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Outline
We first introduce our epistasis model and concept of coordinated interaction (CI). We then illustrate
CI in the case of a nonnegative phenotype driven by two interacting SNPs (Section 1.1), where
coordination is always perfect but may act either synergistically or antagonistically. Next, we
study three SNPs with pairwise interactions (Section 1.2), which is sufficient to realize CI as a
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correlation across SNP pairs. In Section 2, we discuss how we estimate coordination by regressing
on the interaction between even- and odd-chromosome PRS, as well as the key conditions underlying
our Even/Odd approach. Section 3 lays out the interacting pathway model, where CI has a simple
and interpretable form and the distribution of the Even/Odd estimator can be analytically derived.
Finally, in Section 4, we describe several plausible biological models for coordination, as well as the
behavior of our even/odd estimator Section 5 contains technical calculations.
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1 Coordinated polygenic interaction
We assume a polygenic model with pairwise SNP interactions for a phenotype y measured on N
samples. Let G be the N × S genotype matrix of S SNPs measured on the N samples. We write
the saturated pairwise interaction model as:

yi
ind∼

S∑
s=1

Gisβs +
∑
s≥s′

GisGis′Ωss′ + εi

where we define:

• β ∈ RS is the vector of additive SNP effects.

• Ω is a matrix of pairwise SNP interaction effects. Ωss′ gives the interaction effect between
SNPs s and s′. We assume Ω is lower triangular (WLOG).

• We assume that ε has i.i.d. Gaussian entries with mean zero.

• We assume columns of G are scaled to mean 0, variance 1 (WLOG in the sense that β and Ω
can be rescaled concomitantly).

• We have excluded fixed effect covariates for notational convenience.

• We also assume columns of G are independent. Allowing LD would complicate calculations
and estimation details but, we suspect, would not fundamentally change the situation.

The model can be written more succinctly by using ∗, the column-wise Khatri-Rao product.
Each column of the Khatri-Rao matrix product A∗B is equal to the element-wise product between
a column of A and a column of B. Although apparently complicated, the Khatri-Rao product is
a basic component of linear regression with interactions, e.g. A ∗B is exactly what R creates with
model.matrix(∼-1+A:B). Using ∗, the pairwise interaction model is:

y ∼ Gβ + (G ∗G)ω + ε (1)

This defines ω := vec (Ω) ∈ RS2 , where vec (·) concatenates the columns of a matrix into a vector.
Previous analyses of such pairwise SNP interaction models have focused on two distinct, com-

plementary strategies. First, individual pairwise SNP effects can be tested by fitting individual
SNP pairs (or higher-order tuples) as fixed effects [1]. Second, random effect models can be used to
aggregate all SNP effects and SNP-SNP interaction effects under the assumption that these effects
are all independent [2–10]. The former approach is particularly attractive for SNPs of large effect
or candidate SNPs, but genome-wide screens can also be useful even in some polygenic contexts
[11]. The latter approach generally has high power for complex traits, but sacrifices resolution on
the specific causal SNPs and nature of the interactions. Both approaches have been established for
decades.

Several recent approaches have worked to bridge this gap. A particularly simple and elegant
approach is to test the interaction between a single SNP and a polygenic random effect [12]–on one
hand, this provides the resolution of SNP-level tests, and, on the other, borrows strength across
the entire genome. A related concept is to test for interaction between SNPs and/or PRS and
rich, partially unknown environments, which has been facilitated either by assuming that the latent
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environment is univariate [13]–hence admits simple analytic marginalization–or is multivariate with
prior covariance given by known proxy environmental measures [14].

We introduce a new type of polygenic interaction called coordination, defined (roughly) as:

γ(Ω, β) = Cors6=s′ (Ωss′ , βsβs′) (2)

Intuitively, coordination measures whether the interactions line up with the product of main effects.
When γ > 0, the interactions in Ω work in concert to amplify positive SNP effects; for γ < 0,
however, Ω dampens positive SNP effects. We call the coordination perfect if γ ∈ {−1, 1}. The
definition of coordination excludes the diagonal terms Ωss because we want to capture interactions
between different SNPs, not nonlinear single-SNP effects like dominance.

We next illustrate the notion of coordination in the simple cases of two and three SNPs.
With two SNPs, we can show how coordination measures the synergy/dampening of main SNP
effects. With three SNPs, we can show how polygenic coordination measures the average of the
synergy/dampening across all causal SNP pairs. We assume nonnegative phenotypes in these stylis-
tic sections so that synergy/antagonism are equivalent to positive/negative epistasis [15]. Although
coordination generally measures the latter, the former can be more intuitive.

In Section 4, we provide several plausible polygenic models and show how they induce CI:

• Master transcription factors

• Polygenic buffers

• Structured random Ω

• GxE with G-E dependence

1.1 Pairwise interaction between two SNPs
In these two subsections, we write Ωss′ = βsβs′τss′ ; this notation is useful and comes without
loss of generality except in aberrant situation where a SNP has zero marginal effect and nonzero
interaction effects.

The exact definition of coordination is:

γ(Ω, β) :=
∑
s>s′ Ωss′βsβs′√∑

s>s′ Ω2
ss′

√∑
s>s′ β2

sβ
2
s′

(3)

Although (3) is our exact definition of coordination, we usually think about the correlation-based
approximation in (2) because it is simple, interpretable and accurate for the polygenic models.

Our example imagines two haploid SNPs a/A and b/B with main effects βA and βB . To ease
interpretation, assume that the SNPs are coded such that βA, βB > 0 and that the mean phenotype
for the ab genotype is 0. We parameterize the pairwise interaction through τAB , which describes
the gap between the true interaction model and the linear prediction for the mean AB phenotype
(Table 1). In other words, the mean phenotype for samples with the AB genotype is βA+βB under
the linear model, but in reality the mean phenotype for AB samples is βA+βB +βAβBτAB . Hence,
τAB < 0 means the genotypes act antagonistically, with the total effect of A and B being less that
the sum of its parts. On the other hand, τAB > 0 means the SNPs act synergistically. In the former
case, adding marginal SNP effects overestimates the true genetic variance explained; in the latter
case, adding marginal SNP effects fails to capture all the (broad-sense) heritability.
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For a single pair of SNPs, the coordination is trivially perfect by the definition in (3) (unless τAB
= 0, in which case there is no interaction to coordinate). This emphasizes the difference between
coordination and generic interaction: rather than measure the existence or size of interactions,
coordination assumes interactions exist and measures their alignment with main effects.

a A
b 0 βA
B βB βA + βB + βAβBτAB

=⇒ γ = β2
Aβ

2
BτAB√

β2
Aβ

2
Bτ

2
AB

√
β2
Aβ

2
B

= sign(τAB)

Table 1: Mean phenotype values with two interacting, haploid SNPs (a/A and b/B) with baseline
effects βA, βB > 0. When τ < 0, the AB genotype is buffered relative to the additive model; when
τ > 0, the genetic effect is super-linear. γ is formally zero when the linear model holds.

