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Abstract 25 

Recent large-scale sequencing studies have identified a great number of genes whose disruptions 26 

cause neurodevelopmental disorders (NDDs). However, cell-type-specific functions of NDD genes and 27 

their contributions to NDD pathology are unclear. Here, we integrated NDD genetics with single-cell 28 

RNA sequencing data to identify cell-type and temporal convergence of genes involved in different 29 

NDDs. By assessing the co-expression enrichment pattern of various NDD gene sets, we identified mid-30 

fetal cortical neural progenitor cell development—more specifically, ventricular radial glia-to-31 

intermediate progenitor cell transition at gestational week 10—as a key convergent point in autism 32 

spectrum disorder (ASD) and epilepsy. Integrated gene ontology-based analyses further revealed that 33 

ASD genes function as upstream regulators to activate neural differentiation and inhibit cell cycle during 34 

the transition, whereas epilepsy genes function as downstream effectors in the same processes, offering a 35 

potential explanation for the high comorbidity rate of the two disorders. Together, our study provides a 36 

framework for investigating the cell-type-specific pathophysiology of NDDs. 37 
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Introduction 39 

 Over the past decade, large-scale exome and genome sequencing studies have firmly established 40 

that de novo protein-altering variants contribute significantly to NDDs, including ASD (Iossifov et al. 41 

2014; De Rubeis et al. 2014; Krumm et al. 2015; Sanders et al. 2015; C Yuen et al. 2017), epilepsy (Allen 42 

et al. 2013; EuroEPINOMICS-RES Consortium et al. 2017; Heyne et al. 2018), intellectual disability (ID) 43 

(de Ligt et al. 2012; Rauch et al. 2012; Lelieveld et al. 2016), and developmental delay (DD) 44 

(Deciphering Developmental Disorders Study 2017). Although hundreds of genes with de novo protein-45 

altering mutations in a specific NDD have been identified, each gene accounts only for up to a few cases, 46 

demonstrating the high heterogeneity of the underlying genetic landscapes. With the diverse and 47 

pleiotropic functions of these disease-associated genes, it is challenging to directly pinpoint disease-48 

specific pathophysiology. However, given the similarity of phenotypic symptoms within each NDD, it is 49 

reasonable to hypothesize that disease-causing genes in a specific NDD functionally converge on 50 

common brain developmental events. Moreover, NDDs share genetic etiology and comorbidities are 51 

frequently found, suggesting that convergences of different NDDs may overlap with each other (Anttila et 52 

al. 2018; Lo-Castro and Curatolo 2014). Identification of these convergences will undoubtedly contribute 53 

to the mechanistic understanding of NDD pathophysiology and potentially lead to novel treatments. 54 

 Several systems-level studies have made significant progress in identifying convergences of NDD 55 

genes through integrating NDD genes with functional data, such as gene co-expression and protein-56 

protein interaction (Parikshak et al. 2013; Willsey et al. 2013; Hormozdiari et al. 2015; Chang et al. 2015; 57 

Krishnan et al. 2016; Shohat et al. 2017; Lin et al. 2015). For example, Parikshak et al. (2013) applied the 58 

weighted gene co-expression network analysis to identify modules of co-expressed genes that are 59 

enriched for ASD genes (Parikshak et al. 2013). Their top-down analyses suggest that at the circuit level, 60 

ASD genes are enriched in superficial cortical layers and glutamatergic projection neurons during fetal 61 

cortical development. Willsey et al. (2013) took a bottom-up approach by focusing on nine high-62 

confidence ASD genes and searching for spatiotemporal conditions in which probable ASD genes co-63 

express with these nine genes (Willsey et al. 2013). Using this strategy, they suggest that glutamatergic 64 
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projection neurons in deep cortical layers of human mid-fetal prefrontal and primary motor-65 

somatosensory cortex are a key point of ASD gene convergence. Hormozdiari et al. (2015), on the other 66 

hand, integrated gene co-expression with protein-protein interaction networks to identify modules that 67 

enrich for genes mutated in several NDDs (Hormozdiari et al. 2015). Their results demonstrate that 68 

different NDDs share a major point of gene convergence during early embryonic brain development. 69 

Although the above mentioned and other studies (Chang et al. 2015; Krishnan et al. 2016; Shohat et al. 70 

2017; Lin et al. 2015) applied different methods, the main conclusions are strikingly similar: a substantial 71 

subset of ASD and/or other NDD genes converge in fetal cortical development. In addition, dysfunction 72 

of fetal cortical development has also been implicated in other neuropsychiatric disorders including 73 

schizophrenia (Gulsuner et al. 2013; Gilman et al. 2012). 74 

The majority of co-expression analyses on NDDs utilized the BrainSpan dataset, a spatiotemporal 75 

gene expression data from the developing human brain (Kang et al. 2011). While this dataset is 76 

instrumental in assessing transcriptional changes during human brain development, it was collected from 77 

bulk brain tissue, making it hard to investigate cell-type-specific co-expression patterns to elucidate the 78 

underlying disease mechanisms. Recently, the development of single-cell RNA sequencing (scRNA-seq) 79 

technology enabled us to interrogate the transcriptomics at the single-cell level. For instance, Zhong et al. 80 

(2018) recently reported the scRNA-seq profiles of more than 2,300 single cells in the developing human 81 

prefrontal cortex (Zhong et al. 2018). This kind of data provides an unprecedented opportunity to 82 

understand NDD pathophysiology in a cell-type-specific manner. 83 

Here, by integrating disease genes from the four NDDs with the scRNA-seq dataset from the 84 

human developing prefrontal cortex, we not only identified disease-specific convergence of NDD genes 85 

in specific cell types/stages/transitions but also highlighted the critical cellular processes affected in ASD 86 

and epilepsy. 87 

 88 

Results 89 

Identification of high-confidence genes associated with NDDs 90 
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 To identify high-confidence risk genes associated with each NDD, we first interrogated genes 91 

with de novo protein-altering variants for the four NDDs in the denovo-db database (Turner et al. 2017) 92 

and non-redundant data for epilepsy (Epi) from two studies (EuroEPINOMICS-RES Consortium et al. 93 

2017; Heyne et al. 2018). Loss-of-function (nonsense, frameshift, and canonical splice site) mutations 94 

generally lead to disruption of gene function, whereas missense mutations can cause hypomorphic, 95 

hypermorphic, antimorphic, or neomorphic effects. Thus, for each NDD, we divided the associated genes 96 

into two categories: genes with de novo loss-of-function (dnLoF) mutations and genes with de novo 97 

missense (dnMis) mutations. To select the most relevant genes for each NDD, we only included genes 98 

with at least two or three (depending on gene set sizes) de novo mutations of the same category in each 99 

specific disorder (see Methods). In total, we defined eight high-confidence NDD gene sets: dnLoF-ASD, 100 

dnLoF-Epi, dnLoF-ID, dnLoF-DD, dnMis-ASD, dnMis-Epi, dnMis-ID, and dnMis-DD (Supplementary 101 

Table S1A). There are some overlaps among different gene sets, which is expected given the high 102 

comorbidity among these NDDs (Supplementary Fig. S1). 103 

 104 

Different NDD gene sets display distinct co-expression enrichment across major cortical cell types 105 

 Previous co-expression analyses on NDDs used transcriptomic data from bulk brain tissue 106 

(Parikshak et al. 2013; Willsey et al. 2013; Hormozdiari et al. 2015; Lin et al. 2015). While these analyses 107 

are important to identify critical developmental stages and biological processes involved in the specific 108 

NDD, it is challenging to dissect cell-type-specific contributions to the disease pathophysiology. 109 

Dysfunction of the prefrontal cortex has been implicated in multiple NDDs (Xiong et al. 2007; Gulsuner 110 

et al. 2013; Willsey et al. 2013; Arnsten 2006; Parikshak et al. 2013). To investigate the co-expression 111 

dynamics of NDD genes in specific cell types during the human prefrontal cortex development, we 112 

utilized a recently published scRNA-seq dataset (Zhong et al. 2018) containing more than 2,300 single 113 

cells of the developing human prefrontal cortex from gestational weeks (GWs) 8 to 26. Six major cell 114 

classes are identified in this dataset: neural progenitor cells (NPCs), excitatory neurons, interneurons, 115 
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astrocytes, oligodendrocyte progenitor cells (OPCs), and microglia. Thus, we performed co-expression 116 

analyses of the different NDD gene sets using the transcriptomic data from each of these cell types. 117 

 We reasoned that if mutations in different genes can cause similar symptoms in affected 118 

individuals, these genes are more likely to functionally converge at some processes and stages in brain 119 

development, potentially within a specific cell type. This functional convergence should be reflected by 120 

an increase in the level of co-expression within a particular NDD gene set compared with the overall co-121 

expression level of all the expressed genes (background genes) in that cell type. We first calculated the 122 

pairwise Spearman’s correlation coefficients between background genes in each cell type and defined the 123 

top 0.5% pairs of genes with the highest correlation coefficients as significant co-expressed gene pairs. 124 

