Helicobacter small RNA regulates host adaptation and carcinogenesis

Ryo Kinoshita-Daitoku ${ }^{1,2}$, Kotaro Kiga ${ }^{2}$, Ryota Otsubo ${ }^{1}$, Yoshitoshi Ogura ${ }^{3}$, Takahito Sanada ${ }^{1,2}$, Zhu Bo ${ }^{2}$, Tuan Vo Phuoc ${ }^{4,5}$, Tokuju Okano ${ }^{6}$, Tamako lida ${ }^{2}$, Rui Yokomori ${ }^{7}$, Eisuke Kuroda ${ }^{1,2}$, Sayaka Hirukawa ${ }^{2}$, Mototsugu Tanaka ${ }^{2,8}$, Arpana Sood ${ }^{2}$, Phawinee Subsomwong ${ }^{1}$, Hiroshi Ashida ${ }^{6}$, Tran Thanh Binh ${ }^{4,5}$, Lam Tung Nguyen ${ }^{4}$, Khien Vu Van ${ }^{9}$, Dang Quy Dung Ho ${ }^{5}$, Kenta Nakai ${ }^{7}$, Toshihiko Suzuki ${ }^{6}$, Yoshio Yamaoka ${ }^{4}$, Tetsuya Hayashi ${ }^{3}$, and Hitomi Mimuro ${ }^{1,2}$

1 Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.

2 Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

3 Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

4 Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Oita, Japan.

5 Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh 749000, Vietnam.

6 Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.

7 Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

8 Division of Nephrology and Endocrinology, The University of Tokyo School of Medicine, Tokyo, Japan

9 Department of GI Endoscopy, 108 Central Hospital, Hanoi,

Vietnam.

Abstract

Type-1 carcinogenic Helicobacter pylori that is known to evolve during longterm infection, enters the stomach orally and causes gastric cancer using the carcinogenic protein CagA ${ }^{1}$. However, little is known about the adaptation mechanisms of H. pylori when the environment changes from the outside to the inside of the living body. Here we show that small non-coding RNA HPnc4160 is a crucial novel RNA molecule of H. pylori that negatively regulates bacterial-host adaptation and gastric cancer. H. pylori isolated from gerbil's stomachs eight weeks post-infection acquired mutations in the increased number of T-repeats within the upstream region of the HPnc4160 coding region, which leads to reduced HPnc4160 expression levels that also seen in cancer patients-derived H. pylori. By comparing RNA-seq and ITRAQ analysis between wild-type and hpnc4160 deficient mutant strains, we identified eight targets of HPnc4160 including cagA and unknown factors. Mice infection experiment revealed that the hpnc4160 deficient mutant had a higher number of colonized bacteria in the mice stomach than the wild-type strain, indicating that reduced expression levels of HPnc4160 was important for bacterial host adaptation. The expression level of HPnc4160 was lower in the clinical isolates derived from gastric cancer patients compared with non-cancer-derived strains, while the mRNA expression levels of target factors were higher. Our findings highlight the first discovery that HPnc4160 is an important small RNA for bacteria to adapt to the host environment leading to gastric carcinogenesis.

Main

Helicobacter pylori infection has a very high prevalence that about half of the world population is infected. Patients infected with CagA-positive H. pylori closely related to disease malignancy have been reported to have an increased risk of peptic ulcer, chronic gastritis, intestinal metaplasia, and gastric cancer. ${ }^{2,3}$ The highly pathogenic H. pylori possess a cag pathogenicity island that encodes components of a Type IV secretion system (TFSS), which is an injection needle, and a carcinogenic factor CagA effector protein. The H. pylori that has reached the gastric epithelium injects CagA protein, peptidoglycan, and heptose-1,7-bisphosphate into the attached cells via TFSS, and stimulates signal transduction pathways such as NF-кB to promote production of chemokines such as interleukin-8 (IL-8) ${ }^{4-11}$.

It is considered that the genetic diversity at the genomic level that is characteristic of H. pylori is very important to establish a persistent infection in an infected host with different backgrounds, adapting to a gastric niche with severe environmental changes ${ }^{12}$. The H. pylori gene mutations are characterized by the presence of simple repetitive sequences such as mononucleotide repeats (such as poly-T) and dinucleotide repeats (such as CT-repeats). From the analysis of clinical isolates of H. pylori so far, it is considered that phase variations are induced by ON / OFF control of gene expression of such as outer membrane proteins (OMPs) due to expansion and contraction of these simple repetitive sequences ${ }^{12-14}$. In the course of chronic infection, in order to escape from the host immunity, it is assumed that strong diversity in H. pylori OMPs that can serve as highly antigenic cell surface antigens will cause a strong directivity of selection ${ }^{15}$. Therefore, to understand the mechanism of persistent infection by H. pylori, we analyzed bacterial gene mutations acquired by H. pylori in the course of persistent infection using an
experimental animal infection system with the same host genetic background. With growing evidence that bacterial small RNA (sRNA)-mediated target gene expression in response to changes in the environment, we focused sRNAs as well ${ }^{16}$.

Identification of HPnc4160

To analyze the bacterial gene mutation acquired by H. pylori during the persistent infection, Mongolian gerbils ($\mathrm{n}=10$) were inoculated with H. pylori ATCC 43504 wild-type strain for 8 wks. H. pylori in the infected stomachs were isolated ($n=40$; Fig. 1a), and analyzed comparative whole genome sequences (Fig. 1b, Supplementary Information 1, 2). We totaled genomic positions, where these mutations were introduced, for each coding and intergenic region, and identified 13 regions (Regions R1, R3-R5, R7-R8, R10-R16) where mutations were introduced in 50\% or more of the strains (Fig. 1b, Extended Data Table 1).

To investigate whether the mutated region affects RNA expression in isolates recovered from the gerbils, the expression levels of mRNA or noncoding RNA around the mutated regions were quantified by quantitative PCR. Among the corresponding 15 CDSs and non-coding RNA (HP0947, babA, tpiA, jhp1163, HP0811, HPnc4160, HPnc4170, jhp0540, araS, pldA, sabA, HP1354, hopZ, tlpB, HPB8_818), we found that the expression level of HPnc4160, a non-coding small RNA (sRNA) of unknown function, fluctuated the most compared to the wild-type (Fig. 1c, Extended Data Fig. 1a). Similar results were also obtained with the strains ($n=10$) isolated from C57BL/6 mice ($n=5$) (Fig. 1b, Extended Data Fig. 1a, b; Supplementary Information 3, 4).

Region R14 is the upstream region of HPnc4160 and HP0811, and is located in the CDS of HPnc4170 (aapB small ORF homologue) encoded by the complementary sequence of HPnc4160 (Fig. 1d) ${ }^{17}$. HPnc4160 and its
upstream T repeat were conserved in various H. pylori genome analysis strains, and T repeat length was different depending on the strain (Extended Data Fig. 2a). A repeat of 2 to 4 bases of thymidine was inserted into the repeat of isolates from rodents, and the repeat length increased depending on the infection period (Fig. 1e, Extended Data Fig. 2b-e). Importantly, sequence analysis of clinical isolates showed that T repeat lengths were longer in cancer patient-derived strains than in non-cancer patient-derived strains (Fig. 1f, Supplementary Information 5). However, expansion of the repeat was not observed in long-term in vitro culture (Extended Data Fig. 3). Next, we analyzed the change in HPnc4160 sRNA expression levels by T repeat length. In strains recovered from H. pylori-infected rodent stomachs, HPnc4160 expression level tended to decrease with expansion of T repeat length (Fig. $1 \mathrm{~g})$. To exclude the effects of mutations other than the T repeats, we further analyzed RNA expression levels of HP0811, HPnc4170 and HPnc4160 in various mutants in which the T repeat sequence was inserted into the HPnc4160 upstream region of wild-type strain (T15mut, T16mut, T17mut, T18mut, and T19mut). In strains in which the number of T repeats was greater than T14 of wild-type, the expression levels of HPnc4160, but not HP0811 and HPnc4170, were significantly reduced compared with wild-type (Fig. 1h, Extended Data Fig. 4a-c,). Although HPnc4160 and HPnc4170 were initially reported as the small ORF-encoding mRNA/antisense RNA family aapB/IsoB, in which the Iso transcript acts as asRNA antitoxin to modify the aap expression ${ }^{18}$, our data indicated that HPnc4160 expression levels had no effect on HPnc4170 levels. These results indicated that expression levels of HPnc4160 sRNA decreased when the number of Region R14 T repeats increased due to persistent intragastric infection.

Many sRNAs regulate the expression of a target mRNA by specifically binding to a complementary sequence in the target protein coding mRNA. To elucidate the target mRNA of HPnc4160, we made a $\Delta h p n c 4160 / h p n c 4170$ strain, in which both the HPnc4160 and the HPnc4170 on the complementary strand were deleted, and analyzed comparative mRNA and protein expression. We identified eight factors (cagA, hofC, HELPY_1262, hpaA, horB, omp14, hopE, and HP1227) with P-values lower than 0.001 (RNA-seq analysis) and 0.01 [isobaric tag for relative and absolute quantitation (iTRAQ) labeling and LCMS/MS analysis] (Fig. 2a-c, Extended Data Table 2a-b). Of these, cagA was prominent in expression levels of mRNA and protein.

We analyzed whether the mRNA expression levels of the identified eight factors depend on the presence of HPnc4160. Although the expression level of HPnc4160 showed a decreasing trend with T16mut as the lowest value, the mRNA of the eight candidates showed increasing trends with T16mut as the highest value. The Spearman correlation coefficients r between the expression levels of these target mRNAs and HPnc4160 showed a very strong inverse correlation from -0.7714 to -1.0 (Extended Data Fig. 4d).

Next, we examined the mRNA expression correlation between HPnc4160 and each factor. The HPnc4160 overexpression strain (WT / pHel2hpnc4160) significantly increased the expression level of HPnc4160 compared to the wild-type strain, but significantly decreased the expression level of each factor mRNA. On the other hand, in $\Delta h p n c 4160 / h p n c 4170$ strain, mRNA expression of each target increased compared to the wild-type. Since $\Delta h p n c 4160 / h p n c 4170$ strain also lacks the HPnc4170 sequence present in the complementary strand of HPnc4160, we constructed a $\Delta h p n c 4160 / h p n c 4170$ /pHel2-hpnc4160 strain complementing only HPnc4160 to confirm the effect of the HPnc4170 sequence on HPnc4160 target mRNA expression. Compared to the $\Delta h p n c 4160 / h p n c 4170$ strain, the mRNA expression levels of the
candidates were decreased in the HPnc4160 complemented $\begin{aligned} & \text { hpnc4160/hpnc4170 /pHel2-hpnc4160 (Fig. 2d, Extended Data Fig. 5a). }\end{aligned}$ These data indicated that the expression levels of the HPnc4160 target 8 candidates were suppressed depending on the expression level of HPnc4160.

When sRNA binds within a few bases around the 5 'UTR or start codon of target RNA, it often competes with ribosomes and inhibits translation initiation. If the sRNA binds within the CDS far downstream of the initiation codon, it causes mRNA degradation by RNase E or RNase III to suppress translational activation ${ }^{19}$. We confirmed by electrophoretic mobility shift assays (EMSA) that HPnc4160 binds to the 5 'UTR of seven genes other than cagA (Fig. 3a). In seven factors other than cagA, we confirmed a sequence complementary to the HPnc4160 sequence in the 5 'UTR of each gene (Extended Data Fig. 5b-c). In the cagA gene, we found HPnc4160-binding sequences Type 1 at one position (2344 nt), and Type 2 at four positions (2838, 2940, 3042, and 3144 nt) within the CM/CRPIA motifs in CagA Cterminal region, which is known to bind with host signal proteins ${ }^{7,20}$ (Fig. 3b, Extended Data Fig. 5d-f). We confirmed direct binding of cagA partial CDS (positions 2778 to 3236 nt from start codon of cagA) to HPnc4160 (Fig. 3c). The binding between the two was abolished in the NB-cagA RNA in which the HPnc4160 binding sequence was mutated at four positions (Type 2) while the amino acid sequence of CagA was preserved (Fig. 3c, Extended Data Fig. 5g). In addition, we found that in the presence of H. pylori RNase III recombinant protein, the binding between HPnc4160 and biotin-labeled partial cagA mRNA, but not NB-cagA RNA, disappeared (Fig. 3d, Extended Data Fig. 5i). These data clearly demonstrated that HPnc4160 controls cagA at the posttranscription level by binding to multiple binding sequences present in its CDS region, and promotes degradation by RNase III.

