
Title: Deficits in Behavioral and Neuronal Pattern Separation in Temporal Lobe Epilepsy 1 

Abbreviated Title: Pattern Separation and Mnemonic Discrimination in Epilepsy 2 

Authors and Affiliations: A.D. Madar1,2, J.A. Pfammatter1, J. Bordenave3, E.I. Plumley3, S. 3 

Ravi1, M. Cowie1, E.P. Wallace1,3, B.P. Hermann3, R.K. Maganti3, M.V. Jones1 4 

1Department of Neuroscience, University of Wisconsin-Madison, 53703 5 

2Department of Neurobiology, Grossman Institute for Neuroscience, Quantitative Biology and 6 

Human Behavior, University of Chicago, 60637 7 

3Department of Neurology, University of Wisconsin-Madison, School of Medicine and Public 8 

Health 9 

Acknowledgement: We thank Lin Lin who helped start behavioral tests in mice in the Jones lab 10 

and Drs. C.E.L Stark and M.A. Yassa for allowing us to use software and materials they 11 

developed.  12 

Author contributions: Conceptualization: MVJ, ADM. Data curation: ADM, JAP. Formal 13 

analysis: ADM, JAP, MVJ. Funding acquisition: MVJ, ADM, RKM, JAP. Investigation: ADM, 14 

JAP, JB, EIP, SR, MC, EPW. Methodology: ADM, JAP, MVJ. Project administration: JAP, 15 

ADM, MVJ. Resources: MVJ, BPH, RKM. Software: ADM, JAP, MVJ. Supervision: MVJ. 16 

Validation: JAP, ADM. Visualization: ADM, JAP, MVJ. Writing – original draft: ADM. Writing 17 

– review & editing: all authors 18 

Funding: This work was supported by the US National Institutes of Health (MVJ: RO1 19 

NS075366), the University of Wisconsin Institute for Clinical and Translational Research (MVJ.; 20 

NIH/NCATS UL1TR000427), the US Department of Defense (RKM: PR161864) and Lily’s 21 

Fund for Epilepsy Research (ADM.; 2015 fellow). 22 

Conflicts of Interest: The authors declare no conflict of interest.  23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.02.13.948364doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.13.948364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract: 24 

In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the 25 

hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help 26 

discriminate between similar memories by performing pattern separation, but whether epilepsy 27 

leads to a breakdown in this neural computation, and thus to mnemonic discrimination 28 

impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by 29 

behavioral deficits in mnemonic discrimination tasks, in both humans and mice. Using a recently 30 

developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the 31 

dentate gyrus to perform certain forms of pattern separation. This is due to a subset of granule 32 

cells with abnormal bursting that can develop independently of early EEG abnormalities. 33 

Overall, our results linking physiology, computation and cognition in the same mice, advance 34 

our understanding of episodic memory mechanisms and their dysfunction in epilepsy.   35 

 36 
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Introduction: 42 

Temporal lobe epilepsy (TLE) represents about 60% of all epilepsy cases, a third of 43 

which are refractory to medication (Tellez-Zenteno and Hernandez-Ronquillo, 2012). TLE is 44 

characterized by recurring focal seizures originating in or near the hippocampus (Toyoda et al., 45 

2013),  microcircuit pathologies in brain regions including the hippocampus (Alexander et al., 46 

2016) and memory-related cognitive deficits (Helmstaedter et al., 2003; Zhao et al., 2014). 47 

Although the hippocampus is a nexus for episodic memory that is critically affected during TLE, 48 

the relationship between TLE and hippocampus-dependent memory is insufficiently understood. 49 

 Episodic memory formation is thought to involve storage of neural representations in area 50 

CA3 of the hippocampus via Hebbian plasticity at recurrent excitatory synapses of coactivated 51 

cells (Rolls, 2010). In this view, a partial cue reactivates a subset of the CA3 ensemble that in 52 

turn recruits the other neurons of the original pattern resulting in recall of the original event 53 

(Rolls, 2010). However, recurrent excitation is problematic because it theoretically a) 54 

predisposes the network to over-excitation that could trigger seizures (Le Duigou et al., 2014) 55 

and b) limits the number of patterns that can be stored without overlap (Rolls, 2010). 56 

Overlapping memory representations would in turn lead to interference during recall and thus 57 

cognitive confusion. To solve these problems, it was proposed that the dentate gyrus (DG) of the 58 

hippocampus acts as a) a gate and b) a pattern separator, so that similar cortical representations 59 

are transformed into sparse and dissimilar patterns before reaching CA3 (O'Reilly and 60 

McClelland, 1994; Hsu, 2007; Treves et al., 2008; Dengler and Coulter, 2016).  61 

The function of DG as a gate for cortical activity to prevent seizure generation fails in 62 

TLE (Hsu, 2007; Krook-Magnuson et al., 2015; Dengler and Coulter, 2016; Lu et al., 2016): 63 

granule cells (GCs), the output neurons of DG, lose their usual sparseness due to network 64 
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reorganization (Artinian et al., 2011; Dengler and Coulter, 2016; Dengler et al., 2017) making 65 

cortical excitation easier to propagate to CA3 (Behr et al., 1998; Patrylo et al., 1999; Ouedraogo 66 

et al., 2016). Even in healthy animals, repeated excitation of GCs induces seizures (Krook-67 

Magnuson et al., 2015) and prolonged stimulation of DG causes TLE (Sloviter, 1983).  68 

An alternate view of the DG function, developed in parallel to the concept of dentate 69 

gate, is that it performs pattern separation: the transformation of similar cortical patterns into 70 

dissimilar hippocampal representations. This process theoretically supports mnemonic 71 

discrimination, the ability to distinguish between similar memories. Indeed, DG lesions impair 72 

mnemonic discrimination both in rodents (Treves et al., 2008; Kesner and Rolls, 2015; Kesner et 73 

al., 2016) and humans (Yassa et al., 2011; Baker et al., 2016; Bennett and Stark, 2016; Dillon et 74 

al., 2017).  Moreover, computational models (Chavlis and Poirazi, 2017) and recent experiments 75 

(Knierim and Neunuebel, 2016; Berron et al., 2016; Madar et al., 2019a, b) suggest that the DG 76 

circuitry supports multiple forms of pattern separation (Santoro, 2013). Whether such 77 

computations underlie mnemonic discrimination remains unknown. 78 

Unsurprisingly, TLE negatively impacts hippocampal-dependent memory in humans 79 

(Coras et al., 2014) and rodents (Groticke et al., 2008; Muller et al., 2009; Inostroza et al., 2013; 80 

Lenck-Santini and Scott, 2015). However, the effect of TLE specifically on DG computations 81 

and DG-dependent cognition remains understudied. It was only recently reported that patients 82 

with TLE are impaired at spatial mnemonic discrimination (Reyes et al., 2018) and that TLE 83 

causes deficits in DG-dependent object location memory in mice (Bui et al., 2018). A 84 

computational model has also suggested that hippocampal pathologies in TLE would degrade 85 

DG pattern separation (Yim et al., 2014) but the hypotheses that 1) TLE causes a breakdown in 86 
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DG neural pattern separation and 2) that such a failure causes mnemonic discrimination 87 

impairments remain experimentally untested.  88 

 Here we tested, in humans and mice, whether TLE is characterized by deficits in 89 

mnemonic discrimination and then recorded, in brain slices from the same mice, the spiking 90 

patterns of single GCs in response to parametrically varied afferent stimulation in order to gauge 91 

neuronal pattern separation. 92 

 93 

Materials and Methods: 94 

Human Behavior. A mnemonic similarity task (Stark et al., 2019), also known as a 95 

behavioral pattern separation (BPS) task (Stark et al., 2013), was administered to 15 patients in 96 

the University of Wisconsin-Madison Epilepsy Monitoring Unit. Under an approved Institutional 97 

Review Board protocol and after obtaining informed consent, the task was administered in 98 

conjunction with a standard neuropsychiatric evaluation and during electroencephalographic 99 

(EEG) recording, both of which are part of standard practice for diagnosing the patients' seizures. 100 

Patients were 18-65 years old, male and female. Only patients with a preliminary diagnosis of 101 

TLE were included in our analysis. As controls, 20 subjects without epilepsy, recruited to match 102 

the patients' age and sex distributions (family members of the patients when possible, or other 103 

volunteers), were also tested. Consent documents, medical records and primary data are on file in 104 

a secure location within the Dept. of Neurology. Data were deidentified prior to analysis. 105 

Subjects received no compensation for participation. 106 

 The visual, object recognition-based BPS task is described in Yassa et al. (2011) and has 107 

been further validated by demonstrating mnemonic discrimination deficits during normal aging 108 

and multiple neurologic and psychiatric disorders (Stark et al., 2019). It was implemented on a 109 
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laptop by trained neuropsychiatric postdoctoral fellows (J.B. and E.I.P.) using software 110 

distributed freely by the Stark lab (http://faculty.sites.uci.edu/starklab/mnemonic-similarity-task-111 

mst/). Briefly, participants viewed a series of pictures of everyday objects (Figure 1A). During 112 

Phase 1, 128 different images were presented and the subject was asked to classify each as 113 

"indoor" or "outdoor", simply to engage the subject's attention. During Phase 2, a new series of 114 

192 images was presented: 1/3 repeated from Phase 1 (Repeated), 1/3 new but similar to images 115 

from Phase 1 (Lure), and 1/3 new and completely different from Phase 1 (Novel). Participants 116 

were asked to classify each image of the Phase 2 set as "Old", "Similar", or "New". BPS was 117 

evaluated with a discrimination index computed as the difference between p("Similar"|Lure) and 118 

p("Similar"|Novel), as in past research (Yassa et al., 2011; Stark et al., 2019). 119 

