diseases were related to abnormal immunity (e.g., inflammatory bowel disease and IgA
nephropathy) (Figure 3b) and pulmonary diseases (e.g., sarcoidosis, pneumonia, and asthma).

113

114 eQTM methylation probes and genes are significantly associated with atopic asthma

We connected our eQTM results with those from our previous EWAS of atopic asthma², using a genome-wide FDR-P <0.01. First, we found that only 429 (6.1%) of the 7,046 CpGs that were significantly associated with atopic asthma in our prior EWAS were associated with expression of nearby genes in the eQTM analysis (**Figure 1b**). Second, CpGs that were significant in the eQTM analysis were over-represented among CpGs that were significantly associated with atopic asthma in our prior EWAS, compared to randomly selected control CpGs (p-value < 2.2x

121 10⁻¹⁶) (**Figure 4a and Table 2**).

122

123 Next, we checked whether the 3,512 significant eQTM genes identified in the current analysis 124 are differentially expressed (DE) in atopic asthma (at genome-wide FDR-P <0.01), by checking 125 the results of our recently published TWAS¹¹. Indeed, these 3,512 eQTM genes are significantly 126 more likely to be differentially expressed genes (DEGs) in atopic asthma than 3,512 randomly 127 selected genes (P-value = 1.53×10^{-59}) (**Figure 4b and Table 3**).

128

To test whether methylation affects atopic asthma through regulation of gene expression, we conducted a mediation analysis. In this analysis, we found 5,934 paths in which methylation of CpGs affect atopic asthma through gene expression, consisting of 2,817 methylation probes and 1,943 genes (**Table 4**). Of all the associations between eQTM methylation probes and atopic asthma, 89.4% were mediated by gene expression (**Figure 4c**). Likewise, 93.3% of the eQTM 134 genes associated with atopic asthma mediate the association between methylation and atopic

- 135 asthma (**Figure 4d**).
- 136

137 eQTM results in EVA-PR are replicated in an African American cohort.

138 To attempt replication of our eQTM results in EVA-PR, we used public data from GSE65205¹²,

139 which includes both methylation and gene expression array data in nasal epithelium for 69

140 children (36 with atopic asthma and 33 healthy controls, mostly [91.3%] African American).

141 Using a similar approach to that used in EVA-PR, this replication eQTM analysis was adjusted

142 for age, sex, race/ethnicity, atopic asthma status, and unobserved batch effects.

143

144 Of the 16,867 significant associations between methylation and gene expression in EVA-PR, we

145 were able to test 14,397 associations in GSE65205, due to differences in the platforms used to

146 assess gene expression (RNA-Seq vs. microarray). Of these 14,397 methylation-expression pairs,

147 12,559 (87.2 %) had the same direction of association in GSE65205. Despite the small sample

size of GSE65205, 6,562 (45.6%) of the significant associations in EVA-PR were replicated at

149 FDR-P < 0.05, in the same direction of association (**Table 5**). These replicated associations

150 include 3,992 methylation probes and 1,106 genes. Of the 3,992 replicated methylation probes,

151 3,222 probes were tested in our prior EWAS in EVA-PR²: 1,412 (43.8%) of these 3,222 probes

152 are significantly associated with atopic asthma (FDR-P < 0.05) (Table 6).

153

154 **Discussion**

155 To date, there have been much fewer eQTM studies than eQTL studies¹³, despite probable large

156 joint causal effects of DNA methylation and gene expression on complex diseases. While

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.937391; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

157	genotype does not change as a disease progresses, both epigenetic regulation and transcriptomic
158	activity change as a disease develops or worsens. Thus, studying eQTM may complement
159	findings from genetic or eQTL studies and add novel insights into disease pathogenesis.
160	
161	Most previous genome-wide eQTM studies have been limited to healthy subjects ^{14,15} . In the few
162	instances in which both subjects with asthma and healthy controls were included, only CpGs that
163	were significant in an EWAS -and only genes nearby those CpGs (e.g., within 10 kb)- were
164	examined ¹⁶⁻¹⁸ . In contrast, we assessed all genome-wide CpGs along with expression of cis-
165	genes located within 1 Mb in the current analysis of children and adolescents with and without
166	asthma. Moreover, we were able to replicate nearly half of our significant findings in an
167	independent cohort of predominantly African American children.
168	
169	Notably, in our analysis most significant eQTM methylation probes were not nearby their target
170	cis-genes, a finding that may be explained by physical contact between CpG sites and
171	promoter/coding regions of distant target genes through looping chromatin structures ¹⁹ .
172	Significant eQTM probes were also more likely to be localized in enhancer regions of their target
173	genes in lung tissue than control probes, suggesting that CpG sites can affect transcription of
174	non-nearby (distant) cis-genes through enhancer activity. We also found that while most
175	methylation probes near TSS were negatively correlated with gene expression, more distant pairs
176	tended to be positively correlated. Consistent with our findings, methylation in promoter regions
177	and the first intron have been negatively correlated with gene expression, while methylation of
178	more distant CpG sites and gene expression has been positively correlated with gene expression
179	in several types of cancer ^{20,21 22} .

180 We show an over-representation of the top eOTM methylation probes among CpGs associated 181 with atopic asthma. Similarly, we report an over-representation of the top eQTM genes among 182 DEG in atopic asthma. Moreover, we show that most associations between eQTM methylation 183 probes and atopic asthma are mediated by gene expression. Given that we also found that eQTM 184 methylation probes in nasal epithelium are over-represented in enhancer regions of their paired 185 genes in lung tissue, our findings provide further support for studies of nasal epithelial 186 epigenomics and transcriptomics as a valid alternative to more invasive and costly studies of 187 bronchial epithelium. 188

189 We recognize several study limitations. First, we only included subjects in a high-risk population (Puerto Ricans). However, we have previously replicated findings from GWAS⁹ and EWAS¹¹ of 190 191 asthma in Puerto Ricans in other racial or ethnic groups, including non-Hispanic whites, African 192 Americans, and members of other Hispanic subgroups. Moreover, about half of the significant 193 eQTM pairs in the current analysis in Puerto Ricans were significant in African Americans, 194 despite the small sample size of the replication cohort. Second, we cannot confirm causal 195 relationships in this cross-sectional study, in which asthma could have led to methylation 196 changes or vice versa.

197

In summary, we identified significant methylation-expression pairs in an eQTM analysis of nasal airway epithelium of subjects with and without asthma. Most methylation probes were associated with expression of distant cis-genes, and eQTM genes were enriched in immune regulation and

201 epithelial integrity. Moreover, eQTM methylation probes and eQTM genes were over-

202	manuagented analoge t	Is a a a a a a a a a a d	with stands	anthere from	the are are a caption of	a 1. ar	ala of
202	represented among t	nose associated	with atopic	asunna, iur	ther suggesting	а кеу г	ole of

203 epigenetic regulation of gene expression in airway epithelium in disease pathogenesis.

204 Methods

205 **Study population**

206 Subject recruitment and study procedures for the Epigenetic Variation and Childhood Asthma in Puerto Ricans (EVA-PR) have been previously described². In brief, EVA-PR is a case-control 207 208 study of asthma in subjects aged 9-20 years. Participants with and without asthma were recruited 209 from households in San Juan (PR) from February 2014 through May 2017, using multistage 210 probability sampling; 638 households had ≥ 1 eligible subject, and 543 (85.1%) subjects (one per 211 household) agreed to participate. There were no significant differences in age or sex between 212 eligible children who did and did not participate. The study was approved by the institutional 213 review boards of the University of Puerto Rico (San Juan, PR) and the University of Pittsburgh 214 (Pittsburgh, PA). Written parental consent and assent were obtained from participants <18 years 215 old, and consent was obtained from participants ≥ 18 years old.

216

217 The study protocol included questionnaires on respiratory health, measurement of serum

allergen-specific IgEs, and collection of nasal epithelial samples for DNA and RNA extraction.

Atopy was defined as ≥ 1 positive IgE (≥ 0.35 IU/mL) to five common allergens in Puerto Rico:

house dust mite (Der p 1), cockroach (Bla g 2), cat dander (Fel d 1), dog dander (Can f 1), and

221 mouse urinary protein (mus m 1). Asthma was defined as a physician's diagnosis plus at least

222 one episode of wheeze in the previous year. Control subjects had neither physician-diagnosed

asthma nor wheeze in the previous year.

225 Genome-wide study of DNA methylation and RNA sequencing

226 DNA and RNA were extracted from nasal specimens collected from the inferior turbinate. To 227 account for potential effects of different cell types, we implemented a protocol in a subset of 228 nasal samples (n=31) to select CD326-positive nasal epithelial cells before DNA and 229 RNA extraction. Whole-genome methylation assays were done with HumanMethylation450 BeadChips (Illumina), as previously described². Beta-values, ranging from 0 to 1, were 230 231 calculated to measure percentage methylation at each CpG site. We then transformed beta values 232 to M values because M values are closer to having a normal distribution (for linear regression 233 analysis). As previously described, RNASeq was conducted with the Illumina NextSeq 500 234 platform (Illumina), paired-end reads at 75 cycles, and 80M reads/sample; reads were aligned to 235 reference human genome (hg19) and transcripts per kilobase million (TPM) were used as proxy for gene expression level². We excluded genes with low expression levels (mean TPM < 1) and 236 237 genes whose transcription start site (TSS) was unavailable in hg19. TPM values were 238 transformed to $\log_2(TPM+1)$ for data analysis.

239

eQTM analysis

We focused on identifying cis-eQTMs (i.e., CpGs regulating transcription of neighboring genes), due to limited power to perform a trans analysis (i.e., CpGs regulating distant genes)²³. Thus, we only considered methylation probes within 1 Mb from the TSS of a gene. Using this criterion, we tested 8,552,964 methylation-gene expression pairs in analyses with and without adjustment for covariates. The unadjusted analysis was conducted to filter out potential false positive signals due to adjustment for batch effects^{24,25}. Of the 24,171 methylation-expression pairs with a falsediscovery rate-adjusted P <0.01 (FDR-P, see below) in the adjusted analysis, 7,304 pairs had an FDR-P \geq 0.01 in the unadjusted analysis and were thus excluded from further consideration. Thus, we identified 16,867 methylation-expression pairs that were significant in both unadjusted and adjusted analyses.

