
Closer to critical resting-state neural dynamics in
individuals with higher fluid intelligence
Takahiro Ezakia,b, Elohim Fonseca dos Reisc, Takamitsu Watanabed,e, Michiko Sakakif,g,
and Naoki Masudac,h,i*

aPRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
bResearch Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
cDepartment of Engineering Mathematics, University of Bristol, Clifton, Bristol, United Kingdom
dInstitute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, United
Kingdom
eRIKEN Center for Brain Science, Wako, Saitama, Japan
fSchool of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Whiteknights Road,
Reading, United Kingdom
gResearch Institute, Kochi University of Technology, Kami, Kochi, Japan
hDepartment of Mathematics, University at Buffalo, State University of New York, Buffalo, New York, USA
iComputational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of
New York, Buffalo, New York, USA
*naokimas@buffalo.edu

ABSTRACT

According to the critical brain hypothesis, the brain is considered to operate near criticality and realize efficient neural com-
putations. Despite the prior theoretical and empirical evidence in favor of the hypothesis, no direct link has been provided
between human cognitive performance and the neural criticality. Here we provide such a key link by analyzing resting-state
dynamics of functional magnetic resonance imaging (fMRI) networks at a whole-brain level. We develop a data-driven analy-
sis method, inspired from statistical physics theory of spin systems, to map out the whole-brain neural dynamics onto a phase
diagram. Using this tool, we show evidence that neural dynamics of human participants with higher fluid intelligence quotient
scores are closer to a critical state, i.e., the boundary between the paramagnetic phase and the spin-glass (SG) phase. The
present results are consistent with the notion of “edge-of-chaos” neural computation.

Introduction
Critical brain hypothesis posits that the brain operates near a critical regime, i.e., boundary between different phases showing
qualitatively different behaviors1–6. This hypothesis has been investigated for more than two decades including criticisms
such as the presence of alternative mechanisms explaining power law scaling in the relevant observables7–10. Experimental
evidence such as the recovery of critical behavior after interventions, which is difficult to explain by alternative mechanisms,
lends supports to the hypothesis9.

Theoretical and experimental work has shown that neural systems operating near criticality are advantageous in infor-
mation transmission, information storage, classification, and nonlinear input filtering1, 3, 5, 11–14. These findings align with
the idea of edge-of-chaos computation, with which computational ability of a system is maximized at a phase transition be-
tween a chaotic phase and a non-chaotic phase15–17. These findings are also in line with a general contention that cognitive
computations occur as neural dynamical processes18, 19.

A prediction from the critical brain hypothesis is that neural dynamics in individuals with higher cognitive abilities should
be closer to criticality than in those with lower cognitive abilities. However, whether high cognitive skills are associated with
criticality has not been empirically proven. In fact, recent emerging evidence suggests that human cognitive performance
is associated with appropriate transitions between relatively discrete brain states during rest20–22, working memory tasks23

and visual perception tasks24. Furthermore, these and other studies18, 19, 25 support that state-transition dynamics in the brain
involve large-scale brain networks. These arguments are consistent with the proposal that many cognitive functions seem to
depend on network connectivity among various regions scattered over the whole brain26. On these grounds, in the present
study we hypothesize that complex and transitory neural dynamics of the brain network (i.e., dynamic transitions among
discrete brain states) that are close to criticality are associated with high cognitive performance of humans.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2020. ; https://doi.org/10.1101/688655doi: bioRxiv preprint 

https://doi.org/10.1101/688655
http://creativecommons.org/licenses/by/4.0/


Two major conventional methods for examining criticality and edge-of-chaos computation in empirical neural data are
not capable of testing this hypothesis for their own reasons. First, many of the experimental studies testing the critical
brain hypothesis have examined neuronal avalanches11, 12, including the case of humans5, 27, 28. Neuronal avalanches are
bursts of cascading activity of neurons, whose power-law properties have been related to criticality. However, studies of
neuronal avalanches have focused on their scale-free dynamics in space and time, with which statistics of avalanches obey
power laws. Scale-free dynamics of neuronal avalanches is a question orthogonal to patterns of transitions between discrete
states. Second, nonlinear time series analysis has found that electroencephalography (EEG) signals recorded from the brains
of healthy controls are chaotic and that the degree of chaoticity is stronger for healthy controls than individuals with, for
example, epilepsy, Alzheimer’s disease, and schizophrenia29. However, this method is not usually for interacting time series.
Therefore, it does not directly reveal how different brain regions interact or whether possible critical or chaotic dynamics are
an outcome of the dynamics at a single region or interaction among different regions.

In the present study, we develop a data-driven method to measure the extent to which neural dynamics obtained from
large-scale brain networks are close to criticality and complex state-transition dynamics. The method stands on two estab-
lished findings. First, statistical mechanical theory of the Ising spin-system model posits that the so-called spin-glass phase
corresponds to rugged energy landscapes (and therefore, complex state-transition dynamics)30 and chaotic dynamics31–33.
Therefore, we are interested in how close the given data are to dynamics in the spin-glass phase. Second, the Ising model
has been fitted to various electrophysiological data6, 34–36 and fMRI data recorded from a collection of regions of interest
(ROIs)20, 21, 24, 37, 38 during rest or tasks with a high accuracy. Therefore, we start by fitting the Ising model to the multivariate
fMRI data. Then, we draw phase diagrams of functional brain networks at a whole-brain level. By construction, the dynamical
behavior of the system is qualitatively distinct in different phases. The method determines the location of a brain in the phase
diagram and thus tells us whether the large-scale brain dynamics of individual participants are ordered, disordered or chaotic
(i.e. spin-glass) dynamics as well as how close the dynamics are to a phase transition curve, on which the system shows
critical behavior.

We deploy this method to resting-state fMRI data recorded from human adults with different intelligence quotient (IQ)
scores. As a cognitive ability of interest, we focus on fluid intelligence, which refers to the ability to think logically and solve
problems with a limited amount of task-related information39. Fluid intelligence is strongly related to the general intelligence
factor, g39 and predictive of real-world outcomes such as job performance40. We examine our hypothesis that large-scale brain
dynamics of individuals higher in the intelligence score that measures fluid intelligence are closer to critical.

