
FILE S2: GENERAL EXPRESSIONS FOR INBREEDING DEPRESSION1

Outcrossing population. A general expression for inbreeding depression, including2

the effects of interactions between pairs of loci can be obtained from equation A1 in3

Supplementary File S1. We will first consider the case of a fully outcrossing population4

(σ = 0). Using the fact that associations D̃j,j, D̃j,k and D̃jk,j equal zero among offspring5

produced by random mating, the mean fitness of offspring produced by mating between6

randomly sampled parents divided by the mean fitness of the parental population is7

given by:8

W
out

W
= 1 + 2

∑
j<k

ajk

(
D̃out
jk − D̃jk

)
+
∑
j<k

ajk,jk
(
Dout
jk,jk −Djk,jk

)
(B1)

where D̃out
jk and Dout

jk,jk are measured among offspring, and D̃jk, Djk,jk among parents.9

The association Djk,jk equals D̃jk
2 under random mating, while D̃jk is reduced by a10

factor 1 − ρjk by recombination (assuming no selection among parents), giving:11

W
out

W
= 1 − 2

∑
j<k

ρjk ajk D̃jk −
∑
j<k

ρjk (2 − ρjk) ajk,jk D̃jk
2 . (B2)

The mean fitness of offspring produced by selfing from randomly sampled parents,12

divided by the mean fitness of the parental population is given by (from equation A1):13
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∑
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2
)
.

(B3)

Associations Dself
U,V in the expression above are measured among selfed offspring. Taking14

into account the possible configurations of genes within parental individuals, and using15
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equation A21 in Supplementary File S1 to eliminate repeated indices, one obtains:16

Dself
j,j =

1

2
pjqj, D̃self

jk = (1 − ρjk) D̃jk, D̃self
j,k =

1

2
D̃jk, (B4)

17

Dself
jk,j =

1

2
(1 − 2pj) (1 − ρjk) D̃jk, D̃self

jk,k =
1

2
(1 − 2pk) (1 − ρjk) D̃jk, (B5)

18

Dself
jk,jk =

1

2
[1 − 2ρjk (1 − ρjk)]

(
pjqjpkqk + D̃jk

2
)
. (B6)

Inbreeding depression is defined as19

δ = 1 − W
self

W
out = 1 − W

self
/W

W
out
/W

. (B7)

From the expressions above, we have to the second order in aU,V coefficients (and thus20

neglecting the terms in D̃jk
2):21

δ ≈− 1

2

∑
j

aj,j pjqj −
1

2

∑
j<k

ajk,jk [1 − 2ρjk (1 − ρjk)] pjqjpkqk −
∑
j<k

aj,k D̃jk

−
∑
j<k

ajk,j (1 − 2pj) (1 − ρjk) D̃jk −
∑
j<k

ajk,k (1 − 2pk) (1 − ρjk) D̃jk

(B8)

which corresponds to equation 17 in the main text.22

When the deleterious mutation rate is high, equation B8 may be higher than 123

(while from equation B7, inbreeding depression cannot be higher than 1). In general,24

more accurate expressions for parameter values leading to high inbreeding depression25

can be obtained by assuming that the effects of individual loci (and their interac-26

tions) on δ do multiply (rather than sum). Using the present framework, and to27

the first order in aU,V coefficients, this can be achieved by assuming that the vari-28

ance in log-fitness among individuals stays small, so that W ≈ elnW , leading to29

δ ≈ 1 − elnW self−lnW out . To the first order in aU,V coefficients, equation 8 in the main30

text yields lnW− lnW ≈
∑

U,V aU,V (ζU,V −DU,V). Using the same reasoning as above,31

one obtains (still to the first order in aU,V coefficients) lnW out − lnW ≈ 0, while32
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lnW self − lnW ≈ 1
2