Mouse Experiments. Male mice (C57BL6J, 5-6 weeks old) were received from Envigo 120 

(formerly Harlan, Madison, WI), housed in groups and allowed to acclimate to their new home 121 

environment for one or two weeks. Animals then underwent epilepsy induction with kainic acid 122 

(KA) injections (see below) (J.A.P.). A control group of mice was injected with saline and 123 

another received no injection: both were pooled together and considered as the control group 124 

because our analyses did not reveal any difference. 7-9 weeks after injection, mice started 4 125 

weeks of behavioral testing on the BPS task. After completion of behavioral testing, animals 126 

(~18-20 weeks old) were transferred to a different building for EEG implantation. Each animal 127 

was recorded continuously for three days before being transferred back to the original building 128 

and sacrificed for slice electrophysiology (~20-24 weeks old). After each building-to-building 129 

transfer, mice were allowed a period of acclimation ranging from two days to two weeks. 130 

Behavioral testing (J.A.P, S.R. and M.C.), EEG recordings (E.P.W.) and slice electrophysiology 131 
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(A.D.M) were performed by different researchers, all of whom were blind to KA or Control 132 

treatments. 133 

Epilepsy induction. During the induction process, when not being handled, mice were 134 

individually housed in enclosed ~150 cm3 acrylic cubicles with opaque sides and clear front 135 

portals with holes to allow air exchange, food and bedding. Animals were then randomly 136 

assigned to KA or Control treatment, ear punched for identification and weighed. Animals were 137 

induced for epileptogenesis using the repeated low-dose kainate method (Hellier et al., 1998; 138 

Sharma et al., 2018): a series of intraperitoneal injections based on the following schedule. 139 

Animals first received 10 mg/kg of kainic acid (Tocris Bioscience, UK) mixed in 1x PBS (8 ml 140 

per 10 mg) prepared from PBS tablets (Dot Scientific, Michigan) with deionized distilled water 141 

and filter sterilized (Millipore, Burlington, MA). Control animals were injected with an 142 

equivalent volume of saline made of 1x PBS. Animals continued to receive injections at 5mg/kg 143 

every 20 minutes until status epilepticus (SE) occurred (same number of saline injections in 144 

control mice). Some animals received alternating 5mg/kg and 2.5 mg/kg injections after the 145 

initial 10 mg/kg dose, but we found this schedule took more time than 5 mg/kg injections and our 146 

survival rate (>90% across all cohorts) was no different between the two schedules. Animals 147 

were considered to be in SE when displaying persistent behavioral seizures of level 4-5 on the 148 

Racine Scale (Racine, 1972), less than 5 minutes apart, for a minimum of 30 minutes. Animals 149 

received 4-9 injections depending on tolerance to kainic acid and injection schedule. After the 150 

injection schedule, animals were given fresh apple slices, monitored until SE ceased (assessed 151 

from normal posturing, within 1-1.5 hours), and returned to group housing. They were 152 

monitored, weighed and animals weighing less than their preinjection levels were given 0.4 ml of 153 

1x PBS via intraperitoneal injection on a daily basis until their weight exceeded preinjection 154 
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level. No animal injected with saline ever experienced status epilepticus, lost weight, or required 155 

recovery injections of 1x PBS. Mice remained in the vivarium for 7-9 weeks after injections, 156 

allowing time for the development of epilepsy in KA mice (the latent period in the KA model of 157 

TLE has previously been evaluated as 10-30 days before the first spontaneous electrographic 158 

seizure, and ~11±5.4 weeks before the first spontaneous convulsive seizure (Levesque and Avoli, 159 

2013). During this time some KA mice became aggressive and many of the aggressor animals 160 

were removed from group housing and caged individually.  161 

Mouse Behavior. At 14-16 weeks of age, mice started behavioral testing on a variant of a 162 

novelty recognition-based BPS task that is well established in rodents to report mnemonic 163 

discrimination abilities (van Hagen et al., 2015). Our protocol lasted 4 weeks, including 1 week 164 

of habituation and 3 weeks of trials. During the first week of habituation, each mouse was gently 165 

handled by the experimenter for five minutes every day. On the second week mice were split into 166 

three groups (A, B, and C). Each group went through a three-day schedule where animals were 167 

habituated on the first and second days and performed the object location task on the third day. 168 

Groups were staggered by one day each, such that group A was scheduled Monday-Wednesday, 169 

B Tuesday-Thursday and C Wednesday-Friday. Animals were housed following a 12:12 light-170 

dark cycle and always handled or tested between 1 pm and 4pm (light period).  171 

The arena used for the BPS task (see Figure 3A) was a 63.5 x 63.5 x 15 cm open topped 172 

Plexiglas box wrapped on the outside and bottom with black felt cloth. On each side of the arena 173 

were different images serving as proximal cues for orientation. The room also had numerous 174 

distinct distal cues (e.g. the video camera placed over the center of the arena, shelving, etc.), that 175 

were kept unchanged. During behavioral testing, the room was lit with a single bank of overhead 176 

fluorescent lamps. 177 
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For the BPS task, animals underwent three phases of exploration in the arena, each 178 

lasting 3 min and separated by 1.5 min of single housing in a solitary chamber. In Phase 1 179 

(habituation) the arena was empty, in Phase 2 (sampling) the arena contained two identical 180 

objects in the center, and in Phase 3 (testing) one object had been randomly selected and 181 

displaced by a distance of 7, 14 or 21 cm. The arena and objects were cleaned with 70% ethanol 182 

before and after each phase. During Phases 2 and 3, the experimenter recorded the amount of 183 

time that the mouse spent interacting with each object with two silent stopwatches. The mouse 184 

was considered to be interacting with an object if it was within 1 cm of it and oriented towards, 185 

sniffing, scratching, or on top of the object. These three phases were repeated three times with a 186 

different distance each week, with the order of distances randomized. Objects used for the task 187 

were ~6 cm tall block style plastic colored figures or metal cylinders, with a footprint of ~2 cm 188 

in diameter.  189 

All phases of the experiment were recorded with a 1080p webcam positioned above the 190 

arena. During all phases, the experimenter sat in the corner of the room out of the line of sight of 191 

the mouse. The experimenter was consistent in appearance and smell (e.g., same experimenter 192 

for a given cohort, wearing same white lab coat and gloves of the same color each day; use of 193 

scented soap, etc. was minimized). 194 

BPS Analysis. The discrimination ratio for each trial was computed as (Tmoved – Tunmoved) 195 

/ Ttotal where Tmoved is the time spent exploring the moved object, Tunmoved is the time spent 196 

exploring the unmoved object and Ttotal is the sum of Tmoved and Tunmoved. The exploration times 197 

used to calculate the reported discrimination ratio were manually collected by experimenters 198 

during the BPS task. We (M.V.J. and J.A.P.) also developed a home-written program using video 199 

recordings for motion-tracking and trajectory analysis of each mouse during behavioral testing. 200 
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Discrimination ratios computed from automated tracking data were well correlated to the ratios 201 

from manually recorded times, and led to similar results (R2 = 0.68, T(117) = 16.07, P < 0.001). 202 

Automated tracking data were also used to assess a) distance traveled as an estimate of motility 203 

and exploration and b) tendency to stay close to walls (i.e., thigmotaxis) as an estimate of 204 

anxiety. Thigmotaxis (Simon et al., 1994) was evaluated as the proportion of time spent within 205 

6.35 mm of the wall (10% of the arena width).  206 

 Mouse electroencephalography (EEG). EEG electrode implantation was performed at 207 

~18-20 weeks of age for all animals, following a previously established protocol (Wallace et al., 208 

2015). Briefly, mice were anesthetized with isoflurane and stainless steel screw electrodes were 209 

implanted in the skull (bregma +1.5 mm and 1 mm right, bregma -3 mm and 1 mm left, and 210 

lamda -1 mm at midline). Two stainless steel braided wires were placed in the nuchal muscles 211 

for electromyography (EMG) recording. After a 72 hour recovery, we transferred mice into 212 

individual tethered EEG acquisition chambers and allowed a >12 hour acclimation period. We 213 

acquired EEG and EMG signals continuously for 3 days. Recordings were digitized with an 214 

XLTek amplifier (XLTEK, USA) sampled at 1024 Hz. Ad libitum access to food and water was 215 

ensured.  216 

 Interictal spike (IIS) analysis. In humans and most animal models of acquired TLE, 217 

overt seizures are relatively rare (often much less than once per day) (Levesque et al., 2016). In 218 

contrast, nonconvulsive and subclinical epileptiform events such as interictal spikes (IISs) can be 219 

very frequent, as much as many hundreds per day. Therefore, in order to assess epileptiform 220 

activity in KA animals, we used a modification of our previously published principal 221 

components (PC)-based method to quantify IISs (Pfammatter et al., 2018) and calculated an 222 

"Hourly IIS index" for each animal. All detected high-amplitude EEG events from 9 Ctrl and 15 223 
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KA animals were projected into the space spanned by their first three PCs. The main 224 

modification here is that, instead of using a Gaussian Mixture Model (GMM) to assign events to 225 

'clusters', we simply gridded the PC space into 'voxels' and computed relevant quantities within 226 

each voxel exactly as we computed those same quantities within GMM 'clusters' previously: 1) 227 

The probability that events within a voxel are characteristic of an epileptogenic treatment (i.e., 228 