We then calculated the fraction of significant co-expressed gene pairs out of all pairs of genes in the NDD 125 

gene set and divided it by 0.5% to get a co-expression fold enrichment score of the NDD gene set (see 126 

Methods). A high co-expression fold enrichment score of an NDD gene set indicates that the genes in the 127 

NDD gene set are more significantly co-expressed than background genes. To verify the enrichment in 128 

NDD gene sets is indeed specific and disease-relevant, we also included several control gene sets, 129 

including genes with dnLoF mutations in unaffected ASD siblings (Turner et al. 2017), genes with LoF 130 

mutations in the general population (Lek et al. 2016), brain-specific gene regulatory factors (Brain-GRF) 131 

(Berto et al. 2016), and synaptic genes (Koopmans et al. 2019) (Supplementary Table S1A). 132 

We calculated co-expression fold enrichment scores for the eight NDD gene sets and four control 133 

gene sets across the six major cell types (Fig. 1A; Supplementary Fig. S2). In general, NDD gene sets 134 

show significantly higher co-expression enrichment than control gene sets (Fig. 1A; Supplementary Fig. 135 

S2 and S3). Several interesting co-expression enrichment patterns can be found. First, the majority of 136 

NDD gene sets show high co-expression enrichment in NPCs, suggesting a convergent involvement of 137 

NPCs in different NDDs (Fig. 1A). Moreover, dnLoF-ASD and dnMis-Epi genes stand out as having the 138 

highest co-expression enrichment scores in particular cell types (Fig. 1A; Supplementary Fig. S4). 139 

Specifically, dnLoF-ASD genes have the highest co-expression in NPCs (18.8-fold enrichment), 140 

suggesting a significant contribution of NPCs to ASD pathophysiology (Fig. 1A). Interestingly, dnMis-141 
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ASD genes show low co-expression enrichment in the six major cell types (Fig. 1A). This is consistent 142 

with the previous estimation that ~43% of dnLoF mutations contribute to ASD diagnosis but only ~13% 143 

of dnMis mutations do so (Iossifov et al. 2014). Instead, dnMis-Epi genes are highly co-expressed in 144 

NPCs, excitatory neurons, and, more prominently, interneurons (Fig. 1A). This is in line with previous 145 

findings that dnMis mutations significantly contribute to the etiology of epilepsy (Hamdan et al. 2017; 146 

Heyne et al. 2018) and dysfunction in interneurons contributes to the pathophysiology of epilepsy (Lado 147 

et al. 2013; Noebels 2015). Compared with ASD and epilepsy genes, ID and DD genes do not exhibit 148 

comparable enrichment, suggesting less functional convergences of these disease genes. Collectively, our 149 

findings reveal that cell-type-specific functional convergences of NDD genes correlate with the 150 

underlying genetic architecture of NDDs. 151 

To determine whether the observed co-expression enrichment reflects true biological signal or is 152 

confounded by other factors (Crow et al. 2016; McCall et al. 2016; Skinnider et al. 2019), we 153 

systematically tested the possible confounders. We found that the co-expression enrichment is robust to 154 

changes in the co-expression threshold (Supplementary Fig. S5 and S6) and correlation-based measures 155 

of association (Supplementary Fig. S7). The co-expression enrichment also remains similar after 156 

controlling for gene set size difference (Supplementary Fig. S8), gene expression level dependence 157 

(Supplementary Fig. S9), and severity of missense mutations (Supplementary Fig. S10). Because cell 158 

numbers vary across the six major cell types (Fig. 1A; Supplementary Table S1B), we downsampled the 159 

same number of cells for each major cell type to make the co-expression enrichment scores comparable. 160 

We found that reducing cell numbers generally decreases the co-expression enrichment scores (Fig. 1B,C; 161 

Supplementary Fig. S11), consistent with the previous finding that larger cell numbers facilitate the 162 

reconstruction of more robust and coherent networks (Skinnider et al. 2019). However, even after 163 

downsampling, dnLoF-ASD genes still have the highest co-expression in NPCs (Fig. 1B), and dnMis-Epi 164 

genes are still highly co-expressed in NPCs and interneurons (Fig. 1C). Although we used percentile-165 

based cutoff for co-expression enrichment analysis to mitigate the effect of global co-expression 166 

differences across cell types, the findings are consistent with results from absolute correlation analysis 167 
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(Supplementary Fig. S12 and S13). An unexpected finding is that dnMis-Epi genes have the highest co-168 

expression in microglia after downsampling (Fig. 1C). Although microglia have been implicated in 169 

epilepsy (Vezzani et al. 2011, 2013), we focused on NPCs and interneurons for further analysis as they 170 

have larger sample sizes thus more robust signals. 171 

Supplementary Fig. S14 and S15 present several examples of dnLoF-ASD and dnMis-Epi gene 172 

pairs that show higher co-expression in NPCs and interneurons, respectively. Fig. 1D,E show the co-173 

expression networks for dnLoF-ASD and dnMis-Epi genes in the six major cell types using the original 174 

sample size, highlighting the larger number of network edges in the cell types with higher co-expression 175 

enrichment. 176 

 177 

ASD and epilepsy genes co-express at specific developmental stages within NPCs and interneurons 178 

 Our analyses indicate that the functions of dnLoF-ASD genes converge in NPCs and the 179 

functions of dnMis-Epi genes converge in NPCs and interneurons. To determine the specific 180 

developmental stages that contribute to the co-expression of dnLoF-ASD and dnMis-Epi genes in NPCs 181 

and interneurons, we further performed co-expression enrichment analysis of these two gene sets at 182 

different time points. To overcome the effect caused by sample size difference and increase the accuracy 183 

of co-expression enrichment score estimation, we focused on cell stages with at least 50 cells and 184 

downsampled the same number of cells for each cell stage to make results comparable (Fig. 2A-C; 185 

Supplementary Fig. S16). Apart from NPCs and interneurons where ASD and epilepsy genes show 186 

enrichment, we also included excitatory neurons for comparison (Fig. 2B). 187 

 In NPCs, dnLoF-ASD genes are highly co-expressed at GW10 and, to a lesser extent, GW16 (Fig. 188 

2A; Supplementary Fig. S16A). GW10 and GW16 are two critical developmental stages for NPCs. 189 

NPCs can be further divided into three categories: ventricular radial glia (vRG) cells, outer radial glia 190 

(oRG) cells, and intermediate progenitor cells (IPCs) (Lui et al. 2011). The proliferation of IPCs peaks at 191 

GW10 and GW16, and they are primarily located in the subventricular zone (SVZ) and outer 192 

subventricular zone (oSVZ), respectively (Zhong et al. 2018). 193 
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At GW10, vRG cells give rise to IPCs in the SVZ which further differentiate into deep-layer 194 

neurons (Nowakowski et al. 2016). Interestingly, dnLoF-ASD genes show little to no co-expression 195 

enrichment in vRG cells or IPCs alone at GW10 (Fig. 2D; Supplementary Fig. S17A and S18A). 196 

However, a high co-expression enrichment score was found when vRG cells and IPCs were combined 197 

(Fig. 2D; Supplementary Fig. S17A and S18A). Supplementary Fig. S19 presents several examples of 198 

dnLoF-ASD gene pairs that show high co-expression during the vRG-to-IPC transition at GW10. These 199 

results indicate that gene expression variations within vRG cells or IPCs barely contribute to the co-200 

expression of dnLoF-ASD genes in NPCs at GW10. Instead, gene expression variations due to cell-type 201 

differences between vRG cells and IPCs largely explain the co-expression enrichment. Consistent with 202 

this, we found that the majority of dnLoF-ASD genes concurrently increase their expression during the 203 

transition from vRG cells to IPCs at GW10 (Fig. 2G; Supplementary Table S2). In addition to dnLoF-204 

ASD genes with ≥3 dnLoF mutations, ASD genes with one or two dnLoF mutations and all the SFARI 205 

curated gene sets except category six (Basu et al. 2009) also display increased expression during the vRG-206 

to-IPC transition (Supplementary Fig. S21). Together, these results highlight the functional convergence 207 

of ASD genes in the transition from vRG cells to IPCs at GW10. 208 

At GW16, vRG cells not only give rise to IPCs in the SVZ but also produce oRG cells that will 209 

migrate to the oSVZ (Nowakowski et al. 2016; Lui et al. 2011; Fietz et al. 2010; Hansen et al. 2010). In 210 

the oSVZ, oRG cells give rise to IPCs that further differentiate into upper-layer neurons (Nowakowski et 211 

al. 2016; Lui et al. 2011). We performed similar co-expression enrichment analyses on individual cell 212 

types and their combinations. We found that while vRG cells do not show co-expression enrichment, oRG 213 

cells and IPCs show moderate co-expression enrichment at GW16 (Fig. 2E; Supplementary Fig. S17B 214 

and S18B). However, the co-expression enrichment is not increased in the combination of oRG cells and 215 

