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ABSTRACT 
Performing a statistical test requires a null hypothesis. In cancer genomics, a key challenge is the 
fast generation of accurate somatic mutational landscapes that can be used as a realistic null 
hypothesis for making biological discoveries. Here we present SigProfilerSimulator, a powerful 
tool that is capable of simulating the mutational landscapes of thousands of cancer genomes at 
different resolutions within seconds. Applying SigProfilerSimulator to 2,144 whole-genome 
sequenced cancers reveals: (i) that most doublet base substitutions are not due to two adjacent 
single base substitutions but likely occur as single genomic events; (ii) that an extended 
sequencing context of +/-2bp is required to more completely capture the patterns of substitution 
mutational signatures in human cancer; (iii) information on false-positive discovery rate of 
commonly used bioinformatics tools for detecting driver genes. SigProfilerSimulator’s breadth 
of features allows one to construct a tailored null hypothesis and use it for evaluating the 
accuracy of other bioinformatics tools or for downstream statistical analysis for biological 
discoveries. 
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MAIN 
Performing a statistical evaluation to determine whether an observation is seen by chance 
necessitates the construction of a null hypothesis corresponding with the expected default 
position. An observation is generally considered statistically significant if it reflects an unlikely 
outcome of the null hypothesis. In most practical applications, observations seen in less than 5% 
of outcomes from a null distribution are considered statistically significant.  
 
Large-scale computational analyses of cancer genomes use background mutational models to 
evaluate driver mutations [1-6], mutational signatures [7], and topographical accumulation of 
somatic mutations [8]. In almost all cases, a null hypothesis model of the background mutation 
rate is implicitly incorporated into a bioinformatics tool [6, 9, 10] and used to report statistically 
significant results. Here we present SigProfilerSimulator, a computationally efficient 
bioinformatics tool for generating sample specific mutational landscapes that match the 
mutational signatures operative in each sample. SigProfilerSimulator provides a framework for 
generating a background mutational model for downstream statistical analyses and hypothesis 
testing. The tool supports generation of simulated single base substitutions (SBSs), small 
insertions and deletions (IDs), and doublet base substitutions (DBSs) while maintaining their 
patterns at different resolutions. SigProfilerSimulator is available as both a Python and an R 
package, provides support for commonly used data formats, and is extensively documented. To 
demonstrate the wide applicability of SigProfilerSimulator, we illustrate its basic functionality 
using a single cancer genome and then apply the tool to 2,144 whole-genome sequenced cancers 
and to 1,024 whole-exome sequenced breast cancers to address three different questions in 
cancer genomics. 
 
The mutational pattern of a cancer genome can be described using distinct classification schemes 
reflecting the activity of mutational processes at different resolutions [11]. For example, single 
base substitutions can be described using only the mutated base-pair (6 possible mutational 
channels; known as SBS-6 classification), or the mutated base-pair with +/-1bp context (SBS-
96), or the mutated base-pair with +/-2bp context (SBS-1536), etc. [12]. Each of these 
classifications can be subsequently elaborated by considering additional features, e.g., 
transcriptional strand bias [11, 12]. By preserving the pattern of mutations at a preselected 
resolution, SigProfilerSimulator converts a set of real somatic mutations from a cancer genome 
into another set of randomly generated somatic mutations (Fig. 1A). Maintaining the mutational 
pattern provides an assurance that the same mutational processes are observed in both the real 
and the simulated cancer genome. By default, the tool projects these mutations as statistically 
independent events onto each chromosome by proportionately assigning mutations based on both 
the chromosome’s length and the observed rate of each mutational channel in each chromosome 
of a preselected reference genome. The tool also provides a variety of custom options for 
simulating mutations, including: (i) gender of the sample allowing appropriate incorporation of 
sex chromosomes; (ii) transcriptional strand bias allowing accurate distribution of mutations to 
account for the activity of transcription-coupled nucleotide excision repair; (iii) considering 
mutations as dependent sequential events, i.e., each mutation updates the observed rate of a 
mutational channel for a preselected reference genome; (iv) preserving mutational burden and 
mutational patterns for each chromosome; (v) exome simulations that generate mutations only in 
the coding regions of the genome; and several other options. With this collection of features, one 
can easily tailor an appropriate background mutational model for testing different biological 
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hypotheses or for evaluating existing bioinformatics tools. Importantly, SigProfilerSimulator is 
computationally efficient. For example, the tool can simulate ~37 million somatic mutations 
found in the 2,144 whole-genome sequenced cancers generated by Pan-cancer Analysis of 
Whole Genomes (PCAWG) initiative [13] within 90 seconds. 
 
