Supplementary Materials

LanD-like Flavoproteins Catalyze Aminovinyl-Cysteine Formation through Oxidative Decarboxylation and Cyclization of a Peptide at the C-Terminus

Jingyu Liu ${ }^{1, \#}$, Yanping Qiu ${ }^{1, \#}$, Tao $\mathrm{Fu}^{1, \#}$, Miao Li^{1}, Yuqing $\mathrm{Li}^{1,2}$, Qian Yang ${ }^{1}$, Zhijun Tang ${ }^{1}$, Haoyu Tang ${ }^{1}$, Guangyu Li^{4}, Lifeng $\operatorname{Pan}^{1, *}$ and Wen Liu ${ }^{1,2.3, *}$
${ }^{1}$ State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;
${ }^{2}$ Department of Chemistry, Shanghai Normal University, 100 Guiling Road, Shanghai 200032, China;
${ }^{3}$ Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.
${ }^{4}$ Nuclear Magnetic Resonance (NMR) Facility, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

* To whom correspondence should be addressed: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd., Shanghai 200032, China. Lifeng Pan, Email: panlf @sioc.ac.cn, Tel: 86-21-54925561; Wen Liu, Email: wliu@sioc.ac.cn, Tel: 86-21-54925111, Fax: 86-21-64166128.
\# These authors contributed to this work equally.

Supplementary Methods

1.1 General Materials and Methods.
1.2 Protein Expression and Purification.
1.3 In vitro Assays of LanD-like Flavoprotein Activity.
1.4 Peptide Purification and Characterization
1.5 Protein crystallization and related structural elucidation.
1.6 Chemical synthesis of 7-Dha19.

Supplementary Figures

Supplementary Figure 1. Alignment of the biosynthetic gene clusters of TVAs, CYP and EPI.
Supplementary Figure 2. Purified recombinant enzymes and cofactor analysis.
Supplementary Figure 3. Summary of LanD-like flavoprotein-catalyzed transformations in this study.
Supplementary Figure 4. HPLC-MS analys is of enethiol intermediates and associated shunt aldehyde derivatives in the TvaAs-87-catalyzed conversions of $\mathbf{1}$ and its variants.

Supplementary Figure 5. Characterization of (ene)thiol and aldehyde peptides in the $\mathrm{TvaF}_{\mathrm{S}-87 \text {-catalyzed }}$ conversion of $\mathbf{1}$ by chemical derivatization.

Supplementary Figure 6. HPLC-MS analysis of enethiol intermediates and associated shunt aldehyde derivatives in the CypD-catalyzed conversions of 7 and its variants.

Supplementary Figure 7. Characterization of (ene)thiol peptides in the CypD-catalyzed conversion of 7 by chemical derivation.

Supplementary Figure 8. 2D-TOCSY f2-slices at related f1 experiments ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) for residue identification in 7-III.
Supplementary Figure 9. Overall structural comparison of the monomers of TvaFs-87, CypD, MrsD and the EpiD complex (shown by ribbon diagram).

Supplementary Figure 10. FMN binding interface in the TvaFs 87 structure.
Supplementary Figure 11. FAD binding interface in the CypD structure.
Supplementary Figure 12. Structure-based sequence alignment of CypD, EpiD and TvaFs-87.
Supplementary Figure 13. Structural and biochemic al analyses of the binding interface between two trimeric units of the $\mathrm{TvaF}_{\mathrm{S}-87}$ dodecamer.

Supplementary Figure 14. Structural analysis of the binding interface between two trimeric subunits of the CypD dodecamer.

Supplementary Figure 15. Structural analys is of the CypD monomer in the CypD complex with the peptide substrate 8.

Supplementary Figure 16. Structural analysis of the substrate-binding pockets of CypD dodecamer.
Supplementary Figure 17. Structural comparison of the CypD complex and the EpiD H67N mutant complex.
Supplementary Figure 18. In vitro assays of CypD activity using the substrates, 7, 7-C19S and 7-C19S-D ${ }_{3}$.

Supplementary Figure 19. Characterization of Dha-containing peptides in the CypD-catalyzed conversion of 7-Dha by chemical derivation.
Supplementary Figure 20. Comparison of the enzymatic activities of CypD with its variants based on examination of the production of 7-I, 7-II and 7-III.

Supplementary Tables

Supplementary Table 1. Related bacterial strains and plasmids used in this study.
Supplementary Table 2. Primers used in this study.
Supplementary Table 3. Gene sequences of $c y p D$, $t^{\prime} a F_{s-87}$, and $3 c$.
Supplementary Table 4. HR-MS and HR-MS/MS Data collection of all compounds analyzed in this study.
Supplementary Table 5. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 7 in DMSO- d_{6}.
Supplementary Table 6. Key data in the 2D-TOCSY f2-slice at f1 experiments.
Supplementary Table 7. Statistics of X-ray crystallographic data collection and model refinements of $\mathrm{TvaF}_{\mathrm{s}-87}$ and CypD in their apo-forms.
Supplementary Table 8. Statistics of X-ray crystallographic data collection and model refinement of CypD in complex with 8 .

Supplementary References

Supplementary Methods

1.1 General Materials and Methods

Materials, bacteria strains and plasmids. Biochemicals and media were purchased from Sinopharm Chemical Reagent Co., Ltd. (China), Oxoid Ltd. (U.K.) or Sigma-Aldrich Corporation (US A) unless otherwise stated. Restriction endonucleases were purchased from Thermo Fisher Scientific Co. Ltd. (USA). Chemical reagents were purchased from standard commercial sources. Synthetic peptides were purchased from Genscript Biotech (Nanjing, China). Related bacterial strains and plasmids are summarized in Supplementary Table 1. Primers used in this study are listed in Supplementary Table 2.

DNA isolation, manipulation, and sequencing. DNA isolation and manipulation in Escherichia coli or Streptomyces strains were carried out according to standard methods ${ }^{1}$. PCR amplif ications were carried out on an Applied Biosystems Veriti ${ }^{\text {TM }}$ Thermal Cycler either using Taq DNA polymerase (Vazyme Biotech Co. Ltd, China) for routine genotype verification or PrimeSTAR HS DNA polymerase (Takara Biotechnology Co., Ltd. Japan) for high fidelity amplification. The synthesis of primers and genes were performed at Shanghai Sangon Biotech Co., Ltd. (China). DNA sequencing was performed at Shanghai Biosune Biotech Co., Ltd. (China).

Sequence analysis. Biosynthetic gene clusters (BGCc) were mined from microbial genomes using the AntiSMASH web tool ${ }^{2}$. Open reading frames (ORFs) were identif ied using the FramePlot 4.0beta program (http://nocardia.nih.go.jp/fp4/) ${ }^{3}$. The deduced proteins were compared with other known proteins in the databases using available BLAST methods (http://blast.ncbi.nlm.nih.gov/Blast.cgi) ${ }^{4}$. Amino acid sequence alignments were performed using Vector NT1 and ESPript 3.0 (http://espript.ibcp.fr/ESPript/ESPript/) ${ }^{5}$.

Chemical analysis. Analys is and semi-preparation by High Performance Liquid Chromatography (HPLC) were carried out on an Agilent 1260 HPLC system (Agilent Technologies Inc., USA). Analyses by HPLC-associated Electrospray ionization Mass Spectrometer (ESI-MS) and ESI-high resolution MS (ESI-HR-MS) were performed on a Thermo Fisher LTQ XL ESI-MS spectrometer and a Q Exactive ${ }^{\text {TM }}$ Plus Mass Spectrometer (Thermo Fisher Scientific Inc., USA), respectively. Related data were processed using Thermo Xcalibur software. NMR data were recorded on a Bruker AV500 spectrometers (Bruker Co. Ltd., Germany) or on an Agilent PremiumCompact+ 500 MHz NMR spectrometer (Agilent Technologies Inc., USA).

1.2 Protein Expression and Purification

Construction and overexpression in \boldsymbol{E}. coli. The gene $t v a F_{S-87}$ was amplified from the genome of S. sp. NRRL S-87 by PCR using the primer pair tvaFs-87-for/ tvaFs-87-rev, in contrast to the gene cypD, which was synthesized by Genscript Biotech (Nanjing, China). The gene tvaFs.87 and cypD were cloned individually into pRSFDuet-1 for the expression of the recombinant proteins $\mathrm{TvaF}_{\mathrm{s}-87}$ and CypD, each of which is tagged by Thioredoxin (TRX) and 6 xHis at N -terminus. To prepare the variants of $\mathrm{TvaF}_{\mathrm{s}-87}$, i.e., $\mathrm{TvaF}_{\mathrm{S}-87}-\mathrm{H} 85 \mathrm{~A}$, TvaFs-87-V28D, and TvaFs-87-M62D, and the variants of CypD, i.e., CypD-S20A, CypD-S20D, CypD-L23A, CypD-L23Q, CypD-F170A, CypD-F170Q, CypD-H59D, CypD-H59A, CypD-H29R, CypD-H29A, CypD-N80H and CypD-N80D by Site-specific mutagenesis, the Rolling-cycle PCR amplification of each pRSFDuet-1 derivative that contains $t v a F_{s-87}$ or $c y p D$ was conducted by using corresponding primers, and subsequent DpnI digestion was performed according to the standard procedure of the QuickChange Site-Directed Mutagenes is Kit purchased from Stratagene (GE Healthcare, USA) and Multi Express ${ }^{\mathrm{TM}}$ II (Vazyme Biotech Co., Ltd., China). For N-terminal tag removal, the protease-encoding gene $3 c$ was synthesized by Genscript Biotech (Nanjing, China), and cloned into pET28a(+) for the expression of the recombinant 3 C protein.

The above derivatives of pRSFDuet-1 and pET28a(+) were introduced into E. coli BL21(DE3) individually. The culture of each resulting recombinant E. coli strain was incubated in Luria-Bertani (LB) medium (5 g of yeast extract, 10 g of tryptone and 10 g of NaCl per liter) containing $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin at $37^{\circ} \mathrm{C}$ and 250 rpm until the cell density reached $0.6-0.8$ at OD_{600}. Protein expression was induced by the addition of isopropyl- β-D-thiogalac topyranoside (IPTG) to a final concentration of 0.1 mM , followed by further incubation for $25-30 \mathrm{hr}$ at $25^{\circ} \mathrm{C}$ or $16^{\circ} \mathrm{C}$. The cells were harvested by centrifugation at $3000 \times \mathrm{g}$ for 20 min , flash-frozen and then stored at $-80^{\circ} \mathrm{C}$.

Purification and characterization. E. coli cells were re-suspended in lysis buffer ($137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM}$ $\mathrm{KCl}, 10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 1.8 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 10 \%$ glycerol and 5 mM imidazole, pH 8.0$)$. After disruption by FB-110X Low Temperature Ultra-Pressure Continuous Flow Cell Disrupter (Shanghai Litu Mechanical Equipment Engineering Co., Ltd, China), soluble fractions were collected by centrifugation. Recombinant proteins that contain a $6 x H i s-t a g$ were purified on a HisTrap HP column (GE Healthcare, USA), which was pre-treated with 10 column volumes (CVs) of lysis buffer followed by 10 CVs of wash buffer (137 mM NaCl , $2.7 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 1.8 \mathrm{mM} \mathrm{KH}{ }_{2} \mathrm{PO}_{4}, 10 \%$ glycerol and 40 mM imidazole, pH 7.4), using elution buffer ($137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 1.8 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 10 \%$ glycerol and 250 mM imidazole, pH 7.4). Desired protein fractions were concentrated (to $500 \mu \mathrm{M}-1 \mathrm{mM}$) using Amicon® Ultra-15 Centrifugal Filter Devices (MILLIPORE, USA) and desalted using a PD-10 Desalting Column (GE Healthcare, USA) according to the manufacturer's protocols, and then quantified in concentration by Bradford assay using
bovine serum albumin as the standard.