251

For the adjusted analysis, we fitted a multivariate linear regression model; $y = \beta_0 + \beta_1 M + \beta_1 M$ 252 253 $T\alpha + \varepsilon$, where y is gene expression, M is methylation value at a probe, T represents other covariates, and β_0 , β_1 , and α are their regression coefficients. In this analysis, other covariates 254 255 were asthma and atopy status, age, gender, the top five principal components from genotypic 256 data, RNA sample sorting protocol (i.e., whole-cells or CD326-positive nasal epithelial cells), 257 methylation and RNA-Seq batch, and latent factors that capture data heterogeneity from methylation and RNA-seq - estimated from R package sva²⁶. To conduct an efficient analysis, 258 we used matrix eQTL package ²⁷ to obtain P-values. FDR-P values were then calculated, based 259 260 on all the methylation-expression pairs tested. For the unadjusted model, we only included 261 methylation value as the following; $y = \beta_0 + \beta_1 M + \varepsilon$. 262

263 Epigenome-wide association study (EWAS) of atopic asthma

The EWAS conducted by Forno et al² included 273 Puerto Rican subjects in EVA-PR (169 with atopic asthma and 104 control subjects without atopy or asthma). After quality controls, 227,836 methylation probes were evaluated in a multivariable logistic regression model, as follows: $logit(p) = \beta_0 + \beta_1 M + \sum \alpha_j Z_j$, where *p* is the probability of having atopic asthma, *M* is a methylation value at a probe, Z_j is an adjusted covariate, and β_0 , β_1 , and α_j are regression coefficients. Other covariates included in the model were the first five PCs derived from genotypic data, age, gender, methylation batches, and latent factors of methylation -estimated from R package sva²⁶. FDR-P values were then calculated based on testing 227,836 methylation
probes. Significance was defined as FDR-P <0.01.

273

274 Transcriptome-wide association studies (TWAS) of atopic asthma

A TWAS of atopic asthma was recently conducted by Forno et al¹¹ in 258 Puerto Rican subjects in EVA-PR (157 with atopic asthma and 101 non-atopic non-asthmatic control subjects). In that study, differential gene expression was analyzed based on the raw count table of RNA sequencing data used using the R package DESeq2. Multivariable models of atopic asthma were adjusted for age, gender, RNA batches, RNA cell sorting, and the first five PCs derived from genotypic data. FDR-P were calculated for the 18,311 genes tested. Significance was defined as an FDR-P <0.01.

282

283 Mediation analysis

To understand how methylation affects asthma through gene expression as a putative mediator,

we conducted mediation analyses to identify indirectly associated methylation CpGs to atopic asthma through gene expression. We used the Baron and Kenny approach ²⁸ instead of the Sobel method ²⁹, due to differences in sample size between the eQTM analysis (including all subjects) and that for atopic asthma (including only subjects with atopic asthma and non-atopic controls).

289

290 To have a significant mediation of gene expression, all of the following needed to be significant:

1) the association between methylation and gene expression 2) the association between

292 methylation and atopic asthma 3) the association between gene expression and atopic asthma.

293 For #1, we only considered eQTM methylation probes and genes as candidates for the mediation

tests. For #2, we recalculated FDR-P values of the result from our prior EWAS² only for the 294 295 eQTM probes, to reduce multiple testing. For #3, we conducted a TWAS fitting a logistic regression model: $logit(p) = \beta_0 + \beta_1 X + \sum \alpha_i A_i$, where p is the probability of having atopic 296 297 asthma, X is a gene, A_i is an adjusted covariate, and β_0 , β_1 and α_i are regression coefficients. 298 The adjusted covariates included in the model were the first five PCs derived from genotypic 299 data, age, gender, whether RNA samples were from CD326-positive nasal epithelial cells, RNA batches, and a latent factor of gene expression, calculated from the R package sva²⁶. 300 301 302 Acknowledgements 303 304 This study was supported by grants HL079966, HL117191, MD011764 (to Juan C. Celedón), 305 and U54MD007587 (to the University of Puerto Rico) from the U.S. National Institutes of

Health (NIH). Dr. Kim is supported by a T32 training grant (HL129949) from the U.S. NIH. Dr.

307 Forno's contribution was supported by NIH grant HL125666. Dr. Yan's contribution was

308 supported by NIH grant K01 HL138098.

309

310 Author Contributions

W.C. and J.C.C. conceived and designed the study. S.K. conducted the primary analysis and interpreted data. E.F., R.Z., Q.Y., N.B., E.A-P., and G.C. participated in data collection and data analysis. S.K., E.F., W.C. and J.C.C. prepared the first draft of the manuscript. All authors reviewed the draft for intellectual content, and approved submission of the final version of the manuscript.

316

317 **Competing Interests**

- 318 J.C.C. has received research materials from Merck and GSK (inhaled steroids) and Pharmavite
- 319 (vitamin D and placebo capsules), in order to provide medications free of cost to participants in
- 320 NIH-funded studies, unrelated to the current work.
- 321

322 Data Availability

- 323 Datasets generated and analyzed during the current study are not publicly available because we
- 324 did not obtain consent for such public release of epigenetic and transcriptomic data from
- 325 participants. However, raw data to generate figures and tables are available from the
- 326 corresponding author with the appropriate permission from the EVA-PR study team and the
- 327 corresponding author upon reasonable request and institutional review board approval.

Figure 1. Characterization and distribution of genomic location of eOTM signals for 16,867 eOTM pairs in nasal epithelium (FDR-P <

0.01) **a.** The left chart depicts whether the probes are located inside of their paired genes. The right chart shows the specific location of probes located inside of their paired genes. **b** Distance between eQTM methylation probes and transcription start sites (TSS) of their target genes in kb pairs. **c.** Number of probes located in enhancer regions of their target genes in lung tissue. eQTM probes vs. controls (the same number of eQTM probes). Fisher's exact test was conducted to calculate the P value. **D.** Positive/Negative correlation regarding the distance between methylation and TSS and the p-value in the eQTM analysis. **e.** The bar graph shows, within each gene region, the proportion of positive or negative correlation of the eQTM pairs. The correlation is Pearson's correlation. **f.** The proportion of negatively correlated eQTM pairs inside (from promoter to 3'UTRs) and outside genes. The number of eQTM probes inside a gene is 1,871 and the number of the eQTM probes outside of a gene is 14,996. A chi-square test was conducted to examine the association between the region (whether the probe is located in the gene or outside of the gene) and the sign of the correlation.

Figure 2. Examples of the most significantly correlated gene-methylation pairs. R² is squared Pearson's correlation between methylation and gene expression. For each gene, only the most significantly associated CpG probe is plotted.

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.937391; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 3. Enrichment of the top 500 eQTM genes in immune pathways/diseases. **a** Gene ontology (GO) biological processes identified for the top 500 eQTM genes. **b** Enrichment of top 500 eQTM genes among reported genes in GWAS catalog by disease. Both analyses were done through FUMA webpage³⁰.

Figure 4. Association of eQTM methylation probes and eQTM genes with atopic asthma. a. Enrichment of eQTM methylation probes in epigenome-wide association studies (EWAS) of atopic asthma (genome-wide FDR-P < 0.01). eQTM refers to eQTM probes and control refers to the same number of randomly selected probes. **b.** Enrichment of eQTM genes in differentially expressed genes (DEG) in atopic asthma. DEG were identified in our previous study of EVA-PR (genome-wide FDR < 0.01)¹¹. eQTM refers to eQTM genes and control refers to the same number of randomly selected genes. **c.** A majority (89.4%) of the associations between eQTM probes and atopic asthma are mediated by gene expression. **d.** A majority of (98.3%) of the genes associated with asthma mediate the

association between methylation and atopic asthma.

Ch	r Probe ID	Position	Gene ID	TSS ^a	eQTM p-value	Distance From TSS
1	6 cg26259865	2880359	ZG16B	2880172	6.6x10 ⁻³³	187
:	3 cg22012981	58522689	ACOX2	58522929	3.2x10 ⁻³¹	-240
:	3 cg16209444	58522771	ACOX2	58522929	4.5x10 ⁻²⁵	-158
1	1 cg15453278	67134607	TBC1D10C	67171383	1.1×10^{-22}	-36776
1	1 cg21862992	68658383	MRPL21	68671303	8.6x10 ⁻²¹	-12920
1	1 cg15453278	67134607	PTPRCAP	67205153	8.2x10 ⁻¹⁷	-70546
	5 cg25045942	33048291	HLA-DPA1	33041454	3.9x10 ⁻¹⁵	6837
	5 cg19053046	33048254	HLA-DPA1	33041454	6.8x10 ⁻¹⁵	6800
1	5 cg10474377	42131658	JMJD7	42120282	2.1×10^{-14}	11376
1	7 cg04204452	1479213	SERPINF2	1646129	5.1x10 ⁻¹⁴	-166916
1	1 cg21920570	63766787	FERMT3	63974151	1.7x10 ⁻¹³	-207364
1	1 cg15995296	67210812	TBC1D10C	67171383	1.5x10 ⁻¹²	39429
1	7 cg04204452	1479213	SERPINF1	1665218	1.5x10 ⁻¹²	-186005
1	5 cg17163752	34729026	GOLGA8B	34875771	2.8x10 ⁻¹²	-146745
1	2 cg21163444	54765670	NCKAP1L	54891494	1.3x10 ⁻¹¹	-125824
1	1 cg10161008	63766546	FERMT3	63974151	3.0x10 ⁻¹¹	-207605
	5 cg17071868	33047056	HLA-DOA	32977389	1.3x10 ⁻¹⁰	69667
1	1 cg21920570	63766787	CCDC88B	64107689	3.2x10 ⁻¹⁰	-340902
:	3 cg16209444	58522771	KCTD6	58477822	1.0x10 ⁻⁹	44949
;	3 cg20567768	22082066	SLC39A14	22224761	1.3x10 ⁻⁹	-142695
1	2 cg22824738	54765988	NCKAP1L	54891494	2.9x10 ⁻⁹	-125506
1	1 cg15995296	67210812	PTPRCAP	67205153	4.3x10 ⁻⁹	5659
	5 cg17071868	33047056	HLA-DPB1	33043702	8.9x10 ⁻⁹	3354
1	7 cg01780984	79058859	BAIAP2	79008946	1.4x10 ⁻⁸	49913
	6 cg19053046	33048254	HLA-DPB1	33043702	1.7x10 ⁻⁸	4552
1	1 cg10161008	63766546	CCDC88B	64107689	1.8x10 ⁻⁸	-341143
	5 cg23097826	149828748	RPS14	149829319	2.5x10 ⁻⁸	-571
1	9 cg25264268	427263	SHC2	460996	2.5x10 ⁻⁸	-33733
1	2 cg11700959	7066664	LAG3	6881669	3.0x10 ⁻⁸	184995
1	2 cg11700959	7066664	CD4	6898637	3.0x10 ⁻⁸	168027

Table 1. Top 30 eQTM methylation CpGs that are located in enhancer region of their target genes in lung tissue.

