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Abstract 21 

Anaerobic digestion (AD) is a promising biological process to convert waste into sustainable 22 

energy. However, the microbiota involved in this bioprocess is complex and additional 23 

knowledge is still needed to fully exploit its capability. High throughput methodologies open 24 

new perspectives, but innovative data integration methodologies are required for extracting 25 

relevant information from these rich data. We analysed the association between microbial 26 

activity and the patterns of substrate degradation during a lab-scale co-digestion experiment. 27 

These parameters were longitudinally monitored using 16S rRNA sequencing and untargeted 28 

metabolomics. In this experiment, samples were collected from digesters fed with 9 different 29 

mixtures of fish, sewage sludge, and grass. Our objective was to identify microorganisms 30 
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responsible for the degradation of molecules specific of each co-substrate. Five main groups 31 

of correlated features were successfully evidenced. For example, the degradation of 32 

cadaverine was found to be correlated with microorganisms from the order Clostridiales and 33 

the genus Methanosarcina, and the degradation of lignin compounds was correlated with 34 

cellulolytic degraders Lactobacillales. This study highlights the potential of data integration 35 

towards a comprehensive understanding of AD microbiota.  36 

 37 

Keywords 38 

16S RNA sequencing; metabolomic; data integration; methanisation; co-digestion; PLS 39 

canonical 40 

 41 

Introduction 42 

Deciphering the microbial communities from diversified domains such as health, food 43 

safety and environment has been widely addressed by the development of the high-throughput 44 

technologies and adapted computational statistical methods. It is now possible to study the 45 

structure, activity, interaction and function of complex microbial communities using new 46 

methods from the genomics, transcriptomics, proteomics and metabolomics fields 47 

(Vanwonterghem et al., 2014). In parallel to the important advancements in these fields, the 48 

recent development of specific statistical methods and user-friendly workflows has 49 

substantially improved the visualisation, analysis and integration of the omics results (Bouhlel 50 

et al., 2018; Callahan et al., 2016; Rohart et al., 2017; Singh et al., 2019). 51 

Anaerobic digestion (AD) is a promising bioprocess to provide sustainable energy. 52 

Indeed, driven by a complex microbial community, AD allows to transform organic waste 53 

into biogas. This process involves four different steps: hydrolysis, acidogenesis, acetogenesis 54 

and methanogenesis managed by the interaction of bacteria and archaea. Nonetheless, this 55 
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microbial diversity and its interaction are highly sensitive and depend on multiple parameters 56 

such as temperature (Madigou et al., 2019; Noll et al., 2010), presence of inhibitors such as 57 

phenol (Poirier et al., 2016), ammonia (Li et al., 2017), long chain fatty acids (Sousa et al., 58 

2013), and feeding composition (Zamanzadeh et al., 2017). Several studies have already 59 

shown the utility of using omics technologies to decipher the anaerobic microbial population 60 

(Amha et al., 2018; Hassa et al., 2018). The level of information differs according to the type 61 

of used omics technology. Analyses of a single omics data type are routinely carried out (Bize 62 

et al., 2015; Cai et al., 2016); but the use of several omics at the same time is rare. For 63 

example Beale et al. applied metagenomic and metabolomic approaches to obtain new 64 

insights on the diversity and activity of the anaerobic population after stress (Beale et al., 65 

2016). However, no direct correlation was assessed between the two approaches. More 66 

generally, in the literature omics data integration methodologies are still sparse. 67 

The aim of this study was to evaluate a methodology to correlate the microbial activity 68 

to the metabolites specific of the substrates degradation. For that purpose, 3 different 69 

substrates (sewage sludge, grass, and fish) of different chemical composition were used. In 70 

this study, 27 anaerobic bioreactors fed with binary mixtures of the substrates (sludge and 71 

grass, or sludge and fish) at different proportions (0-100, 25-75, 50-50, 75-25, 100-0) were 72 

employed. By using these binary mixtures, it is possible to evaluate the evolution of the 73 

substrate-specific microorganisms and molecules. The active microbial community was 74 

analysed through the sequencing of the 16S rRNA. While DNA can inform us about the total 75 

diversity of a community (that includes dead, dormant and living microorganisms), RNA 76 

sequencing allow us to only characterise microorganisms active in a given environment (Lin 77 

et al., 2016) and to study therefore the metabolically active microorganisms (De Vrieze et al., 78 