Effects of HPnc4160 on H. pylori pathogenicity

Among the factors that HPnc4160 regulated the expression levels, we further analyzed CagA, which has been deeply involved in pathogenesis. First, we confirmed whether the binding of HPnc4160-cagA mRNA actually controls the expression levels of cagA mRNA and protein in H. pylori. The quantitative PCR showed that, in the H. pylori expressing NB-cagA in which all five HPnc4160binding DNA sequences were mutated but the amino acid sequence was preserved (Extended Data Fig. 5g-h), the expression level of HPnc4160 was similar to that of the wild-type, but the expression level of cagA mRNA was significantly increased to the same extent as that of the $\Delta h p n c 4160 / h p n c 4170$ strain (Extended Data Fig. 6a, Fig. 4a). Using the urease UreA protein as a loading control for H. pylori, we confirmed that NB-cagA strain expressed CagA protein at a higher level than wild-type and $\Delta h p n c 4160 / h p n c 4170$ I pHel2-hpnc4160 strains, similar to $\Delta h p n c 4160 / h p n c 4170$ strain (Fig. 4b). Next, we analyzed Western blot of the gastric epithelial cell line AGS infected with H . pylori. Using β-actin as a loading control for cells, we confirmed that the amount of UreA protein, which exhibited the bacterial amounts, was the same in the lysates of cells infected with any of the strains, indicating that all of the strains showed same binding ability to AGS cells (Extended Data Fig. 6b). Some of the CagA proteins injected from H. pylori to host epithelium via TFSS were tyrosine phosphorylated by host Src/Abl kinase and detected by pY-CagA-specific antibody. Using the antibody, we confirmed that the amount of intracellular CagA was increased in the NB-cagA-infected cells, accompanied with the increase in the amount of CagA (Extended Data Fig. 6b). Injected CagA induces AGS cell motility (scattering/hummingbird). In the AGS cells infected with the $\Delta h p n c 4160 / h p n c 4170$ or the NB-cagA strains, more remarkably elongated cells were observed than in the wild-type or $\Delta h p n c 4160 / h p n c 4170$ / pHel2-hpnc4160 strain-infected cells (Fig. 4c-d). When
we analyzed amount of IL-8 protein secreted from H. pylori-infected cells, which is induced mainly by intracellular CagA, we found that the cagA-NB strain infected cells had higher IL-8 producing ability than the wild-type infected cells (Extended Data Fig. 6c). These results suggested that binding of HPnc4160 to cagA mRNA is important for controlling the amount of functional CagA protein injected by H. pylori.

To understand the significance of the HPnc4160 control mechanism in the bacterial adaptation to the host to establish infection, mice were orally inoculated with each strain, and the number of bacteria colonized in the stomach was analyzed three days post infection. The number of colonized bacteria in the stomach was significantly increased in the $\Delta h p n c 4160 / h p n c 4170$ strain compared to the wild-type, but the $\Delta h p n c 4160 / h p n c 4170$ / pHel2-hpnc4160 and the NB-cagA strains were equivalent to wild-type (Fig. 4e). Since $\Delta h p n c 4160 / h p n c 4170$ infection significantly increased Cxcl2 mRNA compared to wild-type infection, but NBcagA strain was equivalent to wild-type, it is suggested that factors other than CagA controlled by HPnc4160 may be important for the bacterial adaptation as well as development of gastritis (Fig. 4f). To confirm the significance of HPnc4160 in the pathogenesis of H. pylori, we examined the expression levels of the HPnc4160 target genes in clinical isolates. As shown in Fig. 4g, isolates from cancer patients had lower levels of hpnc4160, but increased expression of six factors controlled by HPnc4160 (cagA, horB, hopE, omp14, hofC, and hpaA), compared to isolates from non-stomach cancer patients (Fig. 4 g , Extended data Fig. 7). These data strongly suggested that target mRNA expression was suppressed by HPnc4160 at the onset of H. pylori infection, and with the course of infection, thymidine repeats were inserted into the upstream region of HPnc4160, HPnc4160 expression decreased, and target mRNA expression increased; those episodes contributed to bacterial
adaptation to the host environment, leading to gastritis and gastric cancer formation (Extended Data Fig. 8).

Discussion

Among the bacterial factors, CagA had extremely high mRNA and protein levels in the bacterial cells (Fig. 2a and b). Our data indicated that T-stretch length in the upstream region of hpnc4160 did not elongate under in vitro condition (Extended Data Fig. 3). However, the T-stretch length was increased and the expression levels of CagA and OMPs increased in vivo in gastric infection (Fig. 1e, 2a and 2b). Adaptation to the in vitro culture environment does not require CagA or OMPs. Therefore, under in vitro conditions, it may be that the expression level of hpnc4160 is increased and the expression of target is suppressed in order to allocate energy for the growth of bacterial cells, rather than expressing genes having high expression levels such as CagA. CagA suppresses apoptosis of the gastric mucosal epithelium and contributes to persistent infection of H. pylorib. When H. pylori enter the stomach, the bacteria may have acquired a mechanism to decrease the expression of HPnc4160 to increase the expression of OMP and CagA simultaneously, in order to adapt to environmental changes to colonize the gastric mucosa for a scaffold for growth.

Gene expression control mechanism by variation of the number of repeat sequences is known as one of various gene expression control mechanisms by phase variation in H. pylori ${ }^{21}$. This study suggests that the repeat sequence of H. pylori genome is important not only as an ON / OFF mechanism of protein expression such as cell adhesion factors SabA and BabA, but also in sRNA expression. It has been reported that H. pylori DNA polymerase I does not have gene repairing activities like other bacteria, thus
insertions or deletions of bases called slipped strand mispairing (SSM) occur in simple repetitive sequences ${ }^{22}$. In fact, since there were variations in poly-T length within the upward region of hpnc4160 in H. pylori in vivo (Extended Data Fig. 2a), it is conceivable that H. pylori become genetically heterogeneous bacterial population using SSM during the course of infection, so that a population suitable for mutation in the host is selected and propagated. In this study we mainly used strain ATCC 43504, which is a clinical isolate originally from the human antrum. The poly-T length, which did not fluctuate in the in vitro subculture, increased in rodent isolates ranged from 14 to 19 copies (Extended Data Fig. 2, 3), indicating that the introduction of SSM may be caused by some host stress condition.

The HPnc4160-binding sequence in the ATCC 43504 cagA CDS was duplicated at five sites (Fig. 3b). In the regulation of mRNA expression by general sRNA, mRNA instability can be induced by binding at one site. This is the first report of a sRNA gene regulatory mechanism having multiple binding sequences in one gene of a pathogen. The four out of five HPnc4160-binding sequences in the cagA CDS was located in the CM/CRPIA motif of the cagA gene, which is involved in maintaining host epithelial cell structure ${ }^{20}$. Since the number of the CM/CRPIA motif differs depending on the strain, HPnc4160 may regulate differences in pathogenicity between Western and East Asian type of H. pylori.

The onset of the diseases due to H. pylori infection is thought to be the result of persistent infection for decades after the initial infection during childhood, when a very small number of bacteria-containing aerosol were taken into the body orally ${ }^{23}$. However, since it is difficult to analyze H. pylori infection experiments using laboratory animals for decades, a relatively short time infection analysis must be performed by inoculating a large number of bacteria. Therefore, the mutation analysis in this study may correspond to
mutations acquired in the acute phase (Supplementary information 1 and $3)^{15,},{ }^{24}$. Infection by a small number of bacteria that mimic natural infection allows for more detailed analysis of the establishment of infection.

In this study, we investigated the mutations of H. pylori, originated from the same strain, infected in experimental animals with the same genetic background and environment. Unlike studies in individuals with widely differing genetic backgrounds, stomach environments, and infection history, our study has advantage for understanding the adaptation process of H . pylori to the host. We discovered a novel non-coding sRNA that is important for posttranscriptional translation control of pathogenic factors of H. pylori, such as CagA, which was previously considered to be the most important pathogenic factor for gastric cancer development, and putative OMPs involved in bacterial adhesion. This study is not limited to elucidating the complicated mechanism of persistent H. pylori infection, but its application to H. pylori-specific therapies that do not rely on antibiotics can also be expected.

Figure legends

Fig. 1: H. pylori acquire poly-T extension in upstream of HPnc4160 small RNA to decrease its expression during infection in vivo.
a, Experimental strategies schematic. b, Circular genomic map of ATCC 43504 strain recovered from stomachs of gerbils and mice. c, Mutation rates and expression levels of candidate RNAs (mRNA or non-coding RNA). RNA expression levels of the ORFs or nearby genes of genome regions [total 15 genes (Extended Data Fig. 1a), which mutated in more than 50% of the recovered strains from the gerbils, were assessed and plotted against the mutation rates. d, Schematic structures of genes around HPnc4160. e, Schematic diagram of genome DNA sequence around the HPnc4160 and polyT sequence of recovered strains harboring mutations. Green indicates HPnc4160 transcribed sequence, red frame indicates poly-T mutated stretches in the upstream region of HPnc4160 of ATCC 43504 wild-type (WT) strain, and red-colored "T" indicated inserted nucleotides of each recovered strain compared with WT. f, The T-repeat length in the upstream region of HPnc4160 of clinical isolates. Isolated strains from cancer patients (Cancer) have a higher number of T-repeat in the upstream region of Hpnc4160 compared with the isolates from non-cancer patients (Non-Cancer). Data are presented as means with 95% confidence interval. P values represent the results of the two-tailed Mann-Whitney test. g, Expression levels of HPnc4160 in the recovered H. pylori strains from Mongolian gerbils ($n=40$). Relative expression levels of HPnc4160 were measured by real-time PCR and plotted against T-repeat length in the upstream region of HPnc4160. Data are presented as means with s.d. P values represent the results of two-tailed Dunn's multiple comparison test. h, The relative expression levels of HPnc4160 in the H. pylori strains genetically modified with the T-repeat length. Data are presented as means
with s.d. (n=3). P values are from Dunnett's multiple comparison test (at twosided).

Fig. 2: HPnc4160 downregulates expression levels of bacterial pathogenic factors.
a, The MA plot of ratios [$\Delta h p n c 4160 / h p n c 4170$ / wild-type (WT) H. pylori] versus their normalized average mRNA expression determined by RNAsequencing (RNA-Seq). The red dots showed genes of $P<0.001$. b, Volcano plots of the proteins quantified by isobaric tags for relative and absolute quantification (iTRAQ) analysis comparing WT and $\Delta h p n c 4160 / 4170$. Each point represents the difference in expression (fold change) between the two groups plotted against the level of statistical significance. The red dots showed proteins of $P<0.01$. c, The Venn diagram represents the number of factors whose expression exhibited significant differences between $\Delta h p n c 4160 / h p n c 4170$ and WT. d, The relative RNA expression levels of target candidates of HPnc4160 showed an inverse correlation with HPnc4160. The results represent the average of three separate experiments (each $n=3$). Data are presented as means \pm s.d. (error bars). P values are from Tukey's multiple comparison test (at two-sided). ns: not significant.

Fig. 3: HPnc4160 binds to target mRNA.
a, Electrophoretic mobility shift assay (EMSA) analysis of HPnc4160 binding to the 5' UTR region of each candidate mRNA. b, Schematic of CagA motifs, and HPnc4160 binding sequences. c, EMSA analysis of HPnc4160 binding to RNA of partial cagA WT or HPnc4160-non-binding cagA (NB-cagA). d, RNase protection assay with HPnc4160, cagA mRNA, and recombinant RNase III.

Fig. 4: HPnc4160 controls bacterial host adaptation and pathogenesis.
a, HPnc4160, and cagA mRNA expression levels. The results represent the average of three separate experiments (each $n=3$). Data are presented as means \pm s.d. (error bars). P values are from non-parametric Dunnett's multiple comparison test (at two-sided). ns: not significant. Experiments were repeated three times with similar results. b, Protein expression levels of CagA in each mutant strain. UreA protein levels serve as bacterial loading controls. cand d, Scattering phenotypes of H. pylori-infected AGS gastric epithelial cells. c, DNA (blue), F-actin (red), and anti-phosphorylated CagA antibody (pY-CagA, green) were stained. Scale bar, $50 \mu \mathrm{~m}$. d, Quantification of scattering activity of AGS cells induced by H. pylori infection. e and f, HPnc4160 deletion mutants efficiently colonized the stomach and contributed to increasing mRNA levels of inflammatory chemokine Cxc/2 in mice stomach. C57BL/6 mice were inoculated with H. pylori. At three days after infection, animals were sacrificed, and a quantitative culture assay (e) and a quantitative RT-PCR (f) were performed on gastric specimens. Data are median with interquartile range. P values are from non-parametric Dunn's multiple comparison test (at two-sided). ns: not significant. g, Clinical isolates from malignant patients downregulate HPnc4160 and upregulate expression levels of its target genes. Expression levels of indicated mRNAs in clinical isolates of non-cancer (Non-Cancer, $\mathrm{n}=39$) and cancer (Cancer, $\mathrm{n}=17$) patients were quantified and normalized with the levels of 23 S rRNA. Data are presented as medians with interquartile range. P values are from the non-parametric Mann-Whitney test (at two-sided).

Methods

Data reporting

No statistical methods were used to predetermine sample size, and the experiments were not randomized and the investigators were not blinded to allocation during experiments and outcome assessment.

Strains and culture conditions

The Helicobacter pylori strain ATCC 43504, its isogenic mutants $\Delta c a g A$ and $\Delta v i r B 7$, strains SS1 and PMSS1 have been described previously ${ }^{6,25}$. H. pylori was cultured on Trypticase soy agar with $5 \%(v / v)$ sheep blood (Thermo Fisher Scientific, Waltham, MA, USA) for 2 days at $37^{\circ} \mathrm{C}$ in microaerobic conditions. Bacterial colonies were suspended in Brucella broth (Thermo Fisher Scientific) supplemented with $5 \%(\mathrm{v} / \mathrm{v})$ inactivated FBS (Thermo Fisher Scientific), adjusted to Optical density 600 nm of 0.05 , and incubated 15 hours at $37^{\circ} \mathrm{C}$ with gentle agitation under microaerobic conditions.