1.2 Pairwise interaction between three SNPs
In this case of two SNPs, there is only one interaction effect, hence the coordination is trivially
perfect: all SNP pairs (i.e. the only SNP pair) have either inflated- or deflated-effects relative to
linearity, hence the coordination is perfect, with sign determined by τ . More generally, if there
are many SNPs, γ is like a weighted average over the γ values for each SNP pair. Intuitively, γ
estimates whether positive SNP effects are, on balance, inflated or deflated (relative to additive) in
combination with another SNP.

We illustrate this in the case of three SNPs in Table 2. The first result is that γ decomposes into
a weighted average of the τ for each SNP pair (the † approximation in Table 2 below). This allows
us to extend our intuition from the two-/three-SNP cases to the more general polygenic models in
later sections.

The second result is that γ2 roughly describes the proportion of genetic interaction that is
coordinated with main effects:

γ2 ≈ τ̄2

τ̄2 + V (τ) (4)

This is formalized and generalized to polygenic models in Section 5.1.

a A
b 0 βA
B βB βA + βB + βAβBτAB

a A
c 0 βA
C βC βA + βC + βAβCτAC

c C
b 0 βC
B βB βB + βC + βBβCτBC

Define wll′ := β2
l β

2
l′√∑

s>s′ τ2
ss′β2

sβ
2
s′

√∑
s>s′ β2

sβ
2
s′

=⇒ γ = wABτAB + wBCτBC + wACτAC

=
∑
s>s′

wss′τss′

†
≈ τ̄√

τ̄2 + V (τ)

=⇒ γ2 ≈ τ̄2

τ̄2 + V (τ)

Table 2: The equalities are general and emphasize that γ is a type of weighted genome-wide average
across all SNP pairs. The approximation works well for polygenic models, see Section 5.1.
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2 The even/odd estimator for coordination
Clearly, if we knew Ω and β we could just calculate the coordination γ using equation (3). More
generally, we could evaluate γ using estimates of Ω and β.

However, we are primarily interested in the domain where S � N and β and Ω are dense,
a setting where accurate effect estimates are hopeless. In the simpler context of GREML, where
Ω is omitted, this high-dimensionality has led many others to consider random effect models to
estimate ‖β‖ directly, without first estimating β. GREML works well for polygenic signals because
(a) there are more causal SNPs than samples and (b) ‖β‖ can be accurately estimated even when
the assumed parametric prior for β is relatively badly misspecified [16, 17].

Redolent of GREML, we do not attempt to fit all SNP effects and pairwise SNP-SNP interac-
tions. Instead, we average these signals over large genomic regions. For sufficiently polygenic traits,
this averaging increases power without incurring bias. Intuitively, both approaches succeed when
nonzero elements of β (and Ω, for CI) are spread uniformly across the genome, which happens with
high probability for polygenic traits. We formalize this under a model where phenotypes are driven
by interactions between additively-heritable pathways in Section 3.

Specifically, we are interested in the regression coefficients derived from fitting the following
(misspecified) phenotypic model with ordinary linear regression, symbolically represented by:

y ∼ αAPA + αBPB + λPA ∗ PB (5)

PiA :=
∑
s∈A

Gisβs; PiB :=
∑
s∈B

Gisβs (6)

This defines PA and PB as the risk score derived from the SNP sets A and B. For example, we are
primarily motivated by the case where A = SNPs on odd chromosomes, and B = even chromosomes.

We propose to estimate the coordination γ by rescaling the OLS estimate of λ:

γ̂AB :=

√
h2
Ah

2
B

h2
AB

λ̂OLS (7)

h2
A := ‖βA‖2; h2

B := ‖βB‖2; h2
AB := ‖ΩAB‖2

Although this scaling is essential for unbiasedly estimating γ, it has no effect at all on testing
whether γ is zero or the estimated sign of γ. For this reason, we focus on λ̂ in the main text
(though we call it γ̂ for simplicity), and we only evaluate CI through its sign and p-value. In the
future, it may be useful to scale λOLS using estimates of h2

A, h2
B and h2

AB derived from models like
[2–10], which may be helpful for quantifying the impact of CI on genetic architecture.

Our main theoretical result (Proposition 1) shows that this estimator is unbiased and consistent:

γ̂AB = γAB +N
(

0, 1
Nh2

AB

)
where the true A/B odd coordination γAB is defined as:

γAB = βTAΩABβB√
h2
Ah

2
Bh

2
AB

Intuitively, Nh2
AB is the effective sample size for coordination estimation.
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This result provides the link between our estimated even/odd CI and the true even/odd CI, i.e.
γ̂AB ≈ γAB . In the next section, we will ask which models yield γAB ≈ γ. Together, this will show
that γ̂AB is a reasonable estimator of the coordination γ.

We assumed the true β are used in constructing these risk scores. We expect that errors in
estimating β will attenuate γ estimates and power but will not induce bias or false positives,
similar to genotyping or phenotyping errors in GREML [17]. Tracking the effects of errors in β
seems labor intensive but straightforward. Also, we assume that the pathways are independent, i.e.
A and B are disjoint. We lift this in Section 3.3.

The interaction between polygenic scores in model (5) coincides with the fully saturated inter-
action model in (1) when there exists some λ ∈ R such that:

Ω =
(

0 Ω(21)
Ω(12) 0

)
= λ

(
0 β(2)β

T
(1)

β(1)β
T
(2) 0

)
(8)

We call this perfect even/odd coordination. This implies perfect (general) coordination, and essen-
tially adds the further constraint that all coordination flows through the specific even/odd partition.