KA) was computed as the voxel-wise proportion of events coming from KA mice, 2) Only the 229 

voxels above chance level were considered specific to epileptogenic treatment and probabilities 230 

were scaled accordingly, 3) The Hourly IIS Index of a given animal was defined as the average 231 

frequency of detected events weighted by the scaled probabilities of each event's voxel. This new 232 

voxel-based method has the advantages to make no assumptions about the structure of the data in 233 

PC space or about the number of clusters to fit. Instead, the main free parameter is now the voxel 234 

volume: we selected a size of 10 cubic PC units following the same optimization procedure 235 

described in Pfammatter et al. (2018) in order to avoid overfitting. Extensive exploration (not 236 

shown) revealed that the final results are similar to the GMM method and are not importantly 237 

affected by moderate changes in voxel volume. 238 

Slice electrophysiology. Mice used for electrophysiology were p115-p182 at the time of 239 

experiment (mean ± SEM: p141 +/- 4 days; no difference in age between treatments: KA n = 13, 240 

Ctrl n = 6, U-test: P = 0.9, Z = 0.2, rank sum = 246). Age was also not correlated with any 241 

summary statistics presented in this study. 242 

Adult mice were euthanized by transcardial perfusion with oxygenated PBS under 243 

isoflurane anesthesia, before decapitation and brain extraction. 400 μm horizontal slices of the 244 

ventral and intermediate hippocampus were prepared as detailed in Madar et al. (2019a). After 245 

slicing in a sucrose-based cutting solution (Yi et al., 2015), slices were transferred to an 246 
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incubation chamber filled with 50% cutting solution and 50% artificial cerebrospinal fluid 247 

(aCSF) at 37°C for 30 minutes, then room temperature. Patch-clamp recordings were done in a 248 

chamber submerged with aCSF containing (in mM) 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 249 

NaH2PO4, 2 CaCl2, 1 MgCl2, and 25 D-Glucose, flowing at 5 ml/min and saturated with a gas 250 

mixture of 95% O2 and 5% CO2. Stimulation was applied through a double-barreled "theta" 251 

pipette filled with aCSF. Patch pipettes were filled with an intracellular solution of the following 252 

composition (in mM): 135 K-gluconate, 5 KCl, 0.1 EGTA, 10 HEPES, 20 Na-Phosphocreatine, 253 

2 Mg2-ATP, 0.3 Na-GTP, 0.25 CaCl2 adjusted to pH 7.3 with KOH and 310 mOsm with H2O, 254 

leading to a 2-5 MΩ pipette resistance in aCSF. Whole-cell patch-clamp recordings of single DG 255 

GCs in response to electric stimulation of the outer molecular layer (perforant path) were 256 

performed as detailed in Madar et al. (2019a) (see Figure 4A), and the stimulation protocols 257 

used to test neural pattern separation were the same as in Madar et al.(2019b) (see Figure 4B and 258 

5). Briefly, input sets used for stimulation were composed of five (type 1) or ten (type 2 and 3) 259 

spiketrains (two seconds long), delivered sequentially (separated by five seconds of pause) and 260 

repeated ten or five times, respectively, in order to yield fifty output spiketrains. The stimulation 261 

pipette was placed >100µm lateral to the recorded GC to avoid direct stimulation of GC 262 

dendrites, with the baseline membrane potential held at -70 mV for current and voltage-clamp 263 

recordings (see Figure 4A-B, 7B). 264 

 Intrinsic electrophysiological properties of recorded GCs were the following (mean ± 265 

SEM for Ctrl / KA): resting membrane potential Vrest = -78.0 ± 1.9 / -81.4 ± 1.2 mV; membrane 266 

resistance Rm = 139 ± 17 / 178 ± 16 MΩ; membrane capacitance Cm = 18 ± 1.2 / 17 ± 0.7 pF. 267 

There were no significant differences between control and KA mice (U-tests: P = 0.1, 0.2, 0.7; Z 268 

= 1.6, -1.2, 0.4; rank sums = 294, 198.5, 252.5 respectively).  269 
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 Neural pattern separation analysis. Similarity between spiketrains was assessed as in 270 

Madar et al. (2019a, b), using three metrics based on dividing spiketrains into time bins of a 271 

specific duration τw: the Pearson's correlation coefficient (R), the normalized dot product (NDP) 272 

and the scaling factor (SF). NDP and SF consider spiketrains as vectors of spike count per bin 273 

and measure the angle (NDP is the cosine) and the ratio of norms (SF) between the two vectors. 274 

R considers vectors of deviation from mean spike count, which loses the original angle between 275 

the vectors of raw spike counts and leads to considering common periods of silence as correlated, 276 

unlike NDP. Both R and NDP are sensitive to binwise synchrony, whereas SF is more sensitive 277 

to differences in firing rate and burstiness (see Madar et al. 2019b for a detailed discussion on the 278 

different neural codes assumed by each metric). To further test the role of various spiketrain 279 

features in mediating pattern separation, we also considered neural codes purely focused on 280 

either 1) the average firing rate (FR), 2) the compactness (1 - proportion of time bins with at least 281 

one spike) and 3) the occupancy (average number of spikes in bins with at least one spike). 282 

These were computed as in Madar et al. (2019b) and the degree of pattern separation (or 283 

convergence, for negative values) was evaluated as the difference between the dispersion of the 284 

output spiketrains minus the dispersion of the input spiketrains. The dispersion was computed as 285 

the mean absolute value of pairwise differences for each spiketrain feature (FR, Compactness or 286 

Occupancy) over all spiketrains of a set, excluding self-comparisons and, in the case of the 287 

output sets, all comparisons between output spiketrains resulting from the same input spiketrain. 288 

When using a similarity metric S (R, NDP or SF), pattern separation was assessed following the 289 

same logic. First, the similarity between each pair of spiketrains of a given set was computed. 290 

Sinput was the average for all pairs of an input set (excluding self-comparisons), and Soutput was 291 

the average of all pairs in output sets excluding comparisons between output spiketrains coming 292 
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from repetitions of the same input train. This yielded a single output similarity value for a given 293 

output set, and the degree of pattern separation was thus Sinput - Soutput. To gain a finer view, we 294 

also performed a pairwise analysis (as in Madar et al. 2019b) where each of the pairwise Sinput of 295 

an input set were distinguished (10 pairs for input sets of type 1, 45 pairs for input sets of type 2 296 

and 3). The pairwise Soutput (pw Soutput) was thus the average similarity across all pairs of output 297 

spiketrains resulting from a given pair of input spiketrains. Pattern separation was computed as 298 

pw Sinput – pw Soutput.  299 

Software and statistics. Data analysis was performed using MATLAB (Mathworks, 300 

Natick, MA, USA). The Lilliefors test was used to verify the normality of data distributions 301 

(Lilliefors, 1967). Parametric or nonparametric statistical tests were appropriately used to assess 302 

significance (p-value < 0.05). Throughout the Results section, KW ANOVA corresponds to the 303 

nonparametric Kruskal-Wallis analysis of variance, U-test corresponds to the Wilcoxon rank-304 

sum test equivalent to the Mann-Whitney U-test, and KS test corresponds to the two-sample 305 

Kolmogorov-Smirnov test (sidedness is specified in the legends).  306 

To analyze performance of mice on the BPS task (Figure 3B) we performed a two-way 307 

ANOVA with the Matlab function anova based on a linear mixed-effects model built using 308 

fitlme, with the distance of the moved object as a continuous fixed effect, animal treatment (Ctrl 309 

vs. KA) as a categorical fixed effect, and animal identity nested within object distances as a 310 

random effect to account for repeated measurements. The same procedure was used for each 311 

panel in Figure 3D-E.  312 

To determine whether (Sinput, Soutput) distributions were significantly different (Figures 4-313 

5), we performed an analysis of the covariance (ANCOVA) using separate parabolic or linear 314 
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regression models, implemented in MATLAB with a custom-written code following the method 315 

described in (Motulsky and Ransnas, 1987), as in Madar et al. (2019a, b)  316 

In Figure 8A, the non-linear regression was performed using the Matlab function fitnlm 317 

with a three-parameter model function 𝑓𝑓(𝑥𝑥) =   𝑎𝑎/(𝑥𝑥 + 𝑏𝑏) + 𝑐𝑐 318 

 319 

Results: 320 

Behavioral pattern separation deficits in TLE. Mnemonic discrimination is often called 321 

behavioral pattern separation (BPS) because it is hypothesized to be the behavioral outcome of 322 

neural pattern separation. It is the ability to discriminate between similar experiences (event, 323 

environment, object, etc.) that occurred at different times (Santoro, 2013). Multiple BPS tasks 324 

have been demonstrated to be DG-dependent in humans (Baker et al., 2016) and rodents (Kesner 325 

and Rolls, 2015; Kesner et al., 2016; Bui et al., 2018). We thus chose some of these established 326 

tasks to test whether TLE impacts DG-dependent cognition, both in humans and mice.  327 

 In humans, we used the object recognition-based Mnemonic Similarity Task developed by 328 

the Stark lab (Stark et al., 2019), where participants must distinguish between similar images 329 

presented at different times (Figure 1A, Materials and Methods – Human behavior). Patients 330 

previously diagnosed with TLE showed a severe deficit (~50%) compared to nonepileptic 331 

subjects in their ability to correctly identify objects as being similar but not identical (Figure 1). 332 

These results confirmed our hypothesis that TLE impairs DG-dependent mnemonic 333 

discrimination, thus warranting further study of the impact of TLE on DG computations that 334 

might explain this cognitive deficit. 335 
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 336 