The AGS human gastric epithelial cell line (ATCC CRL-1739) was maintained in DMEM/F-12 (Thermo Fisher Scientific) containing 10\% (v/v) FBS. AGS cells were seeded in six-well plates and grown to $\sim 80 \%$ confluence to be used for western blot analysis. For immunofluorescence microscopy, cells were seeded in six-well plates with cover glass, and grown to $\sim 80 \%$ confluence.

Antibodies and immunohistochemical reagents

The anti-Tyr(P)-CagA, and anti-UreA polyclonal antibodies have been described previously (Mimuro MC 2002). Anti-CagA polyclonal antibody was purchased from AUSTRAL Biologicals (CA, USA), anti-actin monoclonal antibody was from MERCK (Darmstadt, Germany), Horse radish peroxidase (HRP)-labeled anti-rabbit IgG and HRP-labeled anti-mouse IgG, and FITC-
labeled anti-rabbit IgG was from Jackson ImmunoResearch Laboratories Inc. (PA, USA). DAPI was from SIGMA-ALDRICH (MD, USA), and Rhodamine Phalloidin was from Thermo Fisher SCIENTIFIC (MA, USA).

Animal infection

H. pylori infection of rodents were performed as described previously ${ }^{26}$. Briefly, 6-week-old male MON/Jms/GbsSlc Mongolian gerbils were orally administered with $200 \mu \mathrm{~L}$ of Vancomycin ($500 \mathrm{mg} / \mathrm{L}$) at 24 and 48 hours before H. pylori inoculation. On the days of H. pylori inoculation, $300 \mu \mathrm{~L}$ of $5 \%(\mathrm{w} / \mathrm{v})$ sodium bicarbonate were orally administrated 10 minutes before bacterial inoculation. The gerbils were then intragastrically inoculated with an H. pylori culture containing $10^{9} \mathrm{CFU}$ for 2 consecutive days. As for C57BL/6 mice (SLC Japan Inc., Tokyo, Japan) were intragastrically inoculated once with H. pylori culture of $10^{9} \mathrm{CFU}$. After indicated date, the stomach of each infected animal was opened along the greater curvature. To quantitatively isolate H. pylori, the stomach was excised, weighed, and homogenized. Serial dilutions were plated on H. pylori-selective agar plates (Eiken Chemical Co.) and incubated under microaerophilic conditions at $37^{\circ} \mathrm{C}$ for 4 days, after which the cfu were counted. Colonization data points of 1×10^{3} cfu were the minimal detection limit of the assay.

For isolation of strains recovered from H. pylori-infected rodents, each colony on the H. pylori-selective agar plates were picked up and spread on Trypticase soy agar with $5 \%(\mathrm{v} / \mathrm{v})$ sheep blood, and incubated under microaerophilic conditions at $37^{\circ} \mathrm{C}$ for two days. Then, the colonies were suspended in Brucella broth supplemented with 5\% (v/v) inactivated FBS, adjusted to Optical density 600 nm of 0.05 , and incubated 15 hours at $37^{\circ} \mathrm{C}$ with gentle agitation under microaerobic conditions. The cultures were preserved with 50% (v/v) glycerol in $-80^{\circ} \mathrm{C}$ until use.

For RNA isolation, the tissue was immediately frozen in liquid nitrogen. Animal experiments were conducted in accordance with the University of Tokyo or Osaka University guidelines for the care and use of laboratory animals and were approved by the ethics committee for animal experiments at the University of Tokyo or Osaka University.

Genomic DNA purification and sequencing

For PCR templates, genomic DNA was purified using InstaGene Matrix (BioRad Laboratories, Inc., CA, USA).

For whole genome sequencing, genomic DNA was purified from mid-log phase culture of strain ATCC43504 using QIAGEN DNeasy (QIAGEN). A genomic DNA library for sequencing was prepared using the Nextera XT DNA Sample Preparation kit (Illumina, San Diego, CA, USA) and sequenced using the Illumina MiSeq (for isolates from gerbils) or HiSeq X (for isolates from mice) platform to generate 300-bp paired-end reads. Genome assembly, scaffolding, and gap-closing were performed using the Platanus assembler (Kajitani et al. 2014). Gene identification and annotation were conducted by the Microbial Genome Annotation Pipeline (MiGAP [http://www.migap.org]). The raw read sequences and assembled scaffold sequences have been submitted to the DDBJ/EMBL/Genbank under the Bioproject accession number; SAMD00178897- SAMD00178935, SAMD00179460, SAMD00178937 and SAMD00204457- SAMD00204466.

The DNA sequences mutated in more than 50% of the 40 strains recovered from Mongolian gerbils, or, in all of the 10 strains recovered from C57BL/6 mice were listed in Extended Data Table 1. We selected the genes to further analyze for their mRNA expression levels as follows. For the gene in which the mutation was in the CDS region, the mRNA expression level of the CDS was measured. While, when the mutation insertion region was an intergenic region,
we measured the mRNA expression level of an adjacent gene in which the intergenic region could be a 5'UTR region. As for HP1243 and HPG27_298, which started from 3' end of HP1243 with 33 nucleotides spaces, were regarded as a continuous gene; since both genes are annotated as babA gene and ribosomal binding site (RBS) is assigned only at the upstream region of HP1243.

In vitro passage experiment

H. pylori ATCC 43504 was recovered from frozen stock and cultured on 5\% (v/v) sheep blood agar for 2 days at $37^{\circ} \mathrm{C}$ in microaerobic conditions. Bacterial colonies were suspended in 3 tubes of Brucella broth supplemented with 5\% (v/v) inactivated FBS. Each bacterial suspension was adjusted to Optical density 600 nm of 0.05 , and incubated 12 hours at $37^{\circ} \mathrm{C}$ with gentle agitation under microaerobic conditions. Following this incubation, each fraction of the suspension was preserved by freezing in $50 \%(v / v)$ glycerol as "Original" strains. Meanwhile, each bacterial suspension was sub-cultured by resuspending in Brucella broth supplemented with $5 \%(\mathrm{v} / \mathrm{v})$ inactivated FBS to adjust Optical density 600 nm of 0.05 , and incubated additional 12 hours at $37^{\circ} \mathrm{C}$ with gentle agitation under microaerobic conditions. The sub-cultivation was repeated for 60 passages (30 days), and each cell suspension was preserved by freezing in $50 \%(v / v)$ glycerol as "60-passaged" strains. The "Original" and "60-passaged" strains were recovered from frozen stock on 5\% (v / v) sheep blood agar by 2 days incubation under microaerobic conditions, and then the colonies were suspended in Brucella broth supplemented with 5\% (v/v) inactivated FBS and incubated 12 hours at $37^{\circ} \mathrm{C}$ with gentle agitation under microaerobic conditions. The bacterial cells were collected and subjected to the genomic DNA purification.

RT-PCR

For preparation of total RNA from H. pylori, the liquid cultures of H. pylori were agitated under microaerobic conditions at $37^{\circ} \mathrm{C}$ overnight until the OD value at 600 nm reached 0.9.

Total RNA was extracted using ISOGEN (Nippon Gene, Tokyo, Japan), according to the manufacturer's instructions. The concentration of the purified total RNA was analyzed using the NanoDrop Spectrophotometer (ThermoFisher Scientific, Wilmington, DE, USA). The total RNA was reverse transcribed into cDNA with miScript II RT Kit (QIAGEN) according to the manufacturer's instructions. The levels of mRNA expression were quantified and normalized to 23SrRNA (for H. pylori) or Gapdh (for mice) expression with a THUNDERBIRD SYBR qPCR (TOYOBO) using the primer pairs described in Supplementary Information 6. The results are expressed as the means \pm SEM from triplicate strain experiments.

Genetic manipulation

Construction of plasmids for producing gene-deficient mutants

Isogenic gene null mutants derived from ATCC 43504 were constructed by insertional mutagenesis as follows. Using the extracted H. pylori ATCC 43504 genome as a template, DNA fragments containing the upstream region 500 bp and the downstream region 500 bp of the target gene were amplified by PCR using primer (CagA KO up Xhol, CagA KO up EcoRI, CagA KO down BamHICagA KO down Notl, HPnc4160/4170 KO up KpnI, HPnc4160/4170 KO up Clal, HPnc4160/4170 KO down BamHI, HPnc4160/4170 KO down Sacl; listed in Supplementary Information 6). The DNA fragments were introduced at the both sides of the aphA3 (which confers kanamycin resistant) in pBluescript II SK (+) plasmid. The fragments from the resulted plasmid were introduced into H. pylori by electroporation.

Construction of non-marker H. pylori mutants

For constructing non-marker H . pylori mutants, ATCC 43504 flaA and cag1 promoter and terminator were cloned into pBluescript SK(+) Smal aphA3 Smal, and sacB gene was cloned into EcoRI site (pKSB plasmid). Mid-log-phase (OD600 = 0.5-0.7) of H. pylori in 20 ml culture liquid were washed twice with ice-cold 10% glycerol and resuspended by 200μ l of icecold 10% glycerol. $1 \mu \mathrm{~g}$ of pKSB vector containing aimed mutation and the bacterial liquid were mixed at $4^{\circ} \mathrm{C}$ and electroporated by Micropulser (Bio-Rad) with Ec2 $(2.5 \mathrm{kV})$ setting. After 4 hours incubation at $37^{\circ} \mathrm{C}$ in microaerophilic condition, cells were plated on 5% sheep blood agar plate TSAII containing 4 $\mu \mathrm{g} / \mathrm{ml}$ Kanamycin and incubated $2-3$ days at $37^{\circ} \mathrm{C}$ under the microaerophilic condition. 4 single colonies were seeded on new 5\% sheep blood agar plate TSAll supplemented with $4 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin and incubated for additional 2 days. Each colony was picked up and were cultured in Brucella broth containing 5% FBS at $37^{\circ} \mathrm{C}$ under the microaerophilic condition until H. pylori were grown to mid-log phase. $100 \mu \mathrm{l}$ of the medium were plated on 5% sheep blood agar plate supplemented with 2.5% sucrose and cultured for 2 days. Each colony was seeded on a new 5\% sheep blood agar plate without antibiotics and incubated for 2 days. At the same time, the colony was seeded on a different agar plate with $4 \mu \mathrm{~g} / \mathrm{ml}$ Kanamycin to confirm the Kanamycin resistant was disappeared. Grown H. pylori were transferred to liquid culture and the genome sequence was confirmed by Sanger sequencing.

Construction of point mutated H. pylori
The H. pylori recombination plasmids to establish various mutant strains (T15mut, T16mut, T17mut, T18mut, T19mut) in the upstream region of hpnc4160 were constructed by PCR using H. pylori genome DNA from the
strains isolated from gerbil after 8 weeks as a template, and primers (pKSBHPnc4160 Point mut Apal and pKSB-HPnc4160 Point mut Xhol; listed in Supplementary Information 6), then, the resulted DNA fragments were cloned into suicide pKSB plasmid.
H. pylori T15mut, T16mut, T17mut, T18mut and T19mut mutants were established by introducing each pKSB-based plasmid into H. pylori ATCC 43504 strain.

Construction of NB-cagA-expressing H. pylori
Based on the full length cagA cDNA sequence of ATCC 43504, we designed HPnc4160-unbound cagA gene sequence (NB-cagA, Extended Data Fig. 5 g and h). The NB-cagA cDNA were artificially synthesized as pEX-K4J2-cagA mutant of 908 bps (eurofins, 99900008281-1). The cDNA fragments containing mutated cagA sequence were amplified using primers (pKSB-CagA-NB-Apal, pKSB-CagA-NB-Xhol, listed in Supplemented Information 6), and cloned into a suicide vector pKSB. The resulted plasmids were introduced to H. pylori ATCC 43504 to obtain NB-cagA-expressing H. pylori.

Construction of hpnc4160 over-expressing H. pylori

The plasmid for the hpnc4160 overexpressing strain in H. pylori was constructed by combination of

DNA fragments of hpnc4160 regions were amplified by PCR using primers (pHel2-4160-de-4170-hed-f Xhol, pHel2-4160-de-4170-hed-r BamHI, Supplemented Information 6) and genome DNA of the ATCC 43504 strain as a template. The resulted DNA fragments included the upstream region of hpnc4160 without including the 5 ' region of the hpnc4170 region. The DNA was cloned into pHel2 shuttle vector, and introduced into H. pylori by electroporation.