3 Interacting pathways model
Suppose the trait is defined by pairwise interactions between K discrete system-/pathway-specific
contributions. In this section, we derive the coordination, γ, and show the even/odd estimator,
γ̂AB , is accurate for polygenic models. We then discuss several biological mechanisms that yield
such interacting pathway models in Section 4.

We formalize the interacting pathways model as:

y =
∑
k

zk +
∑
k≤k′

(zk ◦ zk′)αkk′ + ε (9)

zk =
∑
s∈Sk

G,sβs

where zk are the K discrete pathway main effects driven by the SNPs in the the set Sk. Note that z
reflect causal biological pathways, while the A/B risk scores we construct in P are based on chosen,
potentially arbitrary SNP sets.

Note that this interacting pathways model in (9) is an instance of the full polygenic pairwise
interaction model in (1), with ωss′ = βsβs′αk(s)k(s′), where k(s) indicates the pathway to which
SNP s contributes.
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3.1 γ under interacting pathways
In the interacting pathways model, the coordination is:

γ :=
∑
s<s′ βsβs′ωss′√(∑

s<s′ β2
sβ

2
s′

) (∑
s<s′ ω2

ss′

)
=

∑
s<s′ β2

sβ
2
s′αk(s)k(s′)√(∑

s<s′ β2
sβ

2
s′

) (∑
s<s′ β2

sβ
2
s′α2

k(s)k(s′)

)
=

∑
k,k′ h2

kh
2
k′αkk′ −

∑
s β

4
sαk(s)k(s)√(∑

k,k′ h2
kh

2
k′ −

∑
k

∑
s∈k β

4
s

)(∑
k,k′ h2

kh
2
k′α2

kk′ −
∑
s β

4
sα

2
k(s)k(s)

)
=:

∑
k,k′ h2

kh
2
k′αkk′ − s1√(

h4
β − s2

)
(h2
ω − s3)

≈
∑
k,k′ h2

kh
2
k′αkk′

h2
β

√
h2
ω

h2
k :=

∑
s∈k

β2
s ; h2

β :=
∑
s

β2
s =

∑
k

h2
k; h2

ω :=
∑
k,k′

h2
kh

2
k′α2

kk′ ≈ 2
∑
s<s′

ω2
ss′

A few facts:

• γ is invariant to jointly multiplying all h2
k or all αkk′ by any positive number.

• γ 6= 0 implies that at least one heritable, interacting pathway exists–∃ i, j s.t. h2
i , h

2
j , αij 6= 0.

• For K = 2, with no intra-pathway nonlinearity (i.e. α11 = α22 = 0),

γ ≈ h2
1h

2
2α12

(h2
1 + h2

2)
√
h2

1h
2
2α

2
12

= sign(α12)
√
h2

1h
2
2

h2
1 + h2

2
(10)

which is maximized in absolute value when h2
1 = h2

2.

• Assume all pathways interact equally in that αij = aI{j ≤ i}. Then:

γ = sign(a)

√∑
k≤k′ h2

kh
2
k′∑

k,k′ h2
kh

2
k′

= sign(a)
√

1/2
√

1 +
∑
k h

4
k

(
∑
k h

2
k)2

this attains its maximum, |γ| = 1, when h2
k 6= 0 for exactly one k. If instead αij = aI{j < i},

the coordination is:

γ = sign(a)

√∑
k<k′ h2

kh
2
k′∑

k,k′ h2
kh

2
k′

= sign(a)
√

1/2
√

1−
∑
k h

4
k

(
∑
k h

2
k)2

which has opposite properties: |γ| is maximized at
√

K−1
2K when all h2

k are equal, and γ = 0
when all h2

k = 0 except for one k.
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• Assume K is large and h2 and α are independent. Then:

γ ≈
∑
k,k′ h2

kh
2
k′αkk′

h2
β

√
h2
ω

≈
K2
(

1
K2

∑
k,k′ h2

kh
2
k′

)(
1
K2

∑
k,k′ αkk′

)
h2
β

√
K2
(

1
K2

∑
k,k′ h2

kh
2
k′

)(
1
K2

∑
k,k′ α2

kk′

)
=

h4
βᾱ

h2
β

√
h4
β (ᾱ2 + V (α))

= ᾱ√
ᾱ2 + V (α)

In this case, γ is the average level of positive/negative epistasis across pathways, shrunk
toward zero to penalize variance between pairwise pathway-level interactions.

• We have loosely assumed that the residual terms s1, s2, and s3 are approximately zero. This
will hold when the heritability is smoothly spread across many causal SNPs because these
terms each sum over only L SNP pairs rather than L2. This is particularly easy to see in the
limit that β2

s = b for all SNPs s. Taking s1 as an example, and defining Lk as the number of
SNPs contributing to pathway k:

| s1∑
s,s′ β2

sβ
2
s′αk(s)k(s′)

| = |
2
∑
s b

2αk(s)k(s)∑
s,s′ b2αk(s)k(s′)

| = 2|
∑
k Lkαkk∑

k,k′ LkLk′αkk′
| ≤ 2|α(1)(1)|/L(1)

where the inequality is over choices of α and (1) indicates the value of k that minimizes Lk.
So, as long as we consider the limit (N,Lj)→∞, then s1, s2, s3 → 0.

• In the large-K limit and assuming α has mean 0, the coordination approximately becomes a
type of pathway-level coordination: letting h :=

(√
h2

1, . . . ,
√
h2
K

)
,

γ = Corr (h⊗ h, (h⊗ h) ◦ vec (α))

If the pathway interaction strengths (α) are not coordinated with the product of main pathway
effects (h⊗ h), then the coordination vanishes. In other words, coordination only persists in
the large K limit when the pathways themselves are coordinated. Biologically, this is not
expected to be a particularly interesting limit, which motivates our focus on traits driven by
interactions between a small number of pathways.

