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Supplementary Text

Gene expression data processing

1. Download matched RNA-seq data from the TCGA legacy archive using the TCGAbiolinks [1] R package as
normalized results.

library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-LUAD",

data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "Illumina HiSeq",
experimental.strategy = "RNA-Seq",

file.type = "normalized_results",
legacy = TRUE)

GDCdownload(query , method = "api", files.per.chunk = 10)
data <- GDCprepare(query ,summarizedExperiment=F)

2. Use edgeR [2] to further process the data to obtain counts per million (CPM) values per gene and sample
and then use the marker genes EPCAM, CLDN5, COL1A2, and PTPRC to correlate sample-specific marker
gene expression values to LMC proportions across the samples.

obj <- DGEList(data)
row.names(obj$samples) <- unlist(lapply(strsplit(row.names(obj$samples),"_"),

function(x)x[3]))
colnames(obj$counts) <- unlist(lapply(strsplit(colnames(obj$counts),"_"),

function(x)x[3]))
row.names(obj$samples) <- substr(row.names(obj$samples),1,16)
colnames(obj$counts) <- substr(colnames(obj$counts),1,16)
cpm.obj <- cpm(obj)

3. Plot each marker gene expression values per gene versus the LMC proportions.

load("FactorViz_outputs/medecom_set.RData")
props <- getProportions(medecom.set,K=7,lambda=0.001)
load("FactorViz_outputs/ann_S.RData")
colnames(props) <- substr(ann.S$Comment..TCGA.Barcode.,1,16)
marker.genes <- c("EPCAM","CLDN5","COL1A2","PTPRC")
in.exp <- colnames(cpm.obj) %in% colnames(props)
in.props <- colnames(props) %in% colnames(cpm.obj)
props <- props[,in.props]
cpm.obj <- cpm.obj[,in.exp]
cpm.obj <- cpm.obj[,colnames(props)]
row.names(cpm.obj) <- unlist(lapply(strsplit(row.names(cpm.obj),"[[:punct:]]"),

function(x)x[1]))
cors.all <- sapply(marker.genes ,function(marker){

if(!marker %in% row.names(cpm.obj)){
cors.gene <- NA
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}else{
sel.exp <- cpm.obj[marker ,]
cors.gene <- apply(props ,1,function(prop){

cor(unlist(sel.exp),unlist(prop))
})

}
cors.gene

})

cors.p.vals <- sapply(marker.genes ,function(marker){
if(!marker %in% row.names(cpm.obj)){

cors.gene <- NA
}else{

sel.exp <- cpm.obj[marker ,]
cors.gene <- apply(props ,1,function(prop){

cor.test(unlist(sel.exp),unlist(prop))$p.value
})

}
cors.gene

})
library(corrplot)
corrplot(cors.all,"ellipse")

plot.path <- "analysis/gene_expression/"
cors.all <- sapply(marker.genes ,function(marker){

if(!marker %in% row.names(cpm.obj)){
cors.gene <- NA

}else{
sel.exp <- cpm.obj[marker ,]
for(j in 1:nrow(props)){

prop <- props[j,]
lmc <- paste0("LMC",j)
to.plot <- data.frame(CPM=sel.exp,Proportion=prop)
plot <- ggplot(to.plot,aes(x=Proportion ,y=CPM))+geom_point(size=.1)+

geom_smooth(method="lm",size=.5)+theme_bw()+
theme(panel.grid=element_blank(),text=element_text(color="black",size=20),

axis.ticks=element_line(size=0.5,color="black"),axis.ticks.length=unit(2,"mm"),
axis.title=element_blank(),axis.text=element_blank())

ggsave(file.path(plot.path,paste0(lmc,"_",marker ,"_new.pdf")),
plot,width=35,height=35,unit="mm")

}
}

})
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Supplementary Tables
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Supplementary Table 1: Overview of published DNA methylation based deconvolution tools. The methods are
stratified according to the type and then ordered chronologically according to their date of publication.

Tool Type Short description Reference
Houseman reference-based The method employs constrained projection to infer

proportions of reference profiles and was particularly
developed for deconvolution of whole blood samples.

Houseman et al. [3],
2012

EpiDISH reference-based EpiDISH is a reference-based method using robust
partial correlations to compute proportions of refer-
ence profiles. The authors propose a method based
on DNase hypersensitive sites to determine appropri-
ate reference profiles.

Teschendorff et al. [4],
2017

hEpiDISH reference-base hEpiDISH is an extension of EpiDISH that hierarchi-
cally performs deconvolution, and along with a new
reference database, improves devonvolution results

Zheng et al. [5], 2018

Methyl-
CIBERSORT

reference-based An extension of the CIBERSORT (Newman et al.
[6], 2015) algorithm created for RNA-seq data that
employs support vector regression (SVR) to estimate
the proportions of given reference profiles across the
samples.

Chakravarthy et al. [7],
2018

methylCC reference-based methylCC uses latent components and a region-
based, rather than an individual CpG-based, model
to compute the proportions of given reference pro-
files independent of the technology (RRBS, WGBS,
or BeadArray) used.