RNA-seq

H. pylori were agitation under aerobic conditions and cultured at $37^{\circ} \mathrm{C}$ overnight until the OD value at 600 nm reached 0.9. Total RNA from the H. pylori were extracted using RNeasy (QIAGEN), according to the manufacturer's instructions. The concentration of total RNA extracted was examined using the NanoDrop Spectrophotometer (ThermoFisher Scientific, Wilmington, DE, USA), according to the manufacturer's instructions. Ten micrograms from each total RNA sample were treated with the MICROBExpress Bacterial mRNA Enrichment kit (Ambion, Grand Island, NY, USA) and RiboMinus ${ }^{\text {TM }}$ Transcriptome Isolation Kit (Bacteria) (Invitrogen, Grand Island, NY, USA) following the manufacturer's instructions. Samples were resuspended in $15 \mu \mathrm{~L}$ of RNase-free water. Bacterial mRNAs were chemically fragmented to the size range of 200-250 bp using $1 \times$ fragmentation solution (Ambion, Grand Island, NY, USA) for 2.5 min at $94^{\circ} \mathrm{C}$. cDNA was generated according to instructions given in SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen, Grand Island, NY, USA). Briefly, each mRNA sample was mixed with 100 pmol of random hexamers, incubated at $65^{\circ} \mathrm{C}$ for 5 min, chilled on ice, mixed with $4 \mu \mathrm{~L}$ of First-Strand Reaction Buffer (Invitrogen, Grand Island, NY, USA), $2 \mu \mathrm{~L}$ of 0.1 M DTT, $1 \mu \mathrm{~L}$ of 10 mM RNase-freed NTPmix, $1 \mu \mathrm{~L}$ of SuperScript III reverse transcriptase (Invitrogen), and incubated at $50^{\circ} \mathrm{C}$ for 1 h . To generate the second strand, the following Invitrogen reagents were added: $51.5 \mu \mathrm{~L}$ of RNase-free water, $20 \mu \mathrm{~L}$ of second-strand reaction buffer, $2.5 \mu \mathrm{~L}$ of 10 mM RNase-free dNTP mix, 50 U E. coli DNA Polymerase, 5 U E. coli RNase H , and incubated at $16^{\circ} \mathrm{C}$ for 2.5 h . The Illumina Paired End Sample Prep kit was used for RNA-Seq library creation according to the manufacturer's instructions as follows: Fragmented cDNA was end-repaired, ligated to Illumina adaptors, and amplified by 18
cycles of PCR. Paired-end 150-bp reads were generated by high-throughput sequencing with the Illumina Hiseq 2500 Genome Analyzer instrument. After removing the low-quality reads and adaptors, RNA-Seq reads were aligned to the corresponding ATCC 43504 genome using Tophat 2.1.0 (Trapnell et al 2009), allowing for a maximum of two mismatch. If reads mapped to more than one location, only the one showing the highest score was kept. Reads mapping to rRNA and tRNA regions were removed from further analysis. After getting the reads number from every sample, edgeR with TMM normalization method was used to determine the DEGs. Significantly differentially expressed genes (FDR value < 0.05 and at least two-fold changes) were selected for further analysis.

iTRAQ

H. pylori ATCC 43504 strains of wild-type, $\Delta h p n c 4160 / h p n c 4170$, and ahpnc4160/hpnc4170 / pHel2-hpnc4160 were cultured in Brucella Broth containing 5\% FCS to OD600 $=$ 0.9. 1.5 mL of each bacterial solution was centrifuged at $5,000 \mathrm{xg}$ for 10 minutes at $4^{\circ} \mathrm{C}$. The pellet was resuspended in Wash buffer ($1 \mathrm{M} \mathrm{KCl}, 15 \mathrm{mM}$ Tris- $\mathrm{HCl}, \mathrm{pH} 7.4$), centrifuged again, and the supernatant was removed. The pellet was resuspended in a Wash buffer containing 1 mM AEBSF (4- (2-Aminoethyl) benzenesulfonyl fluoride hydrochloride) and frozen at $-80^{\circ} \mathrm{C}$. iTRAQ analysis was commissioned to Filgen Corporation.

EMSA (electrophoretic mobility shift assay)

cDNA fragments of small RNA HPnc4160 whole region, the fragments of 150 bp total of each 5'UTR region [from 100 bases upstream from the ribosome binding region (RBS), to 50 bases downstream of the RBS] (hp0410 gene, hp0486 gene, horB gene, hp0671 gene, hopE gene, cagA gene, hp1227 gene
and helpy_1262 gene), and cDNA of 459 bp total containing the hpnc4160binding 4 region near the 3 ' tail of the cagA gene, were amplified by PCR using primers (Small RNA HPnc4160 Xhol, Small RNA HPnc4160 EcoRI; HP0410 150bp Xhol, HP0410 150bp EcoRI; HELPY_0660 150bp Xhol, HELPY_0660 150bp EcoRI; HP0671 150bp Xhol, HP0671 150bp EcoRI; HP0486 150bp Xhol, HP0486 150bp EcoRI; HPSH_00635 150bp Xhol, HPSH_00635 150bp EcoRI; HPP12_0555 150bp Xhol, HPP12_0555 150bp EcoRI; HP1227 150bp Xhol, HP1227 150bp EcoRI; HELPY_1262 150bp Xhol, HELPY_1262 150bp EcoRI; CagA-B codding Xhol, CagA-B codding EcoRI; listed in Supplementary Information 6) and the ATCC43504 genome as a template. The PCR products were cloned into the position of the downstream of the T7 promoter region of the pBluescript SK (+) plasmid. The NB-cagA mutant RNA used in the gel shift assay was amplified with a T7 promoter by PCR using (T7 promoter CagA-NB EMSA PCR s, T7 promoter CagA-NB EMSA PCR as) as primers and synthesized pEX-K4J2-CagA mutant (eurofins, 99900008281-1) cagA as a template. The cagA mutant RNA were prepared in the same manner except for mutations in the HPnc4160-binding 4 region. RNA was transcribed from a DNA fragment using an in vitro Transcription T7 kit (TAKARA).

Gel shift assays were performed using 0.04 pmol of 3'-biotin-tagged mRNA with increasing amounts of purified small RNA HPnc4160 in $20 \mu \mathrm{~L}$ reactions. Briefly, RNA was denatured ($10 \mathrm{~min}, 80^{\circ} \mathrm{C}$) and cooled for 5 min on ice. Yeast tRNA $1 \mu \mathrm{~g}$ (ThermoFisher SCIENTIFIC) was added to the labelled RNA and the reaction was filled up to $10 \mu \mathrm{~L}$ with Binding Buffer (10 mM HEPES pH 7.3, 1 $\mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM} \mathrm{KCl}, 5 \%$ glycerol). $10 \mu \mathrm{~L}$ of either labelled mRNA was added to the HPnc4160. The mixtures were incubated at room temperature for 20 min . Then the samples were mixed with $5 \mu \mathrm{~L}$ native loading buffer before loading on a pre-cooled native 6% poly-acryl amide (PAA), $0.5 x$ TBE gel. Gels were run in $0.5 x$ TBE buffer at 30 mA per gel for 2 hours ${ }^{27}$.

Cleavage assays

The cDNA of 720 bps of H. pylori rnase III was amplified by PCR using primers (pGEX-6P-1 RNasellI Xhol-f, pGEX-6P-1 RNaselll Notl-r, listed in Supplemented Information 6) and template (genome DNA from ATCC 43504 strain). The cDNA was cloned into pGEX6P-1 vector (GE). E. coli BL21 transformed with the plasmids were subjected to shaking culture in LB broth containing $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin at $37^{\circ} \mathrm{C}$ with constant shaking at 200 rpm . Protein expression was induced with IPTG to a final concentration of 0.1 mM , at $4^{\circ} \mathrm{C}$, for 4 hours. The bacteria were collected by centrifugation and the pellets were subjected to GST-fusion protein purification using Glutathione Sepharose 4B (GE) according to the manufacture's instruction. The RNase III protein was excised by PreScission Protease according to the manufacturer's instructions. The purified protein derived from 6.7 mL of the bacterial culture was developed by SDS-PAGE, and the gel was stained with CBB to confirm that no contaminants were observed in the final product. The protein concentration was determined by absorbance at 280 nm .

Nuclease assays using RNase III was performed using purified H. pylori recombinant RNase III. The gel shift assay protocol described above was followed, except that RNase III-specific buffer (25 mM Tris pH 7.5, 50 mM NaCl , $50 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT) was used instead of Binding Buffer. 3'-biotin-tagged partial cagA mRNA was incubated on ice with either $5 \mu \mathrm{M}$ of small RNA HPnc4160 for 20 min . RNase III was then added at a final concentration of 300 nM and the reactions were incubated for 1 min at $37^{\circ} \mathrm{C}$. The samples were mixed with $5 \mu \mathrm{~L}$ of native loading buffer before loading on a pre-cooled native 6\% PAA, $0.5 x$ TBE gel ${ }^{28}$.

ELISA

AGS cells were co-incubated with H. pylori at an MOI of 100 for $12,24,36$ hours at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ environment in 24 well plates. The supernatants were collected and stored at $-30^{\circ} \mathrm{C}$. Enzyme-linked immunosorbent assays (ELISAs) for human IL-8 were performed using the Human IL-8 ELISA Kit (ThermoFisher SCIENTIFIC) according to the manufacturer's instructions. The results are expressed as the means \pm SEM from triplicate experiments.

Immunofluorescence microscopy

AGS cells were infected with H . pylori at an MOI of 100 for 6 hours at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ environment. The cells were fixed with $4 \%(\mathrm{w} / \mathrm{v})$ paraformaldehydePBS at room temperature for 10 min . The cells were then washed with TBS for 3 times, and blocked with Saponin buffer [10\% (v/v) Blocking One (Nakalai, Japan) containing $0.2 \%(w / v)$ saponin] at $4^{\circ} \mathrm{C}$ for 60 min . Antibodies used for staining were DAPI, Rhodamine Phalloidin (Thermo Fisher SCIENTIFIC, MA, USA), pyCagA. Confocal laser scanning microscopy (CLSM) image acquisition was performed using a Zeiss LSM 800 confocal laser scanning microscope with ZEN 2.3 software (Carl Zeiss, Jena, Germany).

Extended Data Figures and Tables Legends

Extended Data Figure 1 | The expression levels of candidate RNAs of strains recovered from H. pylori ATCC43504-infected rodent stomachs. a,

 The list of mutation rates and expression levels of the candidate RNAs (mRNA or non-coding RNA) of strains recovered from stomachs of gerbils or mice 8 wks post-infection. The Locus tags highlighted in red indicated the candidates common in both of the strains originated from gerbils and mice. N/A, not applicable. \mathbf{b}, The expression levels of candidate RNAs (mRNA or non-coding RNA) of isolates recovered from H. pylori ATCC43504-infected C57BL/6 mice stomachs. RNA expression levels of the genes or nearby genes of genome regions (Fig. 1b and Supplementary Information 2), which mutated in 100\% of the recovered strains were assessed.Extended Data Figure 2 | The length of the poly-T stretches upstream of the HPnc4160 coding region. a, Schematic diagram of genome DNA sequence around the HPnc4160 and poly-T sequence of genome analyzed strains. Red-colored "T" indicated stretches of poly-T sequence. b, Schematic diagram of genome DNA sequence around the HPnc4160 and poly-T sequence of mice-recovered strains 8 wks after infection ($\mathrm{n}=10, \mathrm{Hp} 1$ to Hp10). Green indicated HPnc4160 transcribed sequence, red frame indicated poly-T mutated stretches in the upstream region of HPnc4160, and red-colored "T" indicated inserted nucleotides of each recovered strain compared with wildtype. c-e, Time-dependent change in the length of the poly-T stretches upstream of the HPnc4160 coding region in gerbils or mice-recovered strains. c, Strains from Mongolian gerbils infected with ATCC 43504. d, Strains from C57BL/6 mice infected with ATCC 43504. e, Strains from C57BL/6 mice infected with PMSS1. Data are median with interquartile range. P values are
from non-parametric Dunn's multiple comparison test (at two-sided). ns: not significant. f, Expression levels of HPnc4160 in the recovered H. pylori strains from mice ($n=10$) and H. pylori wild-type (T-repeat 14). Relative expression levels of HPnc4160 were measured by real-time PCR and plotted against Trepeat length in the upstream region of HPnc4160. Data are presented as means with s.d. P values represent the results of two-tailed Dunn's multiple comparison test.

Extended Data Figure 3 | Effect of in vitro cultivation on the length of the poly-T stretches upstream of the HPnc4160 coding region. a, Experimental strategies schematic. b, The raw data of the DNA sequence analysis of H. pylori genomes prepared from original culture (Original \#1 - \#3) and from passaged in vitro for 60 times (60-passaged \#1-\#3).

Extended Data Figure 4 | The length of the poly-T stretches upstream of

 the HPnc4160 coding region and RNA expression levels. a, Growth curves of H. pylori ATCC43504 mutants mutated in the number of T repeat in HPnc4160 upstream region. b-c, The relative expression levels of hpnc4170 (b) and HP0811 (c) in the H. pylori strains genetically modified with the Trepeat length. Data are presented as means with s.d. $(n=3) . P$ values are from Dunnett's multiple comparison test (at two-sided). ns: not significant. d, The relative RNA expression levels of target candidates of HPnc4160 showed an inverse correlation with HPnc4160. The total RNA from the indicated H. pylori ATCC 43504 strains were extracted, reverse transcribed, and provided for qPCR to assess the indicated genes. The results represent the average of three separate experiments (each $n=3$). Data are presented as means \pm s.d. (error bars). Spearman correlation coefficients (r) were used to evaluate the relationships among relative RNA expression of HPnc4160 (Fig. 1h) and eachtarget.

