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Abstract.  27 

Background.  28 

The anterior nares host a complex microbial community that contributes to upper airway health. 29 

Although the bacterial composition of the nasal passages have been well characterized in 30 

healthy and diseased cohorts, the role of prolonged environmental exposures and exercise in 31 

shaping the nasal microbiome in healthy adults is poorly understood. In this study, we 32 

longitudinally sampled female collegiate Division I athletes from two teams experiencing a 33 

similar athletic season and exercise regimen but vastly different environmental exposures 34 

(Swim/Dive and Basketball). Using 16S rRNA gene sequencing, we evaluated the longitudinal 35 

dynamics of the nasal microbiome pre-, during-, and at the end of the athletic season. 36 

Results.  37 

The nasal microbiota of the Swim/Dive and Basketball teams were distinct from each other at 38 

each time point sampled, driven by either low abundance (Jaccard, PERMANOVA p<0.05) or 39 

high-abundance changes in composition (Bray-Curtis, PERMANOVA p<0.05). The rate of 40 

change of microbial communities were greater in the Swim/Dive team compared to the 41 

Basketball team characterized by an increase in Staphylococcus in Swim/Dive and a decrease 42 

in Corynebacterium in both teams over time.  43 

Conclusions.  44 

This is the first study that has evaluated the nasal microbiome in athletes. We obtained 45 

longitudinal nasal swabs from two gender-matched teams with similar age distributions (18-22 46 

years old) over a 6 month period. Differences in the microbiota between teams and over time 47 

indicate that chlorine exposure, and potentially athletic training, induced changes in the nasal 48 

microbiome.  49 

 50 

 51 

 52 
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Background. 53 

The human microbiome is defined as the collection of genomes contained within the 54 

bacteria, viruses, and fungi that inhabit nearly every niche in the body [1,2]. Recent advances in 55 

sequencing and bioinformatics technologies have vastly expanded our collective understanding 56 

of the contributions of resident microbiota to host health. Mechanistically, bacterial, viral, and 57 

fungal microbiota interact with the host to influence health or disease status through direct 58 

interaction with immune cells, indirect immune modulation through the production of metabolites 59 

such as short-chain fatty acids (SCFAs), and by contributing to mucosal epithelial barrier 60 

integrity [3–7]. The role of upper airway microbiota, including nasal microbiota, to host health is 61 

of interest, however, the dynamics of the nasal microbiota over time and under distinct 62 

environmental conditions are not well understood.  63 

The nasal passages are a first site of contact with the external environment. In this role, 64 

the nasal microbiome has been associated with upper and lower airway health status, including 65 

upper respiratory tract infections, asthma, and Staphylococcus aureus pathogen carriage [8,9]. 66 

While a common feature of nasal microbiome composition is the dominance of 67 

Corynebacterium, Staphylococcus, and Propionibacterium, recent studies have identified that 68 

ecological succession and colonization patterns within individuals are associated with host 69 

health status [8–10]. A longitudinal study of 200 children demonstrated that early life succession 70 

patterns of the nasopharyngeal microbiome relate to risk of acute respiratory infection (ARI). 71 

Children with nasopharyngeal communities dominated by Streptococcus, Moraxella, or 72 

Haemophilus were associated with ARI, and early colonization with Streptococcus was a strong 73 

predictor of asthma development by 5-10 years of age [11]. The nasal passages are also an 74 

important niche for human pathobionts. Up to 20% of humans are carriers of S. aureus in their 75 

nares and nasal microbiota colonization patterns can influence S. aureus carriage [12]. 76 

Corynebacterium accolens and Corynebacterium pseudodiptheritcum presence in the nasal 77 

cavity are negatively associated with persistent S. aureus carriage, and these organisms 78 
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compete in vitro [13]. C. accolens also exhibits anti-pneumococcal activity through the 79 

production of free fatty acids from nostril triacylglycerols [14]. Thus, understanding host and 80 

environmental factors underlying nasal microbiota structure are important for respiratory health. 81 