Results
Brain dynamics are close to the spin-glass phase transition.
We first fitted the pairwise maximum entropy model (PMEM), which assumes pairwise interaction between ROIs and other-
wise produces a maximally random distribution, which is a Boltzmann distribution. The PMEM is equivalent to the inverse
Ising model, where the parameters of the Ising model are inferred from data. Because the model assumes binary data,
we binarized the resting-state fMRI signals obtained from 138 healthy adults. The binarized activity pattern at N(= 264)
ROIs41 at time t (t = 1, . . . , tmax; tmax = 258) is denoted by S(t) = (S1(t), . . . ,SN(t)) ∈ {−1,+1}N , where Si(t) = 1 and
Si(t) =−1 (i = 1, . . . ,N) indicate that ROI i is active (i.e., the fMRI signal is larger than a threshold) and inactive (i.e., smaller
than the threshold), respectively. We fitted the following probability distribution to the population of the 138 participants by
maximizing a pseudo likelihood (see Methods)24, 34:

P(S | h,J) =
exp [−E(S | h,J)]

∑S∈[−1,1]N exp [−E(S | h,J)]
. (1)

In (1),

E(S | h,J) =−
N

∑
i=1

hiSi −
1
2

N

∑
i=1

N

∑
j=1
j ̸=i

Ji jSiS j (2)

is the energy of activity pattern S, h = {hi : 1 ≤ i ≤ N}, and J =
{

Ji j : 1 ≤ i ̸= j ≤ N
}

, where Ji j = J ji. Although we refer
to E as the energy, E does not represent the physical energy of a neural system but is a mathematical construct representing
the frequency with which activity pattern S appears in the given data. Activity pattern S appears rarely in the data if E
corresponding to S is large and vice versa. Parameter hi represents the tendency that Si = 1 is taken because a positive large
value of hi implies that Si = 1 as opposed to Si = −1 lowers the energy and hence raises the probability that S with Si = 1
appears. Parameter Ji j represents a functional connectivity between ROIs i and j because, if Ji j is away from 0, Si and S j
would be correlated in general. We denote the estimated parameter values by ĥ and Ĵ.
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Then, to evaluate how close the current data are to criticality, we drew phase diagrams by sweeping values of J. In the
phase diagrams, we fixed h at ĥ following the theoretical convention30, including when the PMEM is applied to data analysis6.
We set h = ĥ also because changing the h values did not qualitatively change the phase diagrams (Supplementary Fig. 1).
Then, we varied the mean µ and standard deviation σ of J by linearly transforming J, i.e.,

Ji j = (Ĵi j − µ̂)
σ
σ̂
+µ. (3)

In (3), µ̂ = 1.57×10−3 and σ̂ = 3.57×10−2 are the mean and standard deviation of the off-diagonal elements of Ĵ estimated
for the empirical data. We chose the parametrization given in Eq. (3) motivated by the past investigation of the archetypical
Sherrington-Kirkpatrick (SK) model of spin systems30. The SK model, a type of Ising model, is defined with parameters Ji j
(1 ≤ i ̸= j ≤ N) that are independently drawn from the Gaussian distribution with the tunable mean and standard deviation
and has extensively been studied for investigating the so-called spin-glass phase transition owing to its theoretical tractability.
In the spin-glass phase, the system shows a disorderly frozen pattern of spins rather than uniform or periodic ones. For each
set of Ji j values (1 ≤ i ̸= j ≤ N) specified by a (µ,σ) pair, we performed Monte Carlo simulations and calculated observables
(see Methods). In this manner, we generated a phase diagram for each observable in terms of µ and σ .

Two primary observables (called order parameters in physics literature) employed in studies of spin systems are the magne-
tization, denoted by m, and the spin-glass order parameter, denoted by q. The magnetization is defined by m = ∑1≤i≤N⟨Si⟩/N,
where ⟨·⟩ represents the ensemble average, and quantifies the mean tendency that Si = 1 as opposed to Si =−1 is taken across
the ROIs. The spin-glass order parameter is defined by q = ∑1≤i≤N⟨Si⟩2/N and represents the degree of local magnetization
at individual ROIs. We show m and q as functions of µ and σ in Fig. 1a, b, respectively. The obtained phase diagrams were
qualitatively the same as those for the SK model of the same system size, which was given by Eqs. (1) and (2) with each
Ji j (= J ji, i ̸= j) being independently drawn from a Gaussian distribution with mean µ and standard deviation σ (Fig. 1e, f).
The parameter space is composed of three qualitatively different phases30. The paramagnetic phase, characterized by m = 0
and q = 0 in the limit of N → ∞, represents the situation in which each Si randomly flips between 1 and −1, yielding no
magnetization. The ferromagnetic phase, characterized by m ̸= 0 and q > 0, represents the situation in which (almost) all Si’s
align in one direction (i.e., Si = 1 or Si = −1). The spin-glass (SG) phase, characterized by m = 0 and q > 0, represents the
situation in which each Si is locally magnetized but not globally aligned to a specific direction30. Note that the finite size
effect of our system blurred the boundaries between the different phases. The current data pooled across the participants lie
in the paramagnetic phase and are close to the boundary to the SG phase (crosses in Fig. 1a, b). In theory, the spin-glass sus-
ceptibility, χSG = N−1β 2 ∑1≤i, j≤N c2

i j, where ci j = ⟨SiS j⟩−mim j, diverges on the boundary between the paramagnetic and SG
phases30. The empirical data yielded a relatively large χSG value in the phase diagram (Fig. 1c). In contrast, we did not find a
signature of phase transition in terms of the uniform susceptibility defined by χuni = N−1β ∑1≤i, j≤N ci j, which characterizes
the transition between the paramagnetic and ferromagnetic phases30 (Fig. 1d). Note that the phase diagrams for χSG and χuni
resemble those obtained from the SK model (Fig. 1g, h).