Extended Data Figure 5 | Predicted HPnc4160 binding sites. a, Growth

 curves of H. pylori ATCC43504 mutants. b, Predicted the secondary structure of HPnc4160 RNA by CentroidFold. The bases in the predicted structure are colored according to base-pairing probabilities. Circles in pink and light green color indicated loop structures having probabilities of binding to target RNA sequences. c, Schematic diagram of predicted HPnc4160 binding sites in the corresponding 5'UTR sequence of target genes. Upper sequences indicate target mRNA sequences with base numbers, whereas lower sequences indicate HPnc4160 sequence. Colored sequences are corresponding to the loop structures indicated in (b). d, Binding prediction of HPnc4160 and 5' UTR of cagA mRNA. d, Schematic diagram of predicted HPnc4160 binding sites in the cagA CM/CRPIA motif of cagA CDS. e-f, Schematic diagram of predicted HPnc4160 binding sites in the corresponding CDS sequence of cagA TYPE 1 (e), TYPE 2 (f), and cagA nonbinding form (NB-cagA) of TYPE 2 (\mathbf{g}) and TYPE 1 (h). Upper sequences indicate target cagA mRNA sequences, whereas lower sequences indicate HPnc4160 sequence with base numbers. Colored sequences are corresponding to the loop structures indicated in (b). Mutated nucleotides in cagA mRNA sequence are shown in red. i, Purified RNase III was separated by SDS-PAGE and stained with CBB.
Extended Data Figure 6 | Effect of cagA-NB on host-cell-translocated

 CagA activity. a, Growth curves of H. pylori ATCC43504 cagA-NB mutant compared with wild-type. b, Phosphorylated CagA protein levels in cell lysates of AGS cells infected with H. pylori ATCC43504. The whole-cell lysates of AGS cells infected with H. pylori strains for 6 hours were subjected to western blot against anti-CagA, anti-pY CagA, anti-UreA, and anti-Actin antibodies. Theband intensities were measured and calculated by ImageJ software. c, IL-8 production from AGS cells infected with H. pylori ATCC43504. The supernatants from AGS cells infected with H. pylori strains shown in the figure for the indicated time were subjected to ELISA system for IL-8 production. The results represent the average of three separate experiments (each $n=3$). Data are presented as means \pm s.d. (error bars).

Extended Data Figure 7 | Characterization of clinical isolates. a, Clinical isolates of non-cancer (Non-Cancer, $\mathrm{n}=39$) and cancer (Cancer, $\mathrm{n}=17$) patients, which used in Fig. 4g, showed equal growth rate. The strains cultured on TSAII containing 5\% sheep blood plates for 2 days were inoculated in Brucella broth containing 5% FCS, adjusted $\mathrm{OD}_{600 \mathrm{~nm}}$ at 0.1 , then cultured in microaerobic condition with agitation for 16 hours. The turbidity of the cultures was assessed at $O D_{600 \mathrm{~nm}}$. The Data are presented as medians with interquartile range. P values represent the results of the two-tailed MannWhitney test. ns: not significant. b, The relative RNA expression levels of target candidates of HPnc4160. Spearman correlation coefficients (r) were used to evaluate the relationships among relative RNA expression of HPnc4160 and each target. c, Comparison of expression levels of mRNA (HELPY_1262 and HP1227) in clinical isolates of non-cancer (NC, n=39) and cancer ($C, n=17$) patients. The expression levels of mRNA were normalized with the levels of 23 S rRNA. Data are presented as medians with interquartile range. P values represent the results of the two-tailed Mann-Whitney test. ns: not significant.

Extended Data Figure 8 | Infection-induced silencing of HPnc4160 upregulates target genes expression and promote bacterial host adaptation and canceration during chronic \boldsymbol{H}. pylori infection. H. pylori

infection in vivo leads elongation of T-stretch in the upstream region of HPnc4160 sRNA coding region, which results in decreased expression levels of sRNA HPnc4160. Gene silencing of HPnc4160 results in increased levels of target genes coding OMPs and CagA, and as a result, the levels of bacterial colonization and CagA translocation into the attached host cells were increased.

Extended Data Table 1 | The list of mutated genome regions in the strains recovered from \boldsymbol{H}. pylori-infected rodents' stomachs.

The list showed the genome regions that mutated in the strains isolated from the stomachs of rodents 8 weeks post infection. The DNA sequences in the regions listed in the table were mutated in more than 50% of the 40 strains recovered from Mongolian gerbils, or, in all of the 10 strains recovered from C57BL/6 mice. N/A, not applicable.

Extended Data Table 2 | Comparative analysis of expression levels between H. pylori ATCC43504 $\operatorname{\Delta hpnc4160/hpnc4170~mutant~and~wild-type~}$ strains.

a, Comparative analysis of RNA expression levels between H. pylori ATCC 43504 Dhpnc4160/hpnc4170 mutant and wild-type strains by RNA-seq. Footnote |

Normalized expression level and fold change of the strains were listed. Genes with P-values by Empirical Analysis of Digital Gene Expression in R (edgeR) test showed less than 0.001 were listed (17 factors). Eight genes selected by RNA-seq and iTRAQ analysis (Fig. 2c) were highlighted in red.
b, Comparative analysis of protein expression levels between H. pylori ATCC43504 $\Delta h p n c 4160 / h p n c 4170$ mutant and wild-type strains by iTRAQ. Footnote |

Proteins showing relative protein abundance with P-value of less than 0.01 were listed (21 factors). Eight proteins selected by RNA-seq and iTRAQ analysis (Fig. 2c) were highlighted in red.

Supplementary Information Legends

Supplementary information 1 | Summary of mutations in the isolates recovered from H. pylori-infected Mongolian gerbils.

The number of mutations in the isolates of 40 strains recovered from H. pyloriinfected Mongolian gerbils' stomachs 8 weeks after post-infection were listed.

Supplementary information 2 | The mutated sequence list of 40 strains recovered from H. pylori-infected Mongolian gerbils' stomach.

Supplementary information 3 | Summary of mutations in the isolates recovered from H . pylori-infected C57BL/6 mice. The number of mutations in the isolates of 10 strains recovered from H. pylori-infected mice stomachs 8 weeks after post-infection were listed.

Supplementary information 4 | The mutated sequence list of 10 strains recovered from H. pylori-infected C57BL/6 mice stomach.

Supplementary information 5 | Information of H. pylori clinical isolates used in Fig. 1f, and Fig 4g.

Supplementary information 6 | Primers used in this study.

Acknowledgements

The authors would like to thank Manuel Amieva for providing us H. pylori strains. We gratefully acknowledge Keisuke Katsura for his support. We would like to thank the members of the Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, and the members of Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University. This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan [17K19551, 18K07127, 19K22704 (to H.M.), 16K07083 (to T.S.), 17K14974 (to M.T.)], the Naito Foundation, the Tokyo Biochemical Research Foundation (to H.M. and P.S.), and the Kao Foundation for Arts and Sciences (to K.K.). This work was supported by MEXT KAKENHI (No. 221S0002).

Details of Author Contributions

References

1. Hatakeyama, M. Helicobacter pylori CagA and Gastric Cancer: A Paradigm for Hit-and-Run Carcinogenesis. Cell Host Microbe 15, 306316 (2014).
2. Kuipers, E., Pérez-Pérez, G., Meuwissen, S. \& Blaser, M. Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer / 87, 1777-80 (1995).
3. Blaser, M. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55, 2111-5 (1995).
4. Mimuro, H. et al. Grb2 Is a Key Mediator of Helicobacter pylori CagA Protein Activities. Mol Cell 10, 745-755 (2002).
5. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5, 11661174 (2004).
6. Mimuro, H. et al. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe 2, 250263 (2007).
7. Suzuki, M. et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 5, 2334 (2009).
8. Backert, S. \& Naumann, M. What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 18, 479486 (2010).
9. Zimmermann, S. et al. ALPK1- and TIFA-Dependent Innate Immune Response Triggered by the Helicobacter pylori Type IV Secretion System. Cell Reports 20, 23842395 (2017).
10. Gall, A., Gaudet, R. G., Gray-Owen, S. D. \& Salama, N. R. TIFA Signaling in Gastric Epithelial Cells Initiates the cag Type 4 Secretion System-Dependent Innate Immune Response to Helicobacter pylori Infection. Mbio 8, (2017).
11. Stein, S. C. et al. Helicobacter pylori modulates host cell responses by CagT4SS-dependent translocation of an intermediate metabolite of LPS inner core heptose biosynthesis. Plos Pathog 13, e1006514 32 (2017).
12. Suerbaum, S. \& Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5, 441452 (2007).
13. Yamaoka, Y. et al. Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 55, 775781 (2006).
14. Morelli, G. et al. Microevolution of Helicobacter pylori during Prolonged Infection of Single Hosts and within Families. Plos Genet 6, e1001036 (2010).
15. Kennemann, L. et al. Helicobacter pylori genome evolution during human infection. Proc National Acad Sci 108, (2011).
16. Dutta, T. \& vastava, S. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms. Gene 656, 60-72 (2018).
17. Vannini, A. et al. Comprehensive mapping of the Helicobacter pylori NikR regulon provides new insights in bacterial nickel responses. Sci Rep-uk 7, 45458 (2017).
18. Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250-255 (2010).
19. Miyakoshi, M., Chao, Y. \& Vogel, J. Regulatory small RNAs from the 3' regions of bacterial mRNAs. Curr Opin Microbiol 24, 132-139 (2015).
20. Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330333 (2007).
21. Salaün, L., Ayraud, S. \& Saunders, N. J. Phase variation mediated niche adaptation during prolonged experimental murine infection with Helicobacter pylori. Microbiology+ 151, 917923 (2005).
22. Deitsch, K. W., Lukehart, S. A. \& Stringer, J. R. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol 7, 493-503 (2009).
23. Konno, M. et al. Predominance of Mother-to-Child Transmission of Helicobacter pylori Infection Detected by Random Amplified Polymorphic DNA Fingerprinting Analysis in Japanese Families. Pediatric Infect Dis J 27, 999 1003 (2008).
24. Linz, B. et al. A mutation burst during the acute phase of Helicobacter
pylori infection in humans and rhesus macaques. Nat Commun 5, 18 (1AD).
25. Hirukawa, S. et al. Characterization of morphological conversion of Helicobacter pylori under anaerobic conditions. Microbiol Immunol 62, 221228 (2018).
26. Park, J., Forman, D., Waskito, L., Yamaoka, Y. \& Crabtree, J. E. Epidemiology of Helicobacter pylori and CagA-Positive Infections and Global Variations in Gastric Cancer. Toxins 10, 163 (2018).
27. Pernitzsch, S., Tirier, S., Beier, D. \& arma, C. A variable homopolymeric Grepeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc National Acad Sci 111, E501 E510 (2014).
28. Michaux, C. et al. RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE. Proc National Acad Sci 114, 6824-6829 (2017).

Cumulative values of point mutation in the recovered strains of

- gerbils ($\mathrm{n}=40$)
_ mice ($\mathrm{n}=10$)
Region number corresponding to Extended Data Table 2 and 4 that more than 50\% (gerbils) or 100\% (mice) of the recovered strains harbor mutations
Candidate genes mutated in recovered strains
Gene name from gerbils (and mice)
Gene name from mice only
e ATCC43504 WT

-40	-30	-20	-10	1	10	20

Poly-T elongation pattern in the recovered strains
No. of strains/total
$\begin{array}{rll}12 / 40 & (30 \%) & \text { GTTTTTTTTTTTTTT } \\ 0 / 40 & (0 \%) & \text { GTTTTTTTTTTTTTTT } \\ 5 / 40 & (12.5 \%) & \text { GTTTTTTTTTTTTTTTT } \\ 17 / 40 & (42.5 \%) & \text { GTTTTTTTTTTTTTTTTT }\end{array}$
$\begin{aligned} 17 / 40 & (42.5 \% \\ 6 / 40 & (15 \%)\end{aligned} \quad$ GTTTTTTTTTTTTTTTTT

g

h
Number of T repeat

Fig. 1 Kinoshita et al.

d

b
c

RNA-seq iTRAQ total 1584 mRNAs total 1263 proteins

Fig. 2 Kinoshita et al.

Fig. 3 Kinoshita et al.