The eQTM analysis was conducted in nasal airway epithelium, and the enhancer regions and their target genes were identified in lung tissue (<u>http://www.enhanceratlas.org</u>)²⁰. A total of 81 eQTM CpGs that are located in enhancer regions of their target genes were found. ^a TSS is the transcription start site of the gene.

Table 2. Top 30 eQTM methylation probes identified in a previous epigenome-wide association	
study (EWAS) of atopic asthma ²	

probe chr position P-value Associated Genes identified by QTM (FDR < 0.01)				EWAS		Nearest
cg08844313 5 149240529 1.2x10 ¹⁶ CD74, SL2CA2, DCTW4, AFAP1L1, GRPEL2 PDE6A cg20372759 12 58162281 1.2x10 ¹⁶ MD06, CYP2701, AGAP2-AS1, MARCH9, TSFM, ATP23, MD06, CYP2701, AGAP2-AS1, MARCH9, TSFM, ATP23, MARCH9, TSFM, ATP23, MARCH9, TSFM, AD13, CMTM4, PSKH1, TRADD, CG07239613 METTL1 METTL1 cg07239613 16 67051005 2.3x10 ¹⁶ CKLF CKS4 cg100406271 2 235160451 4.0x10 ¹⁸ DGKD, UGTLA1, UGTLA4, UGTLA5, UGTLA3, SCARNAS SPP2 cg00406271 0 12107702 5.6x10 ¹⁶ GRK5, FAM204A, PRDX3, MCMBP GRK5 cg00406271 0 4386802 6.6x10 ¹⁸ AKRIC3 GCN74, LINC0136, GFM2, ENCI, NSA2, FAM169A, LINC00704 cg13875819 10 4386802 1.6x10 ¹⁵ SPP1 SUCNN1 SCMAAA, MEE20, CCI, ISA22, SCM169A, ANKR031 cg13875819 10 4386802 1.6x10 ¹⁸ SPU17 FBXL7 FBXL7 cg01370976 1 15683163 2.5x10 ¹⁵ GPR171, MBM1, AAAC, P2RY13, P2RY1 SUCNN1 cg01870976 15 101887	probe	chr	position	P-value	Associated Genes identified by eQTM (FDR < 0.01)	Gene
cg20372759 12 S8162287 1.2x10 ¹⁶ MY01A PSMB10, FBXLB, HSF4, NOL3, CMTM4, PSKH1, TRADD, CKLF METTL1 cg07239613 16 67051005 2.3x10 ¹⁶ CKLF GBA, PSMB2, KIAA0319L, SFPQ, LOC653160 GIA4 cg15006973 1 35258933 3.2x10 ¹⁶ DCKD, UGT1A1, UGT1A4, UGT1A5, UGT1A3, SCARNAS SPP2 cg00406211 10 121077022 5.6x10 ¹⁶ DGKD, UGT1A1, UGT1A4, UGT1A5, UGT1A3, SCARNAS SPP2 cg00406211 10 121077022 5.6x10 ¹⁶ DGKD, UGT1A1, UGT1A5, UGT1A3, SCARNAS SPP2 cg00406211 10 121077022 5.6x10 ¹⁶ PKST FBXL7 FBXL7 cg00464773 5 15927184 5.7x10 ¹⁶ FBXL7 FBXL7 FBXL7 cg03875819 10 4358602 6.6x10 ¹⁶ PCKT4, LINC0136, GFM2, ENC1, NSA2, FAM169A, GCVT4, LINC01736, GFM2, ENC1, INSA2, FAM169A, GCVT4, LINC0173, SCA2, LINTOR2, SLC25A4A, SCAMA4, MEE2, CCT3, ISCG02, LINTOR2, SLC25A4A, CR20730643 S15161992 1.6x10 ¹⁵ CBN14, SEMA4A, MEE2, CCT3, ISCG02, LINTOR2, SLC25A4A, MRD45, SLC5A2, SCRB, GGAT1, ZNF70, MROH1, GC01370976 NFK1 MRC4 cg01859321 8	cg08844313	5	149240529	1.2x10 ⁻¹⁶	CD74, SLC26A2, DCTN4, AFAP1L1, GRPEL2 MBD6_CYP27B1_AGAP2-AS1_MARCH9_TSFM_ATP23	PDE6A
cg07239613 16 67051005 2.3x10 ⁻¹⁸ CRUF CRUF <thcruf< th=""> <thcruf< th=""> <thcruf< th=""></thcruf<></thcruf<></thcruf<>	cg20372759	12	58162287	1.2x10 ⁻¹⁶	MYOIA PSMR10 FRX18 HSFA NOI3 CMTMA PSKH1 TRADD	METTL1
cg15006973 1 35258933 3.2×10 ¹⁴ IDC653160 GRA cg15046971 2 235160451 4.0×10 ¹⁴ DGKD, UGTIAI, UGTIAA, UGTIAS, UGTIA3, SCARNAS SPP2 cg00406211 10 121077022 5.6×10 ¹⁵ GRK5, FAM204A, PRDX3, MCMBP GRK5 cg00664723 5 15927184 5.7×10 ¹⁵ FBXL7 FBXL7 cg00664723 5 15927184 5.7×10 ¹⁵ FBXT FBXT INC00704 cg1158502 5 74348187 8.6×10 ¹⁶ POC5 ARRIC3 INC00704 cg11586666 22 29458723 1.1×10 ¹³ XBP1, KREMENI, GAS2LI, RHBDD3 C22orf31 cg15858666 22 29458723 1.8×10 ¹³ GPH71, MBNL1, ADAC, P2R'13, P2R'1 SUCRN1 cg16859321 8 144970195 2.5×10 ¹⁵ FBXL5, PICC, ADCK5 PLEC cg01859321 8 144970195 2.5×10 ¹⁵ FBXL5, PICC, ADCK5 PLC cg01859321 1 102147694 4.9×10 ¹³ DYNC2H1, TMEM123, MMP10 BIRC3	cg07239613	16	67051005	2.3x10 ⁻¹⁶	CKLF	CES4A
cg10549071 2 235160451 4.0x10 ¹⁶ DGKD, UGTIAL, UGTIAA, UGTIAS, UGTIAS, SCARNAS SPP2 cg00406211 10 121077022 5.6x10 ¹⁶ GRK5, FAM204A, PRDX3, MCMBP GRK5 cg00664723 5 15927184 5.7x10 ¹⁶ FBXL7 FBXL7 cg03875819 10 4386802 6.6x10 ¹⁶ AKR1C3 GCN74, LINC01336, GFM2, ENC1, NSA2, FAM169A, GCN74, LINC01336, GFM2, ENC1, NSA2, FAM169A, GCN74, LINC01336, GFM2, ENC1, NSA2, FAM169A, GCN74, LINC0136, GFM2, ENC1, NSA2, FAM169A, GCN74, LINC01376, GFM2, ENC1, NSA2, FAM169A, GCN74, LINC01736, GFM2, ENC1, NSA2, FAM169A, GCN74, MRD16, SIC25A2, SCR18, DGA1, ZNF707, MROH1, SEMA4A, MEF20, CCT3, ISG2022, LAMTOR2, SLC25A44, MROH6, SIC25A2, SCR18, DGA11, ZNF707, MROH1, SEM44, MROH6, SIC25A2, SCR18, DGA11, ZNF707, MROH1, GC01870976 NTRK1 cg01870976 15 101887154 3.2x10 ¹⁵ PSK6, ALDH1A3, LRRK1, TM2D3 PCSK6 cg00472600 1 10247694 4.9x10 ¹⁵ CAPN14 SP706 GR972 cg09472600 1 18535770 9.3x10 ¹⁵ SIC9A3, PP7080, CEP72,	cg15006973	1	35258933	3.2x10 ⁻¹⁶	LOC653160	GJA4
cg00406211 10 121077022 5.6x10 ⁻¹⁶ GRK5, FAM204A, PRDX3, MCMBP GRK5 cg00664723 5 15927184 5.7x10 ⁻¹⁶ FBXL7 FBXL7 cg03875819 10 4386802 6.6x10 ⁻¹⁶ AKR1C3 GNT4, LINC01336, GFM2, ENC1, NSA2, FAM169A, GNT4, LINC01336, GFM2, ENC1, NSA2, FAM169A, C220rJ31 LINC00704 GNT4, LINC01336, GFM2, ENC1, NSA2, FAM169A, C220rJ31 cg13586666 22 29458723 1.1x10 ¹⁵ XBP1, KREMEN1, GA52L1, RHBDD3 C220rJ31 cg20790648 3 151619923 1.6x10 ⁻¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SEMA4A, ME72D, CCT3, ISC20L2, LAMTOR2, SLC25A44, MROH6, SLC52A2, SCRIB, DGAT1, ZNF707, MROH1, GQ1859321 NTRK1 cg01859321 8 144970155 2.5x10 ⁻¹⁵ FBXL6, PIEC, ADCK5 PLEC cg01859321 8 144970153 2.5x10 ⁻¹⁵ FBXL7 SEMA4A, ME72D, CT3, ISC20L2, LAMTOR2, SLC25A44, MROH6, SLC52A2, SCRIB, DGAT1, ZNF707, MROH1, MROH6, SLC52A2, SCRIB, DGAT1, ZNF707, MROH1, SCR04, ZPY500 SIRC3 cg04132353	cg10549071	2	235160451	4.0x10 ⁻¹⁶	DGKD, UGT1A1, UGT1A4, UGT1A5, UGT1A3, SCARNA5	SPP2
cg00664723 5 15927184 5.7x10 ⁻¹⁶ FBXL7 FBXL7 cg03875819 10 4386802 6.6x10 ⁻¹⁶ AKR1C3 GCN74, LINC01336, GFM2, ENC1, NSA2, FAM169A, CR1158606 LINC00704 cg1158606 22 29458723 1.1x10 ¹³ XBP1, KREMEN1, GAS2L1, RHBDD3 C22orf31 cg20790648 3 151619923 1.6x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg24707200 1 156833163 2.5x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg01859321 8 144970195 2.5x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg01859321 8 144970195 2.5x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg01859321 8 144970195 2.5x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg018509321 8 144970195 2.5x10 ¹⁵ GPR172, MBRL1, MM2D3 SUCR1 cg01870976 15 101887154 3.2x10 ¹⁵ DYNC2H1, TMEM123, MMP10 BIRC3 cg00285620 11 102147694 9x	cg00406211	10	121077022	5.6x10 ⁻¹⁶	GRK5, FAM204A, PRDX3, MCMBP	GRK5
cg03875819 10 4386802 6.6x10 ¹⁶ AKR1C3 GCN74, LINC01336, GFM2, ENC1, NSA2, FAM169A, POC5 LINC00704 GCN74, LINC01336, GFM2, ENC1, NSA2, FAM169A, POC5 cg13586696 22 29458723 1.1x10 ¹⁵ XBP1, KREMENI, GAS2L1, RHBDD3 C22orf31 cg20790648 3 151619923 1.6x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg24707200 1 156833163 2.3x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg01859321 8 144970195 2.5x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 NTRK1 cg01859321 8 144970195 2.5x10 ¹⁵ GPCSK6, ALDH1A3, LRRK1, TM2D3 PCEC cg01859321 8 144970195 2.5x10 ¹⁵ DYNC2H1, TMEM123, MMP10 BIRC3 cg00285620 11 102147694 4.9x10 ¹⁵ OYNC2H1, TMEM123, MMP10 SIRC4 cg004132353 2 3140349 GAT0 ¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg06675531 5 150019123 GAT0 ¹⁵ NFL, DHX9, TSEN15, APOBEC4 NFC2 cg19107578 5	cg00664723	5	15927184	5.7x10 ⁻¹⁶	FBXL7	FBXL7
Cg21158502 5 74348187 8.6x10 ¹⁴ INCO139, GFM2, ENC1, NSA2, FAM169A, Cg21158502 5 74348187 8.6x10 ¹⁴ POC5 ANKRD31 C22orf31 Cg13586696 22 29458723 1.1x10 ¹³ XBP1, KREMEN1, GAS2L1, RHBDD3 C22orf31 Cg0790648 3 151619923 1.6x10 ¹³ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCN1 Cg01859321 8 144970195 2.5x10 ¹⁵ RRNAD1, SMG5, UBQLN4, MRPL24 NTRK1 Cg01859321 8 144970195 2.5x10 ¹⁵ F6XL6, PLEC, ADCKS PLEC Cg01870976 15 101887154 3.2x10 ¹⁵ PCSK6, ALDH1A3, LRRK1, TM2D3 PCSK6 Cg00285620 11 102147694 4.9x10 ¹⁵ DYNC2H1, TMEM123, MMP10 BIRC3 Cg06675531 5 150019123 6.4x10 ¹⁵ ZNF300, SLC26A2, DCTN4, SYNPO SYNPO Cg18749617 15 102028637 1.2x10 ¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 Cg18749617 15 102028637 1.2x10 ¹⁴ PCSK6, ALDH1A3, LRRK1	cg03875819	10	4386802	6.6x10 ⁻¹⁶	AKR1C3	LINC00704