The purity of recombinant proteins was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). For the determination of the flavin cofactor associated with $\mathrm{TvaF}_{\text {S-87 }}$ and CypD, The UV spectra of recombinant proteins were recorded at a concentration of $30 \mathrm{mg} / \mathrm{mL}$ on a DeNovix DS-11 UV/Vis spectrophotometer (DeNovix Inc. Wilmington, DE 19810 USA). Each protein solution was incubated at $100^{\circ} \mathrm{C}$ for 5 min for denaturation and then subjected to HR-ESI-MS analysis on a 6230B Accurate Mass TOF LC/MS System (Agilent Technologies Inc., USA) to examine the presence of FMN $\left([\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}\right.$ calcd. 457.1124; observed 457.1108 from the TvaF_{s-87}) and the presence of $\mathrm{FAD}\left([\mathrm{M}+\mathrm{H}]^{+} m / z\right.$ calcd. 786.1644; observed 786.1647 from the CypD sample).

1.3 In vitro Assays of LanD-like Flavoprotein Activity

Transformations of synthetic peptides. Each conversion was conducted at $30^{\circ} \mathrm{C}$ for 2 or 5 hr in $60 \mu \mathrm{~L}$ of the reaction mixture that contained $100 \mu \mathrm{M}$ (or $30 \mu \mathrm{M}$) synthetic peptide and $30 \mu \mathrm{M}$ (or $10 \mu \mathrm{M}$) N-terminally TRX-tagged $\mathrm{TvaF}_{\mathrm{s}-87}$ (or its variant) or CypD (or its variant) along with 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.5$), 10 mM TCEP, $5 \mu \mathrm{M}$ FMN or FAD and $1 \mu \mathrm{M}$ 3C. Conversions were quenched by adding equal volumes of acetonitrile, and after centrifugation, reaction mixtures were subjected to HPLC-HR-MS and HR-MS/MS analyses. For (ene)thiol determination, $16 \mu \mathrm{~L}$ of each quenched reaction mixture was treated with N-ethylmaleimide (NEM) in dark at room temperature for 30 min before $2 \mu \mathrm{~L}$ of 1 M dithiothreitol (DTT) was added to eliminate excessive NEM and prevent side reactions. For aldehyde determination, $16 \mu \mathrm{~L}$ of each quenched reaction mixture was treated with 200 mM 1-(2-hydrazinyl-2-oxoethyl) pyridin-1-ium chloride (HOPI) in dark at $37^{\circ} \mathrm{C}$ for 2 hr .

HPLC-HR-MS and HR-MS/MS analyses. Reaction mixtures were subjected to HPLC-HR-MS and HR-MS/MS analyses after centrifugation. For HPLC-HR-MS analysis, an Agilent ZORBAX column (300SB-C18, $2.1 \mathrm{~mm} \times 100 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, Agilent Technologies Inc., USA) or an Agilent 300Extend-C18 column ($2.1 \mathrm{~mm} \times 100 \mathrm{~mm}, 3.5 \mu \mathrm{~m}$, Agilent Technologies Inc., USA) was used on an UltiMate 3000 UHPLC system coupled to a Thermo Scientif ic Q Exactive Plus Orbitrap mass spectrometer. Gradient elusion was conducted using solvent $\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O}+0.1 \%\right.$ formic acid) and solvent B (acetonitrile $+0.1 \%$ formic acid) with a flow rate of $0.3 \mathrm{~mL} / \mathrm{min}$ over a 43 min period as follows: $\mathrm{T}=0 \mathrm{~min}, 10 \% \mathrm{~B} ; \mathrm{T}=2 \mathrm{~min}, 10 \% \mathrm{~B} ; \mathrm{T}=20 \mathrm{~min}$, $30 \% \mathrm{~B} ; \mathrm{T}=25 \mathrm{~min}, 60 \% \mathrm{~B} ; \mathrm{T}=30 \mathrm{~min}, 100 \% \mathrm{~B} ; \mathrm{T}=35 \mathrm{~min}, 100 \% \mathrm{~B} ; \mathrm{T}=38 \mathrm{~min}, 10 \% \mathrm{~B} ;$ and $\mathrm{T}=43 \mathrm{~min}$, 10% B. Unless otherwise stated, ESI-MS was performed in positive ion mode, with a spray voltage of 3800 V , a capillary temperature of $375^{\circ} \mathrm{C}$, aux gas heater temperature $350{ }^{\circ} \mathrm{C}$ and an S-lens level 60 . Full MS was examined at a resolution of 70,000 (AGC target 2 e 5 , maximum IT 50 ms , range $300-1000$ or $400-1800 \mathrm{~m} / \mathrm{z}$).

Parallel reaction monitoring (PRM) or data-dependent MS^{2} was performed at a resolution of 35,000 (AGC target between le5 and 1e6, maximum IT between 100 ms and 250 ms , isolation windows in the range of 1.0 to $2.0 \mathrm{~m} / \mathrm{z}$) using a stepped NCE of 18,20 and 28 or an NCE of 25 . Scan ranges, inclusion lists, charge exclusions, and dynamic exclusions were adjusted as needed.

1.4 Peptide Purification and Characterization

Production and isolation of 7-III. The in vitro enzymatic transformation of $\mathbf{7}$ into $\mathbf{7 - I I I}$ was carried out as described above. Each $500 \mu \mathrm{~L}$ of the reaction mixture was then applied to a Thermo C18 HyperSep cartridge coupled with a Vacuum Extraction Manifold system (Agilent Technologies Inc., USA). This cartridge was equilibrated with ACN and the ACN solution (5\%) containing 0.1% formic acid. After washing with the same ACN solution to remove polar contaminants and elution with the ACN solution (40%) containing 0.1% formic acid, the collection was freeze-dried using a freeze dryer (Martin Christ Inc., Germany). Further purification was conducted by RP-HPLC on a Agilent ZORBAX column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$, Agilent Technologies Inc., US A) by gradient elution of solvent $\mathrm{A}\left(\mathrm{H}_{2} \mathrm{O}+0.01 \%\right.$ formic acid) and solvent B (acetonitrile $+0.01 \%$ formic acid) with a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ over a 35 min period as follows: $\mathrm{T}=0 \mathrm{~min}, 15 \% \mathrm{~B} ; \mathrm{T}=3 \mathrm{~min}, 15 \% \mathrm{~B} ; \mathrm{T}=$ $20 \mathrm{~min}, 60 \% \mathrm{~B} ; \mathrm{T}=25 \mathrm{~min}, 100 \% \mathrm{~B} ; \mathrm{T}=30 \mathrm{~min}, 100 \% \mathrm{~B}$; and $\mathrm{T}=35 \mathrm{~min}, 15 \% \mathrm{~B}(\lambda$ at 202 nm$)$. After lyophilization, the collection was subject to HPLC-HR-MS and HR-MS/MS analyses under conditions as described above.

Structural characterization of 7-III. For comparison, the synthetic peptide substrate 7 (Genscript Biotech, Nanjing, China) was subjected to spectral analysis. 7 was obtained as a white amorphous powder: HR-ESI-MS (positive mode) $m / z[\mathrm{M}+\mathrm{H}]^{+}$, calcd. 795.3739 for $\mathrm{C}_{32} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{O}_{11} \mathrm{~S}_{2}$, obs. $795.3726 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (600 and 150 MHz , respectively, recorded in DMSO- d_{6}), see Supplementary Table 5. Clearly, the structure of 7 is characterized as the sequence G1-S2-T3-I4-C5-L6-V7-C8.

HR-ESI-MS established the molecular formula of 7-III as $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{~S}\left(\mathrm{~m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd. 715.3808 , obs. 715.3805). ${ }^{1} \mathrm{H}$ NMR data of 7-III were recorded in DMSO- d_{6}. For structural comparison, the slice spectra from 2D TOCSY were collected using a previously established TOCSY method ${ }^{6-12}$, to identify the six residues (i.e., G1, S2, T3, I4, L6 and V7) that are identical to those in $\mathbf{7}$ and the newly formed AviCys residue that is derived from the two residues $\mathbf{C} 5$ and $\mathbf{C 8}$ of 7. The key signals of each residue (i.e., S2, T3, I4, L6, V7 or AviCys) were observed according to the 2D-TOCSY f2-slice at the related f1 experiment (Supplementary Figures 8 and Supplementary Table 6). Specifically, a pair of olef in protons were observed by irritating -NH (H) of the 2-aminovinyl group of the AviCys residue. Together with ${ }^{3} J_{\mathrm{H} 1 / \mathrm{H} 2}=7.3 \mathrm{~Hz}\left({ }^{3} J_{\mathrm{H} 2 / \mathrm{H} 1}=7.3 \mathrm{~Hz}\right)$, the existence of the vinyl group with a Z configuration was indicated by the topspin software (https://www.bruker.com/service/support-upgrades/).

1.5 Protein Crystallization and Structural Elucidation

Size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS). SEC-MALS experiments were performed on a dynamic light scattering detector (DynaPro NanoStar, Wyatt), a static light scattering detector (DAWN HELLOS-II, Wyatt), and a differential refractive index detector (Optilab T-rEX, Wyatt) coupled with an AKTA pure system (GE Healthcare) at $25^{\circ} \mathrm{C}$. All the protein samples (concentration above $3 \mathrm{mg} / \mathrm{ml}$) were filtered and loaded into a Superdex 200 Increase 10/300 GL column pre-equilibrated by the buffer containing 20 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 100 \mathrm{mM} \mathrm{NaCl}$, and 1 mM DTT overnight. The data was analyzed by ASTRA software (version 7.1) and further output to the Origin 9.0 software and aligned with each other.

Protein crystallization and structural elucidation. Crystals of seleno-methionine labeled TvaFs T_{s7} and CypD , CypD fusion proteins were obtained using the sitting-drop vapor-diffusion method at $16^{\circ} \mathrm{C}$. Specifically, the freshly purified seleno-methionine labeled $\mathrm{TvaF}_{\mathrm{s}-87}$ protein (20 or $10 \mathrm{mg} / \mathrm{ml}$ in 20 mM Tris- $\mathrm{HCl}, 100 \mathrm{mM}$ $\mathrm{NaCl}, 1 \mathrm{mM}$ DTT, 1 mM EDTA at pH 7.5) was mixed with equal volume of reservoir solution containing 0.1 M amino acids (0.2 M L-Na-Glutamate, 0.2 M Alanine (racemic), 0.2 M Glycine, 0.2 M Lysine HCl (racemic), 0.2 M Serine (racemic)); 0.1 M buffer system at pH 8.5 (Tris (base), Bicine); 50% precipitant mix 3 (40% Glycerol, 20\% PEG4000). While, crystals of seleno-methionine labeled CypD and CypD fusion protein (20 or $10 \mathrm{mg} / \mathrm{ml}$ in 20 mM Tris- $\mathrm{HCl}, 100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, 1 mM EDTA at pH 7.5) were grown from 1.8 M Ammonium sulfate, 0.1 M BIS-TRIS $\mathrm{pH} 6.5,2 \% \mathrm{v} / \mathrm{v}$ Polyethylene glycol monomethyl ether 550 , and 0.15 M DL-Malic acid at $\mathrm{pH} 7.0,0.1 \mathrm{M}$ Imidazole at $\mathrm{pH} 7.0,22 \% \mathrm{v} / \mathrm{v}$ Polyethylene glycol monomethyl ether 550 , respectively. Before diffraction experiments, appropriate glycerol with FAD was added as the cryo-protectant. X-ray data sets were collected at the beamline BL17U1 or BL19U1 of the Shanghai Synchrotron Radiation Facility ${ }^{13}$. The diffraction data were processed and scaled using HKL2000 ${ }^{14}$.