IPCs, suggesting that gene expression variations both within oRG cells/IPCs and during their transition 216 

contribute to the co-expression of dnLoF-ASD genes in NPCs at GW16 (Fig. 2E,F; Supplementary Fig. 217 

S17B and S18B,C). Consistently, we found that dnLoF-ASD genes do not show expression change 218 

during the transition at GW16 from vRG cells to oRG cells, vRG cells to IPCs, and oRG cells to IPCs 219 
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(Supplementary Fig. S22). Similar results were obtained when analyzing dnMis-Epi genes in NPCs (Fig. 220 

2A,D-G; Supplementary Fig. S16A, S17, S18, S20 and S22), whereas the co-expression enrichment 221 

score of dnMis-Epi genes at GW16 is generally lower compared with the score of dnLoF-ASD genes at 222 

GW16 (Fig. 2A). Figure 2H,I show co-expression network comparison between individual cell types and 223 

the cell-type transition at GW10 for dnLoF-ASD and dnMis-Epi genes using the original sample size. 224 

In excitatory neurons, both dnLoF-ASD and dnMis-Epi genes show moderate to no co-expression 225 

enrichment (Fig. 2B) despite their elevated absolute correlation at GW16 (Supplementary Fig. S16B). In 226 

interneurons, dnMis-Epi genes are highly co-expressed at later developmental stages, particularly GW23 227 

(Fig. 2C; Supplementary Fig. S16C). This coincides with the axon development and cell maturation 228 

processes of interneurons in the prefrontal cortex (Zhong et al. 2018).  229 

 230 

Co-expression pattern of ASD and epilepsy genes during the differentiation from NPCs to 231 

excitatory neurons 232 

The above analyses focused on co-expression within a major cell type, which mainly captures cell 233 

maturation and state changes. To understand whether dnLoF-ASD or dnMis-Epi genes co-function during 234 

cell differentiation, we analyzed the co-expression pattern of these two gene sets during NPC terminal 235 

differentiation (Fig. 3A,B). Due to the sample size limitation (Supplementary Table S1B), we focused 236 

on the NPC-to-excitatory neuron differentiation at GW10 and GW16 whose time-matched cell stages 237 

containing at least 50 samples in both NPCs and excitatory neurons. Excitatory neurons sampled from 238 

GW10 and GW16 are mostly deep-layer neurons and upper-layer neurons, respectively (Supplementary 239 

Fig. S23). We found that both dnLoF-ASD and dnMis-Epi genes display lower co-expression enrichment 240 

in either excitatory neurons or the combination of NPCs and excitatory neurons than in NPCs (Fig. 3A,B; 241 

Supplementary Fig. S24). Also, no co-expression increase was observed during the differentiation from 242 

NPC subtypes to excitatory neurons (Supplementary Fig. S25A,B and S26A-C). However, both dnLoF-243 

ASD and dnMis-Epi genes tend to increase their expression during the NPC-to-excitatory neuron 244 

differentiation, especially at GW16 (Fig. 3C,D; Supplementary Fig. S25C,D and S26D-F; 245 
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Supplementary Table S3). These results suggest that at the individual gene level, ASD and epilepsy 246 

genes generally become more abundant/important, yet their functions become more diverse and less 247 

convergent in differentiated excitatory neurons than in NPCs. 248 

 249 

Biological pathways associated with ASD and epilepsy genes during the NPC transition at GW10 250 

 The above analyses highlight that both dnLoF-ASD and dnMis-Epi genes converge in the vRG-251 

to-IPC transition at GW10. To systematically pinpoint the function of these genes during this transition, 252 

we developed a gene ontology (GO) functional analysis method called GO correlation analysis (see 253 

Methods). GO correlation analysis was used to determine the correlation between a given gene set and 254 

any GO term in a context-dependent manner. Using this method, we calculated Spearman’s correlation 255 

for all the GO biological process terms with ASD or epilepsy genes during the vRG-to-IPC transition at 256 

GW10. We found that ASD genes are positively correlated with genes involved in neurogenesis and 257 

neural differentiation (Fig. 4A; Supplementary Table S4A) and are negatively correlated with genes 258 

involved in cell cycle and cellular respiration (Fig. 4C; Supplementary Table S4C). Like ASD genes, 259 

genes in GO terms that show positive correlation also increase their expression during the transition (Fig. 260 

4A; Supplementary Table S4A). Instead, genes in GO terms that show negative correlations, especially 261 

those involved in the cell cycle, tend to decrease their expression during the transition (Fig. 4C; 262 

Supplementary Table S4C). These observations are consistent with the fact that IPCs exhibit increased 263 

neuronal commitment and decreased proliferation capacity compared with vRG cells (Noctor et al. 2004). 264 

Similar results were obtained when dnMis-Epi genes were analyzed (Fig. 4B,D; Supplementary Table 265 

S4B,D). These results suggest that both dnLoF-ASD and dnMis-Epi genes are involved in neuron 266 

differentiation and cell cycle pathways during the transition. 267 

 268 

Upstream versus downstream involvement of ASD and epilepsy genes during the NPC transition at 269 

GW10 270 
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 It seems that both dnLoF-ASD and dnMis-Epi genes are involved in the same biological 271 

pathways during the NPC transition at GW10. However, the manifestations of these two disorders are 272 

dissimilar, indicating that the underlying molecular and cellular mechanisms might be different. To 273 

determine the difference in ASD versus epilepsy gene functions in NPCs, we examined the composition 274 

of each gene set. We found that ASD genes are enriched in GO terms like chromatin modification and 275 

organization, but not in the GO terms like neurogenesis and neural differentiation, which are positively 276 

correlated with ASD genes (Fig. 5A; Supplementary Table S5A). Instead, epilepsy genes are both 277 

enriched and positively correlated with GO terms like neurogenesis and neural differentiation (Fig. 5B; 278 

Supplementary Table S5B). Given that chromatin modification and organization are critical for 279 

transcriptional regulation and dozens of ASD-associated chromatin regulators have well-known 280 

regulatory functions in neurogenesis (Ronan et al. 2013; Ernst 2016; Courchesne et al. 2019), these 281 

results suggest that ASD genes serve as upstream regulators to control the transcription of other genes in 282 

these pathways to promote the NPC transition at GW10. On the other hand, epilepsy genes themselves 283 

could be downstream targets regulated by chromatin regulators and thus serve as downstream effectors in 284 

the transition. In addition, both ASD and epilepsy genes do not show enrichment with cell cycle-related 285 

GO terms that they negatively correlate with (Fig. 5C,D; Supplementary Table S5C,D). In this respect, 286 

ASD genes might also repress the cell cycle through transcriptional regulation. 287 

 288 

CHD8 regulates transcription to promote neural differentiation and inhibit cell cycle 289 

To test if dnLoF-ASD genes are indeed upstream regulators in the NPC transition, we took the 290 

chromatin remodeling gene CHD8—a key high-confidence ASD gene (Bernier et al. 2014)—as an 291 

example. CHD8 is a hub gene in the vRG-to-IPC transition network at GW10 (Fig. 2H). Gompers et al. 292 

(2017) generated germline Chd8 haploinsufficiency mice and performed RNA-seq analysis using 293 

forebrain tissue at five developmental stages (E12.5, E14.5, E17.5, P0, and adult) (Gompers et al. 2017). 294 

The top 300 downregulated and top 300 upregulated genes in Chd8 haploinsufficiency versus wild-type 295 

mice at each developmental stage were defined as CHD8-activated and -repressed genes, respectively (see 296 
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Methods and Supplementary Table S6A). Interestingly, only CHD8-activated genes at E14.5 are both 297 

preferentially bound by CHD8 (Gompers et al. 2017) and enriched for ASD genes (Supplementary Fig. 298 

S27), suggesting that they are more likely genuine CHD8 target genes that involve in ASD pathology. 299 

Thus, we deemed CHD8-activated and -repressed genes at E14.5 as CHD8 target genes in ASD. 300 

We first analyzed the expression pattern of these CHD8 target genes in human GW10 NPCs. As 301 

shown in Fig. 2H, CHD8 doubles its expression during the vRG-to-IPC transition at GW10 302 

(Supplementary Table S2). As expected, we observed that CHD8-activated target genes also exhibit 303 

significant expression increase and CHD8-repressed target genes show significant expression decrease 304 

compared with the background genes during the transition (Fig. 6A; Supplementary Table S6B). 305 

Consistently, CHD8 is more positively correlated with CHD8-activated target genes and more negatively 306 

correlated with CHD8-repressed target genes than the background genes (Fig. 6B; Supplementary Table 307 