cg13586696 22 29458723 1.1x10 ⁻¹⁵ XBP1, KREMEN1, GAS2L1, RHBDD3 C22orf31 cg20790648 3 151619923 1.6x10 ⁻¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg24707200 1 156833163 2.3x10 ⁻¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SUCNR1 cg01859321 8 144970195 2.5x10 ⁻¹⁵ FBXL6, PLEC, ADCK5 PLEC cg01859321 8 144970195 2.5x10 ⁻¹⁵ FBXL6, PLEC, ADCK5 PLEC cg01859321 8 144970195 2.5x10 ⁻¹⁵ PCSK6, ALDH1A3, LRRK1, TM2D3 PCSK6 cg00285620 11 102147694 4.9x10 ⁻¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg06675531 5 150019123 6.4x10 ⁻¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg09472600 1 183537770 9.3x10 ⁻¹⁵ NPL, DHX9, TSEN15, APOBEC4 NCF2 cg19107578 5 493262 1.2x10 ⁻¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg1033021 11 3815589 1.3x10 ⁻¹⁴ RRM1, TRIM21, TSSC2 <	cg21158502	5	74348187	8.6x10 ⁻¹⁶	POC5	ANKRD31
cg20790648 3 151619923 1.6x10 ¹⁵ GPR171, MBNL1, AADAC, P2RY13, P2RY1 SEMAAA, MEP2D, CCT3, ISG20L2, LAMTOR2, SLC25A44, MRNAD1, SMG5, UBQLN4, MRPL24 NTRK1 cg24707200 1 156833163 2.3x10 ¹⁵ FRNAD1, SMG5, UBQLN4, MRPL24 NTRK1 cg01859321 8 144970195 2.5x10 ¹⁵ FBXL6, PLEC, ADCK5 PLEC cg01850321 1 101887154 3.2x10 ¹⁵ PCSK6, ALDH1A3, LRRK1, TM2D3 PCSK6 cg00285620 11 102147694 4.9x10 ¹⁵ DYNC2H1, TMEM123, MMP10 BIRC3 cg064132353 2 31440349 6.0x10 ¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg06675531 5 150019123 6.4x10 ¹⁵ ZNF300, SLC26A2, DCTN4, SYNPO SYNPO cg22855021 14 81610812 7.5x10 ¹⁵ GTF2A1 TSHR SLC9A3 cg09472600 1 18353777 9.3x10 ¹⁴ NPL, DHX9, TSEN15, APOBEC4 NCF2 SLC9A3 cg18749617 15 102028637 1.2x10 ¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg03387497 <t< td=""><td>cg13586696</td><td>22</td><td>29458723</td><td>1.1x10⁻¹⁵</td><td>XBP1, KREMEN1, GAS2L1, RHBDD3</td><td>C22orf31</td></t<>	cg13586696	22	29458723	1.1x10 ⁻¹⁵	XBP1, KREMEN1, GAS2L1, RHBDD3	C22orf31
cg24707200 1 156833163 2.3x10 ⁻¹⁵ RRNAAD, SMG5, UBQLN4, MRPL24 NTRK1 cg01859321 8 144970195 2.5x10 ⁻¹⁵ FBXL6, PLEC, ADCK5 PLEC cg01850321 101887154 3.2x10 ⁻¹⁵ FGXL6, PLEC, ADCK5 PLEC cg01870976 15 101887154 3.2x10 ⁻¹⁵ PCSK6, ALDH1A3, LRRK1, TM2D3 PCSK6 cg00285620 11 102147694 4.9x10 ⁻¹⁵ DYNC2H1, TMEM123, MMP10 BIRC3 cg04132353 2 31440349 6.0x10 ⁻¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg06675531 5 150019123 6.4x10 ⁻¹⁵ ZNF300, SLC26A2, DCTN4, SYNPO SYNPO cg19107578 5 493262 1.2x10 ⁻¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg18749617 15 102028637 1.2x10 ⁻¹⁴ PCSK6, ALDH1A3, LRK1 PCSK6 cg1033021 11 3815589 1.3x10 ⁻¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg03387497 20 17680945 1.5x10 ⁻¹⁴ PCL411, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 </td <td>cg20790648</td> <td>3</td> <td>151619923</td> <td>1.6x10⁻¹⁵</td> <td>GPR171, MBNL1, AADAC, P2RY13, P2RY1</td> <td>SUCNR1</td>	cg20790648	3	151619923	1.6x10 ⁻¹⁵	GPR171, MBNL1, AADAC, P2RY13, P2RY1	SUCNR1
cg01859321 8 144970195 2.5x10 ¹⁵ FBX16, PLEC, ADCKS PLEC cg01870976 15 101887154 3.2x10 ¹⁵ PCSK6, ALDH1A3, LRRK1, TM2D3 PCSK6 cg00285620 11 102147694 4.9x10 ¹⁵ DYNC2H1, TMEM123, MMP10 BIRC3 cg04132353 2 31440349 6.0x10 ¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg06675531 5 150019123 6.4x10 ¹⁵ ZNF300, SLC26A2, DCTN4, SYNPO SYNPO cg09472600 1 183537770 9.3x10 ¹⁵ NPL, DHX9, TSEN15, APOBEC4 NCF2 cg19107578 5 493262 1.2x10 ¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg18749617 15 102028637 1.2x10 ¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg1033021 11 3815589 1.3x10 ¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg20337028 17 75181836 1.8x10 ¹⁴ SEC141, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg17223698 15 39416631 2.0x10 ¹⁴ SRP14 C15orf54	cg24707200	1	156833163	2.3x10 ⁻¹⁵	RRNAD1, SMG5, UBQLN4, MRPL24 MROH6, SIC52A2, SCRIB, DGAT1, ZNEZOZ, MROH1	NTRK1
cg01870976 15 101887154 3.2x10 ¹⁵ PCSK6, ALDH1A3, LRRK1, TM2D3 PCSK6 cg00285620 11 102147694 4.9x10 ¹⁵ DYNC2H1, TMEM123, MMP10 BIRC3 cg04132353 2 31440349 6.0x10 ¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg06675531 5 150019123 6.4x10 ¹⁵ ZNF300, SLC26A2, DCTN4, SYNPO SYNPO cg22855021 14 81610812 7.5x10 ¹⁵ GTF2A1 TSHR cg09472600 1 183537770 9.3x10 ¹⁵ NPL, DHX9, TSEN15, APOBEC4 NCF2 cg19107578 5 493262 1.2x10 ¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg18749617 15 102028637 1.2x10 ¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg1033021 11 3815589 1.3x10 ¹⁴ RCM1, TRIM21, TSSC2 NUP98 cg20337028 17 75181836 1.8x10 ¹⁴ SEC1411, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC1411 cg17223698 15 39416631 2.0x10 ¹⁴ SRP14 C15orf54 cg02333649 22 19471093 5.x10 ¹⁴ COPS8	cg01859321	8	144970195	2.5x10 ⁻¹⁵	FBXL6, PLEC , ADCK5	PLEC
cg00285620 11 102147694 4.9x10 ¹⁵ DYNC2H1, TMEM123, MMP10 BIRC3 cg04132353 2 31440349 6.0x10 ¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg06675531 5 150019123 6.4x10 ¹⁵ ZNF300, SLC26A2, DCTN4, SYNPO SYNPO cg06675531 14 81610812 7.5x10 ¹⁵ GTF2A1 TSHR cg09472600 1 183537770 9.3x10 ¹⁵ NPL, DHX9, TSEN15, APOBEC4 NCF2 cg19107578 5 493262 1.2x10 ¹⁴ SLC9A3, PP7080, CEP72, L0C100288152 SLC9A3 cg18749617 15 102028637 1.2x10 ¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg10830021 11 3815589 1.3x10 ¹⁴ RCH1, TSIM21, TSSC2 NUP98 cg20337028 17 75181836 1.8x10 ¹⁴ SEC1411, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC1411 cg17223698 15 39416631 2.0x10 ¹⁴ SRP14 C15orf54 C15orf54 cg08175352 3 101894206 3.2x10 ¹⁴ ZBT811, TRMT10C, NXPE3, SENP7, RPL24, PCN	cg01870976	15	101887154	3.2x10 ⁻¹⁵	PCSK6, ALDH1A3, LRRK1, TM2D3	РСЅК6
cg04132353 2 31440349 6.0x10 ⁻¹⁵ CAPN14, DPY30, LBH, XDH CAPN14 cg06675531 5 150019123 6.4x10 ⁻¹⁵ ZNF300, SLC26A2, DCTN4, SYNPO SYNPO cg22855021 14 81610812 7.5x10 ⁻¹⁵ GTF2A1 TSHR cg09472600 1 18353770 9.3x10 ⁻¹⁵ NPL, DHX9, TSEN15, APOBEC4 NCF2 cg19107578 5 493262 1.2x10 ⁻¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg18749617 15 102028637 1.2x10 ⁻¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg10830021 11 3815589 1.3x10 ⁻¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg03387497 20 17680945 1.5x10 ⁻¹⁴ POLR3F, SNRPB2, LINC00493, RRBP1, RBBP9 BANF2 cg17223698 15 39416631 2.0x10 ⁻¹⁴ SRP14 C15orf54 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg02333649 22 19471093 5.5x10 ⁻¹⁴ TANG02, DGCR8, ZDHHC8 CDC45 c	cg00285620	11	102147694	4.9x10 ⁻¹⁵	DYNC2H1, TMEM123, MMP10	BIRC3
cg06675531 5 150019123 6.4×10 ¹⁵ ZNF300, SLC26A2, DCTN4, SYNPO SYNPO cg22855021 14 81610812 7.5×10 ¹⁵ GTF2A1 TSHR cg09472600 1 183537770 9.3×10 ¹⁵ NPL, DHX9, TSEN15, APOBEC4 NCF2 cg19107578 5 493262 1.2×10 ¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg18749617 15 102028637 1.2×10 ¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg10830021 11 3815589 1.3×10 ¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg03387497 20 17680945 1.5×10 ¹⁴ POLR3F, SNRPB2, LINC00493, RRBP1, RBBP9 BANF2 cg1223698 17 75181836 1.8×10 ¹⁴ SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg19497511 2 238609807 2.7×10 ¹⁴ COPS8 LRRFIP1 cg02333649 22 19471093 5.5×10 ¹⁴ ZBTB11, TRM110C, NXPE3, SENP7, RPL24, PCNP RTM4R, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, RTM4R, A	cg04132353	2	31440349	6.0x10 ⁻¹⁵	CAPN14, DPY30, LBH, XDH	CAPN14