The phase problems of $\mathrm{TvaFs}_{\mathrm{s}-87}$ and CypD were solved by single wavelength anomalous diffraction (SAD) method. The phase problem of CypD fusion protein was solved by the molecular replacement method using the structure of CypD with PHASER ${ }^{15}$. The initial structural model was rebuilt manually using COOT ${ }^{16}$, and then refined using REFMAC ${ }^{17}$ or PHENIX ${ }^{18}$. Further manual model building and adjustment were completed using COOT ${ }^{16}$. The qualities of the final model were validated by MolProbity ${ }^{19}$. The final refinement statistics of solved structures in this study were listed in Supplementary Tables 7 and 8. All the structural diagrams were prepared using the program PyMOL (http://www.pymol.org). Atomic coordinates and structural factors for the reported crystal structures of $\mathrm{TvaFs}_{\mathrm{s}-87}$ and CypD are deposited in the Protein Data Bank under the accession numbers $6 \mathrm{KTP}, 6 \mathrm{KTT}, 6 \mathrm{KTI}$, and 6 KT 9 .

1.6 Chemical synthesis of 7-Dha19

The dehydration of the synthetic substrate $\mathbf{S 1}$ (Genscript Biotech, Nanjing, China) to the intermediate $\mathbf{S 2}$ before in situ deprotection with TCEP was conducted in a reaction tube containing $100 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}(30 \%$, wt/wt) and $25 \mu \mathrm{M} \mathrm{S1}$ by stirring at room temperature for 3 hr . The reaction mixture was quenched by addition of $10 \mu \mathrm{l}$ dimethylsulfide. The quenched mixture was freeze-dried and then examined by HR-ESI-MS on a 6230B Accurate Mass TOF LC/MS System (Agilent Technologies Inc., USA) for the production of $\mathbf{S 2}\left(\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}\right.$ calcd. 849.4209; obs. 849.4214).

Supplementary Figures

Supplementary Figure 1. Alignment of the biosynthetic gene clusters of TVAs, CYP and EPI. Genes coding for precursor peptides and LanD-type flavoproteins are highlighted in blue and red, respectively. Overall, only genes encoding LanD-type flavoproteins are conserved among the cyp, epi and tva clusters. TvaF $\mathrm{F}_{\mathrm{S}-87}$ shares 21.8% and 18.9% with CypD and the archetypal LanD protein EpiD, respectively, while CypD share 17.5% with EpiD. For details in sequence identity, see Supplementary Figure 12.

S. sp. NRRL S-87 (TVA-YJ-2)

S. sp. OH-4156 (Cypemycin)

Staphylococcus epidermidis Tu 3298 (Epidermin)

Supplementary Figure 2. Purified recombinant enzymes and cofactor analysis. (a) Coomassie-stained SDS-PAGE analys is of TRX-tagged $\mathrm{TvaF}_{\mathrm{S}-87}$, its variants and 3C with protein standard, TRX-tagged CypD and its variants with protein standard. (b) UV-Vis spectra of TRX-tagged recombinant flavoproteins TvaFs- 87 and CypD. (c) Determination of flavin cofactors associated with TvaF_{5-87} and CypD. (i) Authentic FAD; (ii) boiled CypD, (iii) authentic FMN, and (iv) boiled TvaF S $_{\text {S } 87}$. For examination by HPLC, UV absorbance at 375 nm . (d) Multiangle light scattering (MALS) analysis of $\mathrm{TvaF}_{\mathrm{S}-87}$ and CypD , showing the relative light scattering signal as a function of elution volume. The derived molecular mass of the peak is shown in blue.

Supplementary Figure 3. Summary of LanD-like flavoprotein-catalyzed transformations in this study. Amino acids corresponding to the two target residues that are processed for $\mathrm{Avi}(\mathrm{Me}) \mathrm{Cys}$ formation and their related structures during each transformation process are colored, e.g., corresponding to the C-terminal L-Cys, red; and corresponding the internal L-Thr/L-Ser or L-Cys, blue. $\sqrt{ }$, observed; \times, not observed; and N.D., not detected. (a) $\mathrm{TvaF}_{\text {S-87. }}$. (b) CypD. For variation of the internal residue: X_{1}, $\mathrm{L}-\left[2,3,3-\mathrm{D}_{3}\right]$ Ser; X_{2}, acetylated L-Ser; X_{3}, glutamylated L-Ser; X_{4}, phosphorylated L-Ser; X_{5}, Dha; and X_{6}, D-Cys.

Peptidyl Substrate			$\stackrel{H}{N}_{\mathrm{N}}^{\mathrm{H}}$	$\stackrel{\mathrm{H}}{\mathrm{~N}} \mathrm{O}$
		Cyclized Product	Enethiol Intermediate	Aldehyde Shunt Product
1	SPdEEAQGSVMAAAATVAFHC	\checkmark	\checkmark	\checkmark
1-T8A	SPDEEAQGSVMAAAAAVAFHC	*	\checkmark	\checkmark
1-T8S	SPDEEAQGSVMAAAASVAFHC	\checkmark	\checkmark	\checkmark
1-T8C	SPdeeaggsvmaatacvafhc	*	\checkmark	\checkmark
1-C13A	Spdeeaggsvmaatatvafha	*	*	*
1-C13S	SPDEEAQGSVMAAAATVAFHS	\%	*	*
1-C13T	SPDEEAQGSVMAAAATVAFHT	\%	*	*
2	VMAAAATVAFHC	\checkmark	\checkmark	\checkmark
3	MAAAATVAFHC	\checkmark	\checkmark	\checkmark
4	AAAATVAFHC	\%	\checkmark	N.D.
5	AATVAFHC	\%	\checkmark	N.D.
6	TVAFHC	*	\checkmark	N.D.
b ${ }^{\text {c }}$				
7	GSTI CLVC	\checkmark	\checkmark	\checkmark
7-C19A	GSTI ALVC	*	\checkmark	\checkmark
7-C19S	GStI SLVC	\checkmark	\checkmark	\checkmark
7-C19T	GSti tlve	*	\checkmark	\checkmark
7-C22A	GSTI CLVA	*	*	*
7-C22S	GSTI CLVS	*	*	*
7-C22T	GStI CLVT	*	*	*
7-C19S-D ${ }^{3}$	GSTI X_{1} LVC	\checkmark	\checkmark	\checkmark
7-C19S-Ac	GSTI $\mathrm{X}_{2} \mathrm{LVC}$	\checkmark	\checkmark	\checkmark
7-C19S-Glu	$u \quad G S T I X_{3}$ LVC	*	*	*
7-C19S-P	GSTI X_{4} LVc	*	*	N
7-Dha19	GSTI X_{5} LVC	\checkmark	*	N
7-d.C19	GSTI $\mathrm{X}_{6} \mathrm{LVC}$	\checkmark	\checkmark	\checkmark

Supplementary Figure 4. HPLC-MS analys is of enethiol intermediates and associated shunt aldehyde derivatives in the $\mathrm{TvaA}_{\mathrm{S}-87 \text {-catalyzed conversions of } \mathbf{1} \text { (the 21-aa } \mathrm{C} \text {-terminal mimic of the precursor peptide }}$ TvaAs-87) and its variants. Reactions were conducted at $30^{\circ} \mathrm{C}$ for 2 hr in the presence of $\mathrm{TvaF}_{\mathrm{s}-87}$ to convert the substrates 1 (i), 1-T8A (ii), 1-T8S (iii), 1-T8C (iv) and 1-C13A (v), and in the presence of TvaF $\mathrm{T}_{\mathrm{S}-87 \text { - } \mathrm{V} 28 \mathrm{D} \text { (vi), }}$ (vis) $\mathrm{TvaF}_{5-87-\mathrm{M} 62 \mathrm{D}}$ (vii) and $\mathrm{TvaF}_{\mathrm{S}-87-\mathrm{H} 85 \mathrm{~A}}$ (viii) to convert 1. (b) For detailed HR-MS and HR-MS/MS data, see Supplementary Table 4.

Supplementary Figure 5. Characterization of (ene)thiol and aldehyde peptides in the TvaFs-87-catalyzed conversion of 1 by chemical derivatization. (a) Examination of 1, 1-I and 1-III by HPLC-MS. i, standard 1; ii, transformation of 1 at $30^{\circ} \mathrm{C}$ for 2 hr ; iii, treatment of 1 with NEM; and iv, treatment of the reaction mixture of iii with NEM. (b) Examination of $\mathbf{1 - I I}$ by treating the TvaF_{5-87}-catalyzed transformation of $\mathbf{1}$ with 1-(2-Hydrazinyl-2- oxoethyl)pyridin-1-ium chloride (HOPI). (c) HR-MS and HR-MS/MS data for the derivatives $\mathbf{1 - N E M}, \mathbf{1}-\mathbf{I}-$ NEM and 1-II-HOPI of $\mathbf{1}, \mathbf{1}-\mathbf{I}$ and $\mathbf{1 - I I}$, respectively.

b

C

Ions	Calcd.	Obs.	Er. (ppm)	Ions	Calcd.	Obs.	Er. (ppm)
b_{2}	185.0926	185.0917	4.9	y_{1}	247.0752	247.0741	4.5
$\mathrm{~b}_{3}$	300.1196	300.1183	4.3	y_{2}	384.1341	384.1327	3.6
$\mathrm{~b}_{4}$	429.1621	429.1608	3.0	y_{3}	531.2025	531.2013	2.3
$\mathrm{~b}_{5}$	558.2047	558.2032	2.7	y_{4}	602.2396	602.2383	2.2
$\mathrm{~b}_{6}$	629.2418	629.2400	2.9	y_{5}	701.3081	701.3065	2.3
$\mathrm{~b}_{7}$	757.3004	757.2977	3.6	y_{6}	802.3557	802.3533	3.0
$\mathrm{~b}_{8}$	814.3219	814.3192	3.3	y_{7}	873.3928	873.3901	3.1
$\mathrm{~b}_{9}$	901.3539	901.3534	0.6	y_{8}	944.4300	944.4268	3.4
$\mathrm{~b}_{10}$	1000.4223	1000.4199	2.4	y_{9}	1015.4671	1015.4648	2.3
$\mathrm{~b}_{11}$	1131.4628	1131.4600	2.5	y_{10}	1086.5042	1086.5013	2.7
$\mathrm{~b}_{12}$	1202.4999	1202.4928	5.9	y_{11}	1217.5447	1217.5417	2.5
$\mathrm{~b}_{13}$	1273.5371	1273.5386	1.2	y_{12}	1316.6131	1316.6094	2.8
				y_{13}	1403.6451	1403.6471	1.4
				y_{14}	1460.6666	1460.6624	2.9

| | y_{15} | 1588.7252 | 1588.7162 | 5.7 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | y_{16} | 1659.7623 | 1659.7634 | 0.7 |

Ions	Calcd.	Obs.	Er. (ppm)	Ions	Calcd.	Obs.	Er. (ppm)
b_{2}	185.0926	185.0919	3.8	y_{1}	201.0697	201.0690	3.5
$\mathrm{~b}_{3}$	300.1196	300.1186	3.3	y_{2}	338.1286	338.1276	3.0
$\mathrm{~b}_{4}$	429.1621	429.1611	2.3	y_{3}	485.1970	485.1957	2.7
$\mathrm{~b}_{5}$	558.2047	558.2033	2.5	y_{4}	556.2342	556.2328	2.5
$\mathrm{~b}_{6}$	629.2418	629.2401	2.7	y_{5}	655.3026	655.3019	1.1
$\mathrm{~b}_{7}$	757.3004	757.2966	5.0	y_{6}	756.3503	756.3481	2.9
$\mathrm{~b}_{8}$	814.3219	814.3212	0.9	y_{7}	827.3874	827.3857	2.1
$\mathrm{~b}_{9}$	901.3539	901.3505	3.8	y_{8}	898.4245	898.4221	2.7
$\mathrm{~b}_{10}$	1000.4223	1000.4212	1.1	y_{9}	969.4616	969.4600	1.7
$\mathrm{~b}_{11}$	1131.4628	1131.4642	1.2	y_{10}	1040.4987	1040.4977	1.0
$\mathrm{~b}_{12}$	1202.4999	1202.4954	3.7	y_{11}	1171.5392	1171.5377	1.3

b_{13}	1273.5371	1273.5284	6.8	y_{12}	1270.6076	1270.6068	0.6
			y_{13}	1357.6396	1357.6368	2.1	
			y_{14}	1414.6611	1414.6575	2.5	
			y_{15}	1542.7197	1542.7157	2.6	
			y_{16}	1613.7568	1613.7555	0.8	