2018). Untargeted metabolomics using LC-MS was performed to study the pattern of the 79 

substrate degradation. Metabolomic experiments can be potentially used to determine the 80 
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molecular fingerprints of waste degradation and to monitor the patterns of substrate 81 

degradation (Villas-Bôas et al., 2006).  82 

To our knowledge, this is the first study that studies the correlation between microbial 83 

activity from 16S rRNA sequencing data and pattern of substrate degradation from 84 

metabolomics data. Our computational analyses revealed subsets of active microorganisms 85 

highly associated to dynamics of substrate degradation over time, and posit novel hypotheses 86 

regarding the capacity of microorganisms to degrade specific molecules. For instance, 87 

cadaverine degradation was correlated to Clostridiales and Methanosarcina, which suggests a 88 

possible syntrophic relationship between these two microorganisms. Such association was 89 

already highlighted with a different anaerobic syntrophy between a Clostridium-like bacteria 90 

and Methanospirullum archaea (Roeder and Schink, 2009). 91 

 92 

Methods 93 

Feedstock preparation  94 

The inoculum used in the digestion experiments was sampled from a mesophilic full 95 

scale industrial anaerobic bioreactor treating primary sludge from a wastewater treatment 96 

plant (Valenton, France). The inoculum was incubated in anaerobic condition at 35°C without 97 

feeding in order to degrade the organic matter in excess before to carry out the experiments.  98 

Substrates used in the experiments were wastewater sludge collected from an industrial 99 

wastewater treatment plant (Valenton, France), fish waste obtained from a fish shop, and 100 

garden grass mowed from IRSTEA institute. Fish and grass wastes were crushed and kept at 101 

4°C until the incubation experiments. 102 

Bioreactors experimental set-up 103 

Binary mixtures of sludge with linearly increasing (0-100, 25-75, 50-50, 75-25, 100-0) 104 

percentages of either fish or grass were prepared (Figure 1). Experiments were carried out in 105 
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1L glass bottles (700 mL working volume) at 35°C in the dark without agitation. The same 106 

quantity of carbon was added in all the digesters, and the ratio of substrate/inoculum used to 107 

feed and inoculate all the digesters was fixed at 12 gCOD/1.2 gCOD (Table S1). All the 108 

bioreactors were complemented with a biochemical potential buffer (International Standard 109 

ISO 11734 (1995)) to reach a final working volume of 700 mL. All incubations were 110 

performed in triplicate. The bioreactors were then sealed with a screw cap and a rubber 111 

septum and the headspaces were then flushed with N2 (purity >99.99%, Linde gas SA). In 112 

total 27 anaerobic bioreactors were set-up. 113 

Weekly (at days 0, 7, 14, 21), for every reactor, 6 mL of liquid phase were sampled 114 

through the septum using a syringe. The collected samples were centrifuged at 10 000g for 10 115 

minutes to separate the supernatants from the pellets. Supernatant were snap frozen using 116 

liquid nitrogen and kept at -20°C for metabolomic analysis and pellets kept at -80°C for 117 

microbial analysis. 118 

  119 
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 120 

Figure 1. Scheme of the batch experimental design. S100 stands for wastewater sludge 121 
alone, F25, F50, F75, F100 stands for respectively 25, 50, 75 or 100% of fish (F) in co-122 
digestion with sludge, G25, G50, G75, G100 stands for respectively 25, 50, 75 or 100% of 123 

Grass (G) in co-digestion with sludge 124 
 125 

RNA extraction and 16S rRNA sequencing 126 

Based on the biogas production, a total of 22 samples were selected (active biogas 127 

production - Figure 2). Since fish-containing digesters showed a higher delay in the biogas 128 

production than grass-containing digesters, the used sampling time-points were different for 129 

the two substrates (day 14 for grass-containing digesters, and day 28 for fish-containing 130 

digesters). In addition, the microbial analysis was also performed for samples from the same 131 

digesters collected at day 21. 132 

  133 
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 134 

Figure 2. Cumulated biogas production (mgC/gCOD) over time (Days) for the different 135 
bioreactors. Mean values of the triplicate bioreactors, error bars represent standard deviations 136 
within triplicates. S100 stands for wastewater sludge alone; F25, F50, F75, F100 stands for 137 
respectively 25, 50, 75 or 100% of fish (F) in co-digestion with sludge; G25, G50, G75, G100 138 
stands for respectively 25, 50, 75 or 100% of Grass (G) in co-digestion with sludge. Red solid 139 
lines correspond to the 16S rRNA sequencing points and metabolomic points. Purple dashed 140 
line corresponds to the point where only metabolomic analysis was carried out. 141 