To illustrate several of SigProfilerSimulator’s features, we provide a detailed visualization for a 
single TCGA melanoma sample: TCGA-DA-A-A1I8. Simulating TCGA-DA-A-A1I8 using the 
SBS-6 classification maintains the original sample’s pattern for the six possible types of single 
base mutations, however, it also results in completely different patterns for classifications at 
higher resolutions (Fig. 1B). Simulating an extended sequence context (SBS-96) results in a 
perfect match with the original landscape when including +/-1 adjacent bases; however, it does 
not reflect the transcriptional strand bias observed in the sample (Fig. 1B). As such, one can 
further elaborate these simulations by incorporating transcriptional strand bias (Fig. 1B), by 
considering +/-2 adjacent bases (Supplemental Fig. 1), or by preserving the mutational burden 
and mutational patterns on each chromosome (Supplemental Fig. 1). Each of these simulations 
can be subsequently used to test different hypotheses. To demonstrate this functionality, we 
applied SigProfilerSimulator to three questions in cancer genomics. 
 
First, we used simulations to evaluate whether doublet base substitutions (e.g., CC:GG>TT:AA 
mutations) are two subsequent single base substitutions occurring simply by chance in adjacent 
genomic positions. We constructed a null hypothesis by applying the tool to the 2,144 PCAWG 
cancer genomes. Simulations were performed considering SBSs as both statistically independent 
events (non-updating – simulating with replacement; each mutation has no effect on the observed 
rate of mutational channels) and dependent events (updating – simulating without replacement; 
each mutation updates the observed rate of mutational channels). Each sample was simulated 
1,000 times providing a distribution of DINUCs. After simulating the SBS-96 context for each 
PCAWG sample, we examined the number of single base substitutions occurring next to one 
another simply by chance. For example, in the sample SP99325 (LIRI), we observed on average 
approximately 23 pairs of adjacent SBSs when considering mutations as statistically independent 
events and 14 pairs of adjacent SBSs when considering mutations as dependent events (Fig. 2A). 
In contrast, the actual sample contains 303 doublet base substitutions indicating a 22-fold and a 
13-fold enrichment compared to the null hypothesis, respectively. The results indicate that it is 
highly unlikely that the majority of observed doublet base substitutions in SP99325 are the result 
of two adjacent SBS events. Applying the same approach to all PCAWG samples reveals 
between 10- and 1000-fold increase of the real number of DBSs compared to simulated data 
(Fig. 2B; Supplemental Fig. 2). These results confirm the believe that the vast majority of 
doublet base substitutions in human cancer are not due to adjacent single base substitutions. 
Rather, doublet base substitutions are likely due either to single genomic events or to higher 
mutagenic propensities of certain regions of the human genome. 
 
Second, we evaluated whether incorporating additional sequence context 5’ and 3’ of single base 
substitutions increases the specificity of the mutational patterns observed in cancer genomes 
[12]. Here, we considered two mutational patterns to be the same if their cosine similarity is 
more than 0.85 (Methods). Specifically, we simulated the PCAWG dataset at different 
resolutions (viz., SBS-6, SBS-96, and SBS-1536) and compared them to the patterns of 
mutations observed in the real samples (Fig. 2C & 2D). Comparing the +/-2bp context of data 
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simulated using SBS-6 to the +/-2bp context of the real data demonstrated that for almost all 
samples the SBS-6 simulations do not capture the +/-2bp context as 91% of samples exhibited a 
cosine similarity below 0.85. Similarly, only half of the samples simulated using SBS-96 had 
consistent +/-2bp context when compared to the real data (44% below 0.85; Fig. 2C). This 
demonstrates that the mutational patterns of the examined cancer genomes exhibit additional 
specificity for +/-2bp adjacent to single base substitutions. In contrast, comparing the +/-3bp 
context of data simulated using SBS-1536 demonstrated that the +/-2bp context captures the 
patterns observed at +/-3bp for almost all samples (only 6.5% of samples below 0.85; Fig. 2D). 
Overall, these results suggest that the SBS-1536 classification is necessary to capture additional 
information for a set of signatures beyond SBS-6 and SBS-96. Moreover, extending this 
classification to +/-3bp (SBS-24576) is largely not necessary as the SBS-1536 classification 
already captures the patterns of +/-3bp for majority of the examined cancer samples. 
 