cg222855021 14 81610812 7.5x10 ⁻¹⁵ GTF2A1 TSHR cg09472600 1 183537770 9.3x10 ⁻¹⁵ NPL, DHX9, TSEN15, APOBEC4 NCF2 cg19107578 5 493262 1.2x10 ⁻¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg18749617 15 102028637 1.2x10 ⁻¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg10830021 11 3815589 1.3x10 ⁻¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg03387497 20 17680945 1.5x10 ⁻¹⁴ POLR3F, SNRPB2, LINC00493, RRBP1, RBBP9 BANF2 cg20337028 17 75181836 1.8x10 ⁻¹⁴ SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg02333649 22 19471093 5.5x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTN4R, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, RTN4R, ARVCF, MRPL40, PROH, LINC00896, UFD1L, RTN4R, ARVCF, MRP	cg06675531	5	150019123	6.4x10 ⁻¹⁵	ZNF300, SLC26A2, DCTN4, SYNPO	SYNPO
cg09472600 1 183537770 9.3x10 ⁻¹⁵ NPL, DHX9, TSEN15, APOBEC4 NCF2 cg19107578 5 493262 1.2x10 ⁻¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg18749617 15 102028637 1.2x10 ⁻¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg10830021 11 3815589 1.3x10 ⁻¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg03387497 20 17680945 1.5x10 ⁻¹⁴ POLR3F, SNRPB2, LINC00493, RRBP1, RBBP9 BANF2 cg20337028 17 75181836 1.8x10 ⁻¹⁴ SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg17223698 15 39416631 2.0x10 ⁻¹⁴ SRP14 C15orf54 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg02333649 22 19471093 5.5x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTNAR, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, RTNAR, ARVCF, MRPL40, PRODH, COCA5 CDC45 cg08956463 6 41168911 5.9x10 ⁻¹⁴	cg22855021	14	81610812	7.5x10 ⁻¹⁵	GTF2A1	TSHR
cg19107578 5 493262 1.2x10 ⁻¹⁴ SLC9A3, PP7080, CEP72, LOC100288152 SLC9A3 cg18749617 15 102028637 1.2x10 ⁻¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg10830021 11 3815589 1.3x10 ⁻¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg03387497 20 17680945 1.5x10 ⁻¹⁴ POLR3F, SNRPB2, LINC00493, RRBP1, RBBP9 BANF2 cg20337028 17 75181836 1.8x10 ⁻¹⁴ SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg17223698 15 39416631 2.0x10 ⁻¹⁴ SRP14 C15orf54 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg02333649 22 19471093 5.5x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTN4R, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, RTN4R, ARVCF, MRPL40, PRODH, L	cg09472600	1	183537770	9.3x10 ⁻¹⁵	NPL, DHX9, TSEN15, APOBEC4	NCF2
cg18749617 15 102028637 1.2x10 ⁻¹⁴ PCSK6, ALDH1A3, LRRK1 PCSK6 cg10830021 11 3815589 1.3x10 ⁻¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg03387497 20 17680945 1.5x10 ⁻¹⁴ POLR3F, SNRPB2, LINC00493, RRBP1, RBBP9 BANF2 cg20337028 17 75181836 1.8x10 ⁻¹⁴ SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg17223698 15 39416631 2.0x10 ⁻¹⁴ SRP14 C15orf54 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg02333649 22 19471093 5.5x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTN4R, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, RTN4R, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, CDC45 CDC45 cg08356463 6 41168911 5.9x10 ⁻¹⁴ MDFI, TREM2, FOXP4, C6orf132, UNC5CL TREML2 cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3, ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg19107578	5	493262	1.2×10^{-14}	SLC9A3 , PP7080, CEP72, LOC100288152	SLC9A3
cg10830021 11 3815589 1.3x10 ⁻¹⁴ RRM1, TRIM21, TSSC2 NUP98 cg03387497 20 17680945 1.5x10 ⁻¹⁴ POLR3F, SNRPB2, LINC00493, RRBP1, RBBP9 BANF2 cg20337028 17 75181836 1.8x10 ⁻¹⁴ SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg17223698 15 39416631 2.0x10 ⁻¹⁴ SRP14 C15orf54 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg08175352 3 101894206 3.2x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTN4R, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, TANG02, DGCR8, ZDHHC8 CDC45 cg08356463 6 41168911 5.9x10 ⁻¹⁴ MDFI, TREM2, FOXP4, C6orf132, UNC5CL TREML2 cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3, ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg18749617	15	102028637	1.2x10 ⁻¹⁴	PCSK6, ALDH1A3, LRRK1	PCSK6
cg03387497 20 17680945 1.5x10 ⁻¹⁴ POLR3F, SNRPB2, LINCO0493, RRBP1, RBBP9 BANF2 cg20337028 17 75181836 1.8x10 ⁻¹⁴ SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg17223698 15 39416631 2.0x10 ⁻¹⁴ SRP14 C15orf54 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg08175352 3 101894206 3.2x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTN4R, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, RTN4R, ARVCF, MRPL40, PRODH, LINC01, UFD10, SI	cg10830021	11	3815589	1.3x10 ⁻¹⁴	RRM1, TRIM21, TSSC2	NUP98
cg20337028 17 75181836 1.8x10 ⁻¹⁴ SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C SEC14L1 cg17223698 15 39416631 2.0x10 ⁻¹⁴ SRP14 C15orf54 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg08175352 3 101894206 3.2x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTN4R, ARVCF, MRPL40, PRODH, LINCO0896, UFD1L, TANGO2, DGCR8, ZDHHC8 CDC45 cg08356463 6 41168911 5.9x10 ⁻¹⁴ MDFI, TREM2, FOXP4, C6orf132, UNC5CL TREML2 cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3, ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg03387497	20	17680945	1.5x10 ⁻¹⁴	POLR3F, SNRPB2, LINCOO493, RRBP1, RBBP9	BANF2
cg17223698 15 39416631 2.0x10 ⁻¹⁴ SRP14 C15orf54 cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg08175352 3 101894206 3.2x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP ZPLD1 cg02333649 22 19471093 5.5x10 ⁻¹⁴ ZBTC, MRPL40, PRODH, LINC00896, UFD11, TANG02, DGCR8, ZDHHC8 CDC45 cg08956463 6 41168911 5.9x10 ⁻¹⁴ MDFI, TREM2, FOXP4, C6orf132, UNC5CL TREML2 cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3, ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg20337028	17	75181836	1.8x10 ⁻¹⁴	SEC14L1, SYNGR2, UBALD2, SEPT9, SPHK1, TNRC6C	SEC14L1
cg19497511 2 238609807 2.7x10 ⁻¹⁴ COPS8 LRRFIP1 cg08175352 3 101894206 3.2x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTN4R, ARVCF, MRPL40, PRODH, LINC00896, UFD1L, TANG02, DGCR8, ZDHHC8 ZPLD1 cg08356463 6 41168911 5.9x10 ⁻¹⁴ MDFI, TREM2, FOXP4, C6orf132, UNC5CL TREML2 cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3, ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg17223698	15	39416631	2.0x10 ⁻¹⁴	SRP14	C15orf54
cg08175352 3 101894206 3.2x10 ⁻¹⁴ ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP ZPLD1 cg02333649 22 19471093 5.5x10 ⁻¹⁴ TANGO2, DGCR8, ZDHHC8 CDC45 cg08956463 6 41168911 5.9x10 ⁻¹⁴ MDFI, TREM2, FOXP4, C6orf132, UNC5CL TREML2 cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3, ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg19497511	2	238609807	2.7x10 ⁻¹⁴	COPS8	LRRFIP1
cg02333649 22 19471093 5.5x10 ⁻¹⁴ TANGO2, DGCR8, ZDHHC8 CDC45 cg08956463 6 41168911 5.9x10 ⁻¹⁴ MDFI, TREM2, FOXP4, C6orf132, UNC5CL TREML2 cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3, ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg08175352	3	101894206	3.2x10 ⁻¹⁴	ZBTB11, TRMT10C, NXPE3, SENP7, RPL24, PCNP RTNAR ABVCE MARIAO PRODEL UNCOORGE UED11	ZPLD1
cg08956463 6 41168911 5.9x10 ⁻¹⁴ MDFI, TREM2, FOXP4, C6orf132, UNC5CL TREML2 cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3, ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg02333649	22	19471093	5.5x10 ⁻¹⁴	TANGO2, DGCR8, ZDHHC8	CDC45
cg04320956 16 69143512 6.3x10 ⁻¹⁴ HAS3 , ZFP90, NQ01, NIP7, SLC7A6, CDH3, ESRP2 HAS3	cg08956463	6	41168911	5.9x10 ⁻¹⁴	MDFI, TREM2, FOXP4, C6orf132, UNC5CL	TREML2
	cg04320956	16	69143512	6.3x10 ¹⁴	HAS3, ZFP90, NQO1, NIP7, SLC7A6, CDH3, ESRP2	HAS3