∑
j aj,j pjqj + 1

2

∑
j<k ajk,jk [1 − 2ρjk (1 − ρjk)] pjqjpkqk, leading to33

δ ≈ 1 − exp
[
1
2

∑
j aj,j pjqj + 1

2

∑
j<k ajk,jk [1 − 2ρjk (1 − ρjk)] pjqjpkqk

]
(which cannot34

be greater than 1). In a population undergoing partial selfing, the same reasoning35

leads to equation 24 in the main text.36

Equation B8 is modified when inbreeding depression is measured after selection,37

that is, when the contribution of parents to the pools of selfed and outcrossed offspring38

is proportional to their fitness. In that case, we have D̃out
jk = D̃self

jk = (1 − ρjk) D̃
′
jk +39

ρjk D̃
′
j,k where D̃′jk and D̃′j,k are measured after selection, while D̃self

j,k = 1
2

(
D̃′jk + D̃′j,k

)
40

and D̃self
jk,j = 1

2
(1 − 2pj)

[
(1 − ρjk) D̃

′
jk + ρjk D̃

′
j,k

]
. This yields:41

δ′ ≈− 1

2

∑
j

aj,j pjqj −
1

2

∑
j<k

ajk,jk [1 − 2ρjk (1 − ρjk)] pjqjpkqk

−
∑
j<k

aj,k

(
D̃′jk + D̃′j,k

)
−
∑
j,k

ajk,j (1 − 2pj)
[
(1 − ρjk) D̃

′
jk + ρjk D̃

′
j,k

] (B9)

where δ′ stands for inbreeding depression measured after selection.42

43

Partially selfing population. Under partial selfing, equation B1 becomes:44

W
out

W
= 1 −

∑
j

aj,j Dj,j + 2
∑
j<k

ajk

(
D̃out
jk − D̃jk

)
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∑
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∑
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∑
j<k

ajk,kDjk,k +
∑
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(
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) (B10)

while equation B3 becomes:45
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)
+ 2

∑
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∑
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)
.

(B11)
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Associations among selfed and outcrossed offspring are given by:46

Dself
j,j =

1

2
(pjqj +Dj,j) , (B12)

47

D̃self
jk = D̃out

jk = (1 − ρjk) D̃jk + ρjk D̃j,k, Dout
jk,jk =

(
D̃out
jk

)2
, (B13)

48

D̃self
j,k =

1

2

(
D̃jk + D̃j,k

)
, (B14)

49

D̃self
jk,j =

1

2

[
D̃jk,j + (1 − 2pj)

[
(1 − ρjk) D̃jk + ρjk D̃j,k

]]
, (B15)

50

D̃self
jk,jk =

1

2

[
(1 − ρjk)

2
[
pjqjpkqk +Djk,jk + (1 − 2pj) (1 − 2pk) D̃jk

]
+ 2ρjk (1 − ρjk)

[
pjqj Dk,k + pkqkDj,j + (1 − 2pj) D̃jk,k + (1 − 2pk) D̃jk,j

]
+ ρjk

2
[
pjqjpkqk +Djk,jk + (1 − 2pj) (1 − 2pk) D̃j,k

]]
.

(B16)

Throughout the following, ε stands for the order of magnitude of the largest of aU,V51

coefficients in absolute value. Associations D̃jk, D̃j,k, D̃jk,j, D̃jk,k are generated by52

selection and are thus of order ε. By contrast, associationsDj,j andDjk,jk are generated53

by partial selfing even in the absence of selection, in which case they equal F pjqj and54

(Gjk + F 2) pjqjpkqk at equilibrium (respectively), where F is the inbreeding coefficient55

and Gjk the identity disequilibrium between loci j and k (e.g., Roze, 2015). From this,56
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one obtains to the second order in ε:57

δ = −1

2

∑
j

aj,j (pjqj +Dj,j)

(
1 +

∑
k

ak,kDk,k

)
−
∑
j<k

aj,k

(
D̃jk + D̃j,k

)
−
∑
j,k

ajk,j

[
D̃jk,j + (1 − 2pj)