Next, we examined where brain activity patterns of each participant were located in the phase diagrams. We did so by
finding the µ and σ values corresponding to the χSG and χuni values of each participant (see Methods). It should be noted
that χSG and χuni can be calculated for each individual only from the covariance matrix of the data, without estimating the
PMEM. The location of each participant in the phase diagram of χSG is shown by the circles in Fig. 1c. The cross section of
this phase diagram for µ = µ̂ (along the dashed line shown in Fig. 1c) is shown in Fig. 1i. We also projected the χSG values
for the individual participants (circles in Fig. 1i) based on the value of σ estimated for each individual (circles in Fig. 1c).
Figure 1i suggests that the empirical data are located in a range of σ that constitutes a peak, further confirming that the brain
dynamics of the different participants are close to the paramagnetic-SG phase transition and to different extents. In contrast,
the participants were far from the paramagnetic-ferromagnetic phase boundary. This is confirmed in Fig. 1j, which is a cross
section of the phase diagram for χuni (along the dashed line shown in Fig. 1d) together with the χuni values for the single
participants.

The χSG value for the individual participants was off the largest possible values in the phase diagram (Fig. 1i). To examine
this point, we carried out a finite size scaling on χSG (Fig. 1k). To emulate systems of smaller sizes than N = 264, we selected
N′ out of the N ROIs uniformly at random and fitted the PMEM. The estimated parameter values are denoted by ĥ and Ĵ
without confusion. Then, we simulated the equilibrium state of the system by scanning J according to (3), where we varied
σ while fixing µ = µ̂ . In this manner, we sought to investigate how close the data were to the SG phase transition at each
N′ value. As shown in Fig. 1k, the peak value of χSG increased as N′ increased, suggesting that the paramagnetic-SG phase
transition is approached as the system size increases. In addition, the position of the peak, denoted by σpeak, shifted toward
the value for the empirical data, σ̂ , as N increased. By regressing σpeak/σ̂ linearly on 1/N′ (inset of Fig. 1k), we estimated
σpeak/σ̂ = 1.45±0.04 in the limit N′ → ∞.
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The performance IQ is associated with the criticality.
To test our hypothesis that criticality of brain dynamics is associated with human fluid intelligence, we examined the correla-
tion between χSG, which encodes the proximity of each participant’s neural dynamics to the paramagnetic-SG phase transition
(Fig. 1c, i), and the performance IQ score. The performance IQ score is defined based on tasks that are reflective of fluid in-
telligence42, 43. An enlargement of Fig. 1c is shown in Fig. 2a, where the participants are shown in different colors depending
on whether they have a higher performance IQ score (defined by the score value larger than or equal to the median, 109,
n = 68) and a lower score (n = 63). We found that higher-IQ participants tended to be closer to the paramagnetic-SG phase
transition than lower-IQ participants, as measured by σ (t129 = 3.17,P < 0.002, Cohen’s d = 0.55 in a two-sample t-test).
The results were qualitatively the same when the outliers were excluded (t127 = 3.52,P < 10−3,d = 0.62). In contrast, the
two groups were not different in terms of the distance to the paramagnetic-ferromagnetic phase transition as measured by µ
(t129 = 0.77,P = 0.44,d = 0.13 with the outlier included; t127 = 0.85, P = 0.40,d = 0.15 with the outlier excluded).

More systematically, we found a mild positive correlation between χSG and the performance IQ score (r129 = 0.24,
PBonferroni = 0.011; also see Fig. 2b). However, the verbal IQ score, which is based on individuals’ verbal knowledge42, 43, was
not correlated with χSG (r126 = 0.06, Puncorrected = 0.50, Fig. 2c). The correlation between χSG and the performance IQ score
was also significantly larger than the correlation between χSG and the verbal IQ score (t121 = 2.33,P = 0.021, in the Williams
t-test for comparing two nonindependent correlations with a variable in common44). These results suggest that the criticality
of brain dynamics plays more roles in fluid intelligence than when simply retrieving verbal knowledge. Note that we partialed
out the effects of the age and gender in this and the following analysis unless we state otherwise.

The correlation between the full IQ score42, 43 and χSG was intermediate between the results for the performance and
verbal IQ scores (r130 = 0.19,P = 0.026; also see Fig. 2d), which is natural because the performance and verbal IQ scores are
components of the full IQ score.

The association between the spin-glass susceptibility, χSG, and the different types of IQ scores was robust in the following
four ways. First, the exclusion of the two outliers determined by Tukey’s 1.5 criteria45 did not affect the significance of the
results (χSG vs performance IQ: r127 = 0.27,PBonferroni = 0.005; χSG vs verbal IQ: r124 = 0.13,PBonferroni = 0.27; χSG vs full
IQ: r128 = 0.25,P = 0.005). Second, the results were robust against variation on the threshold value for binarizing the fMRI
signal (Supplementary Fig. 2). Furthermore, changes in the threshold value did not substantially alter the phase diagrams
(Supplementary Fig. 3). Third, the results were preserved even when the global signal (see Methods) was not subtracted from
the fMRI signals (χSG vs performance IQ: r129 = 0.22,PBonferroni = 0.02; χSG vs verbal IQ: r126 = 0.046,Puncorrected = 0.61;
χSG vs full IQ: r130 = 0.18,P = 0.043; the outliers were not removed). Fourth, we did not find a gender difference in the
correlation coefficient between χSG and the IQ scores (performance IQ: Z = 0.33,P = 0.74 in a Z-test for a pair of correlation
coefficients46; verbal IQ: Z = 0.43,P = 0.67; full IQ: Z = 0.17,P = 0.86). In this gender-difference analysis, we partialed out
the effect of the age but not the gender.

Irrelevance of the paramagnetic-ferromagnetic transition.
The IQ was not correlated with χuni (performance IQ: r129 = 0.10,Puncorrected = 0.27; verbal IQ: r126 = 0.093,Puncorrected =
0.30; full IQ: r130 = 0.10,P = 0.24, each test including the outliers; performance IQ: r124 = 0.013,Puncorrected = 0.89; verbal
IQ: r121 = 0.039,Puncorrected = 0.67; full IQ: r125 = 0.020,P= 0.82, each test excluding the outliers). The specific heat (denoted
by C; see Methods for definition) was only mildly correlated with the performance IQ score (performance IQ: r129 = 0.21,
PBonferroni = 0.034; verbal IQ: r126 =−0.0056,Puncorrected = 0.95; full IQ: r130 = 0.13,P= 0.14, each test including the outliers;
performance IQ: r125 = 0.16,Puncorrected = 0.08; verbal IQ: r122 = −0.016,Puncorrected = 0.86; full IQ: r126 = 0.10,P = 0.26,
each test excluding the outliers). Because χuni and C diverge in the paramagnetic-ferromagnetic phase transition but not in the
paramagnetic-SG phase transition30, these negative results lend another support to the relevance of the SG phase rather than
the ferromagnetic phase to intelligence.