Ions	Calcd.	Obs.	Er. (ppm)	Ions	Calcd.	Obs.	Er. (ppm)
b_{2}	185.0926	185.0915	5.9	y_{1}	193.1084	193.1079	2.6
$\mathrm{~b}_{3}$	300.1196	300.1182	4.7	y_{2}	330.1673	330.1669	1.2
$\mathrm{~b}_{4}$	429.1621	429.1604	3.9	y_{3}	477.2357	477.2344	2.7
$\mathrm{~b}_{5}$	558.2047	558.2009	6.8	y_{4}	548.2728	548.2713	2.7
$\mathrm{~b}_{6}$	629.2418	629.2360	9.2	y_{5}	647.3412	647.3391	3.2
$\mathrm{~b}_{7}$	757.3004	757.2967	4.9	y_{6}	748.3889	748.3865	3.2
$\mathrm{~b}_{8}$	814.3219	814.3193	3.2	y_{7}	819.4260	819.4235	3.1

b_{9}	901.3539	901.3504	3.8	y_{8}	890.4631	890.4605	2.9
$\mathrm{~b}_{10}$	1000.4223	1000.4188	3.5	y_{9}	961.5002	961.4975	2.8
$\mathrm{~b}_{11}$	1131.4628	1131.4590	3.4	y_{10}	1032.5373	1032.5341	3.1
$\mathrm{~b}_{12}$	1202.4999	1202.4945	4.5	y_{11}	1163.5778	1163.5741	3.2
$\mathrm{~b}_{13}$	1273.5371	1273.5334	2.9	y_{12}	1262.6462	1262.6433	2.3
				y_{13}	1349.6783	1349.6676	7.9
			y_{14}	1406.6997	1406.6971	1.8	

Supplementary Figure 6. HPLC-MS analys is of enethiol intermediates and associated shunt aldehyde derivatives in the CypD-catalyzed conversions of 7 (the 8 -aa C-terminal mimic of the precursor peptide CypA) and its variants. (a) Conversions of 7 (i), 7-C19A (ii), 7-C19T (iii), 7-C19S (iv), 7-C22A (v) and 7-C22S (vi). Reactions were conducted at $30^{\circ} \mathrm{C}$ for 2 hr in $60 \mu \mathrm{~L}$ of the reaction mixture that contained $100 \mu \mathrm{M}$ synthetic peptide and $30 \mu \mathrm{M}$ CypD. (b) Conversions of 7-Dha19 (i), 7 (ii), 7-d-C19 (iii), 7-C19S (iv), 7-C19S-Ac (v), 7-C19S-P (vi) and 7-C19S-Glu (vii). Reactions were conducted at $30^{\circ} \mathrm{C}$ for 2 hr in $60 \mu \mathrm{~L}$ of the reaction mixture that contained $30 \mu \mathrm{M}$ synthetic peptide and $10 \mu \mathrm{M}$ CypD. For detailed $\mathrm{HR}-\mathrm{MS}$ and $\mathrm{HR}-\mathrm{MS} / \mathrm{MS}$ data, see Supplementary Table 4.

Supplementary Figure 7. Characterization of (ene)thiol peptides in the CypD-catalyzed conversion of $\mathbf{7}$ by chemical derivation. (a) Examination of 7, 7-I and 7-III by HPLC-MS. i, standard 7; ii, transformation of 7 into 7-I and 7-III at $30^{\circ} \mathrm{C}$ for 2 hr ; iii, treatment of 7 with NEM; and iv, treatment of the reaction mixture of iii with NEM. (c) HR-MS and HR-MS/MS data for the derivatives 7-NEM and 7-I-NEM of 7 and 7-I, respectively.

b

Ions	Calcd.	Obs.	Er. (ppm)
b_{2}	145.0613	145.0605	5.5
$\mathrm{~b}_{3}$	246.1090	246.1088	0.8
$\mathrm{~b}_{4}$	359.1931	359.1942	3.1
$\mathrm{~b}_{5}$	587.2499	587.2477	3.7
$\mathrm{~b}_{6}$	700.3340	700.3318	3.1
$\mathrm{~b}_{7}$	799.4024	799.3995	3.6
y_{1}	247.0752	247.0741	4.5
y_{2}	346.1436	346.1423	3.8
y_{3}	459.2277	459.2276	0.2
y_{4}	687.2845	687.2841	0.6

Ions	Calcd.	Obs.	Er. (ppm)
b_{3}	246.1090	246.1070	8.1
$\mathrm{~b}_{5}$	587.2499	587.2490	1.5
y_{1}	201.0697	201.0686	5.4
y_{4}	641.2791	641.2791	0.0

Supplementary Figure 8. 2D-TOCSY f2-slices at related f1 experiments (600 MHz , DMSO- d_{6}) for residue identification in 7-III.

Chemical shift of -NH of the L-Ser residue (8.50 ppm).

Chemical shift of -NH of L-Thr residue (8.04 ppm).

Chemical shift of H 2 of L -Ile residue (4.10 ppm).

Chemical shift of NH of L-Leu residue (8.21 ppm).

Chemical shift of NH of L-Val residue (7.00 ppm).

Chemical shift of NH of L-Cys2 residue (7.16 ppm).

Supplementary Figure 9. Overall structural comparison of the monomers of $\mathrm{TvaF}_{\mathrm{s}-87}, \mathrm{CypD}, \mathrm{MrsD}$ and the EpiD complex (shown by ribbon diagram). (a) $\mathrm{TvaF}_{\mathrm{S}-87}$ and CypD . (b) $\mathrm{TvaF}_{\mathrm{S}-87} \mathrm{EpiD}$. (c) CypD and EpiD. (d) TvaFs- 87 MrsD. (e) CypD and MrsD. (f) Two different TvaFs-87 monomers (i.e., monomer 1 and monomer 2) found in $\mathrm{TvaF}_{\mathrm{S}-87}$ dodecamer. (g) The monomer of the EpiD H67N complex with a peptide substrate mimic (PDB ID: 1G5Q) and the $\mathrm{TvaF}_{\mathrm{S}-87}$ monomer 2.

Supplementary Figure 10. FMN binding interface in the TvaF_{s-87} structure. (a) The ribbon-stick model showing the FMN cofactors buried in the interfaces between two $\mathrm{TvaF}_{\mathrm{S}-87}$ monomers in a trimeric subunit. The three $\mathrm{TvaF}_{\mathrm{S}-87}$ monomers are shown in the ribbon model and colored in magenta, green, and orange, respectively, while the bound FMN cofactors are shown in the stick model. (b) The enlarged stereo view of the ribbon-stick-ball representation showing the detailed interactions between a FMN cofactor and two TvaFs-87 monomers. The hydrogen bonds involved in the interaction are shown as dotted lines.

Supplementary Figure 11. FAD binding interface in the CypD structure. (a) The ribbon-stick model showing the FAD cofactors buried in the interfaces between two CypD monomers in a trimeric unit. The three CypD monmers are shown in the ribbon model and colored in cyan, slate blue, and hotpink, respectively, while the bound FAD cofactors are shown in the stick model. (b) The enlarged stereo view of the ribbon-stick-ball representation showing the detailed interactions between a FAD cofactor and two CypD monomers. The hydrogen bonds involved in the interaction are shown as dotted lines

Supplementary Figure 12. Structure-based sequence alignment of CypD , EpiD and $\mathrm{TvaF}_{\text {s-87. }}$ The conserved residues are highlighted by colors using software Jalview2.8.1 (http://www.jalview.org/). The interface residues of $\mathrm{TvaF}_{\mathrm{S}-87}$ and CypD that are critical for the interactions with their bound cofactors are highlighted with red stars (polar interactions) or black triangles (hydrophobic interactions), while the interface residues of $\mathrm{TvaF}_{\mathrm{S}-87}$ and CypD that are crucial for the interaction between two trimeric subunits are labeled with black stars (polar interactions) or red triangles (hydrophobic interactions). Furthermore, the CypD residues involved in the interaction with ISLVS (the pentapeptide sequence of $\mathbf{8}$) are labeled with red (polar interactions) or black (hydrophobic interactions) gears.

Supplementary Figure 13. Structural and biochemical analyses of the binding interface between two trimeric units of the $\mathrm{TvaF}_{\mathrm{S}-87}$ dodecamer. (a) The ribbon-stick model showing the structural packing between two trimeric units. The bound FMN cofactors are shown in the stick model, and the six monomers forming two trimeric subunits are shown in the ribbon model and labeled with different colors. (b) The enlarged stereo view of the ribbon-stick representation showing the binding interface between two trimeric units. The hydrogen bonds involved in the interaction are shown as dotted lines. (c) Overlay plot of the static light scattering data of wild type TvaF_{5-87}, and the $\mathrm{TvaF}_{\text {S-87-M62D }}$ and $\mathrm{TvaF}_{5-87-\mathrm{V} 28 \mathrm{D}}$ mutants. Clearly, the wide type TvaFs-87 forms a stable dodecamer, while the two mutants exclusively form a stable trimer.

Supplementary Figure 14. Structural analysis of the binding interface between two trimeric subunits of the CypD dodecamer. (a) The ribbon-stick model showing the structural packing between two trimeric units. In this drawing, The bound FAD cofactors are shown in the stick model, and the six monomers forming two trimeric bunits are shown in the ribbon model and labeled with different colors. (b) The enlarged stereo view of the ribbon-stick representation showing the binding interface between two trimeric CypD units. The hydrogen bonds involved in the interaction are shown as dotted lines.

Supplementary Figure 15. Structural analys is of the CypD monomer in the CypD complex with the peptide substrate 8. (a) Comparison of the CypD monomer in the complex (purple blue) and in its apo-form (slate blue), respectively. (b) The $\mathrm{Fo}_{0}-\mathrm{F}_{\mathrm{C}}$ map of the pentapeptide $\mathbf{I S}_{\mathbf{1}_{9}} \mathbf{L V S}_{22}$ sequence of $\mathbf{8}$ in the complex structure. The electron density map is calculated by omitting this sequence from the final PDB file of the complex and contoured at 2.0σ. The CypD is shown in the cartoon mode, while the bound $\mathbf{I S}_{\mathbf{1 g}_{9}} \mathbf{L V S} \mathbf{S}_{22}$ sequence and FAD are shown in the stick-ball mode.

Supplementary Figure 16. Structural analysis of the substrate-binding pockets of CypD dodecamer. (a) The combined surface representation and the stick-ball model showing the substrate-binding pockets of CypD. (b) The combined surface charge potential representation and the stick-ball model showing that the solvent-exposed and highly charged pocket formed between two trimeric units is close to a bound FAD cofactor.

Supplementary Figure 17. Structural comparison of the CypD complex and the EpiD H67N mutant complex.
(a) The superimposition of the CypD complex with the peptide substrate $\mathbf{8}$ (purple blue and green cyan) and the EpiD H67N mutant complex with a pentapeptide substrate mimic (grey and black). The ribbon-stick model reveals the overlapping of the two putative substrate binding pockets. (b) The combined surface representation and the stick-ball model showing the overlaps of the two substrate peptides in the CypD/8 complex and the EpiD H67N mutant complex.

Supplementary Figure 18. In vitro assays of CypD activity using the substrates, 7 (i), 7-C19S (ii) and 7-C19S-D \mathbf{D}_{3} (containing the deuterium-labeled $\mathrm{L}-\left[2,3,3-\mathrm{D}_{3}\right]$ Ser residue, iii). Conversions were conducted at $30^{\circ} \mathrm{C}$ for 4 hr in $60 \mu \mathrm{~L}$ of the reaction mixture that contained $100 \mu \mathrm{M}$ synthetic peptide and $30 \mu \mathrm{M}$ N-terminally TRX-tagged CypD along with 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.5), 10 \mathrm{mM}$ TCEP, $5 \mu \mathrm{MFAD}$ and $1 \mu \mathrm{M}$ 3C. The reaction mixture for $\mathbf{7 - C 1 9 S}-\mathrm{D}_{3}$ conversion was concentrated ten times for HR -MS analysis.