 142 

The commercial kit FastRNA Pro™ Soil-Direct (MP Biomedicals) was used to extract 143 

the total RNA following the manufacturer’s specifications. TURBO™ DNase (Ambion) kit 144 

following the manufacturer’s instructions allowed to remove DNA co-extracted. The RNA 145 

was denaturated by 2 min at 85°C in a dry bath and was then stored on ice. RNAClean XP 146 

magnetic beads purification system (Beckman Coulter) was used to RNA purification by 147 

adding 1.8 volumes of beads by volume of RNA. After mixing by pipetting and 5 min of 148 

incubation, beads were captured using a magnetic rack on one side of the tube and then 149 

washed by adding 500 µL of 70% cold ethanol (diluted in DEPC-water). Tubes were 150 

incubated during 30 seconds at room temperature and ethanol was removed then. This 151 

washing step was repeated 3 times. Once ethanol finally evaporated, beads were resuspended 152 

with DEPC-water to eluted RNA from the beads. Finally, beads were removed using the 153 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.946970doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.946970
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

8 
 

magnetic rack and RNA was recovered in the supernatant. The integrity and quantity of the 154 

RNA was evaluated using High Sensitivity RNA ScreenTape and 4200 TapeStation (Agilent 155 

Technologies) following the manufacturer’s protocol.  156 

A reverse transcription polymerase chain reaction (RT-PCR) was carried out on the 157 

RNA using the mix iScript Reverse Transcription Supermix (Biorad) and the following 158 

thermocycler program: 5 min at 25°C, 30 min at 42°C and 5 min at 85°C. The cDNA was 159 

quantified using Qubit 2.0 fluorometer (ssDNA assay kit, Invitrogen, Life Technologies).  160 

Archaeal and bacterial hyper variable region V4-V5 of the 16S rRNA gene were 161 

amplified as cDNA, and these amplicons were then sequenced according to the protocol 162 

described by Madigou et al. (Madigou et al., 2019).  163 

FROGS (Find Rapidly OTU with Galaxy Solution), a galaxy/CLI workflow (Escudié et 164 

al., 2018), was used to design an OTU count matrix. R CRAN software (version 3.5.1) was 165 

used to examine the OTUs abundances. Alpha diversity was analysed using Shannon method 166 

using phyloseq R package (version 1.20.0). Considering the dispersion in the total number of 167 

reads identified in each sample, archaeal and bacterial OTUs abundances were scaled with 168 

total sum. Only OTUs that exceeded 1% in terms of relative abundance in at least one sample, 169 

were selected for the analysis and square-root transformed.  170 

Metabolomic analysis 171 

Metabolomic analysis was performed on all collected supernatants. Samples were 172 

analysed using reverse phase liquid chromatography coupled to high resolution mass 173 

spectrometry (HPLC-ESI-HRMS) using a LTQ-Orbitrap XL instrument (Thermo Scientific). 174 

Samples were diluted at 1/10 in water and 10 µL of the solution was injected into the 175 

analytical system. Chromatographic separation was performed on Accela 1250 pump at 400 176 

µL/min with a linear gradient from 10 to 80% of mobile phase A (acetonitrile + 0.05% formic 177 

acid) and 90 to 20 % of mobile phase B (water + 0.05% formic acid) into a syncronis C18 178 
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column (50x2.1 mm, 1.7µm, Thermo Scientific) during 23 minutes, followed by a 179 

stabilization phase of 5 minutes to return at the initial condition. After chromatographic 180 

separation, the sample was ionized by electrospray ionization (ESI) on positive mode. The 181 

detection was performed in full scan over an m/z range from 50 to 500 at a resolution of 100 182 

000. A sample consisting on the supernatant from the digestion of anaerobic sludge was used 183 

as a quality control and injected every 10 experiment samples, blank samples were injected 184 

every 10 samples, and an equimolar mix of the samples was injected every 5 samples. 185 