Competitive athletes, especially those who are chronically exposed to allergens, 82 

pollutants, or environmental stressors, are susceptible to upper and lower airway damage 83 

leading to airway hyperresponsiveness [15]. Chlorine is an inexpensive reagent used in most 84 

swimming pools as a disinfectant and it reacts with organic matter to produce derivatives such 85 

as chloramines and gaseous nitrogen trichloride (NCl3) [16].  Although concentrations of 86 

chlorine byproducts are regulated by the World Health Organization, chronic exposure may lead 87 

to damage or irritation of the airway mucosa. Indeed, competitive, elite swimmers have a higher 88 

prevalence of upper respiratory symptoms including rhinitis and allergen sensitization 89 

[15,17,18]. A small study of 69 elite swimmers and non-swimmers demonstrated that up to 74% 90 

of swimmers report rhinitis compared to 40% of non-swimmers [17]. Upper airway symptoms 91 

can lead to poor performance and decreased quality of life [19]. Recent studies have shown that 92 

nasal microbiome composition is directly related to rhinitis and asthma [20–22]. Thus, we 93 

hypothesized that the composition or diversity of the nasal microbiota during the course of an 94 

athletic season would be altered in competitive elite swimmers compared to age- and gender-95 

matched athletes who are not exposed to chlorine or chlorine byproducts.  96 

Our understanding of factors that alter the nasal microbiota continue to be investigated 97 

but gaps still remain. For example, whether common environmental exposures alter microbial 98 

dynamics or composition in healthy, active adults is poorly understood. Temporal changes in the 99 

nasal microbiome in age and gender-matched groups exposed to distinct environmental 100 

pressures have not been extensively studied. Here, we evaluate temporal dynamics of the 101 

bacterial microbiome in NCAA Division I collegiate athletes chronically exposed to chlorinated 102 

water (Swim and Dive) compared to those who are unexposed to chlorine (Basketball).  103 

 104 
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Results.  105 

Participant Characteristics.  106 

 A total of 47 subjects ages 18-22 participated in this study. All subjects were female 107 

collegiate-level NCAA Division I athletes during their competitive seasons. To determine 108 

whether prolonged chlorine exposure altered nasal microbiome composition, we recruited 109 

individuals from swim and dive and compared to female subjects on a basketball team so that 110 

microbiome comparisons matched to the same age range and athletic aptitude. Participants 111 

provided 2-5 nasal swabs at approximately one-month intervals (Fig. 1). 112 

Nasal swabs from participants yielded a total of 16,971,801 16S rRNA gene sequences 113 

(median per sample: 69,005, range per sample: 1,500-554,058). A total of 178 samples were 114 

sequenced, three samples were removed due to low sequence depth (<2,771 115 

sequences/sample). Therefore, 175 specimens were included in this study.  116 

 117 

Compositional alterations in the nasal microbiome in chlorine exposed athletes. 118 

 Alpha diversity, measured by richness (observed ASVs) did not significantly change in 119 

chlorine-exposed (Swim and Dive) vs. chlorine-unexposed (Basketball) collegiate athletes over 120 

time (Fig. 2A, Additional Figure 1). Microbial volatility analysis was used to evaluate the rate of 121 

change in nasal microbiome richness (observed ASVs) over successive time points within the 122 

same individual. There was no significant change in bacterial richness at the final time point 123 

when compared to sampling baseline time point 1 [Fig. 2A, Additional Figure 1, p=0.394 124 

(Swim/Dive) and p=0.935 (Basketball), Wilcoxon Signed Rank Test] or to prior timepoints (Fig. 125 

1B, Additional Figure 1, p>0.05, Wilcoxon Signed Rank Test).  126 

Multivariate analysis (PERMANOVA) of nasal bacterial beta diversity demonstrated a 127 

significant change in the athlete nasal microbiome composition between teams. To account for 128 

repeated measures, we filtered the feature table by sampling time point corresponding to 129 

overlapping season between teams [Fall (October, temperature in Flagstaff on day of sampling: 130 
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73 °F), Winter (November/December, temperatures 42 and 52 °F), and Spring (March, 131 

temperature 66 °F)]. We chose to perform this analysis at timepoints that corresponded to 132 

overlapping months, instead of sampling (see Fig. 1), to control for seasonal variation in nasal 133 

microbiome beta diversity, which has been previously described [23,24]. Indeed, when 134 

timepoints were compared without correction for season, we observed less robust clustering by 135 

team when sampling number spanned seasons (when we compare T3 for Swim/Dive in October 136 

v. T3 Basketball in January, and T4 Swim/Dive in November v. T4 Basketball in March; 137 