100 NL: 2.6E5

Supplementary Figure 19. Characterization of Dha-containing peptides in the CypD-catalyzed conversion of 7-Dha by chemical derivation. (a) Examination of 7-Dha and its derivatives by HPLC-MS. i, standard 7-Dha; ii, treatment of 7-Dha with DTT at $30^{\circ} \mathrm{C}$ for 2 hr ; iii, transformation of 7-Dha into 7-III and 7-IV at $30^{\circ} \mathrm{C}$ for 2 hr ; and iv, treatment of the reaction mixture of iii with DTT. (b) HR-MS and HR-MS/MS data for the derivative 7-Dha-DTT.

	Calcd.	Obs.	Er.(ppm)
$\mathbf{b}_{\mathbf{3}}{ }^{+}$	246.1090	246.1079	4.5
$\mathbf{b}_{4}{ }^{+}$	359.1931	359.1927	1.1
$\mathbf{b}_{\mathbf{6}}{ }^{+}$	695.3093	695.3108	2.2
$\mathbf{b}_{7}{ }^{+}$	794.3787	794.3792	0.6
$\mathbf{y}_{\mathbf{4}}{ }^{+}$	557.2137	557.2122	2.7
$\mathbf{y}_{\mathbf{5}}{ }^{+}$	670.2978	670.2968	1.5

Supplementary Figure 20. Comparison of the enzymatic activities of CypD with its variants based on examination of the production of 7-I, 7-II and 7-III. The activity has been quantified by the intensities in HR-MS analys is, in which the activity of wild type CypD to produce $\mathbf{7 - 1}$ and $\mathbf{7 - I I}$ was normalized to 100%. Assays were performed in triplicates, and the standard deviations are indicated by the error bars. Conversions were conducted at $30^{\circ} \mathrm{C}$ for 4 hr in $60 \mu \mathrm{~L}$ of the reaction mixture that contained $100 \mu \mathrm{M} 7$ and $30 \mu \mathrm{M}$ N-terminally TRX-tagged CypD, along with 50 mM Tris- HCl (pH 8.5), 10 mM TCEP, $5 \mu \mathrm{MFAD}, 1 \mu \mathrm{M} 3 \mathrm{C}$.

Supplementary Tables

Supplementary Table 1. Related bacterial strains and plasmids used in this study.

Strains/Plasmids	Characteristic(s)	Sources/Referenc es
Streptomyces sp.		
NRRL S-87	Wild type strain, TVA-YJ-2-producing strain for PCR	NRRL
Escherichia coli		
DH5 α	Host for general cloning	Transgen
BL21 (DE3)	Host for protein expression	Transgen
JZ101	BL21 (DE3) derivative, containing pZL 1001 for producing TRX-tagged TvaFs-87	This study
JZ102	BL21 (DE3) derivative, containing pZL 1003for producing TRX-tagged CypD	This study
JZ103	BL21 (DE3) derivative, containing pZL 1002 for producing 3C	This study
JZ104	BL21 (DE3) derivative, containing pZL 1004 for producing TRX-tagged TvaFs-87- V28D	This study
JZ105	BL21 (DE3) derivative, containing pZL1005 for producing TRX-tagged TvaFs-87-M62D	This study
JZ106	BL21 (DE3) derivative, containing pZL 1006 for producing TRX-tagged TvaFs-87- H85A	This study
JZ107	BL21 (DE3) derivative, containing pZL 1007 for producing TRX-tagged CypD-S20A	This study
JZ108	BL21 (DE3) derivative, containing pZL 1008 for producing TRX-tagged CypD-S20D	This study
JZ109	BL21 (DE3) derivative, containing pZL 1009 for producing TRX-tagged CypD-L23A	This study
JZ110	BL21 (DE3) derivative, containing pZL 1010 for producing TRX-tagged CypD-L23Q	This study
JZ111	BL21 (DE3) derivative, containing pZL 1011 for producing TRX-tagged CypD-F170A	This study
JZ112	BL21 (DE3) derivative, containing pZL 1012 for producing TRX-tagged CypD-F170Q	This study

JZ113	BL21 (DE3) derivative, containing pZL 1013 for producing TRX-tagged CypD-H59A	This study
JZ114	BL21 (DE3) derivative, containing pZL 1014 for producing TRX-tagged CypD-H59D	This study
JZ115	BL21 (DE3) derivative, containing pZL 1015 for producing TRX-tagged CypD-H29R	This study
JZ116	BL21 (DE3) derivative, containing pZL 1016 for producing TRX-tagged CypD-H29A	This study
JZ117	BL21 (DE3) derivative, containing pZL 1017 for producing TRX-tagged CypD-N80H	This study
JZ118	BL21 (DE3) derivative, containing pZL 1018 for producing TRX-tagged CypD- N80D	This study
Plasmids	E. coli subcloning vector	
pET28a(+)	Protein expression vector used in E.coli, encoding N -terminal His-tag, kanamycin resistance	Novagen
pRSFDeut-1	Protein expression vector used in E.coli, encoding N -terminal His-tag, kanamycin resistance	Novagen
pZL1001	pRSFDeut-1 derivative, containing trx and a 606 bp PCR product that encodes $t v a F_{S-87}$	This study
pZL1002	pET28a(+) derivative, containing a 552 bp synthesized gene that encodes $3 c$	This study
pZL1003	pRSFDeut-1 derivative, containing trx and a 573 bp synthesized gene that encodes cypD	This study
pZL1004	pZL1001 derivative for V28D mutated tvaFs 8 87	This study
pZL1005	pZL1001 derivative for M62D mutated tvaF $_{\text {S }-87}$	This study
pZL1006	pZL1001 derivative for H85A mutated tvaFs ${ }_{\text {S } 87}$	This study
pZL1007	pZL1003 derivative for S20A mutated cypD	This study
pZL1008	pZL1003 derivative for S20D mutated cypD	This study
pZL1009	pZL1003 derivative for L23A mutated cypD	This study
pZL1010	pZL1003 derivative for L23Q mutated cypD	This study
pZL1011	pZL1003 derivative for F170A mutated cypD	This study
pZL1012	pZL1003 derivative for F170Q mutated cypD	This study
pZL1013	pZL1003 derivative for H59D mutated cypD	This study
pZL1014	pZL1003 derivative for H59A mutated cypD	This study
pZL1015	pZL1003 derivative for H29R mutated cypD	This study

pZL1016	pZL1003 derivative for H29A mutated cypD	This study
pZL1017	pZL1003 derivative for N80H mutated cypD	This study
pZL1018	pZL1003 derivative for N80D mutated cypD	This study

Supplementary Table 2. Primers used in this study.

Primers	Sequence (restriction sites are underlined)
tvaFs-87-for	AAAAAGGATCCATGACCGACCACGCCACCG
tvaFs-87-rev	AAAAAGAATTCTCACTGTCCTTGTGGGTG
tvaFs-87-V28D-for	TCCGCTGACGCGGTCCCCCACGTGAAC
tvaFs-87-V28D-rev	GACCGGTCCAGCGGAGAAGGAGCCGCA
tvaFs-87-M62D-for	CCGCGCGACATCGAGGCTGTCACCGGC
tvaFs-87-M62D-rev	CTCGATGTCGCGCGGCCCCATGAGGGC
tvaFs-87-H85A-for	GCCGCCGCAGTCGCCCTCGGCACCTGG
tvaFs-87-H85A-rev	GGCGACTGCGGCGGCGCCTCCGCCCTTG
cypD-S20A-for	AGCATCGCAGCGGCGCTGGTTCCGTGG
cypD-S20A-rev	CGCCGCTGCGATGCTGCCGGTAACGTG
cypD-S20D-for	AGCATCGACGCGGCGCTGGTTCCGTGG
cypD-S20D-rev	CGCCGCGTCGATGCTGCCGGTAACGTG
cypD-L23A-for	GCGGCGGCAGTTCCGTGGTGGATTCAC
cypD-L23A-rev	CGGAACTGCCGCCGCGCTGATGCTGCC
cypD-L23Q-for	GCGGCGCAAGTTCCGTGGTGGATTCAC
cypD-L23Q-rev	CGGAACTTGCGCCGCGCTGATGCTGCC
cypD-F170A-for	GTGGGTGCAAACCTGCCGGGTGCGCTG
cypD-F170A-rev	CAGGTTTGCACCCACTTCCGCGGTTTG
cypD-F170Q-for	GTGGGTCAAAACCTGCCGGGTGCGCTG
cypD-F170Q-rev	CAGGTTTTGACCCACTTCCGCGGTTTG
cypD-H59D-for	CTGCGTGACCTGGCGAACGGCAAAGTG
cypD-H59D-rev	CGCCAGGTCACGCAGCGCACGCACCGC
cypD-H59A-for	CTGCGTGCACTGGCGAACGGCAAAGTG
cypD-H59A-rev	CGCCAGTGCACGCAGCGCACGCACCGC
cypD-H29R-for	TGGATTAGATGGCTGCGTGAGTTCCAG
cypD-H29R-rev	CAGCCATCTAATCCACCACGGAACCAG
cypD-H29A-for	TGGATTGCATGGCTGCGTGAGTTCCAG
cypD-H29A-rev	CAGCCATGCAATCCACCACGGAACCAG
cypD-N80H-for	GAAGTTCACAGCGGTAAAAGCGGCGCG
cypD-N80H-rev	ACCGCTGTGAACTTCCGGCGGCACATC
cypD-N80D-for	GAAGTTGACAGCGGTAAAAGCGGCGCG

CypDN80D-rev	ACCGCTGTCAACTTCCGGCGGCACATC

Supplementary Table 3. Gene sequences of $t v a F_{s-87}, c y p D$ and $3 c$.