[
(1 − ρjk) D̃jk + ρjk D̃j,k

]]
− 1

2

∑
j<k

ajk,jk

[
(1 − ρjk)

2
[
pjqjpkqk +Djk,jk + (1 − 2pj) (1 − 2pk) D̃jk

]
+ 2ρjk (1 − ρjk)

[
pjqj Dk,k + pkqkDj,j

+ (1 − 2pj) D̃jk,k + (1 − 2pk) D̃jk,j

]
+ ρjk

2
[
pjqjpkqk +Djk,jk + (1 − 2pj) (1 − 2pk) D̃j,k

]]
.

(B17)

To the first order in ε and when ρjk = 1/2, equation B17 is equivalent to equation 1958

in the main text. Expressions for genetic associations to the first order in ε can be59

obtained using standard multilocus techniques (e.g., Kirkpatrick et al., 2002). Using60

a rare allele approximation — that is, neglecting terms in (pjqj)
2 — and assuming61

ajk = aj,k, one obtains:62

Dj,j = F (pjqj + ∆selDj,j) , (B18)
63

D̃jk =
2 − σ (1 − 2ρjk)

2ρjk (1 − σ)
∆selD̃jk, D̃j,k =

σ (1 + 2ρjk)

2ρjk (1 − σ)
∆selD̃jk, (B19)

64

D̃jk,j = F
[
∆selD̃jk,j + (1 − 2pj) D̃jk

]
, (B20)

with65

∆selDj,j =
∑
k

(
ak,kGjk + [ajk,k (1 − 2pj) + ajk,jk]

(
Gjk + F 2

))
pjqjpkqk, (B21)

66

∆selD̃jk =

[
ajk
[
(1 + F )2 +Gjk

]
+ ajk,jk (1 − 2pj) (1 − 2pk)

(
Gjk + F 2

)
+ [ajk,j (1 − 2pj) + ajk,k (1 − 2pk)] [F (1 + F ) +Gjk]

]
pjqjpkqk,

(B22)
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67

∆selD̃jk,j =

[
[ak + ak,k (1 − 2pk)]Gjk + [2ajk (1 − 2pj) + ajk,j] [F (1 + F ) +Gjk]

+ [2ajk,k (1 − 2pj) + ajk,jk] (1 − 2pk)
(
Gjk + F 2

)]
pjqjpkqk .

(B23)

Finally, Djk,jk is obtained by solving:68

D̃jk,jk =
σ

2

[
(1 − ρjk)

2
[
pjqjpkqk +Djk,jk

′ + (1 − 2pj) (1 − 2pk) D̃jk
′
]

+ 2ρjk (1 − ρjk)
[
pjqj Dk,k

′ + pkqkDj,j
′ + (1 − 2pj) D̃jk,k

′ + (1 − 2pk) D̃jk,j
′
]

+ ρjk
2
[
pjqjpkqk +Djk,jk

′ + (1 − 2pj) (1 − 2pk) D̃j,k
′
]]
,

(B24)

where associations DU,V
′ are measured after selection and are given by DU,V

′ = DU,V +69

∆selDU,V, with:70

∆selD̃jk,jk =

[
2aj (1 − 2pj) + 2ak (1 − 2pk) + aj,j + ak,k + 4ajk (1 − 2pj) (1 − 2pk)

+ 2ajk,j (1 − 2pk) + 2ajk,k (1 − 2pj) + ajk,jk

] (
Gjk + F 2

)
pjqjpkqk .