The raw data obtained from the LC-HRMS analyses were transformed into mzXML 186 

files using MSConvert (ProteoWizard 3.0). The XCMS R package (version 1.52.0) was used 187 

to process the data (Smith et al., 2006). The method centWave was used to determine 188 

chromatographic peaks (ROIs) with a m/z error of 10 ppm and a peakwidth between 20 and 189 

50 seconds. The ROIs found in different sample were grouped using the group method with a 190 

bandwidth of 30. ROIs retention times from the same ROI groups were unified across samples 191 

using the orbiwarp method. A second grouping was carried out using a bandwidth of 25. 192 

Finally, missing ROIs in the samples were filled using the fillPeaks method. Initial metabolite 193 

identification was performed based on the comparison of the accurate molecular mass 194 

measured by LC-HRMS with the corresponding values found in the online databases HMDB, 195 

LipidMaps, and PubChem (Fahy et al., 2007; Lee et al., 2018; Wishart et al., 2018). In 196 

addition, for selected compounds, a confirmation of the metabolite identification was 197 

performed by MS/MS fragmentation, and followed by the comparison of the acquired MS/MS 198 

spectra with the theoretical spectra from the online databases HMDB and MassBank (Horai et 199 

al., 2010). 200 

  201 
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Statistical analysis 202 

Statistical methods from mixOmics R package (Rohart et al., 2017) were used to 203 

highlight the relationship between the key microorganisms and the molecules degradation 204 

pattern.  205 

Firstly, in order to highlight the most active microorganisms involved in the substrate 206 

degradation independently of the mixture composition, the method sparse Principal 207 

Component Analysis (sPCA, (Shen and Huang, 2008)) was used on the microbial dataset. 208 

This method allows to select the OTUs that highly contributed to explain the main source of 209 

variance in the data. 210 

To study the dynamics of the metabolites between the different feeding types, we used 211 

sparse Partial Least Squares Discriminant Analysis (sPLS-DA, (Lê Cao et al., 2011)) on the 212 

mono-digestion samples (S100, F100, G100) at day 0 to select the most discriminative 213 

molecules. This analysis enabled to identify the molecules specific of each substrate at the 214 

beginning of the experiment. These most discriminant molecules were selected based on the 215 

error rate of classification obtained for each component when adding progressively the 216 

number of molecules. 217 

The patterns of abundance of the selected OTUs and molecules within the mixtures and 218 

over time were observed with heatmaps (heatmap.2 function from gplots R package, version 219 

3.0.1) using the Ward method and Manhattan Euclidean distance for respectively OTUs and 220 

molecules abundances. 221 

Secondly, to study the correlation between microbial activities and molecules 222 

degradation over time, the selected molecules data were transformed using a ratio between the 223 

molecules abundances at Day 0 and days 14, 21 or 28. The two sets of data (selected 224 

microorganisms and molecules in the first part) were statistically integrated using a PLS 225 

canonical mode (Lê Cao et al., 2009) and their variabilities through the different mixtures 226 
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were studied. Microorganisms and molecules with a similar pattern of evolution were grouped 227 

together using a hierarchical clustering using complete linkage method to identify the 228 

microorganisms involved in the degradation of the molecules. 229 

 230 

Results and discussion 231 

A comparison of the major chemical parameters of anaerobic digestion is described in 232 

a precedent study (Cardona et al., 2019). This study describes the influence of adding a 233 

second substrate to improve the digestion performances. Because the present study focuses on 234 

the correlation of microbial activity and molecule degradation, the performance results will 235 

not be described in details here. 236 

Influence of the feeding composition on the microbial community  237 

The alpha diversity using Shannon index (supplemental Figure S1) was calculated on 238 

archaeal and bacterial communities in order to evaluate the influence of the feeding 239 

composition on the microbial diversity. We observed that the archaeal and the bacterial 240 

diversity is inversely proportional to the amount of fish added in the digester. The low 241 

microbial diversity induced by the presence of fish substrate might be explained by a simpler 242 

substrate composition (in terms of molecular variety) in this substrate, or by a higher 243 

functional redundancy of the microorganisms that can degrade fish substrate if compared to 244 

those that can degrade grass or sewage sludge.  245 

The sPCA sample plot highlighted the influence of the feeding composition on the 246 

microorganisms abundance (Figure 3). We identified 43 OTUs representing 65 to 85% of the 247 

total microbial community that explained most of the variability in the 16S rRNA data. 248 