Name	Sequence
tvaFs-87	ATGACCGACCACGCCACCGGCCCGCAGCAGGCACTGGCGGGGGTTCGGT
	TGTTGTGGGGCGTGTGCGGCTCCTTCTCCGCTGTTGCGGTCCCCCACGTG
	AACGCATGGCTGCGTGGCACCGTCGGGGTCCGGGAGATCCGCACCATCA
	TGACCACGCAGGCACACGCCCTCATGGGGCCGCGCATGATCGAGGCTGT
	CACCGGCCATATGCCGGTGACCGGCTGGGAGG ACCACAAGGGCGGAGG
	CGCCGCCCACGTCGCCCTCGGCACCTGGGCGGACGTGCTGGTGGTCTTGC
	CGGCCACCGCCAATTTCCTGGCCAAGGCAGCACACGGCATCGCGGACGA
	CGTCCTGACAGCCACACTGCTCGCCACCGAGTGCCCCGTGGTGATCGCCC
	CCGTCATGAACGCGGCCATGTGGTCCAAACCCGCCGTACGCCGCAACGT
	CGATCAGCTCCGCGAAGACGGCT ACCAGATCGTCGAGCCGAAGGAGGGC
	ATCTCССTCACCGAGGGCCGACGGGA AGCCGGTTCACTCGGCGACTTCC
	AGCCGGCAATCTCCGCCGCTCTGGTCCAGGCAGCTGCACGACGCACCCA CCCACAAGGACAGTGA
cypD	ATGAACGTGGAGAAGTTCGAGGGTGCGGAGCTGCACGTGCACGTTACCG
	GCAGCATCAGCGCGGCGCTGGTTCCGTGGTGGATTCACTGGCTGCGTGA
	GTTCCAGCCGGAGCTGGTTGTGAACGTGAGCGTT ACCCCGGCGGCG AGC
	CGTTTTCTGGCGGTGCGTGCGCTGCGTCACCTGGCGAACGGCAAAGTGTG
	GGTTGACAGCTGGGACGATCCGGATGTGCCGCCGGAAGTTAACAGCGGT
	AAAAGCGGCGCGAGCGAGTGCTTCCTGGTGTTTCCGGCGACCCTGGACA
	CCGTTATGCGTCTGGCGCAGGGTCGTGCGGATAGCCCGGCGCTGATGAT
	GCTGCAACTGACCG ACGCGCCGCTGGTTATCGCGGATACCTTTCCGGGCA
	GCAACGAAATTGTGGAGAACAACGTTCAGACCCTGAAACTGCGTCCGAA
	CGTGGAGTTCGCGCCGCGTGTGAACGGTGTTCGTGCGAGCAACCGTCAA
	ACCGCGGAAGTGGGTTTTAACCTGCCGGGTGCGCTGGCGGCGGCGAACC
3 c	ATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCGGACCTA
	ACACTGAGTTTGCTCTGTCTCTGCTGCGTAAAAACATCATG ACT ATCACC
	ACTAGTAAAGGCG AGTTCACTGGTCTGGGTATTCACGATCGTGTTTGTGT
	TATTCCTACTCATGCTCAGCCGGGTGACGATGTTCTGGTAAACGGTCAAA
	AAATTCGTGTTAAGGAT AAAT ACAAACTGGTTGACCCGGAAAACATCAA
	TCTAGAACTGACCGT ACTGACTCTGGATCGTAATGAAAAGTTCCGTGACA
	TCCGTGGTTTTATTTCTGAAGACCTGGAAGGTGTCGACGCAACCCTGGTT
	GTACATAGCAATAACTTTACTAACACT ATTCTGGAGGTTGGTCCGGTAAC
	TATGGCTGGTCTGATCAACCTGTCTAGCACTCCGACCAACCGCATGATTC
	GTTACGACTACGCAACTAAAACTGGTCAGTGTGGTGGTGTTCTGTGCGCA
	ACCGGTAAGATCTTTGGCATCCATGTAGGCGGTAACGGTCGTCAGGGTTT
	CTCTGCACAACTGAAGAAGCAATACTTTGTAGAGAAGCAGTAA

Supplementary Table 4. HR-MS and HR-MS/MS Data collection of all compounds analyzed in this study. _ _, not observed; and N.D., not detected.

Peptidyl mimics (PM)	Calcd.	Obs.	Er. ppm
1	$\begin{aligned} & 1046.4596 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1046.4606 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	1.0
1-I	$\begin{aligned} & 1023.4569 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1023.4562 \\ & {\left[\mathrm{M}+2 \mathrm{H}^{+}\right]^{2+}} \end{aligned}$	0.7
	$\begin{aligned} & 1014.4516 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1014.4581 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	6.4
	$\begin{aligned} & 1015.4684 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1015.4662 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	2.2
1-T8A	$\begin{aligned} & 1031.4544 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1031.4557 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	1.3
1-T8A-I	$\begin{aligned} & 1008.4517 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1008.4541 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	2.4
	$\begin{aligned} & 1000.4631 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1000.4646 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	1.5
	$\begin{aligned} & 1039.4519 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1039.4493 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	2.5
1-T8S-I	$\begin{aligned} & 1016.4491 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1016.4470 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	2.1

	$\begin{aligned} & 1007.4438 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1007.4490 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	5.2
	$\begin{aligned} & 1008.4605 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1008.4579 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	2.6
	$\begin{aligned} & 1047.4404 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1047.4406 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	0.2
	$\begin{aligned} & 1024.4377 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1024.4386 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	0.9
1-T8C-III	$\begin{aligned} & 1007.4438 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	--	- -
1-T8C-II	$\begin{aligned} & 1016.4492 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1016.4494 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	0.2
1-C13A	$\begin{aligned} & 1030.4737 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1030.4764 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	2.7
1-C13A-I	$\begin{aligned} & 1007.4709 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	--	--
1-C13S	$\begin{aligned} & 1038.4711 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1038.4697 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	1.4
1-C13S-I	$\begin{aligned} & 1015.4684 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	--	--

1-C13T	$\begin{aligned} & 1045.4790 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1045.4780 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	1.0
1-C13T-I	$\begin{aligned} & 1022.4762 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	- -	- -
1-NEM SPDEEAQGSVMAAAA	$\begin{aligned} & 1108.9835 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1108.9807 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	2.5
1-I-NEM	$\begin{aligned} & 1085.9807 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1085.9799 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	0.7
1-II-HOPI	$\begin{aligned} & 1082.0001 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 1081.9943 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	5.3
2	$\begin{aligned} & 596.2866 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{gathered} 596.2846 \\ {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{gathered}$	3.4
2-I	$\begin{aligned} & 573.2839 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{gathered} 573.2809 \\ {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{gathered}$	5.2
2-III	$\begin{aligned} & 564.2786 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{gathered} 564.2836 \\ {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{gathered}$	8.9

2-II	$\begin{aligned} & 565.2953 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{gathered} 565.2923 \\ {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{gathered}$	5.7
3	$\begin{aligned} & 546.7524 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 546.7499 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	4.6
	$\begin{aligned} & 523.7497 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 523.7488 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	1.7
	$\begin{aligned} & 514.7444 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{gathered} 514.7419 \\ {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{gathered}$	4.9
3-II	$\begin{aligned} & 515.7611 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 515.7584 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	5.2
	$\begin{gathered} 961.4566 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 961.4536 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	3.1
4-I	$\begin{gathered} 915.4511 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 915.4510 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.1
4-III	$\begin{gathered} 897.4405 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	- -	- -
	$\begin{gathered} 899.4739 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	N.D.	N.D.
5	$\begin{gathered} 819.3823 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 819.3790 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	4.0

5-I	$\begin{gathered} 773.3769 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 773.3810 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	5.3
5-III	$\begin{gathered} 755.3663 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	- -	- -
5-II	$\begin{gathered} 757.3997 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	N.D.	N.D.
6	$\begin{gathered} 677.3081 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 677.3058 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	3.4
	$\begin{gathered} 631.3026 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 631.3067 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	6.5
	$\begin{gathered} 613.2921 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	- -	- -
	$\begin{gathered} 615.3255 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	N.D.	N.D.
7	$\begin{gathered} 795.3739 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 795.3726 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	1.6
7-I	$\begin{gathered} 749.3684 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 749.3668 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	2.1
7-III/IV	$\begin{gathered} 715.3808 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 715.3805 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.4
7-III	$\begin{gathered} 733.3913 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 733.3898 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	2.1

7-NEM	$\begin{gathered} 1045.4693 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 1045.4646 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	4.5
7-I-NEM	$\begin{gathered} 999.4638 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 999.4646 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.8
7-C19S	$\begin{gathered} 779.3968 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 779.3934 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	4.4
	$\begin{gathered} 733.3913 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 733.3911 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.3
	$\begin{gathered} 715.3808 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 715.3802 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.8
	$\begin{gathered} 717.4141 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 717.4122 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	2.7
7-C19T	$\begin{gathered} 793.4124 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 793.4112 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	1.5
	$\begin{gathered} 747.4069 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 747.4070 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.1
	$\begin{gathered} 729.3965 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	--	- -

7-C19T-II	$\begin{gathered} 731.4298 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 731.4286 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	1.6
7-C19A	$\begin{gathered} 763.4019 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 763.4012 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.9
	$\begin{gathered} 717.3964 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 717.3962 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.3
	$\begin{gathered} 701.4192 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 701.4181 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	1.6
7-C22A	$\begin{gathered} 763.4019 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 763.4013 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	0.8
7- C22A-I	$\begin{gathered} 717.3964 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	--	--
$7-\mathrm{C} 22 \mathrm{~S}$	$\begin{gathered} 779.3968 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 779.3947 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	2.7
	$\begin{gathered} 733.3913 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	--	--
7-C22T	$\begin{gathered} 793.4124 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{aligned} & 793.4112 \\ & {[\mathrm{M}+\mathrm{H}]^{+}} \end{aligned}$	1.5
	$\begin{gathered} 747.4069 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	--	--

7-C19S-Ac	$\begin{gathered} 821.4073 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 821.4020 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	6.5
	$\begin{gathered} 775.4019 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 775.3988 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	4.0
	$\begin{gathered} 759.4247 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 759.4232 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	2.0
7-C19S-P	$\begin{gathered} 859.3631 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 859.3580 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	5.9
	$\begin{gathered} 813.3576 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	- -	- -
	$\begin{gathered} 797.3805 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	- -	- -
7-C19S-Glu	$\begin{aligned} & 454.7233 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	$\begin{aligned} & 454.7211 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	4.9
	$\begin{aligned} & 431.7206 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	- -	- -

7-C19S-Glu-II	$\begin{aligned} & 423.7320 \\ & {[\mathrm{M}+2 \mathrm{H}]^{2+}} \end{aligned}$	- -	- -
7-Dha19	$\begin{gathered} 761.3862 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 761.3836 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	3.4
7-Dha19-I	$\begin{gathered} 715.3808 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	- -	- -
7-Dha19-II	$\begin{gathered} 699.4036 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	- -	- -
7- d-C19	$\begin{gathered} 795.3739 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 795.3711 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	3.5
7-C19S-D	$\begin{gathered} 782.4156 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 782.4136 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	2.6
	$\begin{gathered} 736.4101 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 736.4086 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	2.0
	$\begin{gathered} 720.4330 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	$\begin{gathered} 720.4305 \\ {[\mathrm{M}+\mathrm{H}]^{+}} \end{gathered}$	3.5

1

1

Ions	Calcd.	Obs.	Er. (ppm)	Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	185.0926	185.0921	2.7	$\mathbf{y}_{\mathbf{2}}$	259.0864	259.0860	1.5
$\mathbf{b}_{\mathbf{3}}$	300.1196	300.1190	2.0	$\mathbf{y}_{\mathbf{3}}$	406.1548	406.1544	1.0
$\mathbf{b}_{\mathbf{4}}$	429.1621	429.1617	0.9	\mathbf{y}_{4}	477.1920	477.1917	0.6
$\mathbf{b}_{\mathbf{5}}$	558.2047	558.2045	0.4	$\mathbf{y}_{\mathbf{5}}$	576.2604	576.2601	0.5
$\mathbf{b}_{\mathbf{6}}$	629.2418	629.2414	0.6	$\mathbf{y}_{\mathbf{6}}$	677.3081	677.3079	0.3
$\mathbf{b}_{\mathbf{7}}$	757.3004	757.3000	0.5	$\mathbf{y}_{\mathbf{7}}$	748.3452	748.3447	0.7
$\mathbf{b}_{\mathbf{8}}$	814.3219	814.3214	0.6	$\mathbf{y}_{\mathbf{8}}$	819.3823	819.3820	0.4
$\mathbf{b}_{\mathbf{9}}$	901.3539	901.3528	1.2	$\mathbf{y}_{\mathbf{9}}$	890.4194	890.4192	0.2
$\mathbf{b}_{\mathbf{1 0}}$	1000.4223	1000.4218	0.5	$\mathbf{y}_{\mathbf{1 0}}$	961.4565	961.4564	0.1
$\mathbf{b}_{\mathbf{1 1}}$	1131.4628	1131.4623	0.4	$\mathbf{y}_{\mathbf{1 1}}$	1092.4970	1092.4971	0.1
$\mathbf{b}_{\mathbf{1 2}}$	1202.4999	1202.4978	1.7	$\mathbf{y}_{\mathbf{1 2}}$	1191.5654	1191.5647	0.3
				$\mathbf{y}_{\mathbf{1 3}}$	1278.5974	1278.5996	1.7
				$\mathbf{y}_{\mathbf{1 4}}$	1335.6189	1335.6188	0.1
				$\mathbf{y}_{\mathbf{1 5}}$	1463.6775	1463.6702	5.0