3.2 γAB under interacting pathways
Above, we derived the behavior of the true, global coordination, γ. Here, we analyze γAB , the
oracle estimator of γ we could create if we perfectly knew βA, βB , and ΩAB . Starting from its
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definition,

γAB := βTAΩABβB√
h2
Ah

2
Bh

2
AB

=
∑
s∈A,s′∈B βs(βsβs′αk(s)k(s′))βs′√

h2
Ah

2
B

√∑
s∈A,s′∈B

(
αk(s)k(s′)βsβs′

)2
=

∑
k,k′ αkk′

∑
s∈A∩k,s′∈B∩k′ β2

sβ
2
s′√

h2
Ah

2
B

√∑
k,k′ α2

kk′
∑
s∈A∩k,s′∈B∩k′ β2

sβ
2
s′

=
∑
k,k′ αkk′h2

A,kh
2
B,k′√

h2
Ah

2
B

√∑
k,k′ α2

kk′h2
A,kh

2
B,k′

We have defined h2
A,k =

∑
s∈A∩Sk β

2
s as the pathway-k heritability that is captured by the SNPs in

group A (and likewise for h2
B,k).

If only one pathway pair is active–α12 6= 0, say–then:

γAB = sign(α12)

√
h2
A,1∑
k h

2
A,k

√
h2
B,2∑
k h

2
B,k

(11)

showing γ2
AB measures the fraction heritability in group A (B) that tags pathway 1 (2). Hence γAB

increases either when (a) superfluous main effects are excluded, so that h2
A,k (h2

B,k′) decreases for
k 6= 1 (k′ 6= 2) or (b) meaningful main effects are added, so that h2

A,1 or h2
B,2 increases.

We note that for non-perfectly-polygenic models, our assumption that α21 = 0 is not trivial, as
A and B may differ meaningfully. In this case, Ω must be symmetrized (i.e. we must set α21 = α12
and then divide by 2). In this case,

γ2
AB = 1

2
h2
A,1h

2
B,2 + h2

A,2h
2
B,1

h2
Ah

2
B

(12)

The is useful for the master transcription factor model in 4.1, because the master TF is assumed
to derive all its heritability from a small, contiguous genomic region that must live entirely in
either A or B. It is also clear that this exactly reduces to (11) under perfect polygenicity, as then
h2
A,2h

2
B,1 = h2

B,2h
2
A,1.

Compared to γ in (10), γAB replaces the proportion of heritability tagged by group 1 (h2
1/h

2
β)

with the proportion of A-heritability tagged by group 1 (h2
A,1/h

2
A); the B group is analogous. In

other words, γAB/γ measures the enrichment of coordination between A and B SNPs compared to
the average coordination across all SNP pairs. Intuitively, most choices for A and B will give γAB
that reasonably approximates γ.

In the special case that the A/B split is purely random and the system is highly polygenic,
then h2

A,k ≈ EA/B split

(
h2
A,k

)
= |A|

S h
2
k (and h2

B,k ≈
|B|
S h

2
k), which means that the AB estimator

is approximately unbiased: EA/B split (γAB) ≈ γ. This informally establishes that random SNP
partitions yield accurate estimates of polygenic coordination.

However, when A and B are chosen adversarially, arbitrarily large bias can arise (as in GREML,
[17]). For example, when A perfectly captures pathway 1 heritability (h2

A,1 = h2
1) and only pathway
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1 heritability (h2
A,1 = h2

A), and analogous for B perfectly coinciding with pathway 2, then γ2
AB = 1

regardless the overall polygenic coordination.
More generally, increasing the concentration of A around pathway 1 (resp. B around 2) increases

the AB coordination. In this sense, we can use the variation of γAB as a function of A and B to
map the latent interacting pathways. This is the intuition supporting our tests for enrichment of
CI in trait-relevant tissues, but can be generalized in many ways. For example, in the limit where
|A| → 1, a SNP-level model is obtained, giving a coordination variant of the SNP-by-Polygenic
interaction test in [12].

3.3 Incorporating genetically correlated pathways
Now, we no longer require that the pathways zk are each determined by non-overlapping sets of
SNPs. Instead, we just assume that each pathway follows an additive model, with pathway k
determined by the effects β(k):

zk = Gβ(k)

In the specific case of K = 2, assuming no intra-pathway non-linearity (α11 = α22 = 0), the
coordination is now:

γ :=

∑
s<s′(

∑
k β

(k)
s )(

∑
k β

(k)
s′ )

(
α12β

(1)
s β

(2)
s′

)
√(∑

s<s′(
∑
k β

(k)
s )2(

∑
k β

(k)
s′ )2

)(∑
s<s′

(
α12β

(1)
s β

(2)
s′

)2
)

≈
1/2

∑
s,s′(

∑
k β

(k)
s )(

∑
k β

(k)
s′ )

(
α12β

(1)
s β

(2)
s′

)
√

1/2
(∑

s(
∑
k β

(k)
s )2

)2
(

1/2
∑
s,s′

(
α12β

(1)
s β

(2)
s′

)2
)

= sign(α12)
(
βT1 β2 + ‖β1‖2

) (
βT1 β2 + ‖β2‖2

)(
‖β1‖2 + 2βT1 β2 + ‖β2‖2

)
‖β1‖‖β2‖

=⇒

|γ| =
(
ρh1h2 + h2

1
) (
ρh1h2 + h2

2
)

(h2
1 + 2ρh1h2 + h2

2)h1h2

We define ρ = Ĉov(β(1), β(2)) = βT1 β2 (informally identifying βi and β(i) where convenient). Be-
cause we assumed only K = 2 pathways, the space of inter-pathway correlation collapses to the
scalar ρ. We assume ρ ≥ 0 for simplicity and because this is usually biologically plausible, but
could do similar calculations for ρ < 0.
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Letting x := h2/h1,

|γ| = (ρx+ 1) (ρ+ x)
1 + 2ρx+ x2

= ρ+ (1 + ρ2)x+ ρx2

1 + 2ρx+ x2

= ρ
1 + 2ρx+ x2

1 + 2ρx+ x2 + (1 + ρ2)x− 2ρ2x

1 + 2ρx+ x2

= ρ+ (1− ρ2) x

1 + 2ρx+ x2 =⇒

|γ| = ρ+ (1− ρ)2
√
h2

1h
2
2

h2
1 + 2ρh1h2 + h2

2
(13)

This exactly agrees with the above equation (10) when ρ = 0, as it should. On the other hand, as
ρ → 1, |γ| → ρ, and in particular ρ = 1 gives perfect coordination. On the other end, for small
ρ, the sign of γ and ρ can mismatch; however, this holds only when the pathways explain very
different amounts of heritability and also ρ is small (Figure 1). More generally, ρ > 0 serves to
increase γ estimates, hence showing another source of coordination.