Fig. 4 Kinoshita et al.
a

Region No.	Gene symbol	Gene description	Mongolian gerbils(8 wks post infection)		C57BL/6 mice(8 wks post infection)	
			Fold change of mRNA expression level [mut(+)/input]	Mutation rate (\%, /40 strains)	Fold change of mRNA expression level [mut(+)/input]	Mutation rate (\%, /10 strains)
R1	hopZ	outer membrane protein	0.373	52.5	N/A	N/A
R2	fucT2	alpha-1,2-fucosyltransferase	N/A	N/A	0.758	100.0
R3	tlpB	methyl-accepting chemotaxis protein	1.239	50.0	0.913	100.0
R4	arsS	histidine kinase sensor protein	3.572	62.5	N/A	N/A
R5	t tiA	triosephosphate isomerase	1.286	80.0	0.825	100.0
R6	cgt A	beta-1,4-N-acetylgalactosamyltransferase	N/A	N/A	1.453	100.0
R7	babA	outer membrane protein babA	1.263	80.0	1.243	100.0
R8	jhp1163	hypothetical protein	1.374	80.0	N/A	N/A
R9	iceA2	Ulcer-associated gene restriction endonuclease	N/A	N/A	1.104	100.0
R10	pldA	phospholipase A1	2.420	60.0	N/A	N/A
R11	jhp0540	hypothetical protein	1.946	70.0	1.497	100.0
R12	HPB8_818	family 25 glycosyl transferase	5.346	52.5	N/A	N/A
R13	sabA	outer membrane protein sabA	5.215	62.5	1.512	100.0
R14	HPnc4160	mRNA/antisense RNA family IsoB	0.155	72.5	0.297	100.0
R14	HPnc4170	mRNA/antisense RNA family aapB	0.794	72.5	1.043	100.0
R14	HP0811	hypothetical protein	1.698	72.5	1.075	100.0
R15	HP0947	hypothetical protein	1.300	92.5	0.511	100.0
R16	HP1354	adenine-specific DNA methyltransferase	1.512	57.5	1.138	100.0
R17	HELPY_1371	Type III restriction enzyme R protein	N/A	N/A	1.018	100.0
R17	HP1406	biotin synthase	N/A	N/A	1.200	100.0

b

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

| -30 | -20 | -10 | 1 | 10 | 20 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

H. pylori ATCC43504 H. pylori PMSS1
H. pylori SS1
H. pylori 26695
H. pylori J99
H. pylori HPAG1
H. pylori G27
H. pylori Shi470
H. acinonychis Sheeba
aaataacatcgtttttttttttttt-----qgtataatgctcggcgaaggtaagagcgaaaggcgtattata----ttccttccttctt aaataacatc-tttttttttttt-------ggtataatgc-cgcctaaggtaagagcgaaaggcgtattata----ttccttccttctt aaataacatc-ttttttttttttt------ggtataatgc-cgcctaaggtaagagcgaaaggcgtattata----ttccttccttctt aaataacatcgtttttttttttttt-----ggtataatgctcggcgaaggtaagagcgaaaggcgtattata----ttccttcttctt aaataacatcgtttttttttttttt-----ggtataatgctcggcgaaggtaagagcgaaaggcgtattata----ttccttccttctt aaataacatcgttttttttttttttttt--ggtataatgctcggcgaaggtaagagcgaaaggcgtattata----ttccttccttctt aaataacatc-tttttttttttttttt---ggtataatgc-cgcttaaggtaagagcgaaaggcgtattata----ttccttccttctt aaataacatcgtttttttttttttt-----ggtataatgctcggtgaaggtaagagcaaaaggcgtattatattccttccttccttctt aaataaca---tttttttttttagtataatagtataatgt-tgttg--ggtaagggcaaagggcg-aaaata----ttccttccttctt
4150
60
70
80
90
100
H. pylori ATCC43504
H. pylori PMSS1
H. pylori SS1
H. pylori 26695 H. pylori J99
H. pylori HPAG1
H. pylori G27
H. pylori Shi470
H. acinonychis Sheeba
tactataac-ttagca-ttttaatcaacttttt-------cattaaaatgtcctgacgctcttacctt-aa
tactataac-ttagca-ttttaatcaacttttt-------cattaaaatgtcctgacgctcttacctt $t c$ tactataac-ttagca-ttttaatcaacttttt-------cattaaaatgtcctgacgctcttacctttc tactataac-ttagca-ttttaatcaacttttt-------cattaaaatgtcctgacgctcttacctt-aa tactataac-ttagca-ttttaatcaacttttt-_-_-_-cattaaaatgtcctgacgctcttaccttaaa tactataac-ttagca-ttttaatcaacttttt-------cattaaaatgtcctgacgctcttacctt-aa tactataac-ttagca-ttttaatcaacttttt-------cattaaaatgtcctgacgctcttacctt---tactataac-ttagca-ttttaataaacttttt-------cattaaaatgtcctgacgctcttaccttcaa tactataacattagcatttttagtaaactttttctttttacattaaaatgtcctaatgctcttacctt--a
b ATCC43504 WT

-40	-30	-20	-10	1	10	20

Poly-T elongation pattern in the recovered strains from mice
No. of strains/total

$1 / 10$	(10%)	GTTTTTTTTTTTTTTT
$5 / 10$	(50%)	GTTTTTTTTTTTTTT
$4 / 40$	(40%)	GTTTTTTTTTTTTTTTT

C

Weeks after infection
d

e

a

c

hope

HP1227

d $\underset{\text { (complementary DNA sequence) }}{\text { HPnc4160 binding region }}$ (complementary DNA sequence) CM/CRPIA motif (amino acids sequence)

TTCCCTTTGAAAAGGCATGATAAAGTTGATGATCTCAGTAAGGTAGGG | F | P | L | K | R | H | D | K | V | D | D | L | S | K | V | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Region No.	No. of mutated strains (\%)		Annotation			Gene nearby the intergenic region (\#1)			Gene nearby the intergenic region (\#2)		
	$\begin{gathered} \text { Mongolian } \\ \text { gerbil }(n=40) \end{gathered}$	$\begin{gathered} \text { C57BL/6 } \\ (\mathrm{n}=10) \\ \hline \end{gathered}$	Gene name	Locus tag	Gene description	Gene name	Locus tag	Gene description	Gene name	Locus tag	Gene description
R1	52.5	N/A	N/A	N/A	intergenic: no annotation	hopZ	HPG27_8	outer membrane protein			
R2	N/A	100	futT2	HPP12_0096	alpha-1,2fucosyltransferase						
R3	50	100	N/A	N/A	intergenic: no annotation	tlpB	HP0103	methyl-accepting chemotaxis protein			
R4	62.5	N/A	araS	jhp0151	signal-transducing protein, histidine						
R5	80	100	tpiA	HP0194	triosephosphate isomerase						
R6	N/A	100	HP0217	HP0217	hypothetical protein						
R7	72.5	100	N/A	N/A	intergenic: no annotation	babA	$\begin{gathered} \text { HP1243/ } \\ \text { HPG27_298 } \end{gathered}$	outer membrane protein			
R8	80	N/A	N/A	N/A	intergenic: no annotation	jhp1163	jhp1163	hypothetical protein	babA	$\begin{gathered} \text { HP1243/ } \\ \text { HPG27_298* } \end{gathered}$	outer membrane protein
R9	N/A	100	N/A	N/A	intergenic: no annotation	IceA2	$\begin{aligned} & \text { HPATCC43 } \\ & 504 _00587 \end{aligned}$	induced by contact with epithelium gene			
R10	60	N/A	pldA	HP0499	phospholipase A1						
R11	70	100	N/A	N/A	intergenic: no annotation	jhp0540	jhp0540	HAD superfamily			
R12	52.5	N/A	HPB8_818	HPB8_818	family 25 glycosyl transferase						
R13	62.5	100	N/A	N/A	intergenic: no annotation	sabA	HPG27_680	outer membrane protein protein			
R14	72.5	100	aapB	HPnc4170	small peptide	HP0811	HP0811	hypothetical protein	IsoB	HPnc4160	small RNA
R15	92.5	100	N/A	N/A	intergenic: no annotation	HP0947	HP0947	hypothetical protein			
R16	57.5	100	HP1354	HP1354	adenine-specific DNA						
R17	N/A	100	N/A	N/A	intergenic: no annotation	bioB	HP1406	biotin synthase	HELPY_1371	HELPY_1371	type III restriction enzyme R protein

Extended Data Table 1 Kinoshita et al.

Gene name	Average LOG2 normalized expression	LOG2 fold change ($\Delta h p n c 4160 / 4170 / \mathrm{WT}$)
cagA	15.6679564	0.8345757
vacA3	13.0181033	1.3000122
urel	12.8122441	0.7256751
hofC	12.7562529	1.2385235
HP1227	11.1439545	0.5356426
hpaA	10.9856930	1.3994257
horB	10.9589406	1.0351050
omp14	10.8268799	1.3977712
hopE	10.8143652	1.0951572
ure E	10.6269817	-1.1164069
HELPY_1262	10.6234286	0.9346910
pAL226p12	9.6669233	0.8237894
HP0487	9.1803234	1.7213025
HELPY_0813	8.5854796	0.8765494
flik	7.2801813	-0.3748484
mraW	7.0680550	2.0913744
HPAG1_1315	7.0164749	-1.5753123
Gene name	Fold change (LOG2, Δ hpnc4160/hpnc4170 / WT)	Pval (LOG10)
CagA	0.6831125	-16.0000000
HofC	1.1079556	-14.8875441
HpaA	1.4153801	-14.5034266
GroL	0.2561653	-10.0187654
HELPY_1262	0.6268596	-9.9953361
HopE	1.1672937	-7.7135456
HP1409	0.1735112	-3.6271647
CeuE	0.1737671	-3.2477470
NrdA	-0.1246917	-2.8700087
HorB	0.8583789	-2.6608050
DnaK	0.1192898	-2.6579389
GroES	0.3291810	-2.6528395
Rpl9	0.2299570	-2.6372507
HP0305	0.2674759	-2.5150013
HopQ	0.1519887	-2.4589011
Omp14	1.1557492	-2.4194920
FlaB	-0.1694201	-2.4003455
Tuf	0.1548424	-2.3314305
RpoB	-0.0584429	-2.2822269
Lpp20	0.1944653	-2.1385174
HP1227	0.3642362	-2.0521036

Extended Data Table 2 Kinoshita et al.

Supplementary Information 1| Summary of mutations in the isolates recovered from H. pylori-infected Mongolian gerbils.
Number of mutations in the isolates of 40 strains recovered from H. pylori-infected Mongolian gerbils' stomachs 8 weeks after post infection were listed.

Animal No.	Strain Name	Total No. of mutations	SNPs (single nucleotide polymorphysms)				indel (insertion/deletion)			SNPs rate per base per year	indel rate per base per year
				nonsynon ymous	synonymo us	intergenic	Total	genic	intergenic		
\#1	S41	50	37	15	18	4	13	5	8	1.43E-04	$5.04 \mathrm{E}-05$
	S42	48	40	15	20	5	8	2	6	$1.55 \mathrm{E}-04$	3.10E-05
	S43	44	38	12	21	5	6	4	2	$1.47 \mathrm{E}-04$	2.33E-05
	S44	46	41	16	21	4	5	1	4	1.59E-04	$1.94 \mathrm{E}-05$
\#2	S45	48	39	15	17	7	9	2	7	$1.51 \mathrm{E}-04$	$3.49 \mathrm{E}-05$
	S46	47	38	22	14	2	9	1	8	$1.47 \mathrm{E}-04$	3.49E-05
	S47	46	36	15	15	6	10	2	8	$1.40 \mathrm{E}-04$	$3.88 \mathrm{E}-05$
	S48	48	41	20	16	5	7	2	5	1.59E-04	$2.71 \mathrm{E}-05$
\#3	S49	17	12	7	3	2	5	4	1	$4.65 \mathrm{E}-05$	$1.94 \mathrm{E}-05$
	S50	26	18	8	8	2	7	3	4	$6.98 \mathrm{E}-05$	$2.71 \mathrm{E}-05$
	S51	17	11	7	2	2	6	3	3	4.27E-05	2.33E-05
	S52	20	13	7	2	4	7	4	3	$5.04 \mathrm{E}-05$	$2.71 \mathrm{E}-05$
\#4	S53	27	16	7	6	3	11	5	6	$6.20 \mathrm{E}-05$	$4.27 \mathrm{E}-05$
	S54	15	10	4	5	1	5	1	4	$3.88 \mathrm{E}-05$	$1.94 \mathrm{E}-05$
	S55	24	14	5	5	4	10	3	7	5.43E-05	3.88E-05
	S56	25	13	5	6	2	12	4	8	$5.04 \mathrm{E}-05$	$4.65 \mathrm{E}-05$
\#5	S57	25	15	5	7	3	10	4	6	5.82E-05	$3.88 \mathrm{E}-05$
	S58	29	15	5	5	5	14	5	9	5.82E-05	5.43E-05
	S59	23	13	5	6	2	10	2	8	$5.04 \mathrm{E}-05$	3.88E-05
	S60	27	16	5	7	4	11	3	8	$6.20 \mathrm{E}-05$	$4.27 \mathrm{E}-05$
\#6	S61	29	20	8	8	4	9	2	7	$7.76 \mathrm{E}-05$	3.49E-05
	S62	35	25	10	12	3	10	2	8	$9.69 \mathrm{E}-05$	$3.88 \mathrm{E}-05$
	S63	25	16	6	5	5	9	3	6	$6.20 \mathrm{E}-05$	3.49E-05
	S64	36	28	14	10	4	8	2	6	1.09E-04	$3.10 \mathrm{E}-05$
\#7	S65	50	39	14	21	4	11	5	6	1.51E-04	$4.27 \mathrm{E}-05$
	S66	47	39	13	22	4	8	5	3	1.51E-04	3.10E-05
	S67	55	44	15	22	7	11	4	7	$1.71 \mathrm{E}-04$	$4.27 \mathrm{E}-05$
	S68	54	44	14	23	7	10	4	6	$1.71 \mathrm{E}-04$	3.88E-05
\#8	S69	52	41	21	17	3	11	3	8	$1.59 \mathrm{E}-04$	$4.27 \mathrm{E}-05$
	S70	61	52	17	30	5	9	2	7	2.02E-04	$3.49 \mathrm{E}-05$
	S71	41	33	15	14	4	7	1	6	$1.28 \mathrm{E}-04$	$2.71 \mathrm{E}-05$
	S72	39	34	15	16	3	5	0	5	1.32E-04	$1.94 \mathrm{E}-05$
\#9	S73	43	37	17	15	4	6	2	4	$1.43 \mathrm{E}-04$	2.33E-05
	S74	79	70	32	31	7	9	2	7	2.71E-04	3.49E-05
	S75	71	63	29	26	8	8	4	4	$2.44 \mathrm{E}-04$	$3.10 \mathrm{E}-05$
	S76	43	34	15	17	2	9	3	6	1.32E-04	3.49E-05
\#10	S77	45	36	8	6	21	9	3	6	1.40E-04	3.49E-05
	S78	41	34	9	5	20	7	2	5	1.32E-04	$2.71 \mathrm{E}-05$
	S79	41	32	5	6	21	9	3	6	$1.24 \mathrm{E}-04$	3.49E-05
	S80	41	32	7	5	20	9	3	6	$1.24 \mathrm{E}-04$	3.49E-05
									Average	1.19E-04	$3.38 \mathrm{E}-05$
									SD	5.60E-05	$8.51 \mathrm{E}-06$