Figure 1. Human patients with TLE have mnemonic discrimination deficits 337 
(A) A schematic (adapted with permission from Yassa et al., 2011) of the mnemonic 338 
discrimination task given to patients with TLE and nonepileptic control subjects. The 339 
discrimination index measures the ability of participants to correctly identify images as similar 340 
but not identical to a previously seen image. 341 
(B) Human patients with temporal lobe epilepsy (red, n = 15) display a significant deficit in this 342 
object recognition-based mnemonic discrimination task compared to nonepileptic control 343 
subjects (black, n = 20). Unpaired two-sided T-test: P = 0.0183, T(33) = 2.4832.  344 
(C) The same data from B, presented as cumulative frequency distributions. A non-parametric 345 
one-way KW ANOVA on the indices grouped by treatment confirms a highly significant deficit 346 
in visual pattern separation memory for human subjects with TLE (P = 0.0343, χ2(34) = 4.4809).  347 
(D) TLE and Ctrl groups were properly age matched (unpaired two-sided T-test: P = 0.9411, 348 
T(31) = -0.0745).  349 
(E) There were slightly more women than men in the control group, but the gender difference 350 
was not significant between the two treatments (one-way KW ANOVA on gender values, 1 or 2, 351 
grouped by treatment: P = 0.0663, χ2(32) = 3.3724). 352 
  353 
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 To investigate the effect of TLE at the behavioral, computational and cellular levels, we 354 

turned to the common post-kainate animal model of acquired TLE (KA, Methods – Mouse 355 

experiments). An automated detection algorithm of interictal spikes (IISs) allowed us to 356 

quantify epileptiform activity in each animal even in the absence of seizures (Methods – 357 

Automated EEG analysis and see Pfammatter et al. 2018). Most KA animals developed IISs 358 

(Figure 2).  359 

 360 

 361 
Figure 2. Kainate-injected mice have epileptiform electrographic events with a range of 362 
event frequency 363 
(A) The Hourly Interictal Spikes (IIS) index, a proxy for epilepsy severity based on EEG 364 
recordings (Pfammatter et al., 2018), was calculated for 9 Ctrl (black) and 15 KA (red) animals. 365 
KA animals have a significantly higher Hourly IIS index than Ctrl animals (U-test: P = 0.009, Z 366 
= 2.207, rank sum = 225). 367 
(B) To compute the index, high-amplitude events (200 ms duration) were identified from left 368 
frontal EEG and projected on the first three principal components (PC) of the ensemble of events 369 
from all mice. Each dot here is an EEG event, red when from a KA animal and black when from 370 
a Ctrl. Notice the 'fingers' of red KA dots extending from the central cluster of mixed Ctrl and 371 
KA data points.  372 
(C) Using a voxel gridding of the PC space (voxel size: 10 cubic units), we calculated the 373 
probability for each event to be specific to KA treatment (see scale bar). The hourly IIS index of 374 
a mouse is the average number of detected events/hour, weighted by their probability of being 375 
specific to the KA treatment. 376 
  377 
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 378 

Prior to EEG recordings, mice were subjected to an object-location novelty-recognition 379 

BPS task (Methods – Mouse Behavior) where their ability to discriminate between a moved 380 

object versus an identical unmoved object was measured for different object displacement 381 

distances (Figure 3A). Our results demonstrate that, on average, KA mice have lower object-382 

location mnemonic discrimination than control mice at all object distances (Figure 3B-C). 383 

Control analyses of motility (assessed by the total distance moved) and anxiety levels (assessed 384 

by the time spent near walls) revealed that KA mice have no obvious locomotor deficits nor do 385 

they spend more time near walls during the testing phases (Figure 3D-E). Moreover, there was 386 

no correlation between individual mnemonic discrimination ratios and total distance moved (R2 387 

= 0.028, T(118) = 1.86, P = 0.066) or time spent near walls (R2 = 0.002, T(118) = 0.50, P = 0.62) 388 

during phase 3. These results suggest that differences between KA and control mice in the BPS 389 

task were not due to differences in motor ability, exploration or anxiety.  390 

TLE is thus accompanied by mnemonic discrimination deficits in both humans and mice.  391 

 392 
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Figure 3. Kainate-injected mice have deficits in mnemonic discrimination 394 
(A) Object location BPS task arena setup. The experiment was run in three phases of three 395 
minutes. In Phase 1, a mouse was allowed to explore the empty square arena. In Phase 2, the 396 
same mouse was allowed to explore the same arena but with two identical objects (position 397 
indicated by grey circles). In Phase 3, one randomly chosen object was moved either 7, 14 or 21 398 
cm from its original position and the mouse was allowed to explore again. Between phases, the 399 
mouse was placed in a solitary chamber for 1.5 minutes. Each mouse performed the task once at 400 
each distance with different objects, in randomized order, with a week in between trials.  401 
(B) Performance at the BPS task is evaluated with a discrimination ratio computed for each 402 
animal at each distance. Healthy mice generally prefer to explore objects with novel 403 
characteristics (such as change in relative position) and are thus expected to spend more time 404 
with the moved object if they notice it has changed location. Discrimination is thus quantified as 405 
the difference between the time exploring the moved object and the time exploring the unmoved 406 
object. A two-way ANOVA with repeated measures shows that mice discriminate better when 407 
objects are moved farther apart, and that Ctrl mice (n = 29) discriminate better than KA mice (n 408 
= 27) (Distance Object Moved: P = 0.002, F(1,118) = 9.84; Treatment: P = 0.027, F(1,118) = 409 
5.02). 410 
(C) Subset of the data in B plotted in the space of discrimination at each distance, allowing a 411 
clearer picture of individual performance. Each animal is represented by a single dot in this 3D 412 
space (42 animals with records at the three distances: 24 KA and 18 Ctrl). For each data point, 413 
the Mahalanobis distance (De Maesschalck et al., 2000) from the Ctrl centroid is represented by 414 
the dot size, and is also displayed in the inset (mean +/- SEM). Mahalanobis distances are larger 415 
for KA than Ctrl animals, confirming that the KA population displays mnemonic discrimination 416 
deficits (two-sided T-test: P = 0.003, T(40) = -3.15). 417 
(D,E) Control analysis to determine whether there were motor impairments or anxiety/curiosity 418 
differences between KA and Ctrl mice, across phase 1, 2 and 3 of the BPS task. In each panel, 419 
individual mice are represented by one to three data points, as in B, depending on how many 420 
conditions (Distance Object Moved) they were tested on. Mean +/- SEM.  421 
(D) Distance traveled was used as a proxy for motor ability. During Phase 1 and Phase 2, control 422 
and KA mice moved similar distances (P = 0.507, F(1, 120) = 0.443 and P = 0.070, F(1, 122) = 423 
3.35). During Phase 3 KA mice moved farther than Ctrl mice (P = 0.023, F(1, 124) = 5.34).  424 
(E) Percent of time near wall was used as a proxy for anxiety. During Phase 1 (habituation), KA 425 
animals spent more time near the maze walls compared to Ctrl (P = 0.03 F(1,120) = 4.82). 426 
During Phases 2 and 3, Ctrl and KA animals spent a similar amount of time near walls (P = 0.68, 427 
F(1,122) = 0.173 and P = 0.35, F(1, 124) = 0.881). F-tests correspond to one-way ANOVAs with 428 
repeated measures, with Treatment as a categorical fixed effect. 429 

 430 

DG computational impairments in TLE. To test our hypothesis that DG pathologies in 431 

TLE lead to a breakdown of the neural pattern separation function of the DG, which in turn 432 

would translate into the cognitive impairments we observed, we measured pattern separation in 433 

hippocampal slices from the same KA and control mice used above in behavioral and EEG 434 
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experiments. Briefly, the assay has three steps (Figure 4A-B and see Madar et al. 2019a, b): 1) 435 

ensembles of stimulus patterns (simulating afferent input spiketrains) are generated, with known 436 

degrees of similarity to each other. These spiketrains are then fed into the DG by stimulating the 437 

lateral perforant path. 2) The response of a single GC is recorded in whole-cell current-clamp. 3) 438 

The similarity between the output spiketrains is compared to the similarity between the input 439 

spiketrains, revealing the degree of separation or convergence (Figure 4C and see Material and 440 

Methods – Neural pattern separation analysis).  441 

We tested pattern separation levels in response to three types of input sets. Input sets of 442 

type 1 were constituted of Poisson spiketrains with a 10 Hz mean firing rate designed to have a 443 

prespecified average similarity as measured by the Pearson's correlation coefficient (R) (Figure 444 

4B). For an input set with spiketrains correlated by 77% between each other (timescale: τw = 20 445 

ms), the output spiketrains of GCs from epileptic mice had a higher average correlation (Routput) 446 

than GCs from control mice (Figure 4C). This demonstrates a decrease in pattern separation in 447 

the DG of epileptic mice. Exploring a wider range of input correlations shows that the pattern 448 

separation function of the DG of KA mice is generally impaired compared to the normal pattern 449 

separation function (Figure 4D). Furthermore, a decrease in pattern separation was observed at 450 

multiple timescales (millisecond to second) and using multiple similarity metrics that assume 451 

different neural codes (Figure 4E, see Material and Methods – Neural pattern separation 452 

analysis). The impairment is most noticeable using the NDP metric, showing that DG output 453 

patterns are less orthogonalized in KA animals at all timescales, whereas differences in pattern 454 

separation via scaling (SF metric) are small but significant at large timescales.  455 