Probes sorted by EWAS p-value. Genes shown in bold are the nearest gene.

Table 3.	Top 30 eQTM	genes identified i	n a previous transo	criptome-wide a	ssociation study (TWAS)
of atopic	asthma ¹¹ .	-	-	-	-	

Gene	Chr	TWAS	# of associated probes	probe	position	eQTM p-value
CST1	20	1.1×10 ⁻⁶⁴	1	cg14928764	23064608	5.5x10 ⁻¹⁰
CI CA 1	1	1.4×10^{-47}	-	cg22175412	86063985	9 7x10 ⁻¹⁵
NTRK2	9	4.3×10^{-44}	2	cg09926027	87285693	1.5×10^{-18}
FFTUB	3	7.5x10 ⁻⁴²	- 5	cg25735294	186353721	2.6x10 ⁻¹⁸
СРАЗ	3	3.4x10 ⁻³⁹	5	cg13235059	149192304	3.1x10 ⁻¹⁵
ITI N1	1	8.7x10 ⁻³⁸	10	cg10094191	160855148	6.3x10 ⁻⁹
CDH26	- 20	8.6x10 ⁻³⁷		cg06943251	57615398	2.1x10 ⁻¹⁸
CCI 26	7	2.2×10^{-35}	5	cg13053914	75511260	1.4×10^{-8}
CST2	20	4.0×10^{-35}	1	cg14928764	23064608	3.2×10^{-10}
C3orf70	3	8 3x 10 ⁻³⁵	9	cg01390445	185271312	1.6×10^{-13}
TPSAR1	16	3.3×10^{-34}	26	cg00943124	1705667	3.9×10^{-14}
CISH	3	3.0×10^{-32}	9	cg23005227	50645426	8 4x10 ⁻²⁴
TPSR2	16	8 0x 10 ⁻³⁰	20	cg00943124	1705667	$4 3 \times 10^{-13}$
AI 0 X 1 5	17	3.4×10^{-29}	11	cg23387401	4582204	9 7x10 ⁻²⁴
CFP72	-,	1.3×10^{-28}	42	cg04221910	616842	5.1×10^{-21}
SIC545	19	5.5×10^{-28}	10	cg15734198	17423023	1.7x10 ⁻¹²
POSTN	13	7.7×10^{-28}	4	cg03071245	37463034	1.7×10^{-9}
H\$3\$T4		5.2×10^{-27}	4	cg26725397	25937266	6.2×10^{-15}
РСЅКА	15	1.4×10^{-26}	11	cg18749617	102028637	1.4×10^{-27}
WBSCR17		2.5×10^{-26}	3	cg01349903	71148142	5.4×10^{-12}
KYAT1	9	2.8×10^{-26}	12	cg13835688	130859454	1.6x10 ⁻¹⁶
ANO1	- 11	5.1×10^{-26}	7	cg11058904	69987299	1.3x10 ⁻¹⁵
ABO	9	3.0x10 ⁻²⁵	6	cg11879188	136149908	7.4x10 ⁻¹⁸
CMYA5	5	4.5×10^{-25}	1	cg 14978242	79501131	1.2x10 ⁻⁷
SI C24A3	20	1.3x10 ⁻²³	3	cg08371391	19739935	3.0x10 ⁻⁸
GCNT4	5	1.1x10 ⁻²²	2	cg21158502	74348187	2.0x10 ⁻³⁰
SLC7A1	13	1.6x10 ⁻²²	3	cg17798847	30098432	8.3x10 ⁻⁷
SLC45A4	8	1.8×10^{-22}	7	cg07140289	142299684	1.8x10 ⁻¹¹
DOX1	2	6.9x10 ⁻²²	9	cg02034222	74753281	4.4x10 ⁻¹⁷
GSN	9	9.4x10 ⁻²²	6	cg13928417	124498782	2.7x10 ⁻⁹
KCNJ16	17	2.3x10 ⁻²¹	2	cg13606025	68070495	7.8x10 ⁻¹⁰
LINC01336	5	7.7x10 ⁻²¹	2	cg21158502	74348187	1.6x10 ⁻¹⁶
ZNF467	7	2.2x10 ⁻²⁰	8	cg07970948	149543165	3.3x10 ⁻¹⁹
RUSC1	1	3.7x10 ⁻²⁰	15	cg23154272	154966068	2.3x10 ⁻¹⁶
DHX35	20	4.7x10 ⁻²⁰	1	cg26604799	36789861	2.5x10 ⁻⁵
	2	8 1x10 ⁻²⁰	3	cg22143064	162948592	5 9x10 ⁻²⁷

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.937391; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

SOX13	1	8.4x10 ⁻²⁰	3	cg17000774	203154457	1.3x10 ⁻⁸
SLC18A2	10	1.1x10 ⁻¹⁹	2	cg03519180	119102524	1.2x10 ⁻⁶
ST6GAL1	3	1.6x10 ⁻¹⁹	6	cg25735294	186353721	1.1x10 ⁻²⁰
C20orf197	20	3.8x10 ⁻¹⁹	2	cg16518142	58533713	3.9x10 ⁻⁸
CA2	8	1.1×10^{-18}	1	cg05071334	86195487	1.1x10 ⁻⁵
NPDC1	9	2.3x10 ⁻¹⁸	8	cg13850871	139583773	2.6x10 ⁻¹¹
RTN4R	22	3.2x10 ⁻¹⁸	3	cg02333649	19471093	2.0x10 ⁻²²
FGF11	17	3.2x10 ⁻¹⁸	12	cg22637538	7348327	3.1x10 ⁻¹¹
LOC100288152	5	5.0x10 ⁻¹⁸	15	cg22572362	501938	1.6x10 ⁻⁸
ELOVL5	6	5.8x10 ⁻¹⁸	1	cg26516974	52475065	3.5x10 ⁻⁹
CMIP	16	1.0×10^{-17}	1	cg16583186	81526361	6.7x10 ⁻⁶
ADAMTS9	3	1.4x10 ⁻¹⁷	11	cg08765100	64211659	1.4x10 ⁻¹¹
ССК	3	1.8x10 ⁻¹⁷	2	cg07886398	42131702	1.0x10 ⁻⁸

Significance for both differential expression and differential methylation defined as FDR-P<0.01. Genes shown sorted by TWAS p-value. Only the most significantly associated probe per gene is presented.

	1				eQTM	EWAS	TWAS
chr	probe	pos	gene	155	p-value	p-value	p-value
20	cg14928764	23064608	CST1	23731574	5.5x10 ⁻¹⁰	6.0x10 ⁻⁴	3.2x10 ⁻¹⁵
3	cg01390445	185271312	C3orf70	184870802	1.5x10 ⁻¹³	9.6x10 ⁻⁸	7.0x10 ⁻¹³
5	cg14978242	79501131	CMYA5	78985658	1.2×10^{-7}	2.0x10 ⁻⁷	1.4x10 ⁻¹²
16	cg00943124	1705667	TPSAB1	1290677	3.9x10 ⁻¹⁴	9.0x10 ⁻⁹	3.3x10 ⁻¹²
16	cg26725397	25937266	HS3ST4	25703346	6.2x10 ⁻¹⁵	6.6x10 ⁻⁸	6.2x10 ⁻¹²
17	cg23387401	4582204	ALOX15	4544960	9.7x10 ²⁴	2.1x10 ⁻¹³	6.8x10 ¹²
11	cg11058904	69987299	ANO1	69924407	1.3x10 ⁻¹⁵	3.9x10 ⁻¹³	6.8x10 ⁻¹²
7	cg11303839	75405967	CCL26	75419064	7.3x10 ⁻⁷	1.1x10 ⁻⁷	8.9x10 ⁻¹²
5	cg21158502	74348187	GCNT4	74326724	2.0x10 ⁻³⁰	8.5x10 ⁻¹⁶	1.1x10 ⁻¹¹
9	cg04236137	123655887	GSN	124030379	3 7x10 ⁻⁸	8.8x10 ⁻⁴	1.4x10 ⁻¹¹
5	cg21158502	74348187	LINC01336	74348468	1.6x10 ⁻¹⁶	8.5x10 ⁻¹⁶	1.5x10 ⁻¹¹
15	cg18749617	102028637	PCSK6	102030187	1.4x10 ²⁷	1.1x10 ⁻¹⁴	1.6×10^{-11}
3	cg13235059	149192304	СРАЗ	148583042	3.0x10 ⁻¹⁵	1.7x10 ⁻⁸	1.8×10^{-11}
20	cg14928764	23064608	CST2	23807312	3.2x10 ⁻¹⁰	6.0x10 ⁻⁴	1.9×10^{-11}
5	cg01181940	478916	CEP72	612404	1.6x10 ⁻²⁰	2.2x10 ⁻¹¹	2.8x10 ⁻¹¹
9	cg09926027	87285693	NTRK2	87283372	1.5x10 ⁻¹⁸	4.5x10 ⁻¹²	3.2x10 ⁻¹¹
1	cg23154272	154966068	RUSC1	155290639	2.2x10 ⁻¹⁶	2.0x10 ⁻⁸	3.4x10 ¹¹
9	cg11879188	136149908	ABO	136150630	7.3x10 ¹⁸	1.9x10 ⁻⁷	3.8x10 ⁻¹¹
3	cg23005227	50645426	CISH	50649262	8.3x10 ⁻²⁴	4.0x10 ⁻¹²	3.8x10 ⁻¹¹
6	cg14178895	11778902	ADTRP	11779280	6.8x10 ⁻²³	3.6x10 ⁻⁸	4.0x10 ⁻¹¹
3	cg25735294	186353721	ST6GAL1	186648314	1.0x10 ⁻²⁰	3.3x10 ⁻¹⁰	5.2×10^{-11}
8	cg07140289	142299684	SLC45A4	142238673	1.8x10 ⁻¹¹	2.4x10 ⁻⁴	6.3x10 ⁻¹¹
2	cg04132353	31440349	CAPN14	31440411	4.6x10 ⁻²⁰	5.9x10 ⁻¹⁵	6.4x10 ¹¹
5	cg14978242	79501131	SERINC5	79551901	1.3x10 ⁻⁹	2.0x10 ⁻⁷	7.7x10 ⁻¹¹
1	cg03058346	91275170	LRRC8D	90286572	1.4×10^{-6}	6.9x10 ⁻⁴	8.4x10 ⁻¹¹
1	cg01062020	162382848	SH2D1B	162381928	1.7x10 ⁻⁶	2.0x10 ⁻⁶	9.8x10 ⁻¹¹
20	cg26604799	36789861	DHX35	37590980	2.5x10 ⁻⁵	2.5x10 ⁻³	1.0×10^{-10}
16	cg00943124	1705667	TPSB2	1280185	4.2x10 ⁻¹³	9.0x10 ⁻⁹	1.1x10 ⁻¹⁰
2	cg22143064	162948592	DPP4	162931052	5.8x10 ⁻²⁷	5.2x10 ⁻⁸	1.5x10 ⁻¹⁰
15	cg09407660	59910436	GCNT3	59903981	1.3x10 ⁻¹⁹	9.8x10 ⁻¹⁰	1.5x10 ⁻¹⁰

Table 4. Top 30 mediation paths from methylation to gene expression to atopic asthma.