Hicks & Irizarry [8],
2019

IDOL selection of cell
type markers

IDOL presents an improved strategy to determine
cell-type specific marker CpGs, which improves de-
convolution results

Salas et al. [9], 2018

FaST-LMM-
EWASher

confounding
factor in EWAS

The EWASher approach is based on factored spec-
trally transformed linear mixed models to account for
differences in cellular compositions in EWAS.

Zou et al. [10], 2014

ReFACTor confounding
factor in EWAS

ReFACTor is based on Principal Component Analysis
based on sites that are differentially methylated be-
tween cell types. The first few principal components
are then used to adjust for cell type composition dif-
ferences in EWAS.

Rahmani et al. [11],
2016

RefFreeCellMix reference-free RefFreeCellMix from the RefFreeEWAS R-package
uses non-negative matrix factorization (NMF) of the
input DNA methylation matrix to compute a matrix
of proportions and estimated reference profiles.

Houseman et al. [12],
2014

EDec reference-free EDec is a two-step approach that combines
reference-based and reference-free estimations using
constrained matrix factorization.

Onuchic et al. [13],
2016

MeDeCom reference-free MeDeCom uses regularized non-negative matrix fac-
torization (NMF) of the input DNA methylation data
matrix to create a matrix of proportions and of latent
methylation components (LMCs).

Lutsik et al. [14], 2017

TCA reference-free TCA uses tensor composition analysis to obtain
sample-specific cell type profile estimates. In con-
trast to classical NMF, the method does not produce
a single LMC matrix, but sample-specific LMCs us-
ing the same proportions matrix.

Rahmani et al. [15],
2019

CONFINED reference-free CONFINED uses two matrices as input and employs
canonical correlation analysis (CCA) to obtain purely
biological sources of variations.

Thompson et al. [16],
2019

BayesCCE semi-reference-
free

BayesCCE is a semi-supervised method to estimate
proportions of different cell types that requires some
prior knowledge on the cell-type composition of the
studied tissue.

Rahmani et al. [17],
2018
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Supplementary Table 2: Computational configurations in which software installation and the protocol have been
tested. In case of an unexpected installation error, use the docker image available from https://hub.docker.com/
r/mscherer/medecom.

Type Distribution Version R-
version

Installation
successful

Protocol
tested

Comments

Linux

Debian

Wheezy (7) R-3.5.2 Yes Yes
R-3.6.0 Yes Yes

Jessie (8)
R-3.5.3 Yes Yes (reduced1)
R-3.6.1 Yes No
R-4.0 Yes No

Buster (10) R-3.5.2 Yes Yes (reduced)

Fedora
28 R-3.5.3 Yes No
31 R-3.6.1 No Yes (reduced) ‘igraph’ dependency fails to

install
CentOS 8.0 R-3.5.2 Yes Yes (reduced)

R-3.6.1 Yes Yes (reduced)
Ubuntu 19 R-3.6.1 Yes Yes (reduced)

MacOS Mojave R-3.5.1 Yes Yes (reduced) binary release used
Catalina R-3.6.0 Yes Yes (reduced)

Windows

10 Pro R-3.6.1 No Yes (reduced) Use docker image
7 Pro R-3.6.1 No No Docker is not available for

Windows 7
1In the reduced protocol, we executed preprocessing and a single MeDeCom run on a reduced dataset.
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Supplementary Figures

Step I: Start FactorViz

Step II: Load MeDeCom/DecompPipeline output

a

b
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Step IV: Select regularizer (λ)

Step III: Select number of components (K)c

d
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Step VI: Associate proportions with phenotypes

Step V: Visualize proportions matrix (A)e

f
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Step VII: Visualize LMC matrix (T)

Step VIII: Determine differential CpGs

g

h
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Step IX: LMC GO enrichment analysisi

Step X: LMC LOLA enrichment analysisj

Supplementary Fig. 1: Interpreting MeDeCom’s results with FactorViz. For each of the steps, a screenshot of the
FactorViz User Interface is shown for the TCGA LUAD dataset, and the ten performed steps are briefly described.
a, b Specify the input, c, d Select the best parameters for the deconvolution, e, f Visualize proportion matrix and
associate it with phenotypic traits, g, h Visualize LMCs matrix and determine differential CpGs, and i, j GO and LOLA
enrichment analysis of differential CpGs.
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Supplementary Fig. 7: Differential analysis for LMC4. a Scatterplot between the methylation values of LMC4
(x-axis) and the median methylation values of the remaining six LMCs. Each point represents a CpG and points in
red indicate the LMC-specific hypomethylated sites (difference less than 0.5), while the bold points represent those
with an absolute difference larger than 0.75 (listed in Supplementary Table 3). b LOLA enrichment analysis of the
LMC4-specific hypomethylated sites (the red points). Shown is the negative logarithm of the enrichment p-value.
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Supplementary Fig. 8: Survival analysis comparing different levels of LMC proportions. Shown are Kaplan-Meier
curves, while samples were stratified according to the LMC proportions into two groups according to the median (high
vs. low proportions). P-values were computed using the Cox proportional hazards model with the LMC proportions
as input, and age, sex, and tumor stage as covariates [21].
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