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

542	958574	cGAGAGAGAGAGAG	CGAGAGAGAGAGAGAG	indel	intergenic		HPG27_680	
S42	1043704	GтtтTTTTTTTTTT	GтттттTTтTтTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
542	1124346	CGAGAGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_1187	
S42	1187376	ATtTTTT	АтттTTTT	indel	intergenic		HP0947	
542	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
542	1332900	6	T	SNP	symonymous	HPATCC43504_01275		
S42	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
S42	1332954	T	G	SNP	synonymous	HPATCC43504_01275		
542	1332987	T	c	SNP	symonymous	HPATCC43504_01275		
542	1332996	T	G	SNP	synonymous	HPATCC43504_01275		
542	1332997	6	c	SNP	nonsynonymous	HPATCC43504_01275		
542	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
542	1592786	GT	G	indel	frameshift deletion	HP1354		
542	1663529	GTTTT	GTTT	indel	1 bp deletion			
S43	99327	c	T	SNP	synonymous	jhp0935		
543	168379	c	T	SNP	synonymous	HP1547		
S43	199597	c	T	SNP	intergenic		HP1582	jhp1488
S43	276989	6	A	SNP	nonsynonymous	HPP12_0070		
543	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
543	430922	G	A	SNP	nonsynonymous	HP0194		
S43	466419	TGAGAGAGAGAGAGAGAG	TGAGAGAGAGAGAGAG	indel	intergenic		HP0227	
543	540566	GGAGATTAAACAAGAGATTAAACAAGAGATTAA ACAAGAG	GGAGATTAAACAAGAGATTAAACAAGAGATTAA ACAAGAGATTAAACAAGAG	indel	frameshift insertion			
543	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
543	548978	6	T	SNP	intergenic		jhp1163	HPG27_298
543	548994	A	T	SNP	intergenic		jhp1163	HPG27_298
543	672079	c	A	SNP	nonsynonymous	HP1134		
543	691071	G	A	SNP	synoonymous	HP0489		
543	691074	A	c	SNP	synonymous	HP0489		
543	691077	G	A	SNP	nonsynonymous	HP0489		
S43	691089	A	G	SNP	synonymous	HP0489		
543	691091	C	A	SNP	nonsynonymous	HP0489		
S43	691101	T	c	SNP	synonymous	HP0489		
S43	691113	G	T	SNP	nonsynonymous	HP0489		
543	691173	c	A	SNP	synonymous	HP0489		
543	691175	A	G	SNP	nonsynonymous	HP0489		
S43	691179	c	G	SNP	synonymous	HP0489		
543	691185	A	6	SNP	nonsynonymous	HP0489		
543	691189	c	G	SNP	nonsynonymous	HP0489		
543	691190	A	c	SNP	nonsynonymous	HP0489		
543	830053	c	T	SNP	nonsynonymous	HPP12_0617		
S43	873661	c	T	SNP	synonymous	HP0651		
543	873681	6	A	SNP	synonymous	HP0651		
S43	873702	G	T	SNP	synonymous	HP0651		
543	873717	C	T	SNP	synonymous	HP0651		
543	948328	c	A	SNP	synonymous	HPP12_0726		
S43	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
543	1318527	c	A	SNP	intergenic	jhp1031		
S43	1332690	C	A	SNP	synonymous	HPATCC43504_01275		
543	1332900	G	T	SNP	synonymous	HPATCC43504_01275		
543	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
543	1332954	T	6	SNP	synonymous	HPATCC43504_01275		
S43	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
S43	1332996	T	G	SNP	synonymous	HPATCC43504_01275		
S43	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
543	1332999		c	SNP	synonymous	HPATCC43504_01275		
S43	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
543	1592801	T	G	SNP	synonymous	HP1354		
S43	1593602	TGGGGGGGGGGG	6	indel	frameshift deletion	HP1354		
544	99327	c	T	SNP	synonymous	jhp0935		
S44	168379	c	T	SNP	synonymous	HP1547		
544	199597	c	T	SNP	intergenic		HP1582	jhp1488
544	232964	c	A	SNP	intergenic		HPPC_00115	
544	276989	G	A	SNP	nonsynonymous	HPP12_0070		
544	430922	6	A	SNP	nonsynonymous	HP0194		
S44	549326	G	T	SNP	intergenic		jhp1163	HPG27_298
544	672079	c	A	SNP	nonsynonymous	HP1134		
S44	691071	G	A	SNP	synonymous	HP0489		
544	691074	A	c	SNP	synonymous	HP0489		
S44	691077	G	A	SNP	nonsynonymous	HP0489		
544	691089	A	6	SNP	synonymous	HP0489		
544	691091	c	A	SNP	nonsynonymous	HP0489		
S44	691101	T	c	SNP	synonymous	HP0489		
S44	691113	G	T	SNP	nonsynonymous	HP0489		
544	691173	c	A	SNP	synonymous	HP0489		
544	691175	A	6	SNP	nonsynonymous	HP0489		
544	691179	c	6	SNP	synonymous	HP0489		
S44	691185	A	G	SNP	nonsynonymous	HP0489		
S44	691189	c	G	SNP	nonsynonymous	HP0489		
544	691190	A	c	SNP	nonsynonymous	HP0489		
544	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
S44	830053	c	T	SNP	nonsynonymous	HPP12_0617		
544	839999	T	c	SNP	nonsynonymous	HPB8_818		
S44	873661		T	SNP	synoonyous	HP0651		
S44	873681	G	A	SNP	synonymous	HP0651		
S44	873702	G	T	SNP	synonymous	HP0651		
S44	873717	c	T	SNP	synonymous	HP0651		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

544	879985	c	T	SNP	nonsynonymous	HP0656		
S44	958574	CGAGAGAGAGAGAG	CGAGAGAGAGAGAGAG	indel	intergenic		HPG27_680	
544	1043704	GTTTTTTTTTTTTT	GTтTTTTTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
544	1066590	T	A	SNP	intergenic		jhp0775	
544	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
544	1192843	T	6	SNP	nonsynonymous	HPP12_0950		
S44	1252178	c	T	SNP	nonsynonymous	HP0407		
S44	1284281	T	c	SNP	synonymous	HPG27_1018		
544	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
544	1332900	G	T	SNP	synonymous	HPATCC43504_01275		
544	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
544	1332954	T	6	SNP	synonymous	HPATCC43504_01275		
544	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
544	1332996	T	6	SNP	synonymous	HPATCC43504_01275		
S44	1332997	6	c	SNP	nonsynonymous	HPATCC43504_01275		
544	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
544	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
S44	1592801	T	G	SNP	synonymous	HP1354		
S45	99327	c	T	SNP	synonymous	jhpo935		
S45	168379	c	T	SNP	synonymous	HP1547		
S45	199597	c	T	SNP	intergenic		HP1582	jhp1488
545	251374	G	A	SNP	nonsynonymous	HP0045		
S45	276989	G	A	SNP	nonsynonymous	HPP12_0070		
S45	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
S45	424517	CGGGG	CGGGGG	indel	intergenic		HP0189	HP0188
S45	430922	G	A	SNP	nonsynonymous	HP0194		
545	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
S45	548957	c	T	SNP	intergenic		jhp1163	HPG27_298
545	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
S45	548994	A	T	SNP	intergenic		jhp1163	HPG27_298
S45	691071	G	A	SNP	synonymous	HP0489		
S45	691074	A	c	SNP	synonymous	HP0489		
S45	691077	G	A	SNP	nonsynonymous	HP0489		
S45	691089	A	6	SNP	synonymous	HP0489		
545	691091	c	A	SNP	nonsynonymous	HP0489		
S45	691101	T	c	SNP	synonymous	HP0489		
S45	691113	G	T	SNP	nonsynonymous	HP0489		
545	691157	c	A	SNP	nonsynonymous	HP0489		
S45	691173	C	A	SNP	synonymous	HP0489		
S45	691175	A	6	SNP	nonsynonymous	HP0489		
S45	691179	c	6	SNP	synonymous	HP0489		
S45	691185	A	6	SNP	nonsynonymous	HP0489		
S45	691189	c	6	SNP	nonsynonymous	HP0489		
S45	691190	A	c	SNP	nonsynonymous	HP0489		
S45	748650	T	A	SNP	intergenic		HP0514	
545	805851	A	T	SNP	intergenic		HPG27_556	
S45	830053	C	T	SNP	nonsynonymous	HPP12_0617		
S45	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
545	1043704	GтттттттTтTTT		indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
S45	1187376	ATtTTTT	AтTтTTTT	indel	intergenic		HP0947	
545	1262251	C	A	SNP	nonsynonymous	jhpo981		
S45	1295885	gatatatatatatatatat	GATATATATATATATATATATAT,GATATATATATA TATATATAT	indel	intergenic		HPATCC43504_01238	
S45	1318527	c	A	SNP	intergenic	jhp1031		
S45	1332690	C	A	SNP	synonymous	HPATCC43504_01275		
S45	1332888	T	6	SNP	synonymous	HPATCC43504_01275		
S45	1332893	T	6	SNP	nonsynonymous	HPATCC43504_01275		
545	1332897	A	6	SNP	synonymous	HPATCC43504_01275		
S45	1332900	6	T	SNP	synonymous	HPATCC43504_01275		
545	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
S45	1332954	T	6	SNP	synonymous	HPATCC43504_01275		
545	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
S45	1332996	T	G	SNP	synonymous	HPATCC43504_01275		
545	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
S45	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
S45	1582072	ATT	ATTTTT	indel	intergenic		HELPY_1317	HP0228
545	1592786	GT	6	indel	frameshift deletion	HP1354		
S46	99327	c	T	SNP	synonymous	jhpo935		
546	168379	c	T	SNP	synonymous	HP1547		
546	199597	c	T	SNP	intergenic		HP1582	jhp1488
S46	251374	6	A	SNP	nonsynonymous	HP0045		
S46	276989	G	A	SNP	nonsynonymous	HPP12_0070		
S46	315327	Accccccccce	Acccceccccce	indel	intergenic		HP0103	
546	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
546	424517	CGGGG	CGGGGG	indel	intergenic		HP0189	HP0188
S46	430922	G	A	SNP	nonsynonymous	HP0194		
546	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
546	691071	G	A	SNP	synonymous	HP0489		
S46	691074	A	c	SNP	synonymous	HP0489		
546	691077	6	A	SNP	nonsynonymous	HP0489		
546	691089	A	6	SNP	synonymous	HP0489		
S46	691091	c	A	SNP	nonsynonymous	HP0489		
546	691101	T	c	SNP	synonymous	HP0489		
S46	691113	G	T	SNP	nonsynonymous	HP0489		
S46	691157	c	A	SNP	nonsynonymous	HP0489		
S46	691173	c	A	SNP	synonymous	HP0489		
S46	691175	A	6	SNP	nonsynonymous	HP0489		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