1-I

Ions	Calcd.	Obs.	Er. (ppm)	Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	185.0926	185.0921	2.7	$\mathbf{y}_{\mathbf{2}}$	213.0810	213.0807	1.4
$\mathbf{b}_{\mathbf{3}}$	300.1196	300.1189	2.3	$\mathbf{y}_{\mathbf{3}}$	360.1494	360.1489	1.4
$\mathbf{b}_{\mathbf{4}}$	429.1621	429.1618	0.7	\mathbf{y}_{4}	431.1865	431.1861	0.9
$\mathbf{b}_{\mathbf{5}}$	558.2047	558.2045	0.4	$\mathbf{y}_{\mathbf{5}}$	530.2549	530.2548	0.2
$\mathbf{b}_{\mathbf{6}}$	629.2418	629.2413	0.8	$\mathbf{y}_{\mathbf{6}}$	631.3026	631.3021	0.8
$\mathbf{b}_{\mathbf{7}}$	757.3004	757.3003	0.1	\mathbf{y}_{7}	702.3397	702.3392	0.7
$\mathbf{b}_{\mathbf{8}}$	814.3219	814.3215	0.5	$\mathbf{y}_{\mathbf{8}}$	773.3768	773.3760	1.0
$\mathbf{b}_{\mathbf{9}}$	901.3539	901.3558	2.1	$\mathbf{y}_{\mathbf{9}}$	844.4139	844.4139	0.0
$\mathbf{b}_{\mathbf{1 0}}$	1000.4223	1000.4229	0.6	$\mathbf{y}_{\mathbf{1 0}}$	915.4510	915.4505	0.5
$\mathbf{b}_{\mathbf{1 1}}$	1131.4628	1131.4623	0.4	$\mathbf{y}_{\mathbf{1 1}}$	1046.4915	1046.4917	0.2
$\mathbf{b}_{\mathbf{1 2}}$	1202.4999	1202.5009	0.8	$\mathbf{y}_{\mathbf{1 2}}$	1145.5599	1145.5603	0.3
				$\mathbf{y}_{\mathbf{1 3}}$	1232.5920	1232.5917	0.2
				$\mathbf{y}_{\mathbf{1 4}}$	1289.6134	1289.6141	0.5
				$\mathbf{y}_{\mathbf{1 5}}$	1417.6720	1417.6727	0.5

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{4}}$	429.1621	429.1612	2.1
$\mathbf{b}_{\mathbf{5}}$	558.2047	558.2034	2.3
$\mathbf{b}_{\mathbf{6}}$	629.2418	629.2401	2.7
$\mathbf{b}_{\mathbf{7}}$	757.3004	757.2979	3.3
$\mathbf{b}_{\mathbf{9}}$	901.3539	901.3539	0.0
$\mathbf{b}_{\mathbf{1 0}}$	1000.4223	1000.4206	1.7
$\mathbf{b}_{\mathbf{1 1}}$	1131.4628	1131.4624	0.4

Ions	Calcd.	Obs.	Er. (ppm)	Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	185.0926	185.0925	0.5	$\mathbf{y}_{\mathbf{2}}$	259.0864	259.0865	0.4
$\mathbf{b}_{\mathbf{3}}$	300.1196	300.1196	0.0	$\mathbf{y}_{\mathbf{3}}$	406.1548	406.1553	1.2
$\mathbf{b}_{\mathbf{4}}$	429.1621	429.1627	1.4	$\mathbf{y}_{\mathbf{4}}$	477.1920	477.1927	1.5
$\mathbf{b}_{\mathbf{5}}$	558.2047	558.2057	1.8	$\mathbf{y}_{\mathbf{5}}$	576.2604	576.2614	1.7
$\mathbf{b}_{\mathbf{6}}$	629.2418	629.2428	1.6	\mathbf{y}_{6}	647.2975	647.2982	1.1
$\mathbf{b}_{\mathbf{7}}$	757.3004	757.3016	1.6	$\mathbf{y}_{\mathbf{7}}$	718.3346	718.3358	1.7
$\mathbf{b}_{\mathbf{8}}$	814.3219	814.3230	1.4	$\mathbf{y}_{\mathbf{8}}$	789.3717	789.3732	1.9
$\mathbf{b}_{\mathbf{9}}$	901.3539	901.3554	1.7	$\mathbf{y}_{\mathbf{9}}$	860.4088	860.4099	1.3
$\mathbf{b}_{\mathbf{1 0}}$	1000.4223	1000.4249	2.6	$\mathbf{y}_{\mathbf{1 0}}$	931.4459	931.4471	1.3
$\mathbf{b}_{\mathbf{1 1}}$	1131.4628	1131.4663	3.1	$\mathbf{y}_{\mathbf{1 1}}$	1062.4864	1062.4883	1.8
$\mathbf{b}_{\mathbf{1 2}}$	1202.4999	1202.4990	0.7	$\mathbf{y}_{\mathbf{1 2}}$	1161.5548	1161.5579	2.7
$\mathbf{b}_{\mathbf{1 3}}$	1273.5371	1273.5366	0.4	$\mathbf{y}_{\mathbf{1 3}}$	1248.5869	1248.5912	3.4
				$\mathbf{y}_{\mathbf{1 4}}$	1305.6083	1305.6116	2.5
				\mathbf{y}_{15}	1433.6669	1433.6674	0.3

1-T8S-III

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	185.0926	185.0917	4.9
$\mathbf{b}_{\mathbf{3}}$	300.1196	300.1182	4.7
$\mathbf{b}_{\mathbf{4}}$	429.1621	429.1604	3.9
$\mathbf{b}_{\mathbf{5}}$	558.2047	558.2034	2.3
$\mathbf{b}_{\mathbf{6}}$	629.2418	629.2399	3.0
$\mathbf{b}_{\mathbf{7}}$	757.3004	757.2980	3.2
$\mathbf{b}_{\mathbf{8}}$	814.3219	814.3208	1.4
$\mathbf{b}_{\mathbf{9}}$	901.3539	901.3511	3.1
$\mathbf{b}_{\mathbf{1 0}}$	1000.4223	1000.4196	2.7
$\mathbf{b}_{\mathbf{1 2}}$	1202.4999	1202.4965	2.8
$\mathbf{b}_{\mathbf{1 3}}$	1273.5371	1273.5314	4.5
$\mathbf{y}_{\mathbf{1 3}}$	1200.5657	1200.5712	4.6

1-C13A $\mathrm{SPDEEAQGS} \mathrm{VMMAAA}^{2}$

1-C13S

1-C13T

2

5-I

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0606	5.5
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1080	4.5
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1917	3.6
$\mathbf{b}_{\mathbf{5}}$	462.2022	462.2008	3.0
$\mathbf{b}_{\mathbf{6}}$	575.2863	575.2847	3.1
\mathbf{b}_{7}	674.3547	674.3527	4.2
$\mathbf{y}_{\mathbf{2}}$	221.0959	221.0951	4.1
$\mathbf{y}_{\mathbf{3}}$	334.1800	334.1786	5.1

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0606	4.8
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1079	4.5
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1917	3.9
$\mathbf{b}_{\mathbf{5}}$	462.2022	462.2006	3.5
$\mathbf{b}_{\mathbf{6}}$	575.2863	575.2836	4.7
$\mathbf{y}_{\mathbf{2}}$	175.0905	175.0896	5.1
$\mathbf{y}_{\mathbf{3}}$	288.1745	288.1731	4.9
$\mathbf{y}_{\mathbf{4}}$	391.1837	391.1823	3.6
$\mathbf{y}_{\mathbf{5}}$	504.2678	504.2656	4.4
$\mathbf{y}_{\mathbf{6}}$	605.3154	605.3120	5.6

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0605	5.5
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1079	4.5
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1917	3.9
$\mathbf{b}_{\mathbf{5}}$	462.2022	462.2006	3.5
$\mathbf{b}_{\mathbf{6}}$	575.2863	575.2844	3.3
$\mathbf{b}_{\mathbf{7}}$	674.3547	674.3523	3.6
$\mathbf{y}_{\mathbf{2}}$	159.1133	159.1125	5.0
\mathbf{y}_{3}	272.1974	272.1961	4.8

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0607	4.1
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1080	4.1
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1918	3.6
$\mathbf{a}_{\mathbf{3}}$	218.1135	218.1134	0.5
\mathbf{a}_{4}	331.1976	331.1969	2.1
\mathbf{x}_{4}	453.2530	453.2513	3.8
	258.1271	258.1266	1.9

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0609	2.8
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1084	2.4
\mathbf{b}_{4}	359.1931	359.1923	2.2
$\mathbf{b}_{\mathbf{5}}$	446.2251	446.2247	0.9
$\mathbf{b}_{\mathbf{6}}$	559.3092	559.3085	1.3
\mathbf{b}_{7}	658.3776	658.3774	0.3
$\mathbf{y}_{\mathbf{2}}$	221.0959	221.0955	1.8
\mathbf{y}_{3}	334.1800	334.1795	1.5
$\mathbf{y}_{\mathbf{4}}$	421.2120	421.2110	2.4

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0608	3.4
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1083	2.8
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1922	2.5
$\mathbf{b}_{\mathbf{5}}$	446.2251	446.2244	1.6
$\mathbf{b}_{\mathbf{6}}$	559.3092	559.3081	2.0
$\mathbf{b}_{\mathbf{7}}$	658.3776	658.3769	1.1
$\mathbf{y}_{\mathbf{2}}$	175.0905	175.0900	2.9
$\mathbf{y}_{\mathbf{3}}$	288.1745	288.1739	2.1

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0607	4.1
\mathbf{b}_{3}	246.1090	246.1085	2.0
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1925	1.7
$\mathbf{b}_{\mathbf{5}}$	460.2407	460.2403	0.9
$\mathbf{b}_{\mathbf{6}}$	573.3248	573.3245	0.5
$\mathbf{y}_{\mathbf{2}}$	221.0959	221.0955	1.8
$\mathbf{y}_{\mathbf{3}}$	334.1800	334.1795	1.5
$\mathbf{y}_{\mathbf{4}}$	435.2277	435.2274	0.7
$\mathbf{y}_{\mathbf{5}}$	548.3119	548.3126	1.3

Ions	Calcd.	Obs.	Er. $\mathbf{(p p m)}$
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0607	4.1
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1082	3.2
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1920	3.1
$\mathbf{b}_{\mathbf{5}}$	460.2407	460.2396	2.4
$\mathbf{y}_{\mathbf{2}}$	175.0905	175.0900	2.9

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0603	6.9
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1078	4.9
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1915	4.5
$\mathbf{b}_{\mathbf{5}}$	430.2302	430.2286	3.7
$\mathbf{b}_{\mathbf{6}}$	543.3142	543.3124	3.3
$\mathbf{b}_{\mathbf{7}}$	642.3827	642.3804	3.6
$\mathbf{y}_{\mathbf{2}}$	221.0959	221.0949	4.5
$\mathbf{y}_{\mathbf{3}}$	334.1800	334.1784	4.8
$\mathbf{y}_{\mathbf{4}}$	405.2171	405.2165	1.5

Ions	Calcd.	Obs.	Er. (ppm)
$\mathbf{b}_{\mathbf{2}}$	145.0613	145.0606	4.8
$\mathbf{b}_{\mathbf{3}}$	246.1090	246.1081	3.7
$\mathbf{b}_{\mathbf{4}}$	359.1931	359.1918	3.6
$\mathbf{b}_{\mathbf{5}}$	430.2302	430.2292	2.3
$\mathbf{b}_{\mathbf{6}}$	543.3142	543.3132	1.8
$\mathbf{y}_{\mathbf{2}}$	175.0905	175.0898	4.0
$\mathbf{y}_{\mathbf{3}}$	288.1745	288.1736	3.1

Supplementary Table 5. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 7 in DMSO- d_{6}.