Additional Table 1).  138 

Significant differences in nasal microbiome composition between individuals, grouped by 139 

athletic team, were observed using abundance-weighted (Bray-Curtis) and unweighted 140 

(Jaccard) beta diversity metrics. In Fall (October) we observed robust clustering by team with 141 

Jaccard (p=0.002, PERMANOVA, Table 2, Fig. 2C, Additional Figure 2), and Bray-Curtis 142 

(p=0.042, PERMANOVA, Table 2, Fig. 2D) metrics. In the winter (November/December), we 143 

observed significant differences when an unweighted metric was used (Jaccard,  p=0.021, 144 

PERMANOVA, Table 2) but not when a weighted metric was used (Bray-Curtis, p=0.051, 145 

PERMANOVA, Table 2) indicating that, at this time point, low abundance features are joining or 146 

leaving the community (either physically, or their abundance is changing in a way that is 147 

relevant to our detection threshold). At the final overlapping time point in spring (March), 148 

bacterial communities between the two teams were significantly different when using a weighted 149 

metric (Bray-Curtis, p=0.031, PERMANOVA, Table 2), but not an unweighted metric (Jaccard, 150 

p=0.284, PERMANOVA, Table 2). Together, these results suggest that nasal microbiome alpha-151 

diversity (richness and evenness) is relatively stable, but that compositional changes in bacterial 152 

communities are apparent between athletic teams, possibly due to chronic exposure to 153 

chlorinated water. That we observe the greatest compositional difference between teams at the 154 

beginning of the athletic season suggests that training and exercise generally may have a 155 

consistent impact on the microbial composition of the nasal cavity independent of sport.   156 
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 157 

Table 2. Multivariate analysis of beta diversity dissimilarity metrics by athletic team at each 158 

sampling point 159 

Distance Metric Sampling Time Point pseudo-F PERMANOVA 

p value 

Bray-Curtis October 1.82 0.042 

Jaccard October 1.32 0.002 

Bray-Curtis November/December 1.69 0.051 

Jaccard November/December 1.35 0.021 

Bray-Curtis March 2.18 0.031 

Jaccard March 1.05 0.284 

 160 

Environmental exposures are associated with reduced bacterial microbiome stability. 161 

Next, we sought to determine how microbiome composition changes within an individual 162 

over time and whether chronic exposure to chlorinated water alters microbial stability, defined 163 

here as the magnitude of change in community dissimilarity metrics within an individual. We 164 

used q2-longitudinal[25]. to examine how community dissimilarity metrics changed in each 165 

individual between successive time points in each athletic team (Fig. 3). The magnitude of 166 

change in Jaccard and Bray-Curtis dissimilarity indices increased at the final timepoint (March) 167 

in the Swim/Dive team, indicating that the rate of change of beta diversity was greater in 168 

individuals exposed to chlorinated water (Fig. 3A, Fig. 3B). Bray-Curtis and Jaccard indices 169 

remained stable (Fig. 3A) or decreased (Fig. 3B) in the basketball team, indicating more similar 170 

bacterial communities within an individual over time. The magnitude of change in Jaccard 171 

dissimilarity metric was significantly greater in individuals on the Swim/Dive team than in 172 
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individuals on the Basketball team between the first and final time points (Jaccard p=0.008, 173 

Mann-Whitney U; Bray-Curtis p=0.466, Mann-Whitney U).  174 

To identify important features (e.g. taxa) that change in abundance over time in each 175 

athletic team, we used a supervised learning regressor as implemented in q2-longitudinal 176 

feature volatility analysis (Random Forest Regressor, model accuracy p=0.000003, Mean 177 

Squared Error=0.300, r2=0.622 [25]).  Two low-abundance features were strong predictors of 178 

sampling time point in each team: TM6 increased over time (feature importance score=0.180, 179 

net average change=0.0002) and unclassified Bacillaceae decreased over time (feature 180 

importance score=0.079, net average change=-0.0922). Two of the highest abundance features 181 

were Staphylococcus and Corynebacterium (Additional Figure 3) and were also strong 182 

predictors of sampling time point. Staphylococcus was ranked third in feature importance and 183 

on average, increased over time with a higher rate of increase in individuals on the Swim/Dive 184 

team (feature importance score=0.064, net average change=0.1442; Fig. 4A). The second most 185 

abundant feature, Corynebacterium, decreased in each athletic team over time in both teams 186 