In general, as a function of x := h2/h1 ≥ 0, γ varies over the interval [ρ, ρ+ (1−ρ)2

4 ] = [ρ, (1+ρ)2

4 ],
because 4x ≤ 1+2x+x2 for all x ∈ R. We visualize these components as the upper/lower bounds in
Figure 1, and illustrate how γ varies, especially for ρ < 0, as a function of the ratio of heritabilities
h2

1/h
2
2 (i.e. holding constant total heritability).

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ρ

γ

Upper Bound
Lower Bound
Various h2/h1

Figure 1: The range of γ implied by different choices of ρ. Upper bound corresponds to h2
1 = h2

2,
and lower bound corresponds to h2

1 ≈ 0 or h2
2 ≈ 0. Green lines indicate intermediate ratios

h2
1/h

2
2 ∈ (0,∞).
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4 Biological models of coordinated interaction
4.1 Master transcription factor
eQTLs are SNPs that effect the expression of a gene. Here, we build a phenotypic model where
SNPs effect the trait only through their impact on gene expression. We partition the eQTLs into
S0, for a master TF, and Sg, for all the genes g regulated by the master TF. We assume each gene
is determined by the linear, cis effects from these eQTLs:

Z̃ig = µg +Gi(g)η(g) + δig

Zi0 = µ0 +Gi(0)η(0) + δi0

Each η(g) represents the effects of cis SNPs on some gene, and here δig indicates nongenetic deter-
minants of gene expression.

Except for the master TF, we model each gene as the product of this cis based genetic effect
and the activity level of the master TF:

Zig = Z̃igZi0

Finally, we assume the phenotype is determined by linear gene effects plus some noise term ε:

yi =
∑
g>0

Zigψg + εi

Intuitively, the master TF scales the cis-genetic architecture of the genes it regulates, either am-
plifying or dampening the cis-signal depending on the expression of the master TF (Zi0). In this
way, the organism can control the phenotypic penetrance of entire genetic programs without alter-
ing their cis-genetic architecture. This resembles a trans-genetic regulation mechanism that was
recently proposed as a biologically plausible mechanism for the omingenic model [18].

This master TF model can be recast as a pairwise SNP interaction model by expanding Zig:

yi =
∑
g

((
µg +Gi(g)η(g) + δig

)
·
(
µ0 +Gi(0)η(0) + δi0

))
ψg + εi

= µ0
∑
g

µgψg + µ0
∑
g

ψg
∑
s∈Sg

Gisηs +
∑
g

µgψg
∑
s∈S0

Gisηs +
∑

g,s∈Sg ;s′∈S0

GisGis′ηsηs′ψg + ε′i

=⇒ y = µ′ +Gβ + (G ∗G)ω + ε′

This shows our stylized master TF model falls within the framework of the interacting pathway
model in (9), where:

βs := ηs

{
µ0ψg if s ∈ Sg∑

g µgψg =: w0 if s ∈ S0

ωss′ := I{s ∈ S0, s
′ ∈ Sg}ηsηs′ψg = I{s ∈ S0}

µ0w0
βsβs′

These definitions assume, WLOG, that SNPs are indexed such that the smallest indices all corre-
spond to S0. We also define the new noise term ε′ by combining the phenotypic noise ε and the
phenotypic contribution of gene expression noise in δ.
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Note that Ω is essentially proportional to ββT , except that Ωss′ is only nonzero when s corre-
sponds to the master TF and s′ corresponds to a regulated gene. Intuitively, then, we expect γ to
be ±1 divided by the fraction of the genome covered by cis SNPs for the master TF. In terms of
block matrices, we are asking about the block-wise correlations between the lower triangles of ββT
and Ω:

β(1)β
T
(0)

...
. . .

β(S−1)β
T
(0) β(S−1)β

T
(1)

. . .
β(S)β

T
(0) β(S)β

T
(1) . . . β(S)β

T
(S−1)


︸ ︷︷ ︸

ββT

and


β(1)β

T
(0)

β(2)β
T
(0) 0

...
...

. . .
β(S)β

T
(0) 0 . . . 0


︸ ︷︷ ︸

µ0w0Ω

Let h2
¬0 :=

∑
g>0 h

2
g and h2

β := h2
0 + h2

¬0. Visually, the correlation decomposes into column-
wise terms capturing the master TF (

√
h2

0/h
2
β) and row-wise terms capturing its downstream genes

(
√
h2
¬0/h

2
β). Then γ can be derived directly from (10):

γ =
√
h2

0h
2
¬0

h2
0 + h2

¬0
(14)

Because (a + b)2 > 4ab for all a, b ∈ R, γ ∈ [−1/2, 1/2], consistent with our interpretation of γ as
a correlation. The factor of 2 accounts for the fact that there is no interaction between at least
half of all pairs of SNPs, i.e. SNP pairs where both contribute to the master TF or to a regulated
genes, and is an upper bound that is obtained only when marginal signal is evenly divided between
the master TF and the combination of its regulated genes’ marginal signals. These values for h2

0
and h2

g also maximize the proportion of heritability due to interaction, h2
ω/(h2

ω + h2
β).

(14) does not exactly agree with the approximation in (4) because the latter makes an inde-
pendence assumption that does not hold for this model with a single TF, essentially because it
is very sparse. Nonetheless, under the further assumption that each gene explains roughly equal
heritability (h2

0 = h2
g = h2

∗), then equation (14) becomes:

γ ≈
√
h2
∗ ((G− 1)h2

∗)
Gh2
∗

≈ 1√
G

= 1/G√
(1/G)2 + (1/G · (G− 1)/G)

= τ̄√
τ̄2 + V (τ)

= (4)

This uses τss′ := ωss′/(βsβs′). It is not a coincidence that these equations agree under the as-
sumption that each gene is roughly equally heritable–this assumption makes τ and β ⊗ β roughly
uncorrelated, the condition for (4).