S6C). Moreover, CHD8-activated target genes are enriched with GO terms related to neurogenesis and 308 

neuron development (Fig. 6C; Supplementary Table S6D), whereas CHD8-repressed target genes are 309 

enriched with GO terms related to cell cycle (Fig. 6D; Supplementary Table S6E). Together, these 310 

results indicate that CHD8 promotes the vRG-to-IPC transition at GW10 through transcriptionally 311 

activating neural differentiation pathways and repressing cell cycle-related processes. Thus, CHD8 312 

haploinsufficiency could disrupt the vRG-to-IPC transition at GW10 and shift the proliferation-313 

differentiation balance of vRG cells towards proliferation. Indeed, Chd8 haploinsufficiency mice show an 314 

increase in radial glia cells and a decrease in IPCs during embryonic brain development (Gompers et al. 315 

2017). 316 

Collectively, these findings suggest that dnLoF-ASD genes like CHD8 promote the cell-type 317 

transition program by transcriptional regulation of the downstream effectors. On the contrary, dnMis-Epi 318 

genes function as effectors that directly participate in the transition processes. Both perturbations would 319 

likely affect neural differentiation. However, upstream perturbation by ASD gene mutations could also 320 

affect early events of the transition, disrupting the proliferation-differentiation balance of NPCs. Together, 321 
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these results indicate that mutations of upstream versus downstream genes involved in the same pathways 322 

could lead to distinct phenotypic outcomes. 323 

 324 

Co-expression enrichment of NDD genes faithfully represents NDD pathophysiology 325 

 All of our co-expression enrichment analyses are based on the assumption that the functional 326 

convergences of high-confidence NDD genes represent the core pathways underlying the disease 327 

mechanisms. If this assumption is correct, one would expect that low-confidence NDD genes would also 328 

converge to the core pathways. To test this possibility, we calculated Spearman’s correlation with dnLoF-329 

ASD genes in NPCs for dnLoF-ASD genes (with ≥3 dnLoF mutations) and ASD genes with fewer dnLoF 330 

mutations. As expected, we found that ASD genes harboring two or one dnLoF mutations have a 331 

significantly higher correlation with dnLoF-ASD genes than genes harboring no dnLoF mutations, 332 

independently validating that the co-expression enrichment of dnLoF-ASD genes in NPCs captures the 333 

true ASD pathology (Fig. 7A; Supplementary Table S7A). Similar results were obtained for dnMis-Epi 334 

genes in interneurons (Fig. 7B; Supplementary Table S7B). 335 

In addition, we found that the Spearman’s correlations with dnLoF-ASD genes in NPCs for 336 

dnLoF-ASD genes are significantly higher than those for ASD genes with fewer mutations, and the 337 

Spearman’s correlations with dnMis-Epi genes in interneurons for dnMis-Epi genes are significantly 338 

higher than those for epilepsy genes with fewer mutations (Fig. 7A,B). These results suggest that genes 339 

with more mutations tend to be at the core position of the NDD gene co-expression network while genes 340 

with fewer mutations tend to be in the peripheral region of the network. To test this hypothesis, we 341 

constructed an NPC co-expression network of all the ASD genes with dnLoF mutations (Fig. 7C; 342 

Supplementary Table S7C) and an interneuron co-expression network of all the epilepsy genes with 343 

dnMis mutations (Fig. 7D; Supplementary Table S7D). Consistent with our hypothesis, we found that 344 

genes with more mutations tend to be at the core position of the network, as indicated by a significantly 345 

higher co-expression degree than genes with fewer mutations (Fig. 7E,F; Supplementary Table S7E,F). 346 

Together, these findings validate that co-expression enrichment of NDD genes faithfully represents NDD 347 
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mechanisms and provide an explanation of why some NDD genes have more mutations identified than 348 

others. 349 

 350 

Discussion 351 

 To understand the cell-type-specific mechanisms of NDDs across neurodevelopmental stages, we 352 

analyzed the co-expression enrichment patterns of NDD gene sets at the single-cell level. Our results 353 

demonstrate that genes that cause different NDDs indeed display distinct co-expression patterns in 354 

specific brain cell types. Detailed analyses of subtypes and cell-type transitions at various developmental 355 

stages revealed 1) novel convergent functions of dnLoF-ASD and dnMis-Epi genes in the vRG-to-IPC 356 

transition at GW10 and 2) novel convergent functions of dnMis-Epi genes in the post-mitotic interneuron 357 

maturation. Together, our study supports the hypothesis that heterogeneous genetic mutations in 358 

ASD/epilepsy converge to disrupt a small set of critical neurodevelopmental events in particular cell types, 359 

expanding our understanding of NDD pathophysiology and stepping towards comprehensive cell maps in 360 

neuropsychiatric disorders (Willsey et al. 2018). Our study also presents a computational framework for 361 

analyzing disease pathophysiology using scRNA-seq datasets. 362 

 363 

NDD pathophysiology depends on types of genetic perturbations 364 

 When analyzing the NDD gene sets, we found that for the same disorder, genes with different 365 

types of mutations display distinct co-expression patterns. For instance, dnLoF-ASD genes have the 366 

highest co-expression enrichment in NPCs among all the NDD gene sets, but dnMis-ASD genes barely 367 

show any enrichment. Instead, dnLoF-Epi genes have the minimum co-expression enrichment in 368 

interneurons, while dnMis-Epi genes have the highest enrichment in the same cell type. The exact causes 369 

of these observations are not immediately clear. One potential explanation is that haploinsufficiency is the 370 

major genetic mechanism for highly penetrant ASD genes. Conversely, gain-of-function or dominant-371 

negative missense mutations dominate the mutational spectrum of highly penetrant genes in epilepsy. 372 

Several lines of evidence support this hypothesis: 1) 43% of dnLoF mutations but only 13% of dnMis 373 
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mutations contribute to ASD diagnosis (Iossifov et al. 2014); 2) dnMis variants explain a larger 374 

proportion of individuals with epilepsy than of individuals with ID (Hamdan et al. 2017), and NDD 375 

individuals with dnMis variants are more likely to have epilepsy than individuals with dnLoF variants 376 

(Heyne et al. 2018); 3) Dozens of dominant-negative or gain-of-function missense mutations have been 377 

reported in epilepsy (Yuan et al. 2014; Nava et al. 2014; Orhan et al. 2014; Veeramah et al. 2012; Barcia 378 

et al. 2012; Lemke et al. 2014; Li et al. 2016b); 4) At the individual gene level, missense variants in 379 

SCN2A and SCN8A are more strongly implicated in epilepsy than LoF variants (Heyne et al. 2018), and 380 

while gain-of-function variants in SCN2A contribute to seizure, all ASD-associated variants dampen or 381 

eliminate channel function (Ben-Shalom et al. 2017). Nonetheless, whether this hypothesis holds true will 382 

require further, more comprehensive investigation. 383 

 384 

NPCs and their cell-type transition in ASD and epilepsy 385 

 Another interesting finding is the difference in co-expression patterns within a cell type and 386 

during the cell-type transition. We found that both dnLoF-ASD and dnMis-Epi genes are more strongly 387 

co-expressed in the whole NPC population than within vRG cells or IPCs alone at GW10. Thus, these 388 

genes are less likely to cooperatively function statically in the stemness maintenance or proliferation of 389 

vRG cells or IPCs, but convergently play a critical role in the dynamic process of the vRG-to-IPC 390 

transition. Consistent with this, most dnLoF-ASD and dnMis-Epi genes, together with other genes critical 391 

for neural differentiation, concurrently increase their expression during this transition. Without 392 

transcriptomic data at the single-cell level, this kind of subpopulation analysis would be very difficult if 393 

not impossible. 394 

 The involvement of the vRG-to-IPC transition is interesting. vRG cells are located within the 395 

ventricular zone adjacent to the ventricles (Kriegstein and Alvarez-Buylla 2009). vRG cells undergo 396 

either symmetric division to proliferate and expand the radial glia pool or asymmetric division to generate 397 

neurons or IPCs. IPCs migrate out of the ventricular zone to form the SVZ at the basal side. There, they 398 

undergo limited rounds of divisions to produce multiple neurons. It is suggested that this two-step pattern 399 
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of neurogenesis plays a critical role in the amplification of cell numbers underlying cerebral cortex 400 

expansion (Martínez-Cerdeño et al. 2006; Kriegstein et al. 2006). In addition, a perturbation in radial glia 401 

cells or IPCs results in abnormal neuron production and cortical malfunction (Krogan et al. 2016; 402 

Gompers et al. 2017; Li et al. 2016a; Shenhav et al. 2012). Beyond that, IPCs play an important role in 403 

neuronal subtype specification. IPCs, dependent on the time when they are produced, acquire specific 404 

neuronal subtype identify and differentially generate cortical layers in a timely manner (Daza et al. 2016). 405 