(feature importance score=0.008, net average change=-0.1070; Fig. 4B). These results support 187 

our prior finding that compositional differences are driven by high-abundance taxonomic 188 

changes between athletic teams at the final sampling time point.  189 

Evaluating changes in individual features is important, however microbial communities 190 

exist within a complex ecological framework comprised of competing, commensal, and 191 

mutualistic interactions. Thus, microbes do not change in response to environmental pressures 192 

in isolation. To determine whether networks of bacteria change over time in athletes exposed to 193 

chlorinated water, we used a nonparametric microbial interdependence test (NMIT) [26]. as 194 

implemented in q2-longitudinal [25]. to determine whether distinct networks of interdependent 195 

ASVs change within each group (swim and dive v. basketball). To ensure robust microbial 196 

interdependence networks, we excluded individuals with fewer than 3 sampling timepoints. 197 

NMIT demonstrated the microbiome of swimmers and divers exhibited similar temporal 198 
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characteristics, or similar networks of bacteria changing, when compared to individuals on a 199 

basketball team (Additional Figure 4, PERMANOVA pseudo-F 1.22, p=0.022). These results 200 

suggest that networks of microbiota may change in response to chronic chlorine exposure.  201 

Athletes on the Swim/Dive and Basketball teams were asked to complete a Sinonasal 202 

Outcomes Test (SNOT-22), a validated questionnaire that surveys nasal, behavioural, and 203 

sleep symptoms. We evaluated microbiome alpha diversity and nasal symptoms (the sum of 204 

SNOT-22 questions 1-7). Higher values indicate worse nasal symptoms. There was not a 205 

significant difference in nasal symptom scores between teams (p=0.117, Welch’s t-test of 206 

averaged SNOT-22 score for each individual) though a larger sample size may be needed to 207 

identify this association. We also evaluated whether an increase in nasal symptoms was 208 

correlated with decreased alpha diversity using repeated measures correlation (rmcorr) in R 209 

[27]., as has been demonstrated in the sinonasal cavity in sinusitis [28]. We observed a weak 210 

but non-significant negative correlation overall (r2= -0.117, p=0.261) and in the Swim/Dive team 211 

(r2=0.029, p=0.868, Additional Figure 5). We observed no correlation between SNOT-22 and 212 

richness in individuals on the basketball team (r2= 0.029, p=0.868). Our results therefore do not 213 

illustrate a relationship between SNOT-22 scores and alpha diversity, but we expect that a 214 

larger sample size including individuals with diagnosed upper respiratory disease might 215 

elucidate a relationship. 216 

 217 

Discussion. 218 

We demonstrated that healthy, Division I NCAA athletes who are chronically exposed to 219 

chlorinated water (Swim and Dive) have distinct microbial community composition, but not alpha 220 

diversity, during the active season when compared to athletes who are not exposed to 221 

chlorinated water (Basketball). Both teams were comprised of healthy, female athletes, aged 222 

18-22. The nasal microbiota of individuals on the Swim and Dive team were compositionally 223 

less similar to their baseline sample over time, while the nasal microbiota of individuals on the 224 
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Basketball team was compositionally more similar to their baseline sample over time. This was 225 

expected, since the Swim and Dive nasal microbial community was exposed to chronic 226 

antimicrobial pressures via chlorination and chlorine byproducts, presumably strong drivers of 227 

bacterial composition. In this study, causality of chlorine exposure alterations to the nasal 228 

microbiome could not be determined since the nasal microbiome composition of each team was 229 

distinct at the start of the study, possibly due to years of chlorine exposure prior to joining an 230 