Third, we evaluated the false-positive rates of tools commonly used for discovery of cancer 
driver genes. More specifically, we simulated the somatic mutations observed in the 1,024 
whole-exome sequenced breast cancers reported in the TCGA MC3 release [14]. The simulations 
were repeated 100 times and each of these 100 repetitions was analyzed for driver genes using 
MutSigCV1.41 and MutSigCV2 [6] as well as dNdScv [10]. In principle, since 
SigProfilerSimulator randomly shuffles somatic mutations, one would not expect to find any 
genes under selection. However, each of the tools found significantly mutated genes within the 
simulations using the recommended cutoff threshold of q-value < 0.10 (Fig. 2E). On average 
MutSig1.41CV found between 1.3 and 1.6 false-positive driver genes per simulation when 
examining data generated using the SBS-384 and SBS-6144 mutational classifications, 
respectively. In contrast, MutSig2CV found between 0.3 and 0.2 false-positive driver genes per 
simulation using SBS-384 and SBS-6144, respectively.  Lastly, dNdScv found between 0.03 and 
0.02 false-positive driver genes per simulation using SBS-384 and SBS-6144, respectively. Note 
that by chance, when using a q-value cutoff of 0.1, one would expect to observe less than 0.1 
false-positive driver genes per simulation. Lowering the threshold for statistical significance to 
0.01 eliminates all false-positive results from dNdScv and MutSig2CV but not for 
MutSig1.41CV. 
 
Increasingly, there is a need to develop reliable background models of cancer mutational 
landscapes to allow downstream statistical analysis for biological discoveries. Currently, to the 
best of our knowledge, there is no tool that allows explicitly simulating accurate background 
mutational landscapes. This report presents SigProfilerSimulator, a method that allows fast 
generation of mutational landscapes at different resolutions. As demonstrated by our analyses, 
SigProfilerSimulator can be used to evaluate the accuracy of other bioinformatics tools or it can 
be leveraged for making novel discoveries. SigProfilerSimulator’s breadth of features allows one 
to construct a tailored null hypothesis of mutational landscapes and to identify significance levels 
of the subsequent results. Overall, SigProfilerSimulator will be a useful tool for any researcher 
that performs statistical analysis based on mutational data derived from the sequencing of cancer 
or normal somatic tissues. 
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METHODS 
Tool Implementation 
SigProfilerSimulator is developed as a computationally efficient Python package and it is 
available for installation through PyPI. Further, an R-wrapper is available through GitHub. The 
tool leverages a PCG random number generator that provides a simple, fast, and space-efficient 
algorithm for generating random numbers with high statistical quality [15]. The tool uses a 
Monte Carlo approach for randomly generating somatic mutations while considering the 
observed frequency of a preselected reference genome. More specifically, SigProfilerSimulator 
randomly shuffles mutations by using the precomputed observed rates of mutational channels in 
a reference genome. The tool works in unison with SigProfilerMatrixGenerator [11] to first 
classify a catalog of somatic mutations prior to simulating it. The final mutational catalog is 
outputted into commonly used mutation data formats including mutation annotation format 
(MAF) files and variant annotation format (VCF) files. SigProfilerSimulator is freely available 
and has been extensively documented. 
Python code: https://github.com/AlexandrovLab/SigProfilerSimulator 
R wrapper: https://github.com/AlexandrovLab/SigProfilerSimulatorR 
Documentation: https://osf.io/usxjz/wiki/home/ 
 
Computational Benchmarking 
The computational efficiency of SigProfilerSimulator was benchmarked by simulating the freely 
available PCAWG dataset, consisting of 2,144 samples with 36,876,213 single base 
substitutions, for a single iteration using the default parameters. Simulating the complete dataset 
took approximately 90 seconds. Simulations were performed on a dedicated computational node 
with a dual Intel® Xeon® Gold 6132 Processors (19.25M Cache, 2.60 GHz) and 192GB of 
shared DDR4-2666 RAM.  
 
Analysis of Doublet Base Substitutions  
We simulated the PCAWG dataset using the SBS-96 classification. Each simulation was 
performed 1,000 times considering mutations as both statistically independent events (non-
updating; each mutation has no effect on the observed rate of mutational channels) and 
dependent events (updating; each mutation updates the observed rate of mutational channels). To 
calculate the number of DBS mutations occurring by chance in each sample, we generated the 
mutational catalogs for DBS-78 using SigProfilerMatrixGenerator [11]. The resulting counts for 
DBSs were used to plot the distributions of the expected number of DBSs due to two adjacent 
SBSs happening purely by chance. The fold change was calculated by dividing the mean DBS 
count observed across the simulations by the total number of DBSs found in the original sample. 
Derivation of q-values was performed by applying the Benjamini and Hochberg false discovery 
rate correction to p-values calculated using z-tests based on the DBS distributions found in the 
simulations and the numbers of DBSs observed in the real data. 
 
Sequence Context Analysis for Mutational Signatures 
The PCAWG dataset was simulated using the SBS-6, SBS-96, and SBS-1536 classifications 
while ensuring the respective mutational patterns and mutational burdens on each chromosome 
match the ones observed in the real data. SigProfilerMatrixGenerator was used to derive the 
mutational vectors for each sample including vectors incorporating three bases 5’ and three bases 
3’ of each mutation, resulting in a classification with 24,576 mutational channels. To avoid 
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comparisons of sparse binary vectors, only samples that had at least 2 mutations per mutational 
channel were included in the comparative analyses. The simulated and real mutational patterns of 
a cancer genome were considered the same if their cosine similarity was at least 0.85. Note that 
the average cosine similarity between two random nonnegative vectors is 0.75 (Supplemental 
Fig. 3). The chance of two nonnegative vectors with 1,536 mutational channels or 24,576 
mutational channels to have a similarity of 0.85 simply by chance less than 10-6 (Supplemental 
Fig. 3). 
 