Consistency with the critical slowing down analysis.
The previous literature used various measures of criticality. We measured for each participant such a measure, i.e., the scaling
exponent of autocorrelation47, 48. This measure quantifies the critical slowing down phenomenon, which has been observed in
critical states of the brain48. Note that this index quantifies temporal correlation and is orthogonal to what we have measured.
We computed the scaling exponent for the autocorrelation function of the fMRI signal at each ROI, using the detrended
fluctuation analysis47, 48. Then, we took the average of the scaling exponent over the N = 264 ROIs for each participant, which
is denoted by α . The association between α and the IQ scores was consistent with the results for χSG (α vs performance IQ:
r129 = 0.29,PBonferroni = 0.002; α vs verbal IQ: r126 = 0.19,PBonferroni = 0.068; α vs full IQ: r130 = 0.25,P = 0.003). These
results were robust against the removal of outliers (α vs performance IQ: r128 = 0.28,PBonferroni = 0.002; α vs verbal IQ:
r125 = 0.17,PBonferroni = 0.10; α vs full IQ: r130 = 0.25,P = 0.003).

We then performed a multivariate linear regression of the performance IQ with χSG and α being the independent variables.
We found a significant regression equation (F2,128 = 8.0,P < 0.001, adjusted R2 = 0.11). Both χSG and α were significantly
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correlated with the performance IQ (χSG: β = 0.18, P = 0.039; α: β = 2.4, P = 0.0067). This result implies that the
association between χSG and the performance IQ that we have found is not a byproduct of that between α and the performance
IQ. The variance inflation factor for both independent variables was equal to 1.07; this value is small enough for justifying the
use of the multivariate regression.

Effects of data length and individual variability.
We examined if the limited data length and between-participant variability in our data influenced our results. First, we
investigated how the estimation of the individual participant’s χSG and χuni depended on the length of her/his fMRI data
(Supplementary Fig. 4a). The results were qualitatively the same as those obtained with all the data if we used approximately
more than two thirds of the data (i.e., number of volumes per participant larger than ≈ 150). The correlation between χSG and
the IQ scores and that between χuni and the IQ scores were also preserved with the aforementioned data length (Supplementary
Fig. 4b, c). Therefore, our main results based on the χSG and χuni are considered to be reliable in terms of the data length.

Second, as we did in our previous studies21, 37, we divided the participants into two subgroups of the same size and ran
some of the main analyses for the subgroups. We started by comparing the pairwise activity correlation, ⟨SiS j⟩, for each
(i, j) pair between the two subgroups. The ⟨SiS j⟩ values were strongly correlated between the subgroups and also between
the empirical data and estimated PMEMs for the two subgroups (Supplementary Fig. 5). We further confirmed that the
phase diagrams were similar between the two subgroups (Supplementary Fig. 6). Moreover, we estimated µ̃ and σ̃ for each
participant only using the subgroup of participants to which the focal participant belongs. The results were similar to those
estimated based on all the participants (Supplementary Fig. 7). Therefore, we conclude that the estimation of the phase
diagrams (Fig. 1a–h) and their derivatives (i.e., µ̃ and σ̃ ), which are based on the estimated phase diagrams, are robust enough
against fluctuations in data, such as those caused by a reduced number of participants.

Discussion
We provided empirical support that neural dynamics of humans with higher intellectual ability are closer to critical. The
present results are consistent with the standing claim of the “critical brain hypothesis” and “edge-of-chaos computation”,
which jointly dictate that the brain is maximizing its computational performance by poising its dynamics close to the criticality,
particularly the criticality involving a chaotic regime.

Here we presented an explicit, albeit only moderate, correlation between the IQ scores and the distance from criticality
at an individual’s level. Human intelligence has been shown to be associated with genetic factors, brain size, the volume of
specific brain regions49, and the structure of brain networks26, 49. The present results derived from dynamic fMRI signals
provide an orthogonal account of human intelligence as compared to these previous studies and are consistent with the view
that cognition is a dynamical process linked to neural dynamics18, 19.

A previous study showed that sleep deprivation pulls the brain dynamics away from the criticality50. This result is consis-
tent with ours because sleep deprivation generally compromises one’s cognitive and intellectual functions51.

Previous studies showed that the functional connectivity between particular pairs of ROIs or between subsystems of the
brain in the resting state was correlated with intellectual ability49, 52. These previous results are consistent with ours in the
sense that the SG susceptibility can be regarded as the square sum of a type of functional connectivity over the pairs of ROIs
and the intellectual score was positively correlated with the SG susceptibility in our analysis. In contrast to these previous
studies, which looked at individual connectivity between two regions or subnetworks, we considered N = 264 ROIs scattered
over the brain41 as a single functional network. We took this approach for two reasons. First, intelligence is considered to
depend on large-scale brain networks26, 52–54. Second, phase diagram analysis ideally requires a thermodynamic limit, i.e.,
infinitely many ROIs. One strategy to further approach the thermodynamic limit is to use a single voxel acquired by MRI
as a node, significantly scaling up N. In this case, spatial correlation among ROIs, which we have ignored in the present
study, would be prominent. Because the spatial dimensionality affects the phase diagrams even qualitatively30, this case may
require two- or three-dimensional SG models. We leave this as a future problem. The literature also suggest that specific brain
systems such as the fronto-parietal network55 and the default-mode network56 predict intelligence of humans. Running the
same analysis for these and other brain systems to seek specificity of the results warrants future work. Because the present
method requires hundreds of ROIs, we may benefit from considering voxel-wise networks of a specific brain system that allow
many ROIs for particular brain systems.