 456 
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 457 
Figure 4. Epileptic mice have neural pattern separation deficits  458 
(A) Histology of the DG in a horizontal slice (Cresyl violet/Nissl staining; scale bar: 250 µm), 459 
overlaid with a schematic of the experimental setup: a theta pipette in the ML is used to focally 460 
stimulate the outer molecular layer (input) while a responding GC is recorded via whole-cell 461 
patch-clamp (output). GCL: granule cell layer, H: hilus, ML: molecular layer. Solid lines 462 
represent dendrites and dashed lines axons. 463 
(B) Current-clamp recordings of the membrane potential of two different GCs (Ctrl and KA) in 464 
response to the same set of input trains. An input set is constituted of five different trains of 465 
electrical pulses following a Poisson distribution with an average rate of 10 Hz. The Pearson's 466 
correlation coefficient (R) between two input trains is computed with a binning window (τw) of 467 
20 ms (Left). Rinput is the average of the ten pairwise coefficients, diagonal excluded. After 468 
converting the GC recordings to vectors of binned spike counts, the pairwise coefficients and 469 
their average (Routput) can be computed the same way (Madar et al, 2019b). Note that the input set 470 
was repeated 10 times to yield output sets of fifty sweeps (only one repeat is shown). 471 
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(C) The Routput of GCs from kainate-injected animals is higher, on average, than in GCs from 472 
controls. Data points correspond to single output sets (KA: 27 recordings from 24 GCs; Ctrl: 12 473 
recordings from 11 GCs), all being responses to the same input set as in B. Black crosses with 474 
error bars are means +/- SEM. The asterisk signals significance: U-test comparing the medians: P 475 
= 0.011, Z = -2.541, rank sum = 156; two-sided two-sample KS test comparing the distribution 476 
shapes: P = 0.0037, D = 0.583. The dashed line corresponds to Rinput (0.77): any value below the 477 
line implies effective pattern separation. Thus, GCs from kainate animals exhibit less pattern 478 
separation than controls.  479 
 (D) Pattern separation was investigated over a wide range of input correlations by using four 480 
different input sets of five 10 Hz Poisson trains (at τw = 20 ms: Rinput = 0.24, 0.45, 0.77, 0.95). 481 
Crosses and error bars correspond to mean +/- SEM (pw Rinput, pw Routput) across multiple 482 
recordings (KA: 6-24 GCs per input set; Ctrl: 4-11 GCs). Data points below the identity line 483 
(dashed) correspond to pattern separation. The distributions between KA and Ctrl are 484 
significantly different (ANCOVA with separate parabolic models fitting the data points and not 485 
the means: P < 0.0001, F(3,714) = 15.485. Solid curves are the parabolic models used for the 486 
ANCOVA. 487 
(E) Levels of pattern separation measured using different similarity metrics (S: R, NDP and SF, 488 
see Methods) and timescales. Cumulative frequency distributions of the distance of (pw Sinput, 489 
pw Soutput) data points to the identity line in pattern separation graphs like in E. Positive values of 490 
the x-axis correspond to pattern separation, and negative values to pattern convergence. Insets 491 
show medians. For R and NDP, distributions are significantly shifted to the left, showing that 492 
GCs from KA exhibit less decorrelation and less orthogonalization (ANCOVA as in D, but using 493 
separate linear models: P < 0.01 for τw = 5 to 1000 ms. For R/NDP and τw = 10, 20, 100, 250 ms, 494 
P = <0.0001/<0.0001, <0.0001/<0.0001, 0.001/<0.0001, 0.011/0.0001, F(2, 716) = 15.2/18.2, 495 
20.3/23.4, 6.87/15.97, 4.5/9.4). For SF, scaling levels are weakly but significantly shifted to less 496 
separation at large τw (SF: P > 0.2 except at 250 ms and 500 ms, with P = 0.026, 0.046, F(2, 716) 497 
= 3.65, 3.09 respectively). 498 
 499 

An input set of type 2, made of Poisson spiketrains similar in terms of R but with varying 500 

firing rates (Figure 5A1), and an input set of type 3, with 10.5 Hz uncorrelated trains (R = 0) 501 

with varying burstiness (Figure 5B1), were designed to explore a wide range of input similarities 502 

as measured by SF and to characterize DG computations on inputs with a variety of statistical 503 

structures (Madar et al., 2019b). As we have shown before, the normal DG exhibits low pattern 504 

separation via scaling for highly similar inputs, and significant pattern convergence for dissimilar 505 

inputs (Madar et al., 2019b). In KA mice, GCs show a decrease in both pattern convergence and 506 

separation via scaling: the DG computation function is steeper, closer to the identity line, 507 

meaning that the DG of KA mice is weaker at transforming the similarity of its inputs in general 508 
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(Figure 5A1 and B1). When similarity is measured with R or NDP (binwise synchrony code) 509 

instead of SF (neural code focused on FR and bursting), these experiments confirmed that pattern 510 

separation is decreased in TLE (Figure 5A2) and that this deficit is strongest when inputs are 511 

highly similar (i.e., when pattern separation is theoretically most important) and weaker when 512 

inputs are already dissimilar (Figure 5B2).    513 

 514 
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 515 
Figure 5. Multiple DG computations are affected by epilepsy 516 
Our standard input sets (type 1, Figure 4) consisted of 10 Hz Poisson trains. Two other input sets 517 
(type 2 and 3) were designed to explore single GCs responses to inputs with diverse structures 518 
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and statistics, both with a wide range of pairwise similarity as measured by SF (in contrast to 519 
input sets of type 1).  520 
(A1) Left: Input set type 2 was constituted of spiketrains following a Poisson distribution, each 521 
with a different firing rate (FR), but with an average Rinput constrained around 0.75 (τw = 10 ms). 522 
Middle and Right: Pattern separation graphs showing the pairwise output spiketrain similarity as 523 
a function of the pairwise input similarity, as measured by SF with two different timescales, 524 
averaged across multiple GCs (KA: 16, Ctrl: 5). Distributions are significantly different, 525 
suggesting in particular that epilepsy causes a decrease in pattern convergence (via scaling) for 526 
low input similarities (ANCOVA with separate linear models, for τw = 20 and 250 ms 527 
respectively : P = 0.0016 and < 0.0001, F(2, 941) = 6.5 and 10.4). (A2) Levels of pattern 528 
separation for type 2 inputs, measured using different similarity metrics and timescales as in 529 
Figure 4. It confirms that epilepsy decreases the separation of similar Poisson input spiketrains as 530 
measured by R and NDP, consistent with Figure 4, and shows that differences in terms of SF, 531 
although small, are significant (ANCOVA as in A1: R: P < 0.0001 for τw = 20 ms up to 1000 ms, 532 
P = 0.02 and 0.18 for 5 and 10 ms; NDP and SF: P < 0.025 for τw up to 1000 ms. Detailed 533 
statistics for τw = 5, 10, 20, 50, 100, 250, 500 and 1000 ms respectively: R, P = 0.0243, 0.1820, 534 
<0.0001, <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, F(2, 941) = 3.7, 1.7, 10.2, 15.1, 24.1, 535 
36.0, 50.2, 27.0; NDP, P = 0.0022, 0.0240, <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, 536 
<0.0001, F(2, 941) = 6.2, 3.7, 13.8, 17.4, 21.4, 26.0, 21.0, 16.8; SF, P = 0.0002, 0.0012, 0.0016, 537 
0.0240, 0.0073, <0.0001, <0.0001, 0.0002, F(2, 941) = 8.7, 6.7, 6.5, 3.7, 4.9, 10.9, 10.4, 8.7).  538 
(B1) Left: Input set type 3 was constituted of spiketrains with 21 spikes (FR = 10.5Hz) that were 539 
distributed among bins to produce trains with varying burstiness (Madar et al., 2019b). R is close 540 
to 0 for all pairs. Middle and Right: same analysis as in A1 (KA: 8 GCs, Ctrl: 3 GCs). 541 
Distributions are significantly different, suggesting again that epilepsy causes a decrease in 542 
pattern convergence via scaling, for low input similarities (ANCOVA for τw = 20 and 100 ms: P 543 
< 0.0001 and F(2, 491) = 10.3 and 13.8 respectively).  544 
(B2) Same analysis as in A2. The directions of impairments are the same as in A2, showing that 545 
epilepsy decreases pattern separation in terms of R and NDP but slightly improves it in terms of 546 
SF. The shift via scaling is weak but significant at all timescales, and larger at the longest τw. 547 
ANCOVA: R, P < 0.05 for τw = 5, 10 and 500 ms; NDP and SF, P < 0.007 for τw up to 500 ms. 548 
Detailed statistics for τw = 5, 10, 20, 50, 100, 250, 500 and 1000 ms respectively: R, P = 0.0451, 549 
0.0004, 0.3727, 0.7357, 0.9340, 0.4271, 0.0012, 0.2889, F(2, 491) = 3.1, 8.1, 1.0, 0.3, 0.1, 0.8, 550 
6.8, 1.2; NDP, P = <0.0001, <0.0001, 0.0003, 0.0012, <0.0001, 0.0069, <0.0001, 0.4154, F(2, 551 
491) = 11.1, 24.3, 8.4, 6.8, 11.2, 5.0, 14.6, 0.9, SF, P = <0.0001, <0.0001, <0.0001, <0.0001, 552 
<0.0001, 0.0065, 0.0002, 0.0003, F(2, 941) = 42.1, 20.9, 10.3, 13.6, 13.8, 5.1, 8.5, 8.1. 553 

 554 

Pathological spiking patterns in a subset of GCs from epileptic mice. What features of 555 

GC output spiketrains are changed in TLE to explain the difference in DG computations between 556 

KA and control mice? On visual inspection, we noticed that many KA neurons occasionally fired 557 

short bursts of action potentials after a single input pulse (Figure 6A), which is quite unusual for 558 

control GCs (Madar et al., 2019a). To determine whether there was a difference in the spiking 559 
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patterns of KA and control GCs, we measured three spiketrain features: 1) the average firing rate 560 