(B25)

Computing δ also requires an expression for pjqj at equilibrium. Assuming the same71

mutation rate u between both alleles at the same locus, this can be obtained from72

−∆selpjqj = u, with:73

∆selpjqj = aj (1 − 2pj) (pjqj +Dj,j) +
∑
k 6=j

ak (1 − 2pj)
(
D̃jk + D̃j,k

)
+ aj,j Dj,j +

∑
k 6=j

ak,k (1 − 2pj) D̃jk,k +
∑
k 6=j

ajk,jkDjk,jk

+
∑
k 6=j

ajk

[
D̃jk + D̃j,k + 2 (1 − 2pj) D̃jk,j

]
+ 2

∑
k 6=j

ajk,j D̃jk,j

+
∑
k 6=j

ajk,k

[
D̃jk,k + (1 − 2pj) (pjqjDk,k +Djk,jk)

]
.

(B26)
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Relation to previous results. Previous expressions for inbreeding depression in-74

cluding the effect of identity disequilibria between pairs of loci (Roze, 2015) and of75

epistasis generated by Gaussian stabilizing selection (Abu Awad and Roze, 2018) can76

be recovered as special cases of the general equations given above. In the case of77

uniformly deleterious alleles without epistasis (Roze, 2015), selection coefficients are78

given by equations A10 – A14 in Supplementary File S1, with eaxa = eaxd = edxd = 0.79

To the second order in s and assuming free recombination among loci, the equations80

above simplify to:81

δ ≈ −1

2

∑
j

aj,j (pjqj +Dj,j)

(
1 +

∑
k

ak,kDk,k

)

− 1

4

∑
j<k

ajk,jk
[
(1 + F )2 +G

]
pjqjpkqk

(B27)

where G is the identity disequilibrium,82

∆selpjqj = aj (pjqj +Dj,j) + aj,j Dj,j +
∑
k 6=j

ak,k D̃jk,k

+
∑
k 6=j

ajk,k (pjqjDk,k +Djk,jk) +
∑
k 6=j

ajk,jkDjk,jk

(B28)

with:83

Dj,j = F

[
1 +

∑
k 6=j

ak,kGpkqk

]
pjqj, (B29)

84

D̃jk,k = F (aj + aj,j)Gpjqjpkqk, Djk,jk =
(
G+ F 2

)
pjqjpkqk . (B30)

Equations B27 – B30 yield equation 14 in Roze (2015), expressed to the second order85

in U .86

Selection coefficients under Gaussian stabilizing selection are given by equations87

A22 – A26 in Supplementary File S1. Approximating the identity disequilibrium Gjk88
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by its expression under free recombination (G), we have:89

δ = −1

2

∑
j

aj,j (pjqj +Dj,j)

(
1 +

∑
k

ak,kDk,k

)
−
∑
j<k

ajk

(
D̃jk + D̃j,k

)
− 1

4

∑
j<k

ajk,jk
[
(1 + F )2 +G

]
pjqjpkqk

(B31)

90

∆selpjqj = aj (1 − 2pj) (pjqj +Dj,j) + aj,j Dj,j +
∑
k 6=j

ak,k (1 − 2pj) D̃jk,k

+
∑
k 6=j

ajk

[
D̃jk + D̃j,k + 2 (1 − 2pj) D̃jk,j

]
+
∑
k 6=j

ajk,k (1 − 2pj) (pjqjDk,k +Djk,jk) +
∑
k 6=j

ajk,jkDjk,jk

(B32)

with:91

Dj,j = F

[
1 +

∑
k 6=j

ak,kGpkqk

]
pjqj, (B33)

92

D̃jk + D̃j,k = ajk
[
(1 + F )2 +G

] 1 + 2ρjkσ

ρjk (1 − σ)
pjqjpkqk, (B34)

93

D̃jk,j = F [ak + ak,k (1 − 2pk)]Gpjqjpkqk

+ F (1 − 2pj)
[
D̃jk + 2ajk [F (1 + F ) +G] pjqjpkqk

]
,

(B35)

94

Djk,jk =
(
G+ F 2

)
pjqjpkqk . (B36)