Moreover, the morphological and electrophysiological properties of upper-layer neurons are dependent on 406 

their origins from radial glia cells or IPCs (Haydar et al. 2015). Thus, the transition from vRG cells to 407 

IPCs has a strong impact on the specificity and function of both the IPCs and the neuronal progeny to be 408 

generated. 409 

 We found that both ASD and epilepsy genes have higher co-expression enrichment in NPCs than 410 

in excitatory neurons. However, their expression levels are higher in excitatory neurons than in NPCs. 411 

These findings indicate that at the individual gene level, ASD and epilepsy genes generally become more 412 

abundant and potentially function more importantly in young excitatory neurons. However, their 413 

functions become more diverse and less convergent in young excitatory neurons as demonstrated by a 414 

reduction in co-expression enrichment. Thus, NPCs are likely a more critical convergent point for ASD 415 

and epilepsy compared with young excitatory neurons, which could be missed by expression-based 416 

analysis (Satterstrom et al. 2020). 417 

 418 

Similar but different roles of ASD versus epilepsy genes during the NPC transition at GW10 419 

 We found that ASD genes regulate the transcription of other genes in neural differentiation 420 

pathways to promote the NPC transition at GW10. On the other hand, epilepsy genes themselves are 421 

downstream effectors controlled by upstream regulators. A mutation in a single ion channel downstream 422 

of the differentiation program might severely affect one electrophysiological property of the IPCs, but a 423 

mutation in a transcription regulator upstream of the differentiation program could broadly and 424 

moderately affect multiple aspects of the cell, such as proliferation, specification, and maturation. Some 425 
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ASD genes, like CHD8, might also determine whether to initiate the transition and/or regulate the balance 426 

of NPC proliferation and differentiation at the early stage of the transition. LoF mutations in this kind of 427 

genes would promote NPC proliferation at the expense of neural differentiation and cause early brain 428 

overgrowth in ASD (Courchesne et al. 2007, 2019; Ernst 2016; Gompers et al. 2017). Some upstream 429 

regulators may not only regulate the transition but also specifically control downstream processes related 430 

to epilepsy. Mutations in these regulators could lead to both ASD and epilepsy, which may be one reason 431 

for such a high comorbidity rate between the two disorders (Sundelin et al. 2016; Betancur 2011). 432 

 433 

An omnigenic model for ASD and epilepsy 434 

 The genetic landscapes of ASD and epilepsy are complex and far from completely understood (de 435 

la Torre-Ubieta et al. 2016; Cross et al. 2015; Vorstman et al. 2017). With the application of next-436 

generation sequencing and SNP arrays, genetic variations that contribute to the etiology of a number of 437 

cases have been uncovered. Still, in most cases, the genetic causes remain unclear. Recently, a new 438 

inheritance model for complex diseases—omnigenic inheritance has been proposed (Boyle et al. 2017). In 439 

this model, it is suggested that several “core” disease-related genes are responsible for the disease 440 

phenotype while all other “peripheral” genes contribute to the phenotype by affecting the functions of 441 

these core genes. Due to evolutionary pressure, only a limited number of large-effect genetic variations in 442 

core genes can be identified and a large fraction of the total genetic contribution to disease comes from 443 

peripheral genes that do not play direct roles. A possible approach to identify core genes is to look for de 444 

novo rare variants with large effect sizes. This model fits well with our observations that potential core 445 

genes with multiple de novo rare variants in ASD and epilepsy are clustered at the more central position 446 

in the co-expression network of relevant cell types while genes with fewer mutations tend to be in the 447 

peripheral region. We noted that another kind of core gene which may function equally importantly 448 

across cell types/stages/transitions should not be overlooked. Thus, our study not only provides a list of 449 

core genes (such as ASD and epilepsy genes with high co-expression degree in Supplementary Table 450 

S7E,F) and pathways but also identifies the most relevant cell types where these genes and pathways 451 
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exhibit convergent function. Future investigations focusing on these core genes and their related 452 

regulatory pathways in the most relevant cell types and developmental stages would accelerate NDD gene 453 

discovery and enable a more comprehensive understanding of NDD pathophysiology. Development of 454 

precise therapies targeting these convergent mechanisms would benefit groups of individuals with NDDs 455 

(Sztainberg and Zoghbi 2016; Ernst 2016; Sestan and State 2018; Pang et al. 2014). 456 

 457 

Robustness of co-expression enrichment analysis 458 

 Our co-expression enrichment analysis is not affected by confounding factors, such as co-459 

expression threshold, correlation-based measures of association, gene set size, gene expression level, and 460 

severity of missense mutations. However, we found that sample size correlates with co-expression 461 

enrichment score, and larger cell numbers tend to give higher co-expression enrichment score of an NDD 462 

gene set. Based on our observation and the previous finding that larger cell numbers facilitate the 463 

reconstruction of more robust and coherent networks (Skinnider et al. 2019), we suggest that controlling 464 

for sample size difference be established as a standard for co-expression comparison analysis across 465 

different conditions. For the previous conclusions based on co-expression comparison analyses across 466 

different conditions without controlling for sample size difference (Willsey et al. 2013; Lin et al. 2015), 467 

sample sizes vary across conditions and thus evaluation of sample size effect is probably needed. The 468 

potential sample size effect also exists when combining different conditions to construct a global co-469 

expression network, because the signal would be dominated by the conditions with larger sample sizes. 470 

Although we used percentile-based cutoff for co-expression enrichment analysis to mitigate the effect of 471 

global co-expression differences across cell types, the findings are consistent with results from the 472 

absolute correlation analysis. The high co-expression enrichment score also reflects the absolute elevation 473 

of co-expression level, especially for dnLoF-ASD genes in NPCs (Supplementary Fig. S12A), dnMis-474 

Epi genes in interneurons (Supplementary Fig. S12B), dnLoF-ASD and dnMis-Epi genes in NPCs at 475 

GW10 and GW16 (Supplementary Fig. S16A), and dnLoF-ASD and dnMis-Epi genes in the vRG-to-476 
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IPC transition at GW10 (Supplementary Fig. S18A). Lastly, it is worth noting that the relatively small 477 

sample size has limited our analysis to a few cell types and developmental stages. Besides, we are using 478 

the scRNA-seq dataset from the mid-fetal stage of the developing human brain and our analyses primarily 479 

focus on early mechanisms of NDDs, that is, transcriptional programs and cell-autonomous effects that 480 

take place early in brain development. In the future, it could be fruitful to expand our analysis to more cell 481 

types and developmental stages at both cell-autonomous and cell-cell interaction levels when larger 482 

scRNA-seq datasets which also cover later developmental stages become available. 483 

 484 

Methods 485 

High-confidence NDD gene sets 486 

 We downloaded de novo mutation data for four NDDs: ASD, epilepsy, ID, and DD from the 487 

denovo-db v.1.5 database release (Turner et al. 2017) (http://denovo-db.gs.washington.edu). For epilepsy, 488 

we also added de novo mutation data which were not included in the denovo-db v.1.5 database release 489 

from two studies (EuroEPINOMICS-RES Consortium et al. 2017; Heyne et al. 2018). We extracted genes 490 

with dnLoF (nonsense, frameshift, and canonical splice site) and dnMis mutations from whole-exome or -491 

genome sequencing data for these four NDDs. The number of dnLoF (dnMis) mutations for a gene in a 492 

disorder was defined as the number of distinct individuals with the disorder harboring dnLoF (dnMis) 493 

mutations in the gene. High-confidence dnLoF (dnMis) genes for ASD, epilepsy, ID, and DD were 494 

defined as genes with at least three dnLoF (dnMis) mutations in each disorder. For high-confidence gene 495 

sets with gene number less than 20 (dnLoF-Epi, dnLoF-ID, dnMis-Epi, and dnMis-ID), we used genes 496 

with at least two de novo mutations. For comparison, we used genes with at least one dnLoF mutations in 497 

unaffected ASD siblings in the denovo-db database as sibling control. We also used genes with at least 498 

one LoF mutations in the ExAC database (Lek et al. 2016) with known neuropsychiatric cohorts removed 499 

as general control. We further included Brain-GRF and synapse genes as controls for genes functioning in 500 

the brain. The Brain-GRF gene set is a list of gene regulatory factors that are known to function in the 501 

human brain from literature curation (Berto et al. 2016). The synapse gene set was obtained from the 502 
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SynGO knowledge base (Koopmans et al. 2019). The SFARI ASD gene set was obtained from the SFARI 503 

Gene database (Basu et al. 2009), and the SFARI ASD genes were grouped into syndromic genes 504 