(FR) of a GC across a full recording set (fifty spiketrains), 2) the probability of spiking after a 561 

single input pulse (SP) and 3) the probability of bursting (p(Burst), i.e., more than one spike) 562 

after a single input pulse. Our results show that on average GCs from KA mice fire more 563 

faithfully after an input (Figure 6B) and also tend to fire in bursts (Figure 6C-D), which 564 

together lead to a higher FR (Figure 6B, E).  565 

Closer inspection suggests that the distributions of SP, p(Burst) and FR are different 566 

between KA and controls, with larger variance and upper tails for GCs from KA mice (Figure 567 

6B-E). Although we did not formally test for discrete clusters, visual inspection of Figure 6E 568 

shows that a subset of GCs from KA animals have higher SP, p(Burst) and FR than any control 569 

GC. Thus, it appears that, following an epileptogenic insult, only a subset of GCs displayed 570 

pathological characteristics amidst a background of seemingly normal GCs. 571 

 572 
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 573 
Figure 6. In epileptic mice, a subpopulation of GCs shows pathological spiking patterns 574 
(A) Example of current-clamp recordings in GCs from a kainate-injected (KA) vs a control 575 
animal in response to the same Poisson input train, illustrating that some GCs from KA spiked 576 
more, and had a tendency to fire short bursts (2-4 spikes riding a single EPSP).  577 
(B-E) Some GCs from KA exhibited larger firing rates due to a higher probability of spiking at 578 
least once after an input spike (spiking probability), and sometimes a higher probability of 579 
spiking more than once between two input spikes ( p(Burst) ) than GCs from controls. The firing 580 
rate, spiking probability and p(Burst) of a neuron were all computed as the average over the fifty 581 
sweeps of an output set from a pattern separation experiment (input set type 1, see Figure 4B).  582 
(B) Left: data points correspond to the same recordings as in Figure 4C (KA: 27; Ctrl: 12). Black 583 
dash and error bars are mean +/- SEM. A U-test was used to compare the medians, showing that 584 
on average FR and SP are higher in KA (FR: P = 0.0415, Z = -2.04, rank sum = 172.5; SP: P = 585 
0.0613, Z = -1.87, rank sum = 168.5). Right: Frequency distributions of the same data. A one-586 
sided two-sample KS test shows that the KA distribution has a larger tail in both cases (FR and 587 
SP: P = 0.0465, D = 0.4074), indicating that a subset of KA GCs are pathological.  588 
(C) Same as in B for p(Burst). Note that the left graph has a log10 scale showing all data points, 589 
whereas the middle graph has a linear scale zoomed in (i.e. not showing the 5 largest KA values). 590 
The graph on the right has the same scale as the middle graph. Together, they suggest that in KA, 591 
there might be a healthy population of GCs coexisting with a different population of 592 
pathologically bursty GCs (U-test: P = 0.0153, Z = -2.16, rank sum = 168.5; KS test: P = 0.0259, 593 
D = 0.4444). 594 
(D) Some bursts were detected by our algorithm in GCs from Ctrl mice, but the vast majority of 595 
those were due to the temporal summation of two EPSPs resulting from input spikes occurring 596 
close in time. In contrast, a large number of bursts in GCs from KA mice come after an isolated 597 
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input spike. Top: Time interval between the two input spikes (inter-spike-interval, ISI) preceding 598 
a given burst. Data points correspond to all detected bursts from the recordings in C. U-test: P = 599 
0.0003, Z = -3.58, rank sum = 5906.2. Bottom: Cumulative frequency distributions of the same 600 
data. A one-sided two-sample KS test demonstrates that the distributions are different (P < 601 
0.0001, D = 0.2699).  602 
(E) Same data as in B and C: the elbow in the distribution of SP, p(Burst) and FR values visually 603 
defines two clusters of neurons. One cluster contains GCs from both KA and Ctrl mice (with 604 
GCs from both groups spanning a large range of SP values but low p(Burst)) and can be 605 
considered "normal". In contrast, the other cluster, with highest SP combined with high p(Burst), 606 
contains only GCs from KA animals and can thus be considered "pathological". 607 

 608 

What is the origin of the pathological spiking patterns? We first controlled that 609 

stimulation intensities were comparable between treatment groups and were not causative of 610 

abnormal spiking patterns (Figure 7A). We next asked whether the abnormal firing came from 611 

changes in the synaptic drive. To answer this question, we measured the synaptic input-output 612 

relation (Ewell and Jones, 2010) by recording GCs first under current-clamp then under voltage-613 

clamp, in response to the same pattern separation stimulus protocol (Figure 7B1-2). Our data 614 

show that the average excitatory drive per neuron was not different between KA and control 615 

groups, and that it does not predict burstiness (Figure 7B3). A finer grained analysis on the 616 

individual currents suggests that although the excitatory drive and the spiking output are 617 

correlated, high amplitude EPSCs are neither sufficient nor necessary to elicit a burst (Figure 618 

7B4). Bursting does not seem to result from other changes in excitatory input-output coupling 619 

either (Figure 7B5), which suggest that inhibition might be involved. GCs are indeed subjected 620 

to strong tonic, feedforward and feedback inhibition that controls the sparseness of their activity 621 

(Coulter and Carlson, 2007; Ewell and Jones, 2010; Pardi et al., 2015; Lee et al., 2016) and is 622 

altered in TLE (Alexander et al., 2016; Dengler and Coulter, 2016). We did not record evoked 623 

IPSCs directly but, in normal mice, partial block of inhibition elevates GC firing rates and causes 624 

bursts (Madar et al., 2019b) similar to what we observed here in KA mice. All our results thus 625 
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converge to support the hypothesis that pathological spiking arises from an excitation/inhibition 626 

imbalance in a subset of GCs, likely driven by a decrease in inhibition. 627 

 628 

 629 
Figure 7. Pathological bursting arises from an excitation/inhibition imbalance 630 
(A) Bursting and high firing rates were not an artefact of stimulation differences: The current 631 
intensity of the electric stimulation did not significantly differ between KA and Ctrl (same 632 
recordings as in Figure 4C and 6B-E, U-test: P = 0.2991, Z = 1.04, rank sum = 274.5) and 633 
stimulus intensity was a poor predictor of pathological firing patterns (as indicated by the low R2 634 
values of linear regressions. For FR/SP/pBurst: R2 = 12.75%/11.69%/4.35%, F(2,37) = 635 
5.4/4.9/1.7, P = 0.0257/0.0332/0.2027). 636 
(B) For a subset of neurons in A (KA: 12; Ctrl: 6), we followed the current-clamp recording with 637 
a voltage-clamp recording (Vhold = -70mV) in response to the same pattern separation protocol in 638 
order to assess the excitatory synaptic drive and its relationship with spiking behavior. The 639 
stimulus electrode location and current intensity was unchanged. (B1) Example of current-clamp 640 
(top) and voltage-clamp (bottom) recording in the same GC from a Ctrl animal. Only the first 641 
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500 ms of the ten responses to repetitions of the first input train shown in Figure 4B are 642 
displayed. Top: action potentials are truncated at 0 mV. Bottom: stimulation artefacts and 643 
occasional unclamped spikes were blanked. (B2) The ten EPSCs (grey) associated to first pulse 644 
of input trains in B1 and the mean EPSC (black). We assessed the excitatory drive as the 645 
maximum inward current in the interval between each input pulse minus the current baseline 646 
(i.e., mode of the current over the full sweep). P(Spike) was defined as the probability of spiking 647 
during this interval across the ten sweeps of the current-clamp recording. (B3) Top: The mean 648 
EPSC density for each neuron was not significantly different between KA and Ctrl (U-test: P = 649 
0.5532, rank sum = 50; two-sided two-sample KS test: P = 0.1935, D = 0.4167), suggesting that 650 
pathological spiking cannot be explained by larger EPSCs in KA mice. Bottom: Indeed, no clear 651 
relationship exists between p(Burst) and the mean current density, as some GCs with a great 652 
synaptic drive do not exhibit much bursting, and vice versa. (B4) Consistently, the peak current 653 
density associated to each inter-input-interval in a recording is not well correlated to the 654 
corresponding number of spikes in the current-clamp trace, for both Ctrl (top) and KA (bottom). 655 
For example, excitatory currents of the same magnitude can be associated to 0, 1, 2, 3 or 4 656 
spikes. EPSC amplitude is thus not sufficient to explain the spiking output, which suggests that 657 
other factors, like reduced inhibition, are likely implicated in causing pathological bursts. (B5) 658 
Top: The average EPSC density between two input spikes is plotted against the corresponding 659 
probability of spiking p(Spike), as in Ewell and Jones (2010). The resulting input-output (IO) 660 
distribution is fitted with a sigmoid (two GCs representative of KA and Ctrl are shown). Bottom: 661 
In a subset of GCs, mostly from KA, The IO distribution appears disorganized and sometimes 662 
difficult to fit. A nonparametric proxy of this disorganization is the standard deviation (SD) of 663 
the current density, averaged across each level of p(Spike) excluding p(Spike) = 0 and 1. The 664 
average SD for a given GC was plotted against the propensity of that neuron to fire bursts. There 665 
is no clear relationship between these two quantities, suggesting that: 1) decoupling between the 666 
excitatory drive and spiking probability is not directly related to bursting and 2) a subset of GCs 667 
from KA with apparently healthy spiking patterns could already exhibit a more subtle but 668 
pathological IO disorganization. 669 