NCAA Division I swim and dive team. 231 

Previous studies have demonstrated an increased prevalence of allergic rhinitis, asthma, 232 

and allergies in elite athletes exposed to irritants and chlorinated water [18,29,30]. These 233 

studies are intriguing, but are limited in scope and unable to detect specific mechanistic 234 

pathways by which chronic exposure to low levels of chlorine and chlorine derivatives drive 235 

airway disease. It’s unclear whether athletes choose an athletic career in the pool because of 236 

underlying airway issues, such as asthma, or whether exposure to chlorine and byproducts 237 

precedes disease. We hypothesized that altered nasal microbiome composition may contribute 238 

to airway disease, as has been previously described in patients with AR and asthma [9,20,21]. 239 

While we have not mechanistically demonstrated this in the current study, our results suggest 240 

that elite athletes exposed to chlorinated water have altered microbial composition. Specifically, 241 

we demonstrated that the rate of change in Jaccard and Bray-Curtis distances increased in the 242 

Swim/Dive team over time, indicating that the nasal microbiota of participants on the Swim and 243 

Dive team became less similar than their previous sampling point as the season progressed. In 244 

contrast, the rate of change in distances was smaller in participants on the basketball team, 245 

indicating that the nasal microbiota did not change or became more similar to their previous 246 

sampling time points. When we computed differences from baseline and final sampling points, 247 

we observed significant differences in proportions of OTUs shared between samples (Jaccard); 248 

Swim/Dive athletes nasal microbiota shared fewer taxa with their baseline sample at the final 249 
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time point whereas Basketball athletes nasal microbiota became shared more taxa with their 250 

baseline sample at the final time point.  251 

We observed bacterial taxa that were predictive of sampling time point in each team. 252 

Most notably, Staphylococcus abundance increased in abundance in Swim/Dive participants 253 

over time, but Corynebacterium decreased over time in both teams, perhaps as a general 254 

consequence of athletic training. Corynebacterium species are commensal and potentially 255 

beneficial in the anterior nares so we were surprised to observe a decrease in Corynebacterium 256 

relative abundance throughout the athletic season.  An antagonistic relationship between 257 

Staphylococcus and Corynebacterium has been observed in nasal microbiome and in vitro 258 

studies [13,28,31–33].  Corynebacterium can inhibit Staphylococcus aureus growth through 259 

secretion of anti-Staphylococcal factors [33]. and can shift the behavior of S. aureus toward 260 

commensalism when in a polymicrobial community by inhibiting the quorum sensing signal, 261 

accessor gene regulator (agr) [34]. Future studies should be aimed at understanding the health 262 

implications of increased Staphylococcus burden in collegiate and professional swimmers. In 263 

addition, we did not assess the effect of chlorinated, saltwater, or freshwater on the nasal 264 

microbiota, which should also be the focus of future studies.  265 

 This is the first study that has evaluated the nasal microbiome in athletes. We obtained 266 

longitudinal nasal swabs from two gender-matched teams with similar age distributions (18-22 267 

years old) over an approximately 6 month period. The limitations of our study include uneven 268 

periods between sampling, though we were able to sample in three seasons (Fall, Winter, 269 

Spring) for each team. We also recognize that this study was performed with a relatively small 270 

sample size (n=47 total participants), so we may not have statistical power to detect true 271 

changes in the microbiome at each timepoint. Finally, we were unable to include a healthy, non-272 

athlete cohort in this initial study. We are currently recruiting healthy, non-athletes to determine 273 

whether we observe changes in the nasal microbiome due to athletic status. Although this 274 

question has not been determined in the nasal microbiota, a recent study evaluating the skin 275 
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microbiome showed major shifts in athletes playing a contact sport (roller derby) [35]. In future 276 

studies, we will also measure nasal fungal microbiota to determine whether networks of bacteria 277 

and fungi are influenced by environmental exposures. The inclusion of a healthy cohort of 278 

individuals exposed to chlorinated water represents an exciting opportunity to evaluate the 279 

stability of the nasal microbiota under environmental pressures.  280 

 281 

Materials and Methods. 282 

Subject  Recruitment.  NCAA Division I female athletes ages 18-22 were recruited from a 283 

collegiate Swim and Dive and Basketball team in Arizona under approved IRBs 982568-4 and 284 

982568-14. Inclusion criteria included active membership of each athletic team and general 285 

good health. No exclusionary criteria were developed for this study, as all NCAA athletes are 286 

required to complete yearly athletic physicals to screen for possible health risks. Individuals 287 

were not excluded based on prior diagnosis of airway disease, but prior physician’s diagnosis 288 

and current nasal symptoms were recorded as metadata and used in subsequent analyses. 289 