In our previous paper, we posed the limited accuracy of fitting the PMEM to fMRI data when N is large38. The argument
was based on the probability that each of the 2N possible activity patterns appears compared between the empirical data and the
estimated PMEM. In the present manuscript, we have not used this accuracy measure, because it cannot be calculated when N
is large. Instead, we validated the model by confirming that the difference between the empirical data and estimated PMEM in
terms of the signal average, ⟨Si⟩, and the pairwise correlation, ⟨SiS j⟩, is small (Supplementary Fig. 8). This approach is based
on the assumption that the average and second order correlation of signals explain most of the information contained in the
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given data, which has been confirmed for smaller N in previous studies using fMRI data21, 24, 37, 38. Although only comparing
⟨Si⟩ and ⟨SiS j⟩ between the data and model is a weaker notion of accuracy of fit than using the accuracy measure38, the former
approach has widely been accepted, explicitly or implicitly, in the literature57, 58. However, we point out that how to justify
the use of PMEMs when N is large remains an open issue.

There are various types of criticality, corresponding to different types of phase transitions. Within the framework of the
Ising model, we showed that human fMRI data were in the paramagnetic phase and were close to the boundary with the SG
phase but not to the boundary with the ferromagnetic phase. Furthermore, high fluid intelligence was associated with the
proximity to the boundary between the paramagnetic and SG phases. In theory, the SG phase yields chaotic dynamics in
spin systems including the SK model31–33, whereas the ferromagnetic phase is obviously non-chaotic. Therefore, although the
definition of the chaos in the SG phase is different from that observed in cellular automata15 and recurrent neural networks16, 17,
our results are consistent with the idea of enhanced computational performance at the edge of chaos.

The previous accounts of the critical brain or critical neural circuits are mostly concerned with phase transitions different
from the paramagnetic-SG phase transition or its analogues. Examples include phase transitions between quiescent (i.e.,
subcritical) and active (i.e., supercritical) phases as an excitability control parameter changes11, 12, 59–61, between ordered and
chaotic phases as connectivity parameters change17, between a low-activity monostable state and a high-activity multistable
state62, and the divergence of heat capacity5, 6, 35, 36. Note that, in the theory of the Ising models, the heat capacity diverges
on the boundary between the paramagnetic and ferromagnetic phases, whereas it increases without diverging on the boundary
between the paramagnetic and SG phases30. Most of these previous results based on the Ising model related neural dynamics to
the paramagnetic-ferromagnetic phase transition rather than the paramagnetic-SG transition. Roughly speaking, paramagnetic
and ferromagnetic phases correspond to active and quiescent phases, respectively. Computational studies also support the
ferromagnetism13, 63, 64. In contrast, we provided a signature of the paramagnetic-SG phase transition, not the paramagnetic-
ferromagnetic transition. Fraiman et al. reported that the Ising model at the paramagnetic-ferromagnetic phase transition
explains properties of functional networks based on fMRI data63. They used a two-dimensional Ising model with a uniform
strength of interaction between pairs of nodes that are adjacent on a square lattice (and Ji j = 0 for the rest of pairs). Another
study that suggested the paramagnetic-ferromagnetic phase transition for fMRI signals also assumed a uniform Ji j

64. In
contrast, we did not constrain the Ji j values and instead inferred the Ji j values (i.e., structure of functional network) using
the PMEM. Because these previous studies63, 64 did not assume heterogeneity in Ji j as we did, their results do not contradict
ours. In fact, the assumption of a uniform Ji j corresponds to setting σ = 0 in our phase diagrams. If one varies µ under the
condition σ = 0, the only possible phase transition is the paramagnetic-ferromagnetic transition (Fig. 1a–d). However, that
phase transition point, which is derived under the condition σ = 0, is far from the location of the empirical data when σ is
allowed to deviate from 0 (crosses in Fig. 1a–d). Therefore, allowing heterogeneity in Ji j may be key to further clarifying the
nature of critical neural dynamics.

We showed that neural dynamics for each participant were close to but substantially off the criticality separating the
paramagnetic and SG phases. Other studies using the PMEM65 and other models66 also support off-critical as opposed to
critical neural dynamics in the brain. A study applying the PMEM to local field potentials suggested that such off-critical
dynamics may potentially have functional advantages because the off-critical situation would prevent the dynamics to get past
the phase boundary to enter the other phase under the presence of noise66. The other phase may correspond to pathological
neural dynamics such as epilepsy. The off-critical neural dynamics that we found for our participants, regardless of their IQ
scores, may benefit from the same functional advantage.

Applying the current analysis pipeline to various neuroimaging and electrophysiological data in different contexts, from
health to disease, and during rest and tasks, to evaluate the relevance of the different types of phase transitions warrants future
work. For example, as a disease progresses, the brain dynamics may be gradually altered to transit from one phase to another,
or to approach or repel from a phase transition curve. In fact, the method is applicable to general multivariate time series.
Deployment of the present method to other biological and non-biological data may also be productive.

One could classify the data from participants with high and low IQ scores using a simple multivariate Gaussian decoder67.
Such a decoder would assume as input the mean and covariance of the fMRI data for each participant or its random samples
having the same mean and covariance. In fact, multivariate Gaussian distributions having the same covariance structure as the
empirical data yielded similar results (Supplementary Fig. 9). Because our PMEM also assumed the same input but was not
optimized for classifying the participants, an optimized Gaussian decoder will probably be more efficient than our PMEM in
explaining the IQ scores of the participants. This approach is conceptually much simpler than the present one, which employ
the PMEM and its phase diagrams. However, the aim of the present study was to find empirical support of the critical brain
hypothesis by relating the fMRI data to the phase diagrams of an archetypal spin system rather than to efficiently classify
participants.

We found that the SG susceptibility was positively, although not strongly, correlated with individual differences in the
performance IQ score but not in the verbal IQ score. The verbal IQ reflects individuals’ knowledge about verbal concepts and
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crystalized intelligence43; crystalized intelligence refers to one’s cognitive functioning associated with previously acquired
knowledge and skills. In contrast, the performance IQ reflects fluid intelligence, which refers to active or effortful problem
solving and maintenance of information39. Our results imply that the critical brain dynamics may be particularly useful for
active and flexible cognitive functions.