Results sorted by TWAS p-value¹¹. Total of 5394 mediation paths were identified. Only one mediation path was presented per gene. Mediation analysis was conducted using Baron and Kenny (1986).

Associat	ted pairs	EVA-PR			GSE65205			
probe	probe gene		p-value	FDR	beta	p-value	FDR	
cg05991820	ECHDC3	-1	5.1x10 ⁻⁹⁸	7.2x10 ⁻⁹²	-0.31	3.9x10 ⁻³	1.2x10 ⁻²	
cg22933800	HLA-DQB1	0.75	1.7x10 ⁻⁷⁶	1.2x10 ⁻⁷⁰	1	7.9x10 ⁻²⁰	5.7x10 ⁻¹⁶	
cg07237979	LSP1	-0.67	4.6x10 ⁻⁶⁹	3.0x10 ⁻⁶³	-0.57	2.4x10 ⁻¹²	4.9x10 ⁻¹⁰	
cg14332815	LDHC	-0.71	1.3x10 ⁻⁵⁶	4.0x10 ⁻⁵¹	-1.1	1.5x10 ⁻¹⁸	5.3x10 ⁻¹⁵	
cg10296238	SPATC1L	-0.31	1.1x10 ⁻⁵¹	2.5x10 ⁻⁴⁶	-0.23	2.4x10 ⁻¹⁰	1.7x10 ⁻⁸	
cg17117718	CRHR1-IT1	0.29	4.0x10 ⁻⁵¹	8.6x10 ⁻⁴⁶	0.35	5.2x10 ⁻⁸	1.2x10 ⁻⁶	
cg16145915	ZFAND2A	0.48	2.6x10 ⁻⁵⁰	5.1x10 ⁻⁴⁵	0.53	1.1x10 ⁻⁴	6.0x10 ⁻⁴	
cg10626236	CDK11A	0.59	3.2x10 ⁻⁵⁰	6.2x10 ⁻⁴⁵	0.39	1.0x10 ⁻²	2.5x10 ⁻²	
cg03190825	CYP4F11	-1.3	2.5x10 ⁻⁴⁸	4.5x10 ⁻⁴³	-0.41	6.7x10 ⁻³	1.8x10 ⁻²	
cg22092521	CFD	-0.83	1.7x10 ⁻⁴⁵	2.6x10 ⁻⁴⁰	-1.2	1.2x10 ⁻⁶	1.4x10 ⁻⁵	
cg11375102	TMEM204	-0.68	1.3x10 ⁻⁴⁴	1.9x10 ⁻³⁹	-1	1.7x10 ⁻¹⁴	1.2x10 ⁻¹¹	
cg24977027	THNSL2	-0.78	5.6x10 ⁻⁴⁴	8.0x10 ⁻³⁹	-1.2	4.6x10 ⁻¹³	1.3x10 ⁻¹⁰	
cg05461841	ZG16B	-0.66	2.0x10 ⁻⁴²	2.6x10 ⁻³⁷	-0.71	1.4x10 ⁻⁴	7.2x10 ⁻⁴	
cg06851207	PNMAL1	-0.79	2.1x10 ⁻⁴²	2.7x10 ⁻³⁷	-0.89	3.0x10 ⁻⁷	4.6x10 ⁻⁶	
cg01878807	DHRS4-AS1	-0.42	4.3x10 ⁻⁴²	5.4x10 ⁻³⁷	-0.34	1.3x10 ⁻⁵	1.0x10 ⁻⁴	
cg02926397	LY6D	-1.2	8.3x10 ⁻⁴²	1.0x10 ⁻³⁶	-2.5	6.6x10 ⁻¹⁰	3.8x10 ⁻⁸	
cg02719634	SLC22A18AS	-0.28	5.8x10 ⁻⁴¹	6.6x10 ⁻³⁶	-0.41	3.0x10 ⁻⁶	3.0x10 ⁻⁵	
cg06846259	РОМС	-0.5	5.9x10 ⁻⁴¹	6.6x10 ⁻³⁶	-1	1.2x10 ⁻¹⁶	2.4x10 ⁻¹³	
cg15176213	COX7A1	-0.85	6.3x10 ⁻⁴¹	6.9x10 ⁻³⁶	-1.3	2.4x10 ⁻¹⁴	1.7x10 ⁻¹¹	
cg14815891	FRG1BP	-0.19	8.0x10 ⁻⁴¹	8.7x10 ⁻³⁶	-0.26	1.3x10 ⁻⁴	7.0x10 ⁻⁴	
cg24846343	GSTT2B	-0.79	4.2x10 ⁻³⁹	4.2x10 ⁻³⁴	-1	1.1x10 ⁻¹²	2.6x10 ⁻¹⁰	
cg19059861	BPIFA1	-3.2	4.6x10 ⁻³⁷	4.1x10 ⁻³²	-3.9	1.4x10 ⁻⁸	4.1x10 ⁻⁷	
cg22933800	HLA-DQA2	-0.49	9.0x10 ⁻³⁷	7.8x10 ⁻³²	-0.18	1.7x10 ⁻⁵	1.3x10 ⁻⁴	
cg06322601	RASA4	0.18	3 8x10 ⁻³⁵	3.0x10 ⁻³⁰	0.08	1.6x10 ⁻²	3.7x10 ⁻²	
cg05681977	SLC39A4	-0.37	6.4x10 ⁻³⁴	4.7x10 ⁻²⁹	-0.64	9.1x10 ⁻¹⁶	1.4x10 ⁻¹²	
cg10207745	LINC01559	-0.86	7.3x10 ⁻³⁴	5.2x10 ⁻²⁹	-0.52	3.0x10 ⁻³	9.5x10 ⁻³	
cg10807101	GSTM3	-0.43	3.4x10 ⁻³³	2.3x10 ⁻²⁸	-0.68	4.9x10 ⁻⁷	6.8x10 ⁻⁶	
cg08450017	CXCR6	-0.46	2.0x10 ⁻³²	1.3x10 ⁻²⁷	-0.59	2.4x10 ⁻¹⁰	1.7x10 ⁻⁸	
cg01850135	NLRC3	-0.34	8.3x10 ⁻³²	5.2x10 ⁻²⁷	-0.9	1.5x10 ⁻¹¹	2.0x10 ⁻⁹	
cg23161218	ACAP1	0.31	1.2x10 ⁻³¹	7.5x10 ⁻²⁷	0.29	2.1x10 ⁻⁴	1.0x10 ⁻³	

Table 5. Top 30 most significant eQTM methylation-gene pairs in EVA-PR cohort that replicated in GSE65205

Г

Replication defined as FDR P<0.05 with effect in the same direction as in EVA-PR.

Table 6. Top 30 most significant eQTM methylation-gene pairs in EVA-PR cohort that replicated in
GSE65205. Only eQTM probes that are associated with atopic asthma in EVA-PR cohort (FDR-P < 0.05) are
presented.