Samples were grouped in three clusters, according to the major co-substrate, and regardless of 249 

their sample collection time. This result reveals low time variability within the conditions and 250 

a stable microbial community over time. 251 
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 252 

Figure 3. Microbial dynamics over time with respect to the different feeding 253 
compositions. Sample plot from the sPCA from the 16S rRNA dataset. Digesters are 254 
represented by colours and number of days by symbols. 255 
 256 

The individual abundances of the selected microorganisms were compared between the 257 

different mixtures (Figure 4). The active archaeal community was different according to the 258 

feeding type. Fish mono-digestion (F100) was mostly driven by the archaea Methanosarcina 259 

OTU_6 and Methanoculleus OTU_18; grass mono-digestion (G100) by Methanospirullum 260 

OTU_24, Methanosarcina OTU_1, Methanofollis OTU_64 and sludge mono-digestion 261 

(S100) by Methanosarcina OTU_1, Methanobacterium OTU_63 and 204 and two OTUs of 262 

Methanoculleus (18 and 50). Except Methanosarcina which has a versatile methanogenesis 263 

metabolism, all the identified archaea use only the hydrogenotrophic pathway to produce 264 

methane. Regarding Methanosarcina, it may be noteworthy to highlight that fish substrate 265 

specifically induced the activity of Methanosarcina OTU_6, since it was not found in the 266 

other substrates.  267 

 268 
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The diversity in bacteria community also differed between feeding types. As observed 269 

in the alpha diversity analysis, the fish substrate induced a lower microbial diversity than 270 

grass or sludge. In fish mono-digestion, the order Clostridiales represented more than 90% of 271 

the community. In grass mono-digestion, the abundance of Spirochaetales, Fibrobacterales, 272 

Lactobacillales and Enterobacteriales was higher than in fish and sludge mono-digestion, 273 

favoured by their ability to degrade cellulolytic substrates such as grass. Bacterial community 274 

of sludge mono-digestion was mostly composed by Cloacimonadales, Synergistales, 275 

Anaerolineales, Hydrogenedentiales, Erysipelotrichales and Coprothermobateriales. 276 

Members from the orders Synergistales and Anaerolineales are known or suspected to be able 277 

to form syntrophic interaction with hydrogenotrophic methanogens (Ito et al., 2011; Sekiguchi 278 

et al., 2001). In sludge, the abundance of potential syntrophic partners in presence with 279 

hydrogenotrophic methanogens suggests that methane production was mainly produced from 280 

the hydrogenotrophic methanogenesis pathway, in line with the archaeal community 281 

described in this incubation. 282 

In light of the literature, the type of substrate used to feed the digesters leads to the 283 

development of an adapted microbial community of degraders (De Francisci et al., 2015; Lee 284 

et al., 2018). Specifically, in addition to a lower microbial diversity, fish substrate induced the 285 

growth of a more specific community than that observed in grass and in sludge substrates. 286 

Indeed, only 5% of the OTUs were found in both samples collected from fish- and sludge-287 

digesters, and 9% were found in both samples collected from fish- and grass-digesters, while 288 

17% of the OTUs were common between samples collected from grass- and sludge-digesters.  289 

 290 
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 291 

Figure 4. Heatmap of the most discriminant active microbial community composition. 292 
The heatmap shows the abundances of the most discriminant microorganisms selected by the 293 

sPCA The substrate used, day, and replicate number are indicated in the row labels.. 294 
Duplicates were carried out on the bioreactors containing only fish, grass or sludge at day 21. 295 
Taxonomy is indicated at the genus level for archaea (pink) and order level for bacteria 296 
(black) completed by the OTU number. Heatmap color goes from blue to red in accordance to 297 
the abundance increase. 298 