Substructure	$\delta_{\text {C }}$	δ_{H}, mult. ($J, \mathrm{~Hz}$)
Gly	165.9 s	
	40.2 t	3.60 m (overlap) 3.60 m (overlap)
Ser	169.9 s	
Ser-NH		$8.55 \mathrm{~d}(7.8)$
	54.8 d	4.56 q (6.7)
	61.9 t	$\begin{aligned} & 3.59 \mathrm{~m} \text { (overlap) } \\ & 3.59 \mathrm{~m} \text { (overlap) } \end{aligned}$
Thr	169.7 s	
Thr-NH		8.05 d (8.3)
	58.3 d	4.25 m (overlap)
	66.3 d	4.05 m (overlap)
	19.8 q	1.05 d (6.4)
Ile	170.8 s	
Ile-NH		7.70 d (8.6)
	56.8 d	4.25 m (overlap)
	36.9 d	1.71 m (overlap)
	24.1 t	1.60 m (overlap) $1.43 \mathrm{~m} \text { (overlap) }$
	15.2 q	0.82 m (overlap)
	11.2 q	0.79 m (overlap)
Cys1	169.4 s	
Cys1-NH		8.20 m (overlap)
	55.1 d	4.40 m (overlap)
	25.9 t	2.75 m (overlap) 2.65 m (overlap)
Leu	171.7 s	
Leu-NH		8.16 m (overlap)
	51.3 d	4.33 m (overlap)
	40.6 t	1.46 m (overlap) 1.46 m (overlap)
	24.1 d	1.06 m (overlap)

	21.5 q	0.82 m (overlap)
	23.1 q	0.87 m (overlap)
Val	170.9 s	
Val-NH		$7.75 \mathrm{~d}(8.8)$
	57.4 d	4.20 m (overlap)
	30.7 d	1.99 m (overlap)
	19.1 q	0.87 m (overlap)
	18.0 q	0.83 m (overlap)
Cys2	171.4 s	
Cys2-NH		8.18 m (overlap)
	54.4 d	4.37 m (overlap)
	25.4 t	2.87 dd (13.7,4.5)
		2.75 m (overlap)

Supplementary Table 6. Key data in the 2D-TOCSY f2-slice at f1 experiments in DMSO- d_{6}.

	2D-TOCSY f2-slice at f1 experiments (correlation signals)	
Residue (subunits)	Selective proton $\left(\delta_{\mathrm{H}}\right.$ in ppm, J in Hz$)$	Target proton $\left(\delta_{\mathrm{H}}\right.$ in ppm, J in Hz$)$
Ser	$-\mathrm{NH}, \delta_{\mathrm{H}} 8.50$	$\mathrm{H} 2, \delta_{\mathrm{H}} 4.54$
Thr	$-\mathrm{NH}, \delta_{\mathrm{H}} 8.04$	$\mathrm{H} 2, \delta_{\mathrm{H}} 4.25$
		$\mathrm{H} 3, \delta_{\mathrm{H}} 4.22$ $\mathrm{H} 4, \delta_{\mathrm{H}} 1.21$
Ile	$\mathrm{H} 2, \delta_{\mathrm{H}} 4.10$	$\mathrm{H} 3, \delta_{\mathrm{H}} 1.62$
		$\mathrm{H} 4 \mathrm{a}, \delta_{\mathrm{H}} 1.33, \mathrm{H} 4 \mathrm{~b}, \delta_{\mathrm{H}} 1.32$
		$\mathrm{H} 5, \delta_{\mathrm{H}} 0.84$
		$\mathrm{H} 6, \delta_{\mathrm{H}} 0.81$

Supplementary Table 7. Statistics of X-ray crystallographic data collection and model refinements of $\mathrm{TvaF}_{\mathrm{S}-87}$ and CypD in their apo-forms.

Data set	SeMet-TvaF	SeMet-CypD	CypD
Data collection			
Wavelength (Å)	0.97915	0.97890	0.97891
Space group	I23	14	14
Cell dimensions			
a, b, c (\AA)	193.96, 193.96, 193.96	140.11, 140.11, 197.53	$\begin{gathered} 139.62,139.62, \\ 197.21 \end{gathered}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	90, 90, 90	90, 90, 90
Resolution range (\AA)	96.98-2.27 (2.33-2.27)	50.00-2.38 (2.42-2.38)	$\begin{gathered} 50.00-2.40(2.44- \\ 2.40) \end{gathered}$
$R_{\text {merge }}(\%)^{\text {a }}$	11.5 (79.3)	9.1 (124.0)	21.0 (81.3)
$I / \sigma I$	29.60 (7.30)	30.20 (2.00)	11.00 (2.44)
Completeness (\%)	100.00 (100.00)	100.00 (92.60)	99.60 (100.00)
Redundancy	20.0 (21.7)	13.8 (14.3)	12.6 (13.3)
Refinement			
Resolution (\AA)	19.59-2.27 (2.35-2.27)	44.31-2.38 (2.46-2.38)	$\begin{gathered} 34.88-2.40(2.49- \\ 2.40) \end{gathered}$
No. reflections	55718	75830	72525
$R_{\text {work }} / R_{\text {free }}(\%){ }^{\text {b }}$	17.82 (21.83) /20.37 (25.30)	18.03 (23.12) /20.14 (21.85)	$\begin{gathered} 18.07(20.25) \\ / 20.19(26.80) \end{gathered}$
No. of atoms	5694	8890	8917
Protein	5347	8203	8172
Ligand	124	318	364
Water	223	369	381
Average B-factor (\AA^{2})	32.06	40.02	39.38
R.m.s.deviations			
Bond lengths (\AA)	0.009	0.010	0.009
Bond angles (${ }^{\circ}$)	1.230	1.370	1.260
Ramachandran plot ${ }^{\text {c }}$			
Favored region (\%)	97.45	98.44	97.48
Allowed region (\%)	2.55	1.56	2.52
Outliers (\%)	0	0	0

${ }^{\text {a }} R_{\text {merge }}=\sum\left|I_{i}-I_{m}\right| \sum I_{i}$, where I_{i} is the intensity of the measured reflection and I_{m} is the mean intensity of all symmetry related reflections.
${ }^{\mathrm{b}} \mathrm{R}_{\text {work }}=\Sigma| | \mathrm{F}_{\text {obs }}\left|-\left|\mathrm{F}_{\text {calc }}\right|\right| \Sigma\left|\mathrm{F}_{\text {obs }}\right|$, where $\mathrm{F}_{\text {obs }}$ and $\mathrm{F}_{\text {calc }}$ are observed and calculated structure factors.
$\mathrm{R}_{\text {free }}=\Sigma_{\mathrm{T}} \| \mathrm{F}_{\text {obs }}\left|-\left|\mathrm{F}_{\text {calc }}\right| / \Sigma_{\mathrm{T}}\right| \mathrm{F}_{\text {obs }} \mid$, where T is a test data set of about 5% of the total reflections randomly chosen and set aside prior to refinement.
${ }^{\mathrm{c}}$ Defined by Molprobity.
Numbers in parentheses represent the value for the highest resolution shell.

Supplementary Table 8. Statistics of X-ray crystallographic data collection and model refinement of CypD in complex with the ISLVS peptide

Data set	CypD/ISLVS peptide complex
Data collection	
Wavelength (A)	0.97891
Space group	F23
Cell dimensions	
$\mathrm{a}, \mathrm{~b}, \mathrm{c}(\AA)$	228.74, 228.74, 228.74
$\alpha, \beta, \gamma\left({ }^{\circ}\right.$	90, 90, 90
Resolution range (A)	50.00-2.30 (2.34-2.30)
$R_{\text {merge }}(\%)^{\text {a }}$	24.5 (56.4)
$I / \sigma I$	18.45 (8.14)
Completeness (\%)	99.30 (99.30)
Redundancy	37.4 (34.6)
Refinement	
Resolution (A)	44.02-2.30 (2.38-2.30)
No. reflections	44029
$R_{\text {work }} / R_{\text {free }}(\%)^{\text {b }}$	20.34 (20.06) /22.25 (23.18)
No. of atoms	3106
Protein	2820
Ligand	106
Water	180
Average B-factor (\AA^{2})	31.91
R.m.s.deviations	
Bond lengths (\AA)	0.009
Bond angles (${ }^{\circ}$)	1.26
Ramachandran plot ${ }^{\text {c }}$	
Favored region (\%)	98.29
Allowed region (\%)	1.71
Outliers (\%)	0

${ }^{\text {a }} R_{\text {merge }}=\sum\left|I_{i}-I_{m}\right| \sum I_{i}$, where I_{i} is the intensity of the measured reflection and I_{m} is the mean intensity of all symmetry related reflections.
${ }^{\mathrm{b}} \mathrm{R}_{\text {work }}=\Sigma| | \mathrm{F}_{\text {obs }}\left|-\left|\mathrm{F}_{\text {calc }}\right|\right| \Sigma\left|\mathrm{F}_{\text {obs }}\right|$, where $\mathrm{F}_{\text {obs }}$ and $\mathrm{F}_{\text {calc }}$ are observed and calculated structure factors.
$\mathrm{R}_{\text {free }}=\Sigma_{\mathrm{T}} \| \mathrm{F}_{\text {obs }}\left|-\left|\mathrm{F}_{\text {calc }}\right| / \Sigma_{\mathrm{T}}\right| \mathrm{F}_{\text {obs }} \mid$, where T is a test data set of about 5% of the total reflections randomly chosen and set aside prior to refinement.
${ }^{\mathrm{c}}$ Defined by Molprobity.
Numbers in parentheses represent the value for the highest resolution shell.

Supplementary References

(1). T. Kieser et al., Practical Streptomyces Genetics (John Innes Foundation, 2000).
(2). Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237-243 (2015).
(3). Ishikawa J, Hotta K. FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol. Lett. 174, 251-253 (1999).
(4). States DJ, Gish W. Combined use of sequence similarity and codon bias for coding region identification. J. Comput. Biol. 1, 39-50 (1994).
(5). Gouet P. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320-3323 (2003).
(6). Braunschweiler L, Ernst RR. Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. Magn. Reson. 53, 521-528 (1983).
(7). Davis DG, Bax A. Simplification of proton NMR spectra by selective excitation of experimental subspectra. J. Am. Chem. Soc. 107, 7197-7198 (1985).
(8). Subramanian S, Bax A. Generation of pure phase NMR subspectra for measurement of homonuclear coupling constants. J. Magn. Reson. 71, 325-330 (1987).
(9). Kessler H, Oschkinat H, Griesinger C, Bermel W. Transformation of homonuc lear two-dimensional NMR techniques into one-dimensional techniques using Gaussian pulses. J. Magn. Reson. 70, 106-133 (1986).
(10). Gy. Batta, K.E. K6ver and Cs. Szantay, Jr. Methods for Structure Elucidation by High-Resolution NMR, (1997).
(11).Espindola AP, Crouch R, DeBergh JR, Ready JM, MacMillan JB. Deconvolution of complex NMR spectra in small molecules by multi frequency homonuclear decoupling (MDEC). J. Am. Chem. Soc. 131, 15994-15995 (2009).
(12). Wu J, Lorenzo P, Zhong S, Ali M, Butts CP, Myers EL, et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436-440 (2017).
(13). Wang, Z. et al. Automatic crystal centring procedure at the SSRF macromolecular crystallography beamline. J. Synchrotron. Radiat. 23, 1323-1332 (2016).
(14).Otwinowski, Z. \& Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromolec ular Crystallography, Pt. A. 276, 307-326 (1997).
(15).Storoni, L.C., McCoy, A.J. \& Read, R.J. Likelihood-enhanced fast rotation functions. Acta. Crystallographica Section D-Biological Crystallography 60, 432-438 (2004).
(16).Emsley, P. \& Cowtan, K. Coot: model-building tools for molecular graphics. Acta. Crystallographica Section D-Biological Crystallography 60, 2126-2132 (2004).
(17).Murshudov, G.N., Vagin, A.A. \& Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta. Crystallographica Section D-Biological Crystallography 53, 240-255 (1997).
(18).Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta. Crystallographica Section D-Biological Crystallography 58, 1948-1954 (2002).
(19).Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375-W383 (2007).