Associat	ted pairs	EVA-PR			GSE65205			EWAS (EVA-PR)
probe gene		beta	p-value	FDR	beta	beta p-value FDR		FDR
cg04511125	THNSL2	-0.9	1.1x10 ⁻³⁶	9.2x10 ⁻³²	-0.81	1.2x10 ⁻⁶	1.4x10 ⁻⁵	7.3x10 ⁻³
cg17252645	LY6D	-1	6.1x10 ⁻³⁶	5.0x10 ⁻³¹	-1.6	1.5x10 ⁻⁸	4 4x10 ⁻⁷	4.1x10 ⁻²
cg10807101	GSTM3	-0.43	3.4x10 ⁻³³	2.3x10 ⁻²⁸	-0.68	4 9x10 ⁻⁷	6.8x10 ⁻⁶	7.6x10 ⁻⁴
cg08450017	CXCR6	-0.46	2.0x10 ⁻³²	1.3x10 ⁻²⁷	-0.59	2.4x10 ⁻¹⁰	1.7x10 ⁻⁸	2.6x10 ⁻⁴
cg01850135	NLRC3	-0.34	8.3x10 ⁻³²	5.2x10 ⁻²⁷	-0.9	1.5x10 ⁻¹¹	2.0x10 ⁻⁹	5.6x10 ⁻⁴
cg23161218	ACAP1	0.31	1.2x10 ⁻³¹	7.5x10 ⁻²⁷	0.29	2.1x10 ⁻⁴	1.0x10 ⁻³	2.3x10 ⁻³
cg22012981	ACOX2	-0.86	3.2x10 ⁻³¹	1.9x10 ⁻²⁶	-0.35	1.1x10 ⁻²	2.6x10 ⁻²	3.3x10 ⁻⁸
cg07786657	CD247	-0.35	4.6x10 ⁻³¹	2.7x10 ⁻²⁶	-0.37	3.9x10 ⁻⁹	1.5x10 ⁻⁷	8.0x10 ⁻⁴
cg03546687	1L32	0.59	2.4x10 ⁻²⁹	1.3x10 ⁻²⁴	0.75	5.0x10 ⁻⁶	4.5x10 ⁻⁵	3.1x10 ⁻³
cg14527029	HGD	-0.76	3.2x10 ⁻²⁹	1.6x10 ⁻²⁴	-1.1	9.2x10 ⁻⁸	1.8x10 ⁻⁶	1.4x10 ⁻⁷
cg11453837	PSMB9	-0.98	3.3x10 ⁻²⁸	1.6x10 ⁻²³	-0.78	6.0x10 ⁻⁴	2.5x10 ⁻³	1.7x10 ⁻⁴
cg27583010	SEPT1	-0.39	1.0x10 ⁻²⁷	4.6x10 ⁻²³	-0.61	3.4x10 ⁻⁹	1.3x10 ⁻⁷	4.3x10 ⁻²
cg18749617	PCSK6	-0.38	1.4x10 ⁻²⁷	6.3x10 ⁻²³	-0.22	1.1x10 ⁻³	4.1x10 ⁻³	1.2x10 ⁻¹⁰
cg08450017	CCR5	-0.36	2.8x10 ⁻²⁷	1.2x10 ⁻²²	-0.54	3.3x10 ⁻⁹	1.3x10 ⁻⁷	2.6x10 ⁻⁴
cg22143064	DPP4	-1.1	5.9x10 ⁻²⁷	2.4x10 ²²	-0.87	4.7x10 ⁻⁹	1.8x10 ⁻⁷	1.8x10 ⁻⁵
cg07786657	RCSD1	-0.27	3.2x10 ⁻²⁶	1.2x10 ⁻²¹	-0.39	2.0x10 ⁻⁵	1.4x10 ⁻⁴	8.0x10 ⁻⁴
cg08159663	NLRC5	-0.63	1.3x10 ⁻²⁵	4.6x10 ²¹	-0.31	1.2x10 ⁻²	2.9x10 ⁻²	1.3x10 ⁻⁴
cg19517476	RASAL3	-0.27	2.6x10 ⁻²⁵	9.0x10 ⁻²¹	-0.87	1.6x10 ⁻¹³	6.5x10 ¹¹	2.8x10 ⁻⁴
cg12044599	TBC1D10C	-0.32	3.5x10 ⁻²⁵	1.2×10^{-20}	-0.71	3.6x10 ⁻⁷	5.4x10 ⁻⁶	3.5x10 ⁻³
cg26833120	LCK	0.46	4.8x10 ⁻²⁵	1.6x10 ⁻²⁰	0.73	4.8x10 ⁻⁵	3 1x10 ⁻⁴	1.6x10 ⁻³
cg02297541	HLA-DMA	0.49	5.3x10 ⁻²⁵	1.8x10 ⁻²⁰	0.91	6.6x10 ⁻¹⁰	3.7x10 ⁻⁸	9.2x10 ⁻⁴
cg06148175	ACY3	-0.65	5.7x10 ⁻²⁵	1.9x10 ⁻²⁰	-0.35	2.8x10 ⁻³	8.9x10 ⁻³	2.7x10 ⁻²
cg00676801	STAT1	-0.55	7.0x10 ⁻²⁵	2.2x10 ⁻²⁰	-1.3	8.2x10 ⁻⁸	1.7x10 ⁻⁶	8.5x10 ⁻⁴
cg12911952	SLC22A18AS	-0.39	1.2x10 ⁻²⁴	3.8x10 ⁻²⁰	-1.1	2.7x10 ⁻⁷	4.3x10 ⁻⁶	9.4x10 ⁻⁵
cg05141234	HLA-DMB	0.57	1.8x10 ⁻²⁴	5.3x10 ⁻²⁰	0.75	3.5x10 ⁻⁷	5.3x10 ⁻⁶	2.9x10 ⁻⁴
cg00945209	TMC8	-0.54	2.2x10 ⁻²⁴	6.5x10 ⁻²⁰	-1.1	1.8x10 ⁻⁹	8.2x10 ⁻⁸	1.7x10 ⁻²
cg09878888	LPXN	0.24	3.2x10 ⁻²⁴	9.1x10 ⁻²⁰	0.35	6 7x10 ³	1.8x10 ⁻²	1.5x10 ⁻⁴
cg00676801	STAT4	-0.33	3.4x10 ⁻²⁴	9.7x10 ⁻²⁰	-0.57	2.0x10 ⁻⁸	5.5x10 ⁻⁷	8.5x10 ⁻⁴
cg23387401	ALOX15	-0.37	9.7x10 ⁻²⁴	2.6x10 ⁻¹⁹	-0.64	6.2x10 ⁻⁸	1.4x10 ⁻⁶	1.0x10 ⁻⁹
cg13443575	CCL5	0.54	1.3x10 ⁻²³	3.5x10 ⁻¹⁹	0.77	7.8x10 ⁻⁶	6.6x10 ⁻⁵	5.5x10 ⁻³

Replication defined as FDR P<0.05 with effect in the same direction as in EVA-PR. Only one gene per methylation probe presented.

REFERENCES

- 1 Brugha, R. *et al.* DNA methylation profiles between airway epithelium and proxy tissues in children. *Acta Paediatrica* **106**, 2011-2016, doi:10.1111/apa.14027 (2017).
- 2 Forno, E. *et al.* DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. *The Lancet Respiratory Medicine* **7**, 336-346, doi:https://doi.org/10.1016/S2213-2600(18)30466-1 (2019).
- 3 Liu, S. et al. EnhancerAtlas: a resource for enhancer annotation and analysis in 105 human cell/tissue types.
- Bioinformatics 32, 3543-3551, doi:10.1093/bioinformatics/btw495 (2016).
- 4 Duan, Q. L. *et al.* A polymorphism in the thyroid hormone receptor gene is associated with bronchodilator response in asthmatics. *The pharmacogenomics journal* **13**, 130-136, doi:10.1038/tpj.2011.56 (2013).
- 5 Rastogi, D., Suzuki, M. & Greally, J. M. Differential epigenome-wide DNA methylation patterns in childhood obesityassociated asthma. *Scientific reports* **3**, 2164-2164, doi:10.1038/srep02164 (2013).
- 6 Le, N. P. K., Channabasappa, S., Hossain, M., Liu, L. & Singh, B. Leukocyte-specific protein 1 regulates neutrophil recruitment in acute lung inflammation. *American journal of physiology. Lung cellular and molecular physiology* **309**, L995-L1008, doi:10.1152/ajplung.00068.2014 (2015).
- 7 Demenais, F. *et al.* Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. *Nature Genetics* **50**, 42-53, doi:10.1038/s41588-017-0014-7 (2018).
- 8 Movahedi, M. *et al.* Association of HLA class II alleles with childhood asthma and Total IgE levels. *Iran J Allergy Asthma Immunol* **7**, 215-220, doi:07.04/ijaai.215220 (2008).
- Kim, N., Hong, Y., Kwon, D. & Yoon, S. Somatic mutaome profile in human cancer tissues. *Genomics & informatics* 11, 239-244, doi:10.5808/GI.2013.11.4.239 (2013).
- 10 Wyss, A. B. *et al.* Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function. *Nature Communications* **9**, 2976, doi:10.1038/s41467-018-05369-0 (2018).
- 11 Forno, E. *et al.* Gene expression in nasal epithelium and asthma in children: a transcriptome-wide and differential expression network analysis. *J Allergy Clin Immunol* (2020) Feb 10 [Epub ahead of print].
- 12 Yang, I. V. *et al.* The nasal methylome and childhood atopic asthma. *Journal of Allergy and Clinical Immunology* **139**, 1478-1488, doi:https://doi.org/10.1016/j.jaci.2016.07.036 (2017).
- 13 Kim, S., Park, H. J., Cui, X. & Zhi, D. Leveraging collective regulatory effects of long-range DNA methylations to predict gene expressions and estimate their effects on phenotypes in cancer. *bioRxiv* (2018).
- 14 Gutierrez-Arcelus, M. *et al.* Passive and active DNA methylation and the interplay with genetic variation in gene regulation. *Elife* **2**, e00523, doi:10.7554/eLife.00523 (2013).
- 15 Gutierrez-Arcelus, M. *et al.* Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. *PLoS Genet* **11**, e1004958, doi:10.1371/journal.pgen.1004958 (2015).
- 16 de Vries, M. *et al.* From blood to lung tissue: effect of cigarette smoke on DNA methylation and lung function. *Respiratory Research* **19**, 212, doi:10.1186/s12931-018-0904-y (2018).
- 17 Forno, E. *et al.* DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. *The Lancet Respiratory Medicine*, doi:10.1016/S2213-2600(18)30466-1.
- 18 Reese, S. E. *et al.* Epigenome-wide meta-analysis of DNA methylation and childhood asthma. *Journal of Allergy and Clinical Immunology* **143**, 2062-2074, doi:10.1016/j.jaci.2018.11.043 (2019).
- 19 Mora, A., Sandve, G. K., Gabrielsen, O. S. & Eskeland, R. In the loop: promoter-enhancer interactions and bioinformatics. *Brief Bioinform* 17, 980-995, doi:10.1093/bib/bbv097 (2016).
- 20 Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. *Science* **328**, 916-919, doi:10.1126/science.1186366 (2010).
- 21 Razin, A. & Cedar, H. DNA methylation and gene expression. *Microbiol Rev* 55, 451-458 (1991).
- 22 Anastasiadi, D., Esteve-Codina, A. & Piferrer, F. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. *Epigenetics & chromatin* **11**, 37-37, doi:10.1186/s13072-018-0205-1 (2018).
- 23 Strunz, T. *et al.* A mega-analysis of expression quantitative trait loci (eQTL) provides insight into the regulatory architecture of gene expression variation in liver. *Scientific Reports* **8**, 5865, doi:10.1038/s41598-018-24219-z (2018).
- 24 Goh, W. W. B., Wang, W. & Wong, L. Why Batch Effects Matter in Omics Data, and How to Avoid Them. *Trends in Biotechnology* **35**, 498-507, doi:<u>https://doi.org/10.1016/j.tibtech.2017.02.012</u> (2017).
- 25 Nygaard, V., Rødland, E. A. & Hovig, E. Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. *Biostatistics* 17, 29-39, doi:10.1093/biostatistics/kxv027 (2015).
- 26 Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics (Oxford, England)* 28, 882-883, doi:10.1093/bioinformatics/bts034 (2012).
- Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. *Bioinformatics (Oxford, England)* 28, 1353-1358, doi:10.1093/bioinformatics/bts163 (2012).
- 28 Baron, R. M. & Kenny, D. A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. *Journal of personality and social psychology* 51, 1173 (1986).

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.937391; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 29 Sobel, M. E. Asymptotic Confidence Intervals for Indirect Effects in Structural Equation Models. *Sociological Methodology* **13**, 290-312, doi:10.2307/270723 (1982).
- 30 Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. *Nature Communications* **8**, 1826, doi:10.1038/s41467-017-01261-5 (2017).