 670 

How do high FR and bursts relate to the DG computational impairment measured in KA 671 

mice? We first tested the hypothesis that higher GC firing rates and burstiness yield less pattern 672 

separation as measured with R (Figure 8A). In GCs of young mice, FR and pattern separation 673 

are related, but loosely (Madar et al., 2019a), whereas here in adult mice there is a strong linear 674 

relationship, such that GCs with pathologically high FR exhibit pathologically low pattern 675 

separation. Similarly, abnormal bursting corresponds to abnormally low levels of pattern 676 

separation. This analysis relates cell-wise spiking features (FR or pBurst averaged across all 677 
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spike trains of a recorded neuron) to a form of pattern separation that is not theoretically 678 

concerned with such features (Madar et al., 2019b).     679 

Other forms of pattern separation, more directly related to FR or bursting, can in theory 680 

also be performed: for example by increasing spiketrain-to-spiketrain variability in FR or 681 

burstiness of the output neuron, even if the average quantities were identical (Madar et al., 682 

2019b). Because pathological GCs only occasionally fired bursts, we asked whether TLE could 683 

affect such forms of pattern separation. To test this, we measured the spiketrain-to-spiketrain 684 

variability in FR as well as in two complementary measures of burstiness (occupancy and 685 

compactness, see Materials and Methods – Neural pattern separation analysis). For input 686 

sets of type 1 (10 Hz Poisson), GC output variability was slightly lower in terms of burstiness or 687 

FR. This weak type of pattern convergence disappeared in GCs from KA mice (Figure 8B). For 688 

input sets of type 2 and 3, no significant difference between KA and Ctrl was detected (Figure 689 

8C-D). Overall, Figure 8 suggests that TLE reduces DG neural pattern separation mostly by 690 

raising average levels of FR and burstiness, rather than through spiketrain-to-spiketrain 691 

variations of those features. 692 

 693 
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Figure 8. Pathological spiking patterns explain pattern separation differences in epilepsy 695 
(A) Neurons with high average firing rates and burstiness exhibit lower pattern separation 696 
(computed as Rinput – Routput). Same data as in Figure 4C and 6B-C. There is a strong linear 697 
relationship between firing rates and decorrelation (Grey line, R2 = 63.68%, F(2,37) = 64.9, P < 698 
0.0001). The relationship between p(Burst) and decorrelation is better described by an inverse 699 
function with a horizontal asymptote (see Methods – Software and statistics): R2 = 53.1%, R2 700 
adjusted for 3 parameters = 50.5%, F(3,36) = 20.4, P < 0.0001.  701 
(B-D) Mean +/- SEM pattern separation levels across recordings when considering burstiness 702 
codes (Compactness or Occupancy) or a rate code (spiking frequency across a 2s sweep) instead 703 
of the binwise synchrony code assumed by R. Compactness is the proportion of time bins with at 704 
least one spike, whereas occupancy is the average number of spikes in a bin. Pattern separation 705 
corresponds to more dispersion in compactness, occupancy or firing rate in the output spiketrains 706 
than the input spiketrains. Negative values mean there is pattern convergence. U-tests comparing 707 
medians of GCs from KA and Ctrl groups were performed (p-values in panel).  708 
(B) In response to input sets of type 1 (10 Hz Poisson trains, same recordings as in A and Figure 709 
4), GCs exhibit low levels of convergence, if any, in terms of compactness, occupancy and rate 710 
codes, and these levels are slightly but significantly shifted to less convergence in GCs from KA 711 
for τw = 10 ms. This means that the relationships between firing rate or burstiness and pattern 712 
decorrelation observed in A is not due to variations of the firing rate or burstiness across sweeps. 713 
Detailed statistics at 10, 20, 50, 100, 250 ms, Compactness: P = 0.0482, .1892, .1628, .2925, 714 
.7584, Z = -1.97, -1.97, -1.31, -1.39, 0.31, rank sum = 745, 745, 801, 794, 939 ; Occupancy: P = 715 
0.0177, 0.2586, 0.3624, 0.1425, 0.0211, Z = -2.37, -1.13, -0.91, -1.47, -2.31, rank sum = 712.5, 716 
816.5, 835, 788, 717; FR: P = 0.0553, Z = -1.92, rank sum = 750.  717 
(C) In response to an input set of type 2 (Poisson trains with different firing rates, same 718 
recordings as in Figure 5A), GCs from KA and Ctrl do not show significant differences (P > 0.2 719 
for all timescales and codes). Detailed statistics at 10, 20, 50, 100, 250 ms, Compactness: P = 720 
0.7726, 0.7726, 0.8365, 0.9014, 0.2312, Z = -0.29, -0.29, -0.21, 0.12, 1.20, rank sum = 51, 51, 721 
52, 57, 70; Occupancy: P = 1, 1, 0.9671, 0.5915, 0.2006, Z = 0, 0, 0.04, -0.54, -1.28, rank sum = 722 
55, 55, 56, 48, 39; FR: P = 0.9014, Z = -0.12, rank sum = 53. 723 
(D) In response to an input set of type 3 (10 Hz trains with varying compactness and occupancy, 724 
same recordings as in Figure 5B), GCs exhibit convergence in terms of compactness and 725 
occupancy and separation in terms of rate codes. Only computations in terms of compactness and 726 
firing rate are mildly shifted in GCs from KA for τw = 10 ms. Detailed statistics at 10, 20, 50, 727 
100, 250 ms, Compactness: P = 0.0848, rank sum = 9; Occupancy: P = 0.8, 0.7758, 0.9212, 728 
0.3758, 1, rank sum = 19.5, 20, 17, 23, 18; FR: P = 0.0848, rank sum = 9. 729 

 730 

Electrographic, behavioral and computational pathologies in individual mice. We have 731 

shown that, on average, KA mice develop EEG abnormalities (Figure 2), suffer mnemonic 732 

discrimination impairments (Figure 3) and have a bursting subpopulation of GCs with pattern 733 

separation deficits (Figures 4-8). Because we often performed all of the aforementioned 734 

experiments in the same mice, we next asked how those different epilepsy-related pathologies 735 
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are linked at the individual level (Figure 9). In a simple framework where behavioral 736 

impairments are caused by computational deficits that are due to reorganization of DG network 737 

function that also leads to an increase in epileptiform EEG events, one could expect a simple 738 

relationship between all the variables we measured. Interestingly, our data suggest a more 739 

complex view. For example, animals with few interictal spikes may still harbor some 740 

pathological neurons (Figure 9A) and be highly impaired at the BPS task (Figure 9B). This 741 

shows that both DG network pathologies and mnemonic impairments can occur independent of, 742 

or before, early EEG abnormalities. Inversely, both normal and pathological GCs were recorded 743 

in mice with more advanced EEG pathology, which confirms that those two subpopulations can 744 

coexist in the same KA animal (Figure 9A). Mice with clearly epileptiform EEG activity can 745 

also sometimes perform normally on the BPS task (Figure 9B). The variability in individual 746 

behavior and in cell sampling prevents us to definitively conclude on the relationship between 747 

single-cell pattern separation and mnemonic discrimination but, importantly, KA animals with 748 

the largest cognitive impairments all had at least one pathological recorded GC (Figure 9C). 749 

Finally, in cases where EEG, BPS and patch-clamp data were all obtained from each animal, the 750 

combination of these measurements yielded a very obvious separation between normal and KA 751 

subjects. Overall, our results suggest that epilepsy-related pathologies do not all develop in 752 

concert and that computational, behavioral and electrographic measures provide complementary 753 

informative dimensions that, together, better assess the epileptic state than any single dimension 754 

or pair of dimensions.  755 

 756 
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 757 
Figure 9. EEG, behavioral and computational measures provide complementary insights 758 
about epileptic pathology in individual animals. 759 
(A-D) Scatter plots relating the electrographic measure of IISs developed in Figure 2 (black axis 760 
labels), measures from patch-clamp recordings of individual GCs from the same animals (purple 761 
axis labels) and a summary score of behavioral discrimination impairment described in Figure 762 
3C (green axis labels). Not all three types of records are available for every animal, which leads 763 
to differences in the samples shown in each panel.   764 
(A) Data points correspond to individual GCs from animals in which both IISs and patch-clamp 765 
data were recorded. Each animal has a unique average hourly IIS index value. Only a subset of 766 
GCs are outside of the Ctrl range (i.e. pathological). For example, in the mouse with the highest 767 
IIS index (~12), only one of the three recorded GCs exhibited a pathological FR (~8 Hz, left 768 
panel) and all had a similar Routput slightly above the Ctrl range (~0.5, right panel). In contrast, 769 
some GCs with abnormally high FR (~6-12 Hz)_and Routput (~0.5-0.6) came from animals with 770 
low IIS index (~0-2). 771 
(B) Data points correspond to individual animals in which both IISs and BPS were measured. In 772 
KA animals, low IIS index can correspond to either normal or abnormal mnemonic 773 
discrimination, and despite having a high IIS index, some animals have normal discrimination.   774 
(C) Data points correspond to individual GCs from animals in which both BPS and patch-clamp 775 
data were recorded. In some KA mice with large behavioral impairments and multiple recorded 776 
GCs, some GCs exhibited normal pattern separation whereas others showed pathologically low 777 
levels. The relationship is unclear, but all KA mice with large impairments had at least one 778 
pathological GC. 779 
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(D) Data points correspond to individual GCs from animals in which IISs, BPS and patch-clamp 780 
data were all collected. Stems show which GCs were recorded from each animal. The lower right 781 
corner would correspond to the highest pathology in electrographic, behavioral and 782 
computational categories. Despite any heterogeneity or apparent ambiguity when only one or 783 
two of these measures are considered (above), when all three measures are available for each 784 
animal, the KA group is very clearly separable from the Ctrl group.  785 
 786 