Methods

Participants.
One-hundred thirty eight (n = 138) healthy and right-handed adult participants (54 females and 84 males) in the Nathan Kline
Institute’s (NKI) Rockland phase I Sample68 were analyzed. The data collection was approved by the institutional review
board of the Nathan Kline Institute (no. 226781). Written informed consent was obtained for all the participants. Although
the data set contains a wide range of the age (18-85 yo), the present results were not an age effect because the IQ values are
standardized for age42 and because we have partialed out the effect of age (and the gender) in the present analysis. Participants’
IQ scores were derived from the Wechsler Abbreviated Scale of Intelligence (WASI)42. We used the full scale IQ (full IQ for
short), performance IQ, and verbal IQ.

Preprocessing.
We used the same MRI data and the same preprocessing pipeline as our previous study’s69, except that we used resting-
state fMRI signals from 264 ROIs, whose coordinates were derived in the previous literature41. In short, we submitted the
resting-state fMRI data in the NKI Rockland phase I Sample with TR=2500 ms and for 10 m 55 s for each participant to our
preprocessing pipeline in FSL and applied band-pass temporal filtering (0.01–0.1 Hz).

The obtained fMRI signals xi(t) (i = 1, . . . ,N; t = 1, . . . , tmax, where tmax = 258) were transformed into their z-values using
zi(t) = (xi(t)−µ(x(t)))/σ(x(t)), where µ(x(t)) and σ(x(t)) represent the average and standard deviation of xi(t) over the N
ROIs, respectively. Note that µ(x(t)) is the global signal. When we tested the robustness of the results by not removing the
global signal, we set zi(t) = xi(t). We binarized the signal as follows:

Si(t) =
{

+1 if zi(t)≥ 0,
−1 if zi(t)< 0. (4)

Estimation of h and J by pseudo-likelihood maximization.
The probability of each of the 2N activity patterns is equal to its frequency of occurrence normalized by the tmax time points
and 138 participants. We fitted the Ising model to this probability distribution on the 2N activity patterns.

We estimated the parameter values of the Ising model (i.e., h and J) by maximizing a pseudo-likelihood (PL)38, 70. We
approximate the likelihood function by

L (h,J)≈
tmax

∏
t=1

N

∏
i=1

P̃(Si|h,J,S/i(t)), (5)

where P̃ represents the conditional Boltzmann distribution for a single spin, Si ∈ {−1,1}, when the S j values ( j ̸= i) are equal
to S/i(t)≡ (S1(t), . . . ,Si−1(t),Si+1(t), . . . ,SN(t)), i.e.,

P̃(Si|h,J,S/i(t)) =

exp

hiSi +
N

∑
j=1
j ̸=i

Ji jSiS j(t)



∑
S′i=−1,+1

exp

hiS′i +
N

∑
j=1
j ̸=i

Ji jS′iS j(t)


. (6)

In Eq. (6), one determines the probability of each activity pattern under the assumption that S j ( j ̸= i) does not change
when drawing the value of Si (i = 1, · · · ,N). We ran a gradient ascent updating scheme given by

hnew
i −hold

i = ε
(
⟨Si⟩empirical −⟨Si⟩P̃

)
, (7)

Jnew
i j − Jold

i j = ε
(
⟨SiS j⟩empirical −⟨SiS j⟩P̃

)
, (8)
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where ⟨Si⟩P̃ and ⟨SiS j⟩P̃ are the mean and correlation with respect to distribution P̃ (Eq. (6)) and given by

⟨Si⟩P̃ =
1

tmax

tmax

∑
t=1

tanh

hi +
N

∑
j′=1
j′ ̸=i

Ji j′S j′(t)

 (9)

and

⟨SiS j⟩P̃ =
1

tmax

tmax

∑
t=1

S j(t) tanh

hi +
N

∑
j′=1
j′ ̸=i

Ji j′S j′(t)

 , (10)

respectively. It should be noted that this updating rule avoids the calculation of ⟨Si⟩ and ⟨SiS j⟩ with the original spin sys-
tem, Eqs. (1) and (2), which is computationally formidable with N = 264. As tmax → ∞, the estimator obtained by the PL
maximization approaches the exact maximum likelihood estimator70. In fact, the Ising model with the estimated parameter
values h = ĥ and J = Ĵ produced the mean and correlation of spins in the empirical data with a sufficiently high accuracy
(Supplementary Fig. 8).

We previously provided MATLAB code for estimating the Ising model from data by PL maximization38. The code is
publicly available on GitHub repository (https://github.com/tkEzaki/energy-landscape-analysis).

Monte Carlo simulation.
We used the Metropolis method71 to calculate the observables of the Ising model estimated from the empirical data and the
SK model. In each time step, a spin Si was chosen uniformly at random for being updated. The selected spin was flipped
with probability min{e−∆E ,1}, where ∆E = E(Sflipped)−E(S), S is the current spin configuration, and Sflipped is the spin
configuration after Si is flipped. The initial condition was given by Si = 1 with probability 1/2 (and hence Si = −1 with
probability 1/2), independently for different i’s. We recorded the spin configuration S every N time steps.

For the empirical data, we discarded the first 106 ×N time steps as transient and then recorded 107 samples of S in total.
Based on the 107 samples, we calculated the averages of the observables (i.e., |m|, q, χSG, χuni, and C). For drawing the phase
diagrams with the N = 264 ROIs, we further averaged each observable over 10 independent simulations starting from different
initial spin configurations. In Fig. 1k, we averaged the χSG value over 40 combinations of N′ ROIs out of the 264 ROIs as
well as over 107 samples and 10 initial conditions.

For the phase diagram for the SK model, we discarded the first 104 ×N time steps as transient and then collected 5×104

samples of S from each of 103 realizations of J. We drew the phase diagrams on the basis of the 5× 104 × 103 = 5× 107

samples.

Estimation of µ and σ for single participants.
The estimation of the empirical interaction matrix, Ĵ, requires a large amount of data, or practically, concatenation of fMRI
data across different participants. Therefore, one cannot directly compute the mean and standard deviation of Ĵ (i.e., µ and σ )
for each participant. Given this constraint, we estimated µ and σ for each participant (denoted by µ̃ and σ̃ ) using the χSG and
χuni values for the participant (denoted by χ̃SG and χ̃uni) as follows (Supplementary Fig. 10).