Benchmarking False-Positive Driver Genes Detected by MutSigCV and dNdScv 
All whole-exome sequenced breast cancer samples part of the TCGA MC3 release were 
simulated using SBS-384 and SBS-6144 contexts while maintaining the mutational burden on 
each chromosome. As recommended [10], 23 samples with more than 500 exonic mutations 
were excluded from the analysis. Each simulation was repeated 100 times with different random 
seeds. The variant annotation predictor [16] was used to annotate simulated mutations with the 
appropriate gene name for compatibility with MutSigCV1.41 and MutSigCV2 [6]. We ran 
MutSigCV1.41 and MutSigCV2 using the recommended default parameters in conjunction with 
the genome reference sequence for hg19, mutation dictionary file, exome coverage file, and gene 
covariates file as found at https://software.broadinstitute.org/cancer/cga/mutsig_run. We ran 
dNdScv [10] using the default library parameters and filtered out the significant genes using the 
recommended q-value cutoff of less than 0.10. 
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FIGURE LEGENDS  
Figure 1. High-level overview illustrating the functionality of SigProfilerSimulator. A) 
Schematic depiction of SigProfilerSimulator’s general functionality. The tool transforms the real 
somatic mutational catalog of a cancer genome into a simulated mutational catalog, while 
maintaining the mutational burden and the mutational pattern at a preselected resolution. B) 
Comparing the simulated catalogues of a single cancer genome at different resolutions. Adding 
additional sequence context to a simulation creates a more specific and complex mutational 
model. Similarly, one can preserve the transcriptional strand bias (SBS-24, SBS-384, and SBS-
6144) to incorporate additional specificity. Simulating a more complex classification of the data 
results in matching catalogs for all collapsed versions of the higher matrix (i.e., simulating SBS-
384 ensures that the SBS-6, SBS-24, and SBS-96 simulated catalogs match the original data).  
 
Figure 2. Applying SigProfilerSimulator to three distinct cancer genomics problems. A) 
Distribution of the expected number of doublet base substitutions (DBSs) due to the adjacent 
single base substitutions (SBSs) observed by chance for the PCAWG sample SP99325. The 
distributions represent the results from 1,000 simulations of the mutational pattern of SP99325 
treating mutations as statistically independent events (blue) and 1,000 simulations of the 
mutational pattern of SP99325 treating mutations as dependent events. B) The fold increase of 
DBSs observed in the original PCAWG samples and the average number of DBSs observed in 
our simulations. The mutational pattern of each sample was generated 1,000 times considering 
somatic mutations as statistically independent events. C) Comparing the similarities of 
mutational patterns at +/-2bp context (SBS-1536) between real and simulated PCAWG samples. 
Simulations were performed at SBS-6 and SBS-96 resolutions. D) Comparing the similarities of 
mutational patterns at +/-3bp context (SBS-24576) between real and simulated PCAWG 
samples. Simulations were performed at SBS-6, SBS-96, and SBS-1536 resolutions. E) 
Evaluating the false-positive rates of MutSigCV1.41, MutSigCV2, and dNdScv driver detection 
tools using SigProfilerSimulator. All TCGA breast cancer WES samples were simulated 100 
times and examined for driver mutations using both MutSigCV and dNdScv. The average 
number of significant driver genes are plotted using a recommended q-value cutoff of 0.10. 
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SUPPLEMENTARY INFORMATION 
Supplementary Figure 1. Example of an additional resolution for simulating mutational 
patterns supported by SigProfilerSimulator. The example illustrates the resulting patterns 
when maintaining the mutational burden on each chromosome and when only relying on 
proportionate allocation based upon the nucleotide context distribution of the reference genome. 
Comparison is provided for a single breast cancer sample simulated at an SBS-1536 resolution.  
 
Supplementary Figure 2. Evaluating the expected rates of DBSs for mutations simulated as 
dependent events. The fold increase of DBSs observed in the original PCAWG samples and the 
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average number of DBSs observed in our simulations. The mutational pattern of each sample 
was generated 1,000 times considering somatic mutations as dependent events. 
 
Supplementary Figure 3.  Evaluating the average similarity of random nonnegative 
vectors. A) Comparing the cosine similarities amongst 10,000 randomly generated nonnegative 
vectors, where each vector has 1,536 mutational channels. B) Comparing the cosine similarities 
amongst 10,000 randomly generated nonnegative vectors, where each vector has 24,576 
mutational channels. 
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