 299 

Within the mixtures, the proportion of the selected microorganisms evolved according 300 

to the feeding composition. However, the evolution of the microbial response was not 301 

completely linear. For example, the relative abundances of the active OTUs in the fish:sludge 302 

mixture at 75:25 (F75) was close to the relative abundances of the active microorganisms in 303 

the fish mono-digestion. On the other hand, the more sludge was added in the feeding, more 304 

active microorganisms characteristic of sludge were recovered. On the contrary, the active 305 

microbial community in grass remained dominant even down to 25% of grass (in the mixture 306 

with 75% of sludge, G25). Despite the progressive evolution for most of the microorganisms 307 

was observed across all the samples, some microorganisms were only found in specific 308 
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conditions such as Methanocorpusculum and specific OTUs of Clostridiales in the mixes 309 

50:50 and 75:25 of grass:sludge.  310 

Biogas can be regarded as the final outcome of the active microbial composition, and 311 

therefore, an association between microorganisms’ dynamics and the biogas production 312 

performances can be drawn (Figure 2). For example, the similarity of the microbial 313 

composition between F100 and F75, or between G25 and S100, induced a similar biogas 314 

production. Thus, the bioreactors performances depend on the ability of the microbial 315 

community to adapt to the added substrates. 316 

 317 

Substrates degradation dynamics 318 

The temporal dynamics of the degradation of the different substrate mixtures in the 319 

bioreactors were studied. For that purpose, the metabolic fingerprint of the degradation in the 320 

digesters were analysed using an HPLC-ESI-HRMS instrument. After data examination with 321 

XCMS, a total of 267 ROIs were detected. To identify the molecules (ROIs) specific to each 322 

substrate, and that were initially present, sPLS-DA was performed on the metabolomics data 323 

from samples relative to the mono-digestion bioreactors (F100, G100 and S100) at day 0. 324 

From this analysis, a total of 70 molecules were determined to be specific of any of the 3 325 

substrates.  326 

The degradation pattern of the selected molecules within the mixtures and over time 327 

was evaluated by comparing their intensities (Figure 5). The molecules were grouped 328 

according to their initial intensities at day 0. Four major groups can be distinguished from this 329 

clustering. 3 of these groups include the ROIs whose relative intensities were significant only 330 

in sludge-, grass- or fish-enriched digesters, respectively (S, G, and F, respectively, in Figure 331 

5). The other group (FG in Figure 5) include the ROIs whose relative intensities were high in 332 

both fish- and grass- but low in sludge-containing digesters.  333 
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 334 

Figure 5. Molecules dynamics within bioreactors and over time. The heatmap shows the 335 
evolution among the samples and over time of the intensity of the most discriminant ROIs 336 
selected by the sPLS-DA in the different feeding type fish, grass and sludge at day 0. 337 
Analyses were carried out at days 21-28 for bioreactors containing fish, 14-21 for bioreactors 338 

containing grass and 14-21-28 for bioreactors containing sludge. For each waste mixture and 339 
date, triplicates bioreactors called 1, 2 and 3 were analysed. Heatmap color goes from blue to 340 
red in accordance with the abundance increase. 341 
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At day 0, the intensity of the ROIs representative of each feeding type differed within 342 

the samples. This result was expected due to the differences in the substrate molecular 343 

composition. Moreover, the intensity of the ROIs representative of sludge decreased when 344 

fish or grass was mixed with sludge. On the other hand, the intensities of some ROIs 345 

representative of fish or grass were similar within all the digesters containing fish or grass.  346 

As expected, the intensity of some ROIs decreased over time, while some other either 347 

increased or remained stable during the experiment. These molecules with stable intensity 348 

across time may not be easily degraded, or they may be a product of degradation of other 349 

molecules.  350 

The putative identification of the ROIs based on the comparison of their theoretical 351 

formula and molecular weight to databases is given in the Table S2. Examples of metabolite 352 

biomarkers of sludge are diethylthiophosphate (X340) and 6-methylquinoline (X218 and 353 

X270). Diethylthiophosphate is a common degradation product of organophosphorus 354 

pesticides, while 6-methylquinoline is a flavouring ingredient found in tea. 355 

In grass-fed bioreactors, grass biomarkers were classified as plant constituents (betaine, 356 

X245), metabolites obtained in lignin degradation (trans-ferulic acid and p-coumaric acid, 357 

X388 and X365, respectively), and metabolites from sugar metabolism (galactitol, X329). 358 