(category S) and genes with different evidence levels (categories 1-6; high confidence-low evidence). In 505 

addition, we assessed whether pathogenicity metrics such as CADD score (Kircher et al. 2014) could 506 

improve NDD gene sets with dnMis mutations. We focused on ASD and DD genes with a large number 507 

of dnMis mutations available and obtained two high-confidence gene sets: ASD gene sets harboring at 508 

least two dnMis mutations with CADD score>25, and DD gene sets harboring at least three dnMis 509 

mutations with CADD score>25. 510 

Processing of scRNA-seq data 511 

 The human fetal prefrontal cortical scRNA-seq data (Zhong et al. 2018) used in this study were 512 

downloaded from the Gene Expression Omnibus under the accession number GSE104276. The transcript 513 

counts of each cell were normalized to transcript per million (TPM), where TPM is the transcript count of 514 

each gene divided by the total transcript counts of the cell and multiplied by one million. The gene-level 515 

TPM expression values were further transformed to log����� � 1
 values. Based on the sample 516 

annotation file, cells were first divided into six major cell types: NPCs, excitatory neurons, interneurons, 517 

astrocytes, OPCs, and microglia. For each cell type, genes with expression level >0 in at least 10% of 518 

cells for the cell type were defined as genes expressed in the cell type. Samples in each major cell type 519 

were further divided into cell stages based on developmental time points, and only the cell stages 520 

containing at least 50 samples were used for analysis. Only the time-matched cell stages containing at 521 

least 50 samples in both NPCs and excitatory neurons (astrocytes or OPCs) were used to study the 522 

differentiation from NPCs to excitatory neurons (astrocytes or OPCs). Samples in NPCs were further 523 

divided into three cell subtypes: vRG cells, oRG cells, and IPCs according to the clustering result of 524 

NPCs (Zhong et al. 2018), where vRG cells correspond to clusters 1, 2 and 6, oRG cells correspond to 525 

clusters 7, 8 and 9, and IPCs correspond to clusters 3, 4 and 5. Samples in excitatory neurons at GW16 526 

were also divided into three cell subclusters: Ex_C3, Ex_C4, and Ex_C5 according to the clustering result 527 

of excitatory neurons (Zhong et al. 2018). The statistical significance P values that measure the 528 
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expression difference of layer marker genes between GW16 excitatory neuron subclusters and GW10 529 

excitatory neurons were computed using DESeq2 on un-normalized counts (Love et al. 2014). The 530 

statistical significance P values of the overlap between eight NDD gene sets were calculated by the one-531 

sided Fisher’s exact test using genes expressed in at least one major cell type as background genes. 532 

Construction of co-expression networks 533 

 To construct a co-expression network for each of six major cell types, we used genes expressed in 534 

the cell type as background genes. We first computed the pairwise Spearman’s rank correlation 535 

coefficients between background genes and sorted all the pairwise Spearman’s correlation coefficients in 536 

descending order. Then, we determined the correlation threshold that gives us the top 0.5% highest 537 

pairwise Spearman’s correlation coefficients. The threshold of top 0.5% is commonly used to construct 538 

co-expression networks (Lee et al. 2004; Crow et al. 2016) and the value 0.5% was defined as co-539 

expression network density for the background genes. Next, we used the same correlation threshold to 540 

construct a co-expression network for a given gene set. For cell stages divided based on developmental 541 

time points in each major cell type, we used genes expressed in the major cell type as background genes. 542 

For three cell subtypes of NPCs: vRG cells, oRG cells, and IPCs as well as their transitions, we used 543 

genes expressed in NPCs as background genes. Genes expressed in either NPCs or excitatory neurons 544 

were defined as genes expressed in the NPC-to-excitatory neuron differentiation and used as background 545 

genes for the differentiation. The co-expression degree of a gene in the co-expression network is the 546 

number of genes co-expressed with the gene. All the co-expression networks were visualized using 547 

Cytoscape (Shannon et al. 2003). 548 

Co-expression enrichment analysis 549 

 When constructing a co-expression network for the background genes in one cell type, the value 550 

0.5% used for selection of correlation threshold was defined as co-expression network density for the 551 

background genes. Similarly, the co-expression network density for a gene set was defined as the number 552 

of significant co-expressed pairs divided by the number of all pairs between genes in the gene set. Then, 553 

the co-expression fold enrichment score for the gene set was defined as the ratio of the co-expression 554 
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network density for the gene set to the co-expression network density for the background genes. The 555 

statistical significance of the co-expression fold enrichment score of the gene set was assessed in two 556 

ways. First, we compared the co-expression network density for the gene set against the co-expression 557 

network density for the background genes by the one-sided Fisher’s exact test with R function: 558 

�����. ������ � � �
� � � �� , ����������� � "!������"
 

where A is the number of significant co-expressed pairs between genes in the gene set, B is the number of 559 

all pairs between genes in the gene set, C is the number of significant co-expressed pairs between the 560 

background genes, and D is the number of all pairs between the background genes. Second, we also 561 

assessed the statistical significance of the co-expression fold enrichment score of the gene set by 562 

comparing whether the gene set has a higher co-expression fold enrichment score than the other NDD 563 

gene sets. Similarly, the one-sided Fisher’s exact test was used to compute the statistical significance of 564 

the comparison of the co-expression network density for the gene set against the co-expression network 565 

density for another NDD gene set. 566 

Co-expression enrichment analysis by downsampling 567 

 Six major cell types have different sample sizes, and microglia has the minimum sample size (68 568 

cells). For fair comparison across the major cell types, we downsampled the same number of cells (68 569 

cells) 1000 times for NPCs, excitatory neurons, interneurons, astrocytes, and OPCs to calculate co-570 

expression fold enrichment score. For fair comparison across the cell stages of the major cell types, we 571 

downsampled the same number of cells (50 cells) 1000 times for each cell stage to calculate a co-572 

expression fold enrichment score. During the cell-type transition or differentiation between one cell type 573 

with a smaller cell number and the other cell type with a larger cell number, we downsampled the smaller 574 

number of cells 1000 times for the cell type with a larger cell number to calculate co-expression fold 575 

enrichment score. For the combined cell types, we downsampled half of the smaller number of cells for 576 

the cell type with a smaller cell number and half of the smaller number of cells for the cell type with a 577 

larger cell number. We then combined the two downsampled cell types and repeated 1000 times to 578 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.948315doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948315


calculate the co-expression fold enrichment score for the combined cell types. To calculate the 579 

distribution of average Spearman’s correlation coefficients of an NDD gene set for each condition by 580 

downsampling, the pairwise Spearman’s rank correlation coefficients within an NDD gene set were 581 

averaged and repeated 1000 times. 582 

Co-expression enrichment analysis by controlling for different factors 583 

 In addition to using the threshold of top 0.5% to construct co-expression networks and calculate 584 

co-expression fold enrichment score for NDD gene sets in six major cell types, we used different 585 

thresholds of top 0.25% and top 1%. We also varied the thresholds between top 0.1% and top 5% to 586 

construct co-expression networks and calculate co-expression fold enrichment score for dnLoF-ASD 587 

genes in NPCs and dnMis-Epi genes in interneurons. In addition to using Spearman’s correlation to 588 

construct co-expression networks and calculate co-expression fold enrichment score at the threshold of 589 

top 0.5% for dnLoF-ASD genes in NPCs and dnMis-Epi genes in interneurons, we used another 16 590 

measures of association implemented in the ‘dismay’ R package (Skinnider et al. 2019). Moreover, we 591 

assessed the effect of gene set size difference on the co-expression fold enrichment score of NDD and 592 

control gene sets in six major cell types. For each major cell types, we first determined the smallest gene 593 

set size of NDD and control gene sets with genes expressed in the cell type. We then downsampled the 594 

same number of genes (the smallest gene set size) 1000 times for each gene set to calculate the co-595 

expression fold enrichment score. We further evaluated the dependence of gene expression on the co-596 

expression fold enrichment score of NDD gene sets in six major cell types. For each major cell type, 597 

genes expressed in the cell type were divided into ten bins based on expression level with each bin 598 

containing the equal number of genes. For each gene set in each cell type, the co-expression enrichment 599 

score was computed using 1000 randomly chosen same-size gene sets with the same expression 600 

distribution across bins in the cell type as the background gene set. 601 

Correlation with dnLoF-ASD and dnMis-Epi genes 602 

 For the calculation of correlation with dnLoF-ASD genes in NPCs, we used genes expressed in 603 