Fifteen members of the basketball team and 32 members of Swim and Dive participated. Up to 290 

5 timepoints (a minimum of 2 timepoints) were collected per individual throughout the course of 291 

the athletic season. Nasal specimens were obtained at approximately 1-month intervals. A total 292 

of 178 nasal specimens were processed for bacterial microbiome sequencing. The active 293 

seasons for each team were similar; Swim and Dive meets occur September to March and 294 

Basketball games occur November to March. Athletes on the Swim/Dive and Basketball teams 295 

were asked to complete a Sinonasal Outcomes Test (SNOT-22), a validated questionnaire that 296 

surveys nasal, behavioral, and sleep symptoms [36].  297 

 298 

Nasal Specimen Collection and DNA extraction.  299 

Nasal bacterial samples were collected using a BBL CultureSwab (Becton, Dickinson and 300 

Company, Sparks, MD). Participants were instructed to swab their anterior nares with both swab 301 
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tips for 10-15 seconds per nostril. Swabs were transported to a -80 °C freezer and stored until 302 

DNA extraction. Nasal samples were randomized into five extraction sets. Total DNA was 303 

extracted from nasal swabs using DNeasy PowerSoil Kit (Qiagen Hilden, Germany) using 304 

manufacturer’s protocol with one modification; to facilitate microbial lysis, swabs were incubated 305 

in lysis buffer for 10 minutes at 65 °C before sample vortexing. Resulting DNA samples were 306 

quantified on the Nanodrop 8000 Spectrophotometer (ThermoFisher Waltham, MA).     307 

  308 

16S rRNA gene sequencing. 309 

Amplicon sequencing of the 16S rRNA gene for sequencing on the MiSeq Illumina platform was 310 

done using the protocol from the Earth Microbiome Project [37]. Barcoded 806R reverse primers 311 

and forward primer 515F were used to amplify the V4 region of the 16S rRNA gene [38]. Library 312 

preparation was done at the Pathogen and Microbiome Institute and sequencing was performed 313 

at the Translational Genomics Research Institute (TGen) Pathogen and Microbiome Division.  314 

PCR conditions were as follows: 2 minutes at 98 °C for 1 cycle; 20 seconds at 98 °C, 30 315 

seconds at 50 °C, and 45 seconds at 72 °C for 30 cycles; and 10 minutes at 72 °C for 1 cycle. 316 

PCR product was purified using AMPure XP for PCR Purification (Beckman Coulter 317 

Indianapolis, IN), quantified using Qubit dsDNA HS Assay Kit (ThermoFisher Waltham, MA), 318 

and pooled at 25 ng/sample for sequencing. If extraneous DNA bands (human or mitochondrial) 319 

were present, the samples were run on an EGel size-select gel (ThermoFisher Invitrogen, 320 

Waltham, MA) prior to pooling. Extraction blank negative controls were included in each 321 

extraction set (five total) and sequenced with the pool of nasal samples. A negative control for 322 

each barcoded primer was also run and visualized on a gel. If contamination was observed in 323 

the negative well, the sample was run with a new barcoded primer.  324 

 325 

Microbiome Bioinformatics.  326 
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16S rRNA gene sequences were analyzed using Quantitative Insights Into Microbial Ecology 2 327 

(QIIME 2) 2019.10 [39]. Paired end sequences were demultiplexed, then denoised, chimera 328 

checked and grouped into Amplicon Sequence Variants (ASVs) based on 100% sequence 329 

identity using dada2 [40]. Sequences were aligned using MAFFT [41] and a phylogenetic tree 330 

was built using FastTree 2 [42]. Taxonomy was assigned to each ASV using a Naive Bayes 331 

classifier[43]. trained on Greengenes 13_8 99% OTUs [44]. Richness (observed OTUs), Faith’s 332 

Phylogenetic Diversity [45], and Shannon diversity were used to assess alpha diversity. 333 