In fish bioreactors, most of the metabolites corresponded to organic compounds 359 

resulting from amino acids degradation (cadaverine and histamine, X132 and X150, 360 

respectively). Therefore, in all cases, the substrate-specific metabolites were biologically 361 

consistent with the corresponding substrates, as these metabolites were constituents of the 362 

substrates or degradation products from these constituents. 363 

 364 

Correlation between microbial activity and substrates degradation pattern  365 
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A PLS analysis was performed to integrate the data relative to the microorganism 366 

activity with the data of the molecules degradation. The rate of molecules degradation in the 367 

bioreactors was estimated by dividing the molecules relative intensity at day 0 by their 368 

intensity at days of interest.  369 

The ordination plots from PLS (Figure S2 A to C) show similar patterns for the two 370 

datasets, suggesting that an underlying correlation structure between the two datasets exist. 371 

The correlation circle plot (Figure S2-D) allows visualizing at the same time the groups of 372 

active microorganisms correlated to the molecules degradation rate. To further identify the 373 

microorganisms potentially responsible of the molecules degradation, a hierarchical clustering 374 

based on the loadings of the microbial and metabolic from the PLS was performed. Five 375 

groups of correlated microorganisms and molecules were identified according to their 376 

substrate specificity (Tables S2 and S3). Figure 6 depicts the mean values of the microbial 377 

activity and molecule degradation rate according to the feeding types. Group 1 included 378 

microorganisms and molecules with a high microbial activity and high molecule degradation 379 

rate during the digestion of sludge and grass. Groups 2-4 included microorganisms and 380 

molecules that are specific of either sludge, grass, or fish, respectively. Finally, group 5 381 

included the microorganisms and molecules that were highly active and highly degraded, 382 

respectively, in fish and sludge bioreactors. 383 
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 384 

Figure 6. Dynamics of the active microorganisms correlated to the molecules 385 
degradation among the samples at day 21. Duplicates were carried out on the bioreactors 386 
containing only fish, grass or sludge. Line represents the mean values of the different 387 

microbial activity (solid blue line) or molecules degradation rates (dashed red line) included 388 
in every clusters, the shadowing traces represent their standard deviation. Duplicates were 389 
carried out on the bioreactors containing only fish, grass, or sludge. S100 stands for 390 

wastewater sludge alone, F25, F50, F75, F100 stands for respectively 25, 50, 75 or 100% of 391 
fish (F) in co-digestion with sludge, G25, G50, G75, G100 stands for respectively 25, 50, 75 392 
or 100% of Grass (G) in co-digestion with sludge. 393 

 394 

Group 1 included two genera of archaea, Methanosarcina and Methanospirullum, and 395 

the molecules diethylthiophosphate and N-(3-methylbutyl)acetamide (X153). As stated 396 

before, diethylthiophosphate is pesticide degradation product and a urine metabolite (Nomura 397 
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et al., 2014). Conversely, N-(3-methylbutyl)acetamide is a metabolite found in alcoholic 398 

beverages obtained by the fermentation of vegetal such as beer and wine. One hypothesis 399 

explaining the correlation of these archaea and molecules could be due to an indirect role of 400 

the archaea in the molecules degradation through a syntrophic interaction with bacteria. 401 

However, no further explanation can be done at this stage regarding their correlation, since 402 

such association had not been reported before and therefore further investigations are 403 

required. 404 

Group 2 correlated 14 OTUs from the orders Cloacimonadales, Clostridiales, 405 

Anaerolineales, Synergistales, Bacteroidales, Hydrogenedentiales and 406 

Coprothermobacterales to 8 molecules including compounds from tryptophan degradation (L-407 

tryptophanol and tryptamine, X217 and X269, respectively), 6-methylquinoline and 408 

thioxoacetic acid, among others. In agreement with these metabolites, Anaerolineales and 409 

Synergistales are known for their ability to degrade amino acids (Swiatczak et al., 2017). 410 

Thus, their correlation with L-tryptophanol and tryptamine is consistent with the literature. 411 

Surprisingly, no methanogen was clustered in this group despite they were expected to be 412 

highly correlated with these syntrophic bacteria. One reason could be that the methanogens 413 

were not specific partners of these bacteria. Indeed, most of the methanogens were found 414 

ubiquitously in bioreactors fed partly with either sludge or grass as shown in the figure 4. 415 