Discussion 787 

 We provide the first experimental evidence that TLE is characterized by both mnemonic 788 

discrimination impairments and neuronal pattern separation deficits, associated with pathological 789 

spiking behavior in a subset of GCs. 790 

Cognitive and computational deficits in TLE. Our findings are consistent with the few 791 

previous studies that focused on similar questions. First, our data in human patients confirm the 792 

findings of Reyes et al. (2018) that TLE leads to mnemonic discrimination impairments. 793 

However, they used a different behavioral paradigm: a short-term memory object-location 794 

discrimination task akin to the task we used for mice. Although animal studies suggest that DG is 795 

necessary for such spatial mnemonic discrimination (Hunsaker and Kesner, 2013; Bui et al., 796 

2018), it remains unclear whether this is the case in humans. In contrast, we used a non-spatial 797 

memory discrimination task that is known to be DG-dependent in humans (Baker et al., 2016; 798 

Stark et al., 2019), allowing us to conclude that impairments in TLE patients are likely due to 799 

DG alterations.  800 

Our behavioral experiment in mice (Figure 3) also complements a previous study (Bui et 801 

al., 2018) by testing short-term (minutes) rather than long-term (24h) object-location memory 802 

and by testing multiple, parameterized levels of mnemonic interference, as recommended for 803 

rigorous testing of mnemonic discrimination (Hunsaker and Kesner, 2013; Liu et al., 2016). As 804 

in humans, the BPS task we used in mice is likely dependent on DG activity (Bui et al., 2018). 805 
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Taken together, our results and those studies suggest that mnemonic discrimination deficits 806 

observed in TLE are shared between humans and mice, occur for different types of memory and 807 

modalities, and point to DG malfunctions. 808 

Indeed, DG normally functions as a pattern separator (Madar et al., 2019a) which is 809 

hypothesized to support mnemonic discrimination. However, only one modelling study has so far 810 

investigated the impact of TLE-related DG pathologies on neural pattern separation (Yim et al., 811 

2014). This model suggested that mossy fiber sprouting and increased synaptic transmission 812 

from the perforant path to GCs, both hallmarks of TLE, can theoretically lead to a breakdown of 813 

pattern separation. Our results experimentally confirm that TLE leads to a deficit in neural 814 

pattern separation (Figure 4). However, the deficit we observed is not as large, possibly because 815 

the model 1) considered synaptic transmission as deterministic rather than probabilistic and 816 

plastic, 2) assessed a different form of pattern separation (patterns were defined as population 817 

ensembles of very short spiketrains, thus focusing on a population code whereas we investigated 818 

temporal codes) and 3) considered more severe degrees of epilepsy than was perhaps the case for 819 

our mice.  820 

Note that by using several similarity metrics, timescales and input statistical structures, 821 

and thus exploring various potential neural codes, we also discovered that other normal DG 822 

computations performed through rate and burstiness codes are perturbed in TLE (Figure 5, 8). 823 

The role of sparsity in neuronal pattern separation and DG gating. We found that GCs 824 

from epileptic mice exhibit pathological spiking consistent with a breach of the DG gatekeeper 825 

function (Figure 6) that leads to decreased neuronal pattern separation (Figure 8A). As noted by 826 

others, the gating and pattern separation functions of DG may be related (Dengler and Coulter, 827 

2016) because the filtering of incoming cortical activity into a sparser output can be a simple 828 
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mechanism underlying a form of pattern separation based on a pure population code (O'Reilly 829 

and McClelland, 1994; Severa et al., 2016; Dieni et al., 2016; Cayco-Gajic and Silver, 2019). 830 

Our results suggest that maintaining a sparse output also supports pattern separation of 831 

spiketrains in the time domain, at the level of single DGs. 832 

  Rare investigations of the spiking output of single GCs in epileptic tissue have reported 833 

that single stimulation of the perforant path sometimes leads GCs to fire bursts of spikes (Lynch 834 

et al., 2000; Kobayashi and Buckmaster, 2003). We expand on this by showing that bursts also 835 

emerge in response to complex, naturalistic stimulation patterns (Figures 6 and 7). It is 836 

important to note that occasional bursting is observed in normal GCs in vivo (Pernía-Andrade 837 

and Jonas, 2014), but this is very unusual in slices (Mongiat et al., 2009; Ewell and Jones, 2010; 838 

Zhang et al., 2012; Dieni et al., 2016). In our experiments, bursting GCs therefore demonstrate a 839 

breach of the dentate gate. Because bursts are known to be more efficient at driving spiking in 840 

CA3 pyramidal neurons (Henze et al., 2002), a single GC firing bursts will have a higher 841 

probability of making downstream CA3 pyramidal cells fire. This could have deleterious effects 842 

on memory encoding and promote seizures, as more active CA3 neurons would 1) increase the 843 

chance of overlap between memory representations and 2) overexcite a recurrent excitatory 844 

circuit, a mechanism of seizure generation. Thus, our findings are consistent with the idea that 845 

pathological firing or bursting of even a subset of GCs could simultaneously contribute to 846 

deficits in mnemonic discrimination and epileptiform activity in TLE.  847 

Our study also provides new insight on the mechanisms underlying GCs increased ability 848 

to burst by testing the influence of the excitatory drive (Figure 7B). The main source of 849 

excitation to GCs, the perforant path, is sometimes assumed to be augmented in TLE (Yim et al., 850 

2014) given evidence of increased release probability at the lateral perforant path synapse 851 
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(Scimemi et al., 2006). Our results do not directly contradict this, but we did not find a difference 852 

in the average synaptic current evoked in GCs by Poisson input spiketrains applied to the 853 

perforant path (Figure 7B3). More work is required to carefully test potential TLE-related 854 

changes in the coupling between perforant path and GCs, as well as EPSC kinetics and short-855 

term dynamics (Madar et al., 2019a), but it is clear that the size of excitatory drive alone is not a 856 

good predictor of bursting propensity in GCs (Figure 7B3-4). We also previously showed that 857 

partial blockade of inhibition can produce GC bursting and pattern separation deficits (Madar et 858 

al., 2019b). Thus, in accordance with past research (Kobayashi and Buckmaster, 2003), we 859 

conclude that the strong decrease in synaptic inhibition characteristic of TLE (Dengler and 860 

Coulter, 2016; Dengler et al., 2017) is likely the main driver of pathological bursting. 861 

Perhaps the most intriguing insight we bring on the failure of the DG as a gate and 862 

pattern separator in TLE is that this failure occurs only in a subset of GCs, upon a background of 863 

apparently normal GCs in the same the epileptic network. This finding invites many more 864 

questions: In the epileptic DG, is there a spectrum of spiking patterns among GCs going from 865 

normal to pathological, or are there two discrete types? What is the ratio of normal to 866 

pathological GCs? Does this ratio evolve during epileptogenesis? What makes individual GCs 867 

become pathological? Is that due to differences in intrinsic properties or networking? As 868 

explained above, our results suggest deficits in inhibition, but other anatomical or biophysical 869 

changes could be in play. For example, in individual mice with TLE, some GCs display 870 

pathological hilar basal dendrites that have been associated with increased intrinsic excitability 871 

that might allow them to fire bursts more easily (Kelly and Beck, 2017). It is also possible that 872 

there exist heterogeneity in GC mossy fiber sprouting, with some GCs receiving recurrent 873 

excitatory connections and some not. Some of these differences could be related to different 874 
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birthdates of adult-born GCs relative to an epileptogenic brain insult, resulting in only a subset of 875 

GCs integrating abnormally into the DG network (Kron et al., 2010). Alternatively, pathological 876 

GCs could develop from a more susceptible and active subclass of mature GCs (Erwin et al., 877 

2019). In any case, the discovery that the GC population in the epileptic DG is not homogeneous 878 

in terms of spiking patterns is a crucial step towards developing new treatments that would 879 

specifically target pathological neurons to avoid deleterious side-effects (Bielefeld et al., 2014).  880 

 The link between mnemonic discrimination, pattern separation and TLE. For thirty 881 

years the DG has been hypothesized to support mnemonic discrimination by performing 882 

neuronal pattern separation (Treves et al., 2008), but no experiment has yet directly connected 883 

DG input-output computations with memory. Important reports have shown that 1) abnormal 884 

neurotransmission in the DG can lead to overlapping spatial representations in CA3 as well as 885 

impairments in context discrimination learning (McHugh et al., 2007) and 2) that overlapping 886 

engrams in DG are a cause of confusion between the associated memories (Ramirez et al., 2013). 887 

However, those reports did not investigate whether pattern separation was performed in the DG 888 

per se, as opposed to upstream areas. Here, we confirm our previous work showing that the DG 889 

itself performs temporal pattern separation (Madar et al., 2019a, b) and we show that, on 890 

average, a deficit in pattern separation is associated with a deficit in mnemonic discrimination. A 891 

full demonstration of the causal link will require measuring and manipulating DG computations 892 

in vivo during episodic memory tasks, but our study is a preliminary step toward understanding 893 

how DG circuit-level computations relate to a high-level cognitive function and how these 894 

processes fail in TLE. A mechanistic understanding of this relation may lead to new early 895 

diagnosis tools (e.g. cognitive tests like in Figure 1) as well as therapies alleviating memory 896 

disorders in TLE. For example, our finding that a subset of GCs with pattern separation deficits 897 
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can develop without EEG hallmarks of epilepsy (Figure 9A) suggests a mechanism for memory 898 

impairments that often occur in early stages of human epileptogenesis (Jones et al., 2007; Witt 899 

and Helmstaedter, 2015) and the coexistence of pathological and normal neurons could explain 900 

memory impairments without hippocampal sclerosis (Rayner et al., 2019). 901 
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