Jaccard, Bray-Curtis, Weighted and Unweighted UniFrac [46] metrics were used to assess beta 334 

diversity. Longitudinal analysis was performed using the q2-longitudinal plugin [25]. Volatility 335 

analysis was used to determine how metrics (e.g. alpha diversity or beta diversity) changed over 336 

the sampling period [25].  337 

  338 

Statistical Analysis.  339 

In order to include the maximum number of longitudinal sampling points, we rarefied samples to 340 

an even sampling depth of 2,771 sequences/sample. Three samples were removed at this step 341 

due to low sequence depth. Kruskal-Wallis was used to evaluate changes in alpha diversity 342 

(richness, shannon, Faith’s PD) across each team within one time point [47]. Permutational 343 

analysis of variance (PERMANOVA) was used to compare beta diversity (Bray-Curtis, Jaccard, 344 

Weighted Unifrac, Unweighted UniFrac) across teams at each time point [48]. Pairwise 345 

comparisons in alpha diversity were made for each pair of samples between successive 346 

timepoints using a Wilcoxon Signed Rank Test as implemented in q2-longitudinal [25]. A Mann-347 

Whitney U test was used to assess whether distance (using a beta diversity distance matrix) 348 

between successive timepoints were significantly different between each team over time. 349 

Finally, Repeated Measures Correlation using rmcorr in R version 1.2.1335 was used to assess 350 

the relationship between alpha diversity and the sum of the questions 1-7 on the SNOT-22 351 

questionnaire, which evaluates nasal symptoms [27]. To identify important features (e.g. taxa) 352 
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that change in abundance over time in each athletic team, we used a random forest supervised 353 

learning regressor with 5-fold cross validation and 100 estimator trees, as implemented in q2-354 

longitudinal feature volatility analysis on a feature table collapsed to the genus level [25].  355 
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Figure Legends. 539 

Fig. 1. Sampling schematic for athletes on a Swim/Dive or Basketball team. Swim/Dive 540 

participants took up to five nasal samples from September 2017 to March 2018. Basketball 541 

participants took up to four nasal swabs from October 2017 to March 2018.  542 

 543 

Figure 2.  Diversity analysis across athletic teams. Magnitude of change in bacterial richness 544 

compared to each prior sampling point [first differences, (A)]. and to baseline richness [first 545 

sampling per team; (B)]. demonstrates no significant difference across athletic team or sampling 546 

time point (p>0.05, Kruskal Wallis). Faded thin lines demonstrate the longitudinal trajectory of 547 

individuals, thick colored lines represent the mean change and standard deviation across non-548 

chlorine exposed (Basketball) and chlorine-exposed (Swim/Dive) athletes. PCoA of Jaccard (C) 549 

and Bray-Curtis (D) distance matrices showing significant clustering by team across each 550 

sampling points matched by month (x-axis).  551 

 552 

Figure 3. Longitudinal change in Jaccard (A) and Bray-Curtis (B) distances between successive 553 

samples (first distances) from chlorine-exposed (Swim/Dive) and unexposed (Basketball) 554 

athletes. Athletes who were not exposed to chlorine during the athletic season had more similar 555 

nasal microbiota when measured using Jaccard but not Bray-Curtis dissimilarity metric, at the 556 

end of the sampling period compared to the baseline sample whereas athletes who were 557 

chronically exposed to chlorine had less similar nasal microbiota compared to baseline and prior 558 

sampling timepoints (Jaccard, p=0.02, Kruskal Wallis; Bray-Curtis p=0.45 Kruskal Wallis).  559 

 560 

Figure 4. Random Forest regression of feature abundance over time. Two high abundance 561 

features were predictive of sampling time point. A) Staphylococcus abundance increased over 562 

time in participants on the Swim/Dive team, but remained relatively stable in participants on the 563 

Basketball team (feature importance score=0.064, net average change=0.1442). B) 564 
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Corynebacterium abundance decreased over time in participants on both teams (feature 565 

importance score=0.008, net average change= -0.1070).  566 

 567 
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Figure 1. Sampling Timeline 592 

 593 

 594 

 595 
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 599 

 600 

Figure 2. Temporal Changes in Richness and Beta-Diversity.601 
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Figure 3. Magnitude Change in Jaccard and Bray-Curtis Over Successive Timepoints.604 
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 625 

Figure 4. Random Forest Regression Identified Change of Important Features Over Time. 626 
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