In group 3, 12 OTUs mostly from the orders Clostridiales, Lactobacillales, 416 

Bacteroidales and Spirochaetales and the archaea Methanofollis were correlated to 7 417 

molecules including sugar and lignin compounds, plant constituents, and protein degradation 418 

products. From this group, it is worth to highlight the correlation between the microbial 419 

activity of the lactic acid bacteria Lactobacillales and the degradation of lignin compounds 420 

such as trans-ferulic acid (X388) and p-coumaric acid (X365). Indeed, such microorganisms 421 

are lignin degraders (Fessard and Remize, 2017; Filannino et al., 2014). 422 
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In group 4, Methanosarcina and 2 OTUs from the order Clostridiales were correlated to 423 

molecules that can be classified as amino acids degradation products. Cadaverine (X132) and 424 

5-aminopentanoic acid (X208) are obtained from L-lysine degradation, histamine (X150) 425 

from L-histidine degradation, and phenylpyruvic acid (X300) from L-phenylalanine 426 

degradation. The presumed role of these microorganisms in the degradation of cadaverine and 427 

L-histidine can be supported by previous studies. Roeder and Schink described a new strain 428 

close to Clostridium aminobutyricum, able to degrade cadaverine, in co-culture with the 429 

archaea Methanospirullum (Roeder and Schink, 2009). On the other hand, some Clostridium 430 

were also identified to be involved in the histamine degradation (Pugin et al., 2017). 431 

In Group 5, heptane-1,2,3-triol and hexadecandiperoxoic acid were found to be 432 

descriptive of this cluster. The role of these molecules in this cluster is unknown and it must 433 

be further investigated. Methanoculleus and Methanobacterium were correlated to the genus 434 

Syntrophomonas. Some species of this bacterium are known to growth in syntrophy with H2-435 

consumer as methanogens (Mcinerney et al., 1981).  436 

In the different groups, there were some ROIs that could not be assigned. In MS 437 

metabolomics analysis, the step of m/z assignment is a traditional bottleneck (Longnecker et 438 

al., 2015). In this study, in addition, the assignment is even more hampered due to the higher 439 

structural diversity of the compounds found in digesters, the lack of specific databases, and 440 

the absence of precedent literature of metabolomics analysis on anaerobic digesters. Despite 441 

all these drawbacks, some correlations between microorganisms and metabolite degradations 442 

could still be pointed out. Therefore, if the limitations in the metabolite assignment can be 443 

addressed, a better insight of the correlations between microbial and metabolic data will be 444 

drawn. .   445 

The statistical method developed in this study allows to posit hypotheses on the 446 

degradation of molecules by different microorganisms. These hypotheses were consistent in 447 
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regards with the literature. However, in order to go further in the interpretation, 448 

complementary analyses must be performed. Firstly, the molecules identification needs to be 449 

reinforced by using MS/MS fragmentation and by comparison of the acquired MS/MS spectra 450 

with the spectra of standards. Secondly, the ultimate proof of the degradation of the molecules 451 

by the identified microorganisms can be obtained by performing microbial cultures using 452 

these molecules as substrates, or by performing experiments with labelled molecules (stable 453 

isotope probing, (Chapleur et al., 2016)). Finally, a much broader metabolic coverage can be 454 

obtained by using different extraction protocols, by combining different instrumental 455 

implementations (i.e., by analysing the samples using different ionisation modes), by using 456 

different chromatographic columns (i.e., reverse phase and HILIC), and even by using 457 

different high-throughput metabolomics techniques (i.e, LC-MS, GC-MS, and NMR 458 

spectroscopy). 459 

 460 

Conclusion 461 

 This study demonstrates the existence of links between the anaerobic digester feeding 462 

composition and the microbiota development. Our method allowed the extraction of the 463 

correlation patterns between the microorganisms’ activity and the degradation of molecules, 464 

characteristic of each substrate. We identified a subset of active microorganisms highly 465 

correlated with molecules degradation patterns. The highlighted microbial and metabolic 466 

correlations were biologically relevant and consistent with previous literature. The 467 

development of new omics methodologies and associated databases focused on anaerobic 468 

digesters metabolic composition will open new approaches to study and improve the 469 

functioning mechanisms of these bioprocesses.     470 

 471 
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