Finally, the AB coordination can be derived directly from (12): assume WLOG that S0 ∈ A,
because S0 is assumed to be small and S0, A and B are assumed contiguous. Also assume that h2

¬0
is divided evenly across A and B, as expected if the split is chosen randomly. Before we use (11),
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we must first symmetrize Ω (i.e. update Ω with 1/2(Ω + ΩT ), for the purpose of this calculation):

γ2
AB = 1

2
(h2

0)(h2
¬0/2) + (h2

¬0/2)(0)
(h2

0 + h2
¬0/2)(h2

¬0/2)

= γ2 (h2
0 + h2

¬0)2

(2h2
0 + h2

¬0)h2
¬0

= γ2
(

1 + h4
0

2h2
0h

2
¬0 + h4

¬0

)
≈ γ2

where the approximation holds for small h2
0, i.e. when the master TF marginally explains a small

fraction of overall heritability. For h2
0 > 0, however, γ2

AB is slightly inflated due to the asymmetry
between A and B that is induced by the single, strong master TF, which violates the infinitessimal
model.

Note that, in this example, the master TF is the key component of the underlying biology.
Nonetheless, it can explain small additive heritability relative to the rest of the genome.

4.2 Polygenic buffer
The polygenic buffer model is similar to the above master TF model, in that two linear, funda-
mentally different systems interact. Above, each gene interacts with a single master TF; here, a
polygenic buffer interacts with the individual effect of each SNP.

Partition the SNPs into S0, for the polygenic buffer, and S1, for the directly trait-relevant SNPs.
We assume each pathway is linear and polygenic, as for the master TF, but now both pathways are
built from genome-wide SNPs:

Zi1 = µg +Gi(1)η(1) + δi1

Zi0 = µ0 +Gi(0)η(0) + δi0

yi = Zi0 + Zi0 + ψZi0Zi1 + εi

As for the master TF model, the polygenic buffer can be recast within the polygenic model with
saturated pairwise SNP interactions (9). However, the pathways now potentially contain the same
SNPs, as buffer SNPs may also have trait-specific effects. Because of this genetic correlation, we
use the expression for γ derived in (13):

|γ| = ρ+ (1− ρ)2
√
h2

0h
2
1

h2
0 + 2ρh0h1 + h2

1

where ρ := Cor(Gβ0, Gβ1) is the genetic correlation between the polygenic buffer and trait-specific
genetic effects. In the case that the causal SNPs for each pathway are disjoint, or the SNP buffer
effects and trait-specific effects are uncorrelated, then ρ = 0. In this case, the resulting γ coincides
with the master TF γ derived in (14).

4.3 Gene-environment dependence and interaction
Gene-environment interaction (GxE) can be an important component of genetic architecture across
diverse organisms and biological programs. Although GxE seems fundamentally distinct from
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epistasis (also called GxG), the two concepts come together when the environment E is heritable.
In this case, E is essentially another latent pathway in our CI model–mathematically, there is no
need for the pathway to live inside the organism.

In general, we expect that practically useful choices for the environment in GxE will have
some genetic basis, as is the case for most biologically meaningfully measurements. For example,
smoking is an “environment” that significantly modifies the penetrance of BMI SNPs [19], and stress
is another “environment” that significantly modifies the penetrance of major depression SNPs [20].
But smoking and stress are clearly heritable, and are themselves often treated as phenotypes of
direct interest.

Mathematically, we assume a GxE model where the polygenic score Gβg interacts with the
continuous environment e′:

y = Gβg + e′ + ζ(Gβg) ◦ e′ + ε′

We also allow that the environment may have some genetic basis: e′ = Gβe + e. This gives:

y = G(βg + βe) + e+ ζ(Gβg) ◦ (Gβe) + ζ(Gβg) ◦ e+ ε′

=: G(βg + βe) + (G ∗G)(ζβg ⊗ βe) + ε

This collapses e and (Gβg) ◦ e into ε. As e is independent of G, ε will be roughly Gaussian if ε′ is
roughly Gaussian.

This is now in the form of the interacting pathways model in (9). However, the pathways may
now be correlated if there is genetic correlation ρ between the direct effect of G on the trait (βg)
and the direct effect of G on the environment (βe). We note, however, that ρ 6= 0 is not implied by
h2
e 6= 0, i.e. G-E correlation is insufficient to cause ρ 6= 0.

Using the formulas that allow inter-pathway correlation (Section 3.3), the coordination is:

γ = sign(ζ) ·
(
ρ+ (1− ρ)2

4

√
h2

1h
2
2

(1/2(h1 + h2))2

)

This decomposes the coordination into two terms:

1. ρ, which captures the coordination from correlated pleiotropic effects of G on y and e′.

2. (1−ρ)2

4

√
h2
gh

2
e

(1/2(hg+he))2 , which captures the coordination from the interaction between the direct
genetic pathway and the genetic pathway through the environment e′. The deflation factor
(1−ρ)2

4 (cf. equation (10)) adjusts for double-counting the overlapping genetic signal between
βg and βe–already counted in the first term–and ensures that |γ| ≤ 1.

4.4 Non-sparse random effect model for Ω
In this section, we assume that Ω has a random effect distribution.

ωss′ |β ind∼ N
(
τβsβs′ , σ2

ωσ
4
β

)
(15)

This model on Ω is identical to previous work for genome-by-genome interactions when τ = 0, as
coordination drops out [2–10].
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First, we assume that S is large enough so that:

γ =
∑
s>s′ Ωss′βsβs′√∑

s>s′ Ω2
ss′

√∑
s>s′ β2

sβ
2
s′

≈ τ√
τ2 + σ2

ω

Write Ω = τββT +Ω′, and define h2
A := 1

|A|
∑
s∈A β

2
s and h2

B := 1
|B|
∑
s∈B β

2
s . The AB coordination

is:

γAB = βTAΩABβB√
h2
Ah

2
Bh

2
AB

=
τ
∑
s∈A,s′∈B β

2
sβ

2
s′ +

∑
s∈A,s′∈B Ω′ss′βsβs′√∑

s∈A,s′∈B

(
τ2β2

sβ
2
s′ + Ω′ss′

2
)√∑

s∈A,s′∈B β
2
sβ

2
s′

≈ τh2
Ah

2
B√

h2
Ah

2
B

(
τ2h2

Ah
2
B + |A||B|σ2

ωσ
4
β

) + δ1

=
τ(σ2

β |A|)(σ2
β |B|)√

(σ2
β |A|)(σ2

β |B|)
(
τ2(σ2

β |A|)(σ2
β |B|) + |A||B|σ2

ωσ
4
β

) + δ1 + δ2

= τ√
τ2 + σ2

ω

+ δ1 + δ2

≈ γ

The first approximation assumes that S is large enough so that, for any A,B, it approximately
holds that 1

|A||B|
∑
s∈A,s′∈B Ω′ss′

2 ≈ V (Ωss′) = σ2
ωσ

4
β . The second approximation assumes that δ1

and δ2 are negligible, which we motivate below.
The δ1 term is just mean zero noise deriving from random uncoordinated fluctuations in Ω.

This term vanishes as the number of interacting SNPs, |A||B|, increases, as it averages out over the
increasingly large number of comparisons. More formally:

δ1 :=
∑
s∈A,s′∈B Ω′ss′βsβs′√

h2
Ah

2
B

(
τ2h2

Ah
2
B + |A||B|σ2

ωσ
4
β

) =⇒ δ1|A,B, β ∼ N

(
0, σ2

ω

τ2h2
Ah

2
B + |A||B|σ2

ωσ
4
β

)

In particular, this shows that for all A and B we have V (δ1|A,B, β) ≤ 1
|A||B|σ4

β

, hence δ1 → 0
deterministically as |A||B| grows.
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For δ2, let ε := h2
Ah

2
B

|A||B|σ4
β

− 1. Then:

δ2 :=
τ
√
h2
Ah

2
B√

τ2h2
Ah

2
B + |A||B|σ2

ωσ
4
β

− τ√
τ2 + σ2

ω

=

√
ε+ 1

ε+ 1 + σ2
ω/τ

2 −
τ√

τ2 + σ2
ω

≈

((√
1

1 + σ2
ω/τ

2

)
+ ε

(
− σ2

ω

2(τ2 + σ2
ω)

))
− τ√

τ2 + σ2
ω

= − σ2
ω

2(τ2 + σ2
ω)ε

The approximation is a first-order approximation of ε around 0, i.e. assuming h2
Ah

2
B ≈ |A||B|σ4

β .
Essentially, this approximation assumes that CI is stable over most random A/B splits, as expected
for polygenic models.

We do not pursue formally characterizing the distribution of ε as a function of random A and
B. But we list a few facts to demonstrate that the approximation ε ≈ 0 is reasonable for polygenic
models:

• By the LLN, as |A|, |B| → ∞, then h2
Ah

2
B → σ4

β |A|B| =⇒ ε→ 0.

• By the CLT, h2
A → N

(
σ2
β |A|, S

|A|/S(1−|A|/S)σ
2
β

)
in distribution as the number of (causal)

SNPs in A grows. The variance calculation assumes S is large enough to approximate the
probability of SNPs being in A or B as independent across SNPs.

• Assuming h2
A ∼ N

(
σ2
β |A|, S

|A|/S(1−|A|/S)σ
2
β

)
, then:

V (ε) = 1
S − |A|

(
S

|A|
− 4 |A|

S
− 2 1
|A|Sσ4

β

)
→ 0

where the convergence is for |A|, S →∞.

5 Technical results
5.1 γ̂AB is consistent and unbiased for γAB

Proposition 1. Assume the linear model in (1), and that the S SNPs are partitioned into “inde-
pendent” subsets A and B, i.e.:

r2(A,B) := max
s∈A,s′∈B

1
N

N∑
i=1

GisGis′ = 0

Assume also that G has columns scaled to mean zero and variance one.
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Define the A/B coordination as

γAB = βTAΩABβB
‖βA‖‖βB‖‖ΩAB‖

(16)

then the even/odd estimator of γ w.r.t. the partition A and B defined in (7) is:

γ̂AB = γAB +N
(

0, 1
N‖ΩAB‖2

)
(17)

Proof

We are interested in the OLS estimate of γ. Letting Π⊥ be the orthogonal projection onto P :=
(PA|PB), the two stage least squares expression for the OLS estimate of γ̂ is:

γ̂ := [PA ◦ PB ]T Π⊥y
[PA ◦ PB ]T Π⊥ [PA ◦ PB ]

We assume that PA and PB are created from independent SNPs and that sample size is sufficiently
large to replace empirical moments by their theoretical expectations. This implies that the PRS
interaction terms PA ◦ PB orthogonal to both PA and PB , which in turn implies the OLS estimate
of λ is:

λ̂OLS ≈
[PA ◦ PB ]T ([G ∗G]ω + ε)

[PA ◦ PB ]T [PA ◦ PB ]
Expanding these product in the denominator gives:

[PA ◦ PB ]T [PA ◦ PB ] =
∑
i

∑
s,j∈A,s′,j′∈B

(GisGijGis′Gij′)βsβjβs′βj′

=
∑

s,j∈A,s′,j′∈B

(∑
i

GisGijGis′Gij′

)
βsβjβs′βj′

=
∑

s,j∈A,s′,j′∈B

(
N

[∑
i

GisGis′

][∑
i

GijGij′

])
βsβjβs′βj′ (†)

= NβTARAβAβ
T
BR2βB

= N‖βA‖2‖βB‖2 (‡)

† uses the assumption of no LD between A and B, and ‡ uses the much stronger assumption that
all causal SNPs are in linkage equilibrium. A similar expansion in the numerator gives:

λ̂ =
∑
s∈A,s′∈B,j,j′,i (GisGijGis′Gij′)βsβs′ωjj′ +

∑
s∈A,s′∈B (GisGis′βsβs′εi)

N‖βA‖2‖βB‖2

d= βTAΩABβB
‖βA‖2‖βB‖2

+N
(

0, 1
N‖βA‖2‖βB‖2

)
d= γAB

‖ΩAB‖
‖βA‖‖βB‖

+N
(

0, 1
Nh2

Ah
2
B

)
=⇒

γ̂AB ∼ γAB +N
(

0, 1
N‖ΩAB‖2

)
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5.2 Monotone phenotype transformations
We consider the effect of nonlinear phenotype transformations on coordination. Assume that trait
values are transformed by some twice-differentiable function f : R 7→ R. We assume that f is
monotone, which is equivalent to the notion of rescaling y because the order of the traits f(yi) is
the same as the order of the traits yi.