Equations B31 – B36 yield equations 37 and 41 – 42 in Abu Awad and Roze (2018),95

expressed to the second order in U (and neglecting the term in sU in equation 42).96

97

Non-Gaussian stabilizing selection. Expressions for inbreeding depression under98

the fitness function given by equation 15 in the main text can be obtained from the99

equations given above, and using the expressions for aU,V coefficients derived in Sup-100

plementary File S1. These expressions show that while the coefficient ajk,jk (represent-101

ing dominance-by-dominance epistasis on an additive scale) is an order of magnitude102

smaller than aj,j and ajk under Gaussian stabilizing selection (Q = 2), it becomes of the103
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same order of magnitude as aj,j, ajk when Q > 2: therefore, dominance-by-dominance104

epistasis is expected to have stronger effects on inbreeding depression when Q > 2. To105

the first order in the strength of selection, and approximating the identity disequilib-106

rium Gjk by its expression under free recombination G (see Figure S5 in Abu Awad107

and Roze, 2018 for justification), we have:108

δ ≈ −1

2

∑
j

aj,j (1 + F ) pjqj −
1

4

∑
j<k

ajk,jk
[
(1 + F )2 +G

]
pjqjpkqk . (B37)

From equation B26, one obtains to the first order in selection coefficients:109

∆selpjqj = aj (1 − 2pj) (1 + F ) pjqj + aj,j (1 − 2pj)
2 F pjqj

+
∑
k 6=j

ajk,k (1 − 2pj) [F (1 + F ) +G] pjqjpkqk

+
∑
k 6=j

ajk,jk (1 − 2pj)
2 (F 2 +G

)
pjqjpkqk

(B38)

which must equal −u (1 − 2pj)
2 at mutation-selection balance. Summing equation110

B38 over j, using expressions for selection coefficients derived in Supplementary File111

S1 (equations A35, A36, A52 and A53), and the fact that
∑

j r
2
αj pjqj = nV 0

g /2,112

while
∑

j,k (
∑

α rαjrαk)
2 pjqjpkqk = n

(
V 0
g /2

)2
, one obtains after simplification (and113

assuming that the equilibrium at which pj = 1/2 is not stable):114

(
V 0
g

Vs

)Q
2 Γ
(
Q+n
2

)
Γ
(
n
2

) =
4U

Q

1

1 + 3F + Q−2
2

[F (1 + 3F ) + 3G]
. (B39)

Using equation B37 and A36, A53 in Supplementary File S1, this yields:115

δ = U
1 + F + Q−2

8

[
(1 + F )2 +G

]
1 + 3F + Q−2

2
[F (1 + 3F ) + 3G]

. (B40)

Equation B40 differs from equation 29 in Abu Awad and Roze (2018), that was derived116

assuming a Gaussian distribution of phenotypic traits at equilibrium; however one117

can show that both expressions often give very similar quantitative results. Under118
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random mating (F = G = 0), equation B40 yields equation 28 in the main text,119

while when Q = 2 (Gaussian fitness function), one recovers the classical expression for120

inbreeding depression when the dominance coefficient of deleterious alleles is h = 1/4,121

i.e. δ ≈ U/ (1 + σ) (Abu Awad and Roze, 2018).122

Although the general expressions given above may be used to compute an ex-123

pression for inbreeding depression to the second order in U (including the effects of124

genetic associations between pairs of loci), we only performed this calculation for the125

case of a randomly mating population. When σ = 0, equation B26 simplifies to:126

∆selpjqj ≈ aj (1 − 2pj) pjqj +
∑
k 6=j

[ak (1 − 2pj) + ajk] D̃jk . (B41)

When summed over a sufficiently large number of loci, the term in ak (1 − 2pj) should127

vanish, due to the fact that about half the loci will be at the equilibrium where128

pj < 1/2, while the other half will be at the symmetric equilibrium with pj > 1/2, so129

that:130

∆selpjqj ≈ aj (1 − 2pj) pjqj +
∑
k 6=j

ajk D̃jk . (B42)