First, we examined the phase diagrams in terms of χSG and χuni generated for the collection of all participants (Fig. 1c, d).
Specifically, we calculated χSG(µ,σ) and χuni(µ,σ) values at µ = µk (k = 1, . . . ,25), where µ1 = −0.002, µ2 = −0.0015,
. . ., µ25 = 0.01, and σ = σℓ (ℓ= 1, . . . ,21), where σ1 = 0, σ2 = 0.0075, . . ., σ21 = 0.15.

Second, at each µk (k = 1, . . . ,25), we computed the value of σ̌k satisfying χSG(µk, σ̌k) = χ̃SG (Supplementary Fig. 10a, c)
using a linear interpolation of χSG(µk,σℓ) (ℓ= 1, . . . ,21), i.e., σ̌k = ασℓ′ +(1−α)σℓ′+1, where ℓ′ (1 ≤ ℓ′ ≤ 21) is the integer
satisfying χSG(µk,σℓ′) ≤ χ̃SG < χSG(µk,σℓ′+1), and α = [χSG(µk,σℓ′+1)− χ̃SG]/[χSG(µk,σℓ′+1)− χSG(µk,σℓ′)]. Because
χSG(µk,σℓ) increases with ℓ in the paramagnetic phase, the ℓ′ value is uniquely determined for each k, if it exists. In this man-
ner, we obtained a piecewise linear curve whose knots were (µk, σ̌k) (k = 1, . . . ,25). On this curve, χSG(µ,σ) is approximately
equal to χ̃SG (Supplementary Fig. 10e, g). It should be noted that we have assumed that (µ̃, σ̃) to be estimated is near (µ̂, σ̂)
computed for the entire population (represented by the cross in Fig. 1a–d). More precisely, we are searching (µ̃, σ̃) in the vicin-
ity of the paramagnetic-SG phase boundary on the paramagnetic side. This assumption is supported by the empirical values
of m and q for individual participants, i.e., m =−8.0×10−3 ±7.8 × 10−3 (mean ± SD) and q = 3.4 × 10−3 ±0.4 × 10−3.

Third, we calculated a piecewise linear curve on which χuni(µ,σ) was approximately equal to χ̃uni (Supplementary
Fig. 10f, g). To this end, we applied the same algorithm as the one used in the previous step but by fixing σℓ (Supple-
mentary Fig. 10b) and finding µ̌ℓ (Supplementary Fig. 10d), exploiting the fact that χuni(µk,σℓ) monotonically increases with
µ in the paramagnetic phase.
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Finally, we computed (µ̃ , σ̃ ) for the individual as the intersection of the two piecewise linear curves (Supplementary
Fig. 10g).

Specific heat.
The specific heat is defined by

C =
⟨E2⟩−⟨E⟩2

NT 2 , (11)

where T is the temperature. We set T = 1 because we implicitly did so in Eqs. (1) and (2).
To compute C for each participant, we first drew a phase diagram for C in terms of µ and σ for the entire population

(Supplementary Fig. 11a). The obtained phase diagram was similar to that for the SK model (Supplementary Fig. 11b). Then,
we determined the C value for each participant as the point in the phase diagram corresponding to the (µ , σ ) for the participant.
Because the phase diagram for C is drawn for discrete values of µ and σ , we applied the standard bilinear interpolation to
determine the C value corresponding to a given (µ , σ ).

Statistics and reproducibility.
Statistical tests were performed using SPSS 24.0. The details of each analysis are found in prior sections.

Reporting summary.
Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The data set used in this study (Nathan Kline Institute Rockland phase I Sample) is publicly available
(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html).

Code availability
The code used in this study is available upon request.
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Figure 1. a–d Phase diagrams for the empirical data. e–h Phase diagrams for the SK model. a, e: |m|. b, f: q. c, g: χSG.
d, h: χuni. In (a, d), the crosses represent the mean and standard deviation of the Ji j estimated for the entire population of the
participants, i.e., (µ̂ , σ̂ ). In (c), a circle represents a participant. In (a) and (e), we plot |m| instead of m. This is because
averaging over simulations and over realizations of J would lead to m ≈ 0 due to symmetry breaking, even if m ̸= 0 in theory
such as in the ferromagnetic phase. i χSG as a function of σ , with µ = µ̂ being fixed. j χuni as a function of µ , with σ = σ̂
being fixed. In (i) and (j), the curves are the cross-sectional view of (c) and (d), respectively, along the dashed line in (c) or
(d). The circles in (i) and (j) represent the individual participants and are the projection of the circles in (c) and (d) onto the
dashed line. k Scaling behavior of χSG when the system size N′ is varied. The value of σ = σpeak that maximizes χSG is
plotted against 1/N′ in the inset. The dashed line is the linear regression based on the six data points,
N′ = 40,60,80,120,160, and 264. The coefficient of determination is denoted by R2.
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Figure 2. Association between the spin-glass susceptibility and the IQ scores. a Magnification of Fig. 1c. The blue and red
circles represent participants with a high performance IQ score (≥109) and a low performance IQ score (<109), respectively.
The two overlapping histograms on the horizontal axis are the distributions of µ̃ for each participant group. The histograms
on the vertical axis are the distributions of σ̃ . b Relationship between χSG and the performance IQ. A solid circle represents
a participant. The participants enclosed by the dashed circle represent outliers determined by Tukey’s 1.5 quartile criteria45.
The Pearson correlation value (i.e., r) and the P value shown in the figure are those calculated in the presence of the outliers.
The solid line is the linear regression. c Relationship between χSG and the verbal IQ. d Relationship between χSG and the full
IQ. The χSG and IQ values shown in (b), (c), and (d) are those after the effects of the age and the gender have been partialed
out.
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Supplementary Figure 1. Robustness of phase diagrams for the empirical data against variations in h. (a–d)
hi = 0 (i = 1, . . . ,N). (a–d) hi = 2 ×max1≤i ′≤N ĥi ′ (i = 1, . . . ,N). a, e: |m|. b, f: q. c, g: χSG. d, h: χuni.