NPCs as background genes. For any non-dnLoF-ASD gene expressed in NPCs, the correlation with 604 
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dnLoF-ASD genes for the gene was defined as the average Spearman’s correlation coefficients between 605 

the gene and dnLoF-ASD genes. For any dnLoF-ASD gene expressed in NPCs, the correlation with 606 

dnLoF-ASD genes for the gene was defined as the average Spearman’s correlation coefficients between 607 

the gene and the other dnLoF-ASD genes. Based on the correlation with dnLoF-ASD genes for any gene 608 

expressed in NPCs, we then obtained the distribution of correlations with dnLoF-ASD genes for different 609 

types of mutated ASD genes. The differences in correlations between different ASD gene sets were 610 

estimated using the one-sided Wilcoxon rank sum test. A similar analysis was performed to compute the 611 

correlation with dnLoF-ASD genes during the transition from vRG cells to IPCs at GW10 using genes 612 

expressed in NPCs as background genes. A similar analysis was performed to compute the correlation 613 

with dnMis-Epi genes in interneurons and the transition from vRG cells to IPCs at GW10 using genes 614 

expressed in interneurons and NPCs as background genes, respectively. 615 

GO enrichment analysis of dnLoF-ASD and dnMis-Epi genes 616 

 To perform GO enrichment analysis, the ontology and human annotation files were downloaded 617 

from the GO database (http://www.geneontology.org). To compute the overlap between dnLoF-ASD 618 

genes and GO biological process terms during the transition from vRG cells to IPCs at GW10, we used 619 

genes expressed in NPCs as background genes. Genes that are annotated under the GO terms but not 620 

expressed in NPCs were removed. Only GO terms with the remaining gene number between 10 and 1000 621 

after filtering were used for GO enrichment analysis. The statistical significance P values of the overlap 622 

between dnLoF-ASD genes and GO terms were computed using the one-sided Fisher’s exact test and 623 

corrected for multiple hypothesis testing using false discovery rate (FDR) control procedure (Benjamini 624 

and Hochberg 1995). For GO enrichment analysis of dnMis-Epi genes, the same process above was 625 

repeated. 626 

GO correlation analysis of dnLoF-ASD and dnMis-Epi genes during the cell-type transition 627 

 Based on the correlation with dnLoF-ASD genes during the vRG-to-IPC transition at GW10 for 628 

any gene expressed in NPCs, we then obtained the distribution of correlations with dnLoF-ASD genes 629 

during the transition for genes annotated under a GO biological process term. Only GO terms with the 630 
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remaining gene number between 10 and 1000 after filtering by genes expressed in NPCs were used. Then, 631 

we computed the statistical significance P value which measures whether genes annotated under the GO 632 

term have higher correlations than the background genes (genes expressed in NPCs) by the one-sided 633 

Wilcoxon rank sum test. We used this P value to measure how significantly the GO term is positively 634 

correlated with dnLoF-ASD genes during the vRG-to-IPC transition. We also computed the statistical 635 

significance P value which measures whether genes annotated under the GO term have lower correlations 636 

than the background genes (genes expressed in NPCs) by the one-sided Wilcoxon rank sum test. We used 637 

this P value to measure how significantly the GO term is negatively correlated with dnLoF-ASD genes in 638 

the vRG-to-IPC transition. The P values for all GO terms from GO positive or negative correlation 639 

analysis of dnLoF-ASD genes during the transition were adjusted using the Benjamini and Hochberg 640 

method. For GO correlation analysis of dnMis-Epi genes during the vRG-to-IPC transition, the same 641 

process above was repeated. 642 

Expression change of dnLoF-ASD and dnMis-Epi genes during cell-type transitions 643 

 To compute the log2(fold change) value for a gene during the transition from vRG cells to IPCs 644 

at GW10, gene expression TPM values of the gene in the vRG and IPC samples at GW10 were added by 645 

1. Then, the average expression of the gene across samples in IPCs at GW10 was divided by the average 646 

expression of the gene across samples in vRG cells at GW10 and then log2 transformed. Based on the 647 

log2(fold change) value for any gene, we then obtained the distribution of log2(fold change) values for 648 

dnLoF-ASD or dnMis-Epi genes. Next, we computed the statistical significance P value which measures 649 

whether dnLoF-ASD or dnMis-Epi genes have higher (expression increase) log2(fold change) values than 650 

the background genes (genes expressed in NPCs) during the transition by the one-sided Wilcoxon rank 651 

sum test. A similar analysis was performed to compute the statistical significance of expression change 652 

for dnLoF-ASD and dnMis-Epi genes during the differentiation at GW10 from NPCs, vRG, and IPCs to 653 

excitatory neurons, and during the differentiation at GW16 from NPCs, vRG, oRG, and IPCs to excitatory 654 

neurons. 655 

GO expression change analysis during the cell-type transition 656 
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 Based on the log2(fold change) value for any gene during the transition from vRG cells to IPCs at 657 

GW10, we then obtained the distribution of log2(fold change) values for genes annotated under a GO 658 

biological process term. Only GO terms with the remaining gene number between 10 and 1000 after 659 

filtering by genes expressed in NPCs were used. Then, we computed the statistical significance P value 660 

which measures whether genes annotated under the GO term have higher (expression increase) or lower 661 

(expression decrease) log2(fold change) values than the background genes (genes expressed in NPCs) by 662 

the one-sided Wilcoxon rank sum test. The P values for all GO terms from GO expression change 663 

analysis during the transition were adjusted using the Benjamini and Hochberg method. 664 

CHD8 target gene analyses 665 

 The analytic results of Chd8 haploinsufficiency mice RNA-seq data were obtained from 666 

Supplementary Table S3 of the study (Gompers et al. 2017). Only genes in the Chd8 RNA-seq data (with 667 

gene CHD8 removed) that are also expressed in NPCs in the human cortical scRNA-seq data were 668 

defined as background genes for CHD8 target gene analyses. The top 300 downregulated and top 300 669 

upregulated genes based on log2(fold change) values in Chd8 haploinsufficiency versus wild-type mice at 670 

each developmental stage were defined as CHD8-activated and -repressed genes, respectively. CHD8-671 

bound genes are genes whose promoters are bound by Chd8 in adult mouse forebrain identified using 672 

ChIP-seq (Gompers et al. 2017). To compute the overlap between CHD8-activated/-repressed genes and 673 

CHD8-bound genes, we only used CHD8-bound genes that are also in the background gene set. The 674 

statistical significance P values of the overlap between CHD8-activated/-repressed genes and CHD8-675 

bound genes were computed using the one-sided Fisher’s exact test. To compute the overlap between 676 

CHD8-activated/-repressed genes and ASD genes with at least one dnLoF mutations, we only used ASD 677 

genes that are also in the background gene set. The statistical significance P values of the overlap between 678 

CHD8-activated/-repressed genes and ASD genes were computed using the one-sided Fisher’s exact test. 679 

Based on the log2(fold change) value for any gene during the transition from vRG cells to IPCs at GW10, 680 

we then obtained the distribution of log2(fold change) values for CHD8-activated or -repressed target 681 

genes. Then, we computed the statistical significance P values which measure whether CHD8-activated (-682 
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repressed) target genes have higher (lower) log2(fold change) values than the background genes during 683 

the transition by the one-sided Wilcoxon rank sum test. Next, we computed the Spearman’s correlation 684 

coefficient between any background gene and CHD8 during the transition from vRG cells to IPCs at 685 

GW10 and obtained the distribution of correlations with CHD8 for CHD8-activated or -repressed target 686 

genes. We then computed the statistical significance P values which measure whether CHD8-activated (-687 

repressed) target genes have higher (lower) correlations with CHD8 than the background genes during the 688 

transition by the one-sided Wilcoxon rank sum test. To compute the overlap between CHD8-activated/-689 

repressed target genes and GO biological process terms, we only used GO terms with the remaining gene 690 

number between 10 and 1000 after filtering by the background genes. The statistical significance P values 691 

of the overlap between CHD8-activated/-repressed target genes and GO terms were computed using the 692 

one-sided Fisher’s exact test. 693 

Code availability 694 

 Code used in this study is available as Supplementary Code. 695 
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 980 
 981 

Figure legends 982 

Figure 1.  Co-expression enrichment analysis of high-confidence NDD genes in six major cell types of 983 

the human prefrontal cortex. (A) Co-expression fold enrichment of four NDD gene sets with dnLoF 984 

mutations and four NDD gene sets with dnMis mutations in six major cortical cell types as well as the 985 

sample size of the cell types. Gene set size is shown in parentheses. Circle size is proportional to co-986 

expression fold enrichment score. (B,C) Co-expression fold enrichment of dnLoF-ASD (B) and dnMis-987 