The coordination definition given in (3) assumes that the pairwise interaction model in (1) holds
exactly for some true β and Ω. However, if f is applied to each phenotype value, then clearly (1)
no longer holds for the transformed phenotype; moreover, unless f is linear, (1) does not hold for
any values of β and Ω. Hence it is not clear how to define γ by (3).

Instead, we define the coordination under the transformation f as the coordination amongst the
least-squares best fits for the linear and interaction parameters, β̃ and Ω̃:

γf (Ω, β) := γ(Ω̃, β̃) (18)

We assume perfect coordination on the original scale for ease, so y := gβ+λ (g ⊗ g) (β⊗β) + ε.
Then the least-squares estimates at some reference genotype value g ∈ RS are given by:

∇gsf(y) = f ′(y)βs(1 + λgβ)
∇2
gs,gs′ f(y) = f ′′(y)βsβs′(1 + λgβ)2 + f ′(y)(λβsβs′)

= βsβs′
(
f ′′(y)(1 + λgβ)2 + λf ′(y)

)
=⇒ γf (g) := Cor

(
(∇f)g ⊗ (∇f)g, (∇2f)g

)
= Cor

(
(f ′(y)β(1 + λgβ))⊗ (f ′(y)β(1 + λgβ)), β ⊗ β

(
f ′′(y)(1 + λgβ)2 + λf ′(y)

))
= sign

(
f ′′(y)(1 + λgβ)2 + λf ′(y)

)
When |f ′λ|/|f ′′| is large, the second term dominates and

γf (g) = sign(λf ′(y)) = γsign(f ′) (19)

The last equality using the fact that γ = sign(λ) and emphasizes that sign(f ′) is constant for all y
because f is monotone. (19) is the “right” answer, in the sense that γ is unchanged except, perhaps,
a sign flip if f is decreasing.

On the other hand, if |f ′|/|f ′′| is small–meaning the function varies wildly compared to linear–or
if |λ| is small–meaning the overall interaction signal is weak–then γf (g) may have the incorrect sign.

On average over mean-zero genotypes g, the former force wins out, showing coordination is on
balance preserved under relatively smooth, strictly monotone functions. Assume that λ > 0 (a
symmetric argument applies for λ < 0), so:

E
(
f ′′(y)(1 + λgβ)2 + λf ′(y)

)
≥ E

(
−‖f ′′‖∞(1 + λgβ)2)+ λE (f ′(y))

= −‖f ′′‖∞(1 + λ2σ2
g) + λf̄ ′ ≥ 0 ⇐⇒

sign(f ′) λ

(1 + λ2σ2
g) ≥

‖f ′′‖∞
|f̄ ′|

This has the same sign as λ so long as |f ′′/f̄ ′| never grows too large (over the distribution of g), i.e.
the function never curves dramatically relative to its overall linear approximation. Large is defined
in comparison to λ, which is basically (proportional to) the left hand side for realistic parameters.
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6 Simulation details
6.1 Genotypes
Genotypes were generated under three scenarios: 1) absence of assortative mating and structure, 2)
presence of assortative mating and absence of structure, and 3) absence of assortative mating and
presence of structure. To simulate the absence of assortative mating and structure, genotypes were
generated for 2,000 individuals at 500 SNPs. Genotypes for each individual gij were drawn from a
binomial distribution gij

ind∼ Binomial(2,pj), with pj drawn i.i.d. from a Beta(5,5) distribution.
To simulate the scenario of assortative mating in the absence of population structure, genotypes

were generated for a parent generation of 4,000 individuals at 500 SNPs in the same manner
described above for gij . Phenotypes for each individual in the parent generation were then calculated
(details below). Individuals were sorted by phenotype and paired in sequential groups of two to
simulate one generation of extreme assortative mating. Child genotypes were then generated by
randomly drawing the value of one maternal allele and one paternal allele.

To simulate the scenario of population structure, genotypes were simulated for two populations
separately, each with 1000 individuals and 500 SNPs, where FST = 0.1. Population specific allele
frequencies pkj were drawn i.i.d. over SNPs and populations from Beta

(
1
2 (1− FST ), 1

2

(
(1−FST )
FST

))
.

Each individual’s genotypes were then drawn independently from Binomial(2,pkj), where k indicates
each person’s respective population and j indicates SNPs.

6.1.1 Phenotypes

For each set of simulated genotypes, phenotypes were simulated under three causal scenarios: ad-
ditive, uncoordinated interaction, and coordinated interaction. To simulate phenotypes under the
additive model, SNP effects β were drawn i.i.d. from a standard normal distribution. Phenotypes for
each individual were then simulated by summing genotypes gij weighted by their respective effects,
βj , across all SNPs and adding a random error drawn i.i.d from a standard normal distribution.

To simulate phenotypes under uncoordinated interactions, effects for 1% of all SNP pairs were
chosen to have an interaction effect βjj′ which is drawn i.i.d. standard normal. Genotypes from
the resulting 2,500 randomly sampled pairs of simulated SNPs were multiplied together element-
wise and subsequently multiplied by the corresponding effect for each pair. These values were
then summed across all 2,500 causal SNP pairs, and i.i.d. standard normal noise is added to each
individual.

To simulate phenotypes under the coordinated interaction model, 200 SNPs were randomly
chosen to be modified (modified group) by the effects of an independent set of 100 SNPs (buffer
group). Effect sizes for all chosen SNPs in each group were equal in distribution to those in the
additive model. Genotypes in the buffer group were multiplied by their respective effect sizes and
then summed to create the buffer values b. Effect sizes of the modified group were then multiplied by
70 percent of the effect of the buffer SNPs. Genotypes in the modified group were then multiplied
by the respective modified effect sizes. For each individual, phenotypes were the sum across all
SNPs in the modified group with the addition of random error drawn i.i.d. from a standard normal
distribution.
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