Note that the phase diagrams when hi = −2 × max1≤i ′≤N ĥi ′ (i = 1, . . . ,N) are the same as (e–h) owing to
the symmetry. Therefore, given that (a–d) are qualitatively similar to (e–h), we expect that hi values satisfying
−2×max1≤i ′≤N ĥi ′ ≤ hi ≤ 2×max1≤i ′≤N ĥi ′ produce qualitatively the same phase diagrams.
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Supplementary Figure 2. Correlations between the IQ scores and χSG(θ) when the binarization threshold (i.e., θ)
is varied between −1.5 and 1.5. We set Si (t) = +1 if zi (t) ≥ θ and Si (t) = −1 otherwise, extending Eq. (4)
in the main text. As a guideline, with θ = −1 and θ = 1, the fraction of Si = +1 is ≈ 0.853 and ≈ 0.148,
respectively. The shaded area represents P < 0.05. Outliers were not removed in this analysis.
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Supplementary Figure 3. Phase diagrams with different thresholds for binarization. We set θ = 1 in (a–d) and
θ = −1 in (e–h). a and e: |m|. b and f: q. c and g: χSG. d and h: χuni.
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Supplementary Figure 4. Robustness of the spin-glass and uniform susceptibilities for the individual participants.
We first computed χSG and χuni for each participant using the first ℓ volumes, and denote them by χSG(ℓ) and
χuni(ℓ), respectively. For ℓ = ℓmax = 258, these values (i.e., χSG(ℓmax) and χuni(ℓmax)) coincide with the SG
and uniform susceptibilities reported in the main text. a Pearson’s correlation coefficient between χSG(ℓ) and
χSG(ℓmax) and between χuni(ℓ) and χuni(ℓmax). b Pearson’s correlation coefficient between χSG(ℓ) and IQ scores.
c Pearson’s correlation coefficient between χuni(ℓ) and IQ scores. To calculate the correlation coefficient, we
regarded each participant as a sample.
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Supplementary Figure 5. Robustness of spin correlation, ⟨SiSj⟩, with respect to the grouping of participants.
We split the participants into two halves, such that each subgroup of participants contains randomly selected
69 participants. a Comparison between ⟨SiSj⟩ directly calculated for the empirical data obtained from the first
subgroup of participants and that for the second subgroup. A circle represents a pair of i and j (1 ≤ i < j ≤ N).
b Comparison between ⟨SiSj⟩ calculated for the PMEM that we estimated for the first subgroup and that for the
second subgroup. c Comparison between ⟨SiSj⟩ calculated for the PMEM that we estimated for the first subgroup,
shown on the horizontal axis, and ⟨SiSj⟩ directly calculated for the first or second subgroup of the empirical data,
shown on the vertical axis. d Comparison between ⟨SiSj⟩ calculated for the PMEM that we estimated for the
second subgroup and ⟨SiSj⟩ directly computed for the first or second subgroup of the empirical data. The solid
lines represent the diagonal.
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Supplementary Figure 6. Phase diagrams for each half of the participants. a–d Phase diagrams for the first
subgroup of 69 participants used in Supplementary Fig. 5. e–h Phase diagrams for the second subgroup of 69
participants used in Supplementary Fig. 5. a, e: |m|. b, f: q. c, g: χSG. d, h: χuni. The crosses represent the
mean and standard deviation of the Ji j estimated for the corresponding subgroup.
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Supplementary Figure 7. Robustness of estimating µ̃ and σ̃ for the individual participants. For each participant in
each subgroup used in Supplementary Figs. 5 and 6, we computed µ̃ (a) and σ̃ (b) using the phase diagrams of
the corresponding subgroup composed of a half of the participants (i.e., 69 participants). Then, we compared the
µ̃ and σ̃ values thus calculated for the participant with those for the same participant computed using the phase
diagrams based on all the participants (i.e., Fig. 1c,d in the main text). Each circle represents a participant. In (b),
σ̃ estimated based on half the participants is consistently larger than that estimated based on all participants. This
is because transition from the paramagnetic phase to the SG phase starts earlier (i.e., relevant order parameters
start to increase) when all the participants are used as compared to when half the participants are used. This is
considered to be a finite size effect in terms of the length of the data. However, we consider that this effect is
not detrimental to our main results because, as shown in (b), the rank of the participants in terms of the σ̃ value
is preserved with a high accuracy between the two cases.
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Supplementary Figure 8. Accuracy of the PL maximization. We compared ⟨Si ⟩ and ⟨SiSj⟩ between the empirical
data and PMEM. Each circle represents an i value for ⟨Si ⟩ and an (i , j) pair for ⟨SiSj⟩. We set hi = 0 (i = 1, . . . ,N)
in the simulations. The results for PMEM were obtained by Monte Carlo simulations.
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Supplementary Figure 9. Results obtained with surrogate data. a Comparison between χSG computed for the
empirical data and that for the surrogate data. b Comparison between χuni computed for the empirical data and
that for the surrogate data. c Distribution of the participants on the phase diagram computed for surrogate data
(see also Fig. 2a in the main text). To obtain the surrogate data for each participant, we observed tmax = 2×104

samples from a multivariate Gaussian distribution having the same mean vector and covariance matrix as those
for the empirical data. Each circle represents a participant. These results suggest that our main results are
reproduced solely from the covariance structure in the empirical data.
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Supplementary Figure 10. Procedure for determining the µ and σ values for the individual participants. a
Piecewise linear approximation of χSG as a function of σ for a given µ = µk . b Piecewise linear approximation of
χuni as a function of µ for a given σ = σℓ. c By restricting oneself to the paramagnetic phase, one can identify
the value of σ, denoted by σ̌k , that realizes χSG(µk , σ̌k) ≈ χ̃SG. d By restricting oneself to the paramagnetic
phase, one can identify the value of µ, denoted by µ̌ℓ, that realizes χuni(µ̌ℓ,σℓ) ≈ χ̃uni. e By connecting (µk , σ̌k)
by a piecewise linear curve, we obtain a curve on which χSG ≈ χ̃SG. f By connecting (µ̌ℓ,σℓ) by a piecewise linear
curve, we obtain a curve on which χuni ≈ χ̃uni. g The intersection of the piecewise linear curves plotted in (e)
and (f) yields the estimate of the µ and σ values for a single participant, denoted by µ̃ and σ̃.
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Supplementary Figure 11. Specific heat. a Empirical data, calculated for the entire population of the participants.
b SK model.
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