Epi genes (C) in six major cortical cell types by downsampling the same number of cells for each cell 988 

type. The violin plot shows the mean value (point). The statistical significance P value measures whether 989 

the mean co-expression fold enrichment score of the corresponding gene set is higher than that of the 990 

background genes by the one-sided Fisher’s exact test. (D,E) Co-expression networks of dnLoF-ASD (D) 991 

and dnMis-Epi genes (E) in six major cortical cell types using the original sample size. Node size is 992 

proportional to co-expression degree. 993 

Figure 2.  Co-expression enrichment analysis of dnLoF-ASD and dnMis-Epi genes during NPC and 994 

neuron development. (A-C) Co-expression fold enrichment of dnLoF-ASD and dnMis-Epi genes at 995 

specific stages of NPCs (A), excitatory neurons (B), and interneurons (C) by downsampling the same 996 

number of cells for each cell stage. (D) Co-expression fold enrichment of dnLoF-ASD and dnMis-Epi 997 

genes in vRG cells, IPCs, and the transition at GW10 by downsampling the same number of cells for each 998 

condition. (E,F) Co-expression fold enrichment of dnLoF-ASD and dnMis-Epi genes in vRG cells, oRG 999 

cells, IPCs, and their transitions at GW16 by downsampling 20 cells (E) and 37 cells (F) for each 1000 

condition. In (A-F), asterisks above boxplot indicate -log10(P) value that measures statistical significance 1001 

whether the mean co-expression fold enrichment score of the corresponding gene set is higher than that of 1002 

the background genes by the one-sided Fisher’s exact test (* 1≤ -log10(P) <2, ** 2≤ -log10(P) <5, *** 5≤ 1003 

-log10(P) <10, **** 10≤ -log10(P)). (G) The expression of dnLoF-ASD and dnMis-Epi genes is 1004 

significantly increased during the transition from vRG cells to IPCs at GW10. The dashed horizontal line 1005 
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indicates the median log2(fold change) value of the background genes. The statistical significance P 1006 

values measure whether dnLoF-ASD and dnMis-Epi genes have higher log2(fold change) values than the 1007 

background genes during the transition by the one-sided Wilcoxon rank sum test. (H,I) Co-expression 1008 

networks of dnLoF-ASD (H) and dnMis-Epi genes (I) in vRG cells, IPCs, and the transition at GW10 1009 

using original sample size. Node size is proportional to co-expression degree. 1010 

Figure 3.  Co-expression enrichment analysis of dnLoF-ASD and dnMis-Epi genes during differentiation 1011 

from NPCs to excitatory neurons (Ex). (A,B) Co-expression fold enrichment of dnLoF-ASD and dnMis-1012 

Epi genes in NPCs, excitatory neurons, and the differentiation at GW10 (A) and GW16 (B) by 1013 

downsampling the same number of cells for each condition. Asterisks above boxplot indicate -log10(P) 1014 

value that measures statistical significance whether the mean co-expression fold enrichment score of the 1015 

corresponding gene set is higher than that of the background genes by the one-sided Fisher’s exact test (* 1016 

1≤ -log10(P) <2, ** 2≤ -log10(P) <5, *** 5≤ -log10(P) <10, **** 10≤ -log10(P)). (C) The expression of 1017 

dnMis-Epi but not dnLoF-ASD genes is significantly increased during the differentiation from NPCs to 1018 

excitatory neurons at GW10. (D) The expression of dnLoF-ASD and dnMis-Epi genes is significantly 1019 

increased during the differentiation from NPCs to excitatory neurons at GW16. In (C,D), the dashed 1020 

horizontal line indicates the median log2(fold change) value of the background genes. The statistical 1021 

significance P values measure whether dnLoF-ASD and dnMis-Epi genes have higher log2(fold change) 1022 

values than the background genes during the differentiation by the one-sided Wilcoxon rank sum test. 1023 

Figure 4.  GO correlation and expression change analyses of dnLoF-ASD and dnMis-Epi genes during 1024 

the vRG-to-IPC transition at GW10. (A,B) Scatter plot shows the significance values from GO positive 1025 

correlation analysis of dnLoF-ASD (A) and dnMis-Epi genes (B) on the horizontal axis versus the 1026 

significance values from GO expression increase analysis on the vertical axis during the transition. Dots 1027 

represent individual GO biological process terms. Each dot has -log10(FDR) value on the horizontal axis 1028 

that measures how significantly genes annotated under a GO term are positively correlated with dnLoF-1029 

ASD (A) and dnMis-Epi genes (B) during the transition by the one-sided Wilcoxon rank sum test, and -1030 

log10(FDR) value on the vertical axis that measures how significantly genes annotated under the GO term 1031 
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have higher log2(fold change) values than the background genes during the transition by the one-sided 1032 

Wilcoxon rank sum test. The dashed vertical and horizontal lines indicate -log10(FDR) at 4 and 2 as 1033 

significance thresholds. Significant GO terms from both analyses are shown in red, significant GO terms 1034 

only from GO positive correlation analysis are shown in green, and significant GO terms only from GO 1035 

expression increase analysis are shown in blue. Selected representative GO terms are labeled. (C,D) 1036 

Similar to (A,B) with GO negative correlation and expression decrease analyses of dnLoF-ASD (C) and 1037 

dnMis-Epi genes (D) during the transition. 1038 

Figure 5.  GO enrichment and correlation analyses of dnLoF-ASD and dnMis-Epi genes during the vRG-1039 

to-IPC transition at GW10. (A,B) Scatter plot shows the significance values from GO enrichment analysis 1040 

on the horizontal axis versus the significance values from GO positive correlation analysis on the vertical 1041 

axis of dnLoF-ASD (A) and dnMis-Epi genes (B) during the transition. Dots represent individual GO 1042 

biological process terms. Each dot has -log10(FDR) value on the horizontal axis that measures statistical 1043 

significance of the overlap between genes annotated under a GO term and dnLoF-ASD (A) and dnMis-1044 

Epi genes (B) by the one-sided Fisher’s exact test, and -log10(FDR) value on the vertical axis that 1045 

measures how significantly genes annotated under the GO term are positively correlated with dnLoF-1046 

ASD genes during the transition by the one-sided Wilcoxon rank sum test. The dashed vertical and 1047 

horizontal lines indicate -log10(FDR) at 2 and 4 as significance thresholds. Significant GO terms from 1048 

both analyses are shown in red, significant GO terms only from GO enrichment analysis are shown in 1049 

green, and significant GO terms only from GO positive correlation analysis are shown in blue. Selected 1050 

representative GO terms are labeled. (C,D) Similar to (A,B) with GO enrichment and negative correlation 1051 

analyses of dnLoF-ASD (C) and dnMis-Epi genes (D) during the transition. 1052 

Figure 6.  CHD8 target gene analyses. (A) Expression change of CHD8-activated and -repressed target 1053 

genes during the transition from vRG cells to IPCs at GW10. The dashed horizontal line indicates the 1054 

median log2(fold change) value of the background genes. The statistical significance P values measure 1055 

whether CHD8-activated (-repressed) target genes have higher (lower) log2(fold change) values than the 1056 

background genes during the transition by the one-sided Wilcoxon rank sum test. (B) Spearman’s 1057 
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correlation between CHD8-activated/-repressed target genes and CHD8 during the transition. The dashed 1058 

horizontal line indicates the median Spearman’s correlation with CHD8 for the background genes. The 1059 

statistical significance P values measure whether CHD8-activated (-repressed) target genes have higher 1060 

(lower) correlation with CHD8 than the background genes during the transition by the one-sided 1061 

Wilcoxon rank sum test. (C,D) Top GO terms enriched with CHD8-activated (C) and -repressed target 1062 

genes (D). 1063 

Figure 7.  Co-expression network organization of ASD genes with dnLoF mutations in NPCs, and 1064 

epilepsy genes with dnMis mutations in interneurons. (A) Spearman’s correlation with dnLoF-ASD genes 1065 

in NPCs for ASD genes with ≥3, 2, 1 and 0 dnLoF mutations. (B) Spearman’s correlation with dnMis-Epi 1066 

genes in interneurons for epilepsy genes with ≥2, 1 and 0 dnMis mutations. (C) Co-expression network of 1067 

ASD genes with at least one dnLoF mutations in NPCs. Red, green and blue nodes indicate ASD genes 1068 

with ≥3, 2 and 1 dnLoF mutations, respectively. Red, green and blue edges indicate co-expression within 1069 

ASD genes with ≥3, 2 and 1 dnLoF mutations, respectively, and orange edges indicate co-expression 1070 

between ASD genes with ≥3 dnLoF mutations and ASD genes with 2 dnLoF mutations. (D) Co-1071 

expression network of epilepsy genes with at least one dnMis mutations in interneurons. Red and blue 1072 

nodes indicate epilepsy genes with ≥2 and 1 dnMis mutations, respectively. Red and blue edges indicate 1073 

co-expression within epilepsy genes with ≥2 and 1 dnMis mutations, respectively. In (C,D), node size is 1074 

proportional to co-expression degree. (E) Co-expression degree in the NPC network of ASD genes with 1075 

≥3, 2 and 1 dnLoF mutations. (F) Co-expression degree in the interneuron network of epilepsy genes with 1076 

≥2 and 1 dnMis mutations. In (A,B,E,F), the statistical significance P values are calculated using the one-1077 

sided Wilcoxon rank sum test. 1078 
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