From equation A57 in Supplementary File S1, we have:131

∑
j

aj (1 − 2pj) pjqj ≈ −Q
4

[Z (Q, n) [1 + Z (Q, n)] − Z (2Q, n)] (B43)

with:132

Z (Q, n) =

(
V 0
g

Vs

)Q
2 Γ
(
Q+n
2

)
Γ
(
n
2

) , (B44)

while from equations A47 and A49 in Supplementary File S1:133

∑
j,k

ajk D̃jk ≈
4U2

nρH
(B45)

at equilibrium, where ρH is the harmonic mean recombination rate between pairs of134

loci controlling the selected traits. Furthermore, Z (Q, n) ≈ 4U/Q to leading order135
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(equation A41 in Supplementary File S1), so that
(
V 0
g

)Q/2
is of order U , and the terms136

[Z (Q, n)]2 and Z (2Q, n) (proportional to
(
V 0
g

)Q
) are of order U2:137

[Z (Q, n)]2 ≈
(

4U

Q

)2

, Z (2Q, n) ≈
(

4U

Q

)2
(

Γ
(
n
2

)
Γ
(
Q+n
2

))2
Γ
(
Q+ n

2

)
Γ
(
n
2

) . (B46)

Using equations B42 – B46, and
∑

j (∆selpjqj) = −U at equilibrium yields the following138

expression:139

Q

4

[
Z (Q, n) +

(
4U

Q

)2
[

1 −
Γ
(
n
2

)
Γ
(
Q+ n

2

)[
Γ
(
Q+n
2

)]2
]]

= U

(
1 +

4U

nρH

)
(B47)

that can be solved to express Z (Q, n) to the second order in U :140

Z (Q, n) =
4U

Q

[
1 +

4U

nρH
+

4U

Q

[
Γ
(
n
2

)
Γ
(
Q+ n

2

)[
Γ
(
Q+n
2

)]2 − 1

]]
. (B48)

Equation B48 is equivalent to equation A66 in Abu Awad and Roze (2018) when141

Q = 2. Neglecting linkage in the expression for inbreeding depression under random142

mating (equation B8), we have:143

δ ≈ −1

2

∑
j

aj,j pjqj −
1

4

∑
j<k

ajk,jk pjqjpkqk −
∑
j<k

ajk D̃jk . (B49)

Using equation A58 in Supplementary File S1 yields:144

−1

2

∑
j

aj,j pjqj =
Q

4
[Z (Q, n) [1 + Z (Q, n)] − Z (2Q, n)] . (B50)

Using B46 and B48, this simplifies to:145

−1

2

∑
j

aj,j pjqj = U

(
1 +

4U

nρH

)
(B51)

independent of Q. From equation A59 in Supplementary File S1, we have:146

−1

4

∑
j<k

ajk,jk pjqjpkqk =
Q

32

[
(Q− 2)Z (Q, n) [1 + Z (Q, n)] − (2Q− 2)Z (2Q, n)

]
(B52)
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which gives, using B46 and B48:147

−1

4

∑
j<k

ajk,jk pjqjpkqk =
(Q− 2)U

8

(
1 +

4U

nρH

)
− U2

2

Γ
(
n
2

)
Γ
(
Q+ n

2

)[
Γ
(
Q+n
2

)]2 . (B53)

Altogether, equations B45, B49, B51 and B53 yield the following expression for δ to148

the second order in U :149

δ ≈ U

(
1 +

2U

nρH

)
+

(Q− 2)U

8

(
1 +

4U

nρH

)
− U2

2

Γ
(
n
2

)
Γ
(
Q+ n

2

)[
Γ
(
Q+n
2

)]2 . (B54)

It is possible to show that for Q = 2, equation B54 is equivalent to equations 41 – 42150

in Abu Awad and Roze (2018), expressed to the second order in U .151
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