S46	691179	c	G	SNP	synonymous	HP0489		
546	69185	A	6	SNP	nonsynonymous	HP0489		
546	691189	c	6	SNP	nonsynonymous	HP0489		
546	69190	A	c	SNP	nonsynonymous	HP0489		
546	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
546	830053	c	T	SNP	nonsynonymous	HPP12_0617		
546	839999	T	c	SNP	nonsynonymous	HPB8_818		
546	958702	caAaAAAAAAAAAAAAA	CaAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
S46	1043704	Gтттттттדтדtit	GтттттттттттттT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
546	1187376	ATтTTTT	АтттדтTT	indel	intergenic		HP0947	
546	1262251	c	A	SNP	nonsynonymous	jhpo981		
546	1295885	GATATATATATATATATAT	GATATATATATATATATATATAT	indel	intergenic		HPATCC43504_01238	
546	1319852	A	AAG	indel	intergenic		HELPY_1075	jhp1032
546	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
546	1332954	T	6	SNP	synonymous	HPATCC43504_01275		
546	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
546	1332996	T	6	SNP	synonymous	HPATCC43504_01275		
546	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
546	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
546	1482848	G	T	SNP	nonsynonymous	HPG27_298		
546	1482850	T	G	SNP	nonsynonymous	HPG27_298		
546	1482859	T	c	SNP	synonymous	HPG27_298		
546	1482860	c	A	SNP	nonsynonymous	HPG27_298		
546	1482861	6	A	SNP	nonsynonymous	HPG27_298		
546	1483092	G	A	SNP	nonsynonymous	HPG27_298		
546	1483202	G	A	SNP	nonsynonymous	HPG27_298		
546	1483269	A	G	SNP	nonsynonymous	HPG27_298		
547	99327	c	T	SNP	synonymous	jhpo935		
547	168379	c	T	SNP	synonymous	HP1547		
547	199597	c	T	SNP	intergenic		HP1582	jhp1488
547	214663	CGAGAGAGAGAGAGAG	cGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
547	232964	c	A	SNP	intergenic		HPPC_00115	
547	251374	G	A	SNP	nonsynonymous	HP0045		
547	276989	G	A	SNP	nonsynonymous	HPP12_070		
547	303813	A	T	SNP	nonsynonymous	HPP12_0996		
547	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
547	424517	CGGGG	CGGGGG	indel	intergenic		HP0189	HP0188
547	430922	G	A	SNP	nonsynonymous	HP0194		
547	545511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
547	548941	c	T	SNP	intergenic		jhp1163	HPG27_298
547	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
547	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
547	548994	A	T	SNP	intergenic		jhp1163	HPG27_298
547	691071	G	A	SNP	synonymous	HP0489		
547	691074	A	c	SNP	synonymous	HP0489		
547	691077	G	A	SNP	nonsynonymous	HP0489		
547	691089	A	G	SNP	synonymous	HP0489		
547	691091	c	A	SNP	nonsynonymous	HP0489		
547	691101	T	c	SNP	synonymous	HP0489		
547	691113	G	T	SNP	nonsynonymous	HP0489		
547	691173	c	A	SNP	synonymous	HP0489		
547	691175	A	G	SNP	nonsynonymous	HP0489		
547	691179	c	G	SNP	synonymous	HP0489		
547	691185	A	6	SNP	nonsynonymous	HP0489		
547	691189	c	G	SNP	nonsynonymous	HP0489		
547	69190	A	c	SNP	nonsynonymous	HP0489		
547	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
547	830053	c	T	SNP	nonsynonymous	HPP12_0617		
547	1043704	GTтTTтTTTTTTT		indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
547	1187376	ATтTтTT	АтттדTTT	indel	intergenic		HP0947	
547	1262251	c	A	SNP	nonsynonymous	jhpo981		
547	1295885	GATATATATATATATATAT	GATATATATATATATATATATAT	indel	intergenic		HPATCC43504_01238	
547	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
547	1332888	T	6	SNP	synonymous	HPATCC43504_01275		
547	1332893	T	6	SNP	nonsynonymous	HPATCC43504_01275		
547	1332900	G	GT	indel	frameshift deletion	HPATCC43504_01275		
547	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
547	1332954	T	6	SNP	synonymous	HPATCC43504_01275		
547	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
547	1332996	T	6	SNP	synonymous	HPATCC43504_01275		
547	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
547	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
547	1582071	AATT	AATTATT	indel	intergenic		HELPY_1317	HP0228
548	99327	c	T	SNP	synonymous	jhp0935		
548	168379	c	T	SNP	synonymous	HP1547		
548	199597	c	T	SNP	intergenic		HP1582	jhp1488
548	251374	G	A	SNP	nonsynonymous	HP0045		
548	276989	G	A	SNP	nonsynonymous	HPP12_070		
548	424517	CGGGG	CGGGGG	indel	intergenic		HP0189	HP0188
548	430922	G	A	SNP	nonsynonymous	HP0194		
548	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
548	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
548	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
548	691071	G	A	SNP	synonymous	HP0489		
548	691074	A	c	SNP	synonymous	HP0489		
548	691077	G	A	SNP	nonsynonymous	HP0489		
548	691089	A	G	SNP	synonymous	HP0489		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

548	691091	c	A	SNP	nonsynonymous	HP0489		
548	691101	T	c	SNP	synonymous	HP0489		
548	691113	G	T	SNP	nonsynonymous	HP0489		
548	69149	6	c	SNP	synonymous	HP0489		
548	691173	c	A	SNP	synonymous	HP0489		
548	691175	A	6	SNP	nonsynonymous	HP0489		
548	691179	c	G	SNP	synonymous	HP0489		
548	691185	A	6	SNP	nonsynonymous	HP0489		
548	691189	c	G	SNP	nonsynonymous	HP0489		
548	691190	A	c	SNP	nonsynonymous	HP0489		
548	830053	c	T	SNP	nonsynonymous	HPP12_0617		
548	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
548	1102177	A	T	SNP	intergenic		HP0876	HP0875
548	1187376	ATтTTTT	ATтTTTTT	indel	intergenic		HP0947	
548	1262251	c	A	SNP	nonsynonymous	jhpo981		
548	1295885	gatatatatatatatatat	GATATATATATATATATATATAT,GATATATATATA tatatatat	indel	intergenic		HPATCC43504_01238	
548	1318527	c	A	SNP	intergenic	jhp1031		
548	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
548	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
548	1332954	T	G	SNP	synonymous	HPATCC43504_01275		
548	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
548	1332996	T	G	SNP	synonymous	HPATCC43504_01275		
548	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
548	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
548	1482848	G	T	SNP	nonsynonymous	HPG27_298		
548	1482850	T	G	SNP	nonsynonymous	HPG27_298		
548	1482859	T	c	SNP	synonymous	HPG27_298		
548	1482860	c	A	SNP	nonsynonymous	HPG27_298		
548	1482861	G	A	SNP	nonsynonymous	HPG27_298		
548	1483092	G	A	SNP	nonsynonymous	HPG27_298		
548	1483202	G	A	SNP	nonsynonymous	HPG27_298		
548	1483269	A	6	SNP	nonsynonymous	HPG27_298		
548	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
548	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
549	212868	c	A	SNP	nonsynonymous	HPG27_8		
549	214663	CGAGAGAGAGAGAGAG	CgAGAgAGAGAGAGAGAG	indel	intergenic		HPG27_8	
549	232964	c	A	SNP	intergenic		HPPC_00115	
549	332580	T	A	SNP	synonymous	HP0119		
549	332598	c	T	SNP	synonymous	HP0119		
549	332632	G	A	SNP	nonsynonymous	HP0119		
549	332653	c	T	SNP	nonsynonymous	HP0119		
549	332689	6	A	SNP	nonsynonymous	HP0119		
549	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
549	548978	6	T	SNP	intergenic		jhp1163	HPG27_298
549	701037	TGGGGGGGG	TGGGGGGG	indel	frameshift deletion	HP0499		
549	868876	T	c	SNP	nonsynonymous	HP0646		
549	956664	A	6	SNP	synonymous	HPG27_680		
549	1168858	G	T	SNP	nonsynonymous	HP0929		
549	1185804	A	6	SNP	nonsynonymous	HP0946		
549	1284699	AGGGGGGGGGG	AGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
549	1636693	TGGGG	TGGGGG	indel	frameshift insertion	HPATCC43504_01561		
550	212868	c	A	SNP	nonsynonymous	HPG27_8		
550	332580	T	A	SNP	synonymous	HP0119		
550	332632	G	A	SNP	nonsynonymous	HP0119		
550	332653	c	T	SNP	nonsynonymous	HP0119		
550	332689	G	A	SNP	nonsynonymous	HP0119		
550	464294	A	${ }^{6}$	SNP	intergenic		HP0226	
550	546511	CAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
550	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
550	701037	TGGGGGGGG	TGGGGGGG	indel	frameshift deletion	HP0499		
550	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
550	868876	T	c	SNP	nonsynonymous	HP0646		
550	873717	c	T	SNP	synonymous	HP0651		
550	873807	c	6	SNP	synonymous	HP0651		
550	873808	G	A	SNP	synonymous	HP0651		
550	873809	A	c	SNP	synonymous	HP0651		
550	873813	G	A	SNP	synonymous	HP0651		
550	903745	TAA	TA	indel	frameshift deletion	HPP12_0689		
550	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
550	1168858	6	T	SNP	nonsynonymous	HPO929		
550	1187376	ATтTTTT	ATтTTTTT	indel	intergenic		HP0947	
550	1284512	c	T	SNP	synonymous	HPG27_1018		
550	1284514	c	T	SNP	nonsynonymous	HPG27_1018		
550	1284517	T	G	SNP	synonymous	HPG27_1018		
550	1284553	c	A	SNP	nonsynonymous	HPG27_1018		
550	1284699	AGGGGGGGGGG	AGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
550	1636693	TGGGG	TGGGGG	indel	frameshift insertion	HPATCC43504_01561		
551	212868	c	A	SNP	nonsynonymous	HPG27_8		
551	332580	T	A	SNP	synonymous	HP0119		
551	332598	c	T	SNP	synonymous	HP0119		
551	332632	6	A	SNP	nonsynonymous	HP0119		
551	332653	c	T	SNP	nonsynonymous	HP0119		
551	332689	G	A	SNP	nonsynonymous	HP0119		
551	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
551	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
551	548978	6	T	SNP	intergenic		jhp1163	HPG27_298

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

551	701037	TGGGGGGGG	TGGGGGGG	indel	frameshift deletion	HP0499		
551	801836	GaAaAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
S51	839999	T	c	SNP	nonsynonymous	HP88_818		
551	868876	T	c	SNP	nonsynonymous	HP0646		
551	958719	G	A	SNP	intergenic		HPG27_680	
551	1043704	GTтTTTTTTTTTT	GтTTTTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
551	1168858	G	T	SNP	nonsynonymous	HP0929		
551	1636693	TGGGG	TGGGGG	indel	frameshift insertion	HPATCC43504_01561		
552	212868	c	A	SNP	nonsynonymous	HPG27_8		
552	232963	A	c	SNP	intergenic		HPPC_00115	
552	232964	C	A	SNP	intergenic		HPPC_0015	
552	332580	T	A	SNP	synonymous	HP0119		
552	332598	c ${ }^{\text {a }}$	T	SNP	synonymous	HP0119		
552	332632	G A	A	SNP	nonsynonymous	HP0119		
552	332653	c	T	SNP	nonsynonymous	HP0119		
552	332689	G	A	SNP	nonsynonymous	HP0119		
552	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhpo151		
552	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
552	548978	G	T	SNP	intergenic		jhp1163	HPG27-298
552	701037	TGGGGGGGG	TGGGGGGG	indel	frameshift deletion	HP0499		
552	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
552	839999	T	c	SNP	nonsynonymous	HPB8_818		
552	868876	T	c	SNP	nonsynonymous	HP0646		
552	1043704	GттттттTтTTTT	GттттTтTтTтTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
552	1168858	G	${ }^{\top}$	SNP	nonsynonymous	HP0929		
552	1187376	ATтTтTT	AттדтTTT	indel	intergenic		HP0947	
552	1636693	TGGGG	TGGGGG	indel	frameshift insertion	HPATCC43504_01561		
552	1663529	GTTTTT	GTTTT	indel	1 bp deletion			
553	658	c	T	SNP	synonymous	HP1529		
553	214663	CGAGAGAGAGAGAGAG	Cgagagagagagagagag	indel	intergenic		HP627_8	
553	232964	c	A	SNP	intergenic		HPPC_00115	
553	303813	A	T	SNP	nonsynonymous	HPP12_0966		
553	303816	A	T	SNP	nonsynonymous	HPP12_0996		
553	303827	CGGGGGGGGGGGG	G	indel	frameshift deletion	HPP12_0996		
553	315327	Accccccccce	Acccccccccc	indel	intergenic		HP0103	
553	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
553	431032	c	T	SNP	synonymous	HP0194		
553	437765	G C	c	SNP	intergenic		HP0204	HELPY_0206
553	443932	АстстстСТттттттстС	АСТСтСтТСтСтСТСтС	indel	frameshift deletion	HPPC_01040		
553	450628	G A	A	SNP	synonymous	HP0213		
553	546115	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA A TCTTATTTAATCTTATTTAATCTT	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA TCTTATTTAATCTTATTTAATCTTATTTAATCTT	indel	intergenic		HP1243/HPG27_298	
553	546511	CAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
553	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
553	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
553	626404	c	T	SNP	synonymous	HP1175		
553	627243	G	A	SNP	nonsynonymous	HP1174		
553	701041	G	A	SNP	nonsynonymous	HP0499		
553	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
553	839999	T	c	SNP	nonsynonymous	HPB8_818		
553	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
553	1319683	G	c	SNP	nonsynonymous	jhp1032		
553	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
553	1592801	T	6	SNP	synonymous	HP1354		
553	1663529	GTTTT	GTTT	indel	1 bp deletion			
553	1669898	c	T	SNP	synonymous	HP1450		
554	658	c	T	SNP	synonymous	HP1529		
554	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
554	431032	c	T T	SNP	synonymous	HP0194		
554	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
554	450628	G	A	SNP	synonymous	HP0213		
554	546115	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA TCTTATTTAATCTTATTTAATCTT	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA TCTTATTTAATCTTATTTAATCTTATTTAATCTT	indel	intergenic		HP1243/HPG27_298	
554	546511	CaAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
554	620169	c ${ }^{\text {a }}$	T	SNP	nonsynonymous	HPAG1_1119		
554	626404	c	T	SNP	synonymous	HP1175		
554	627243	G	A	SNP	nonsynonymous	HP1174		
554	701041	6	A	SNP	nonsynonymous	HP0499		
554	1187376	ATtTTTT	ATтTTTTT	indel	intergenic		HP0947	
554	1319683	6	c	SNP	nonsynonymous	jhp1032		
554	1592785	TGTGG	TG	indel	frameshift deletion	HP1354		
554	1669898	c	T	SNP	synonymous	HP1450		
555	658	C	T	SNP	synonymous	HP1529		
555	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
555	315327	Accccccccce	Accccccccccc	indel	intergenic		HP0103	
555	431032	c	T	SNP	synonymous	HP0194		
555	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
555	450628	G	A	SNP	synonymous	HP0213		
555	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
S55	546115	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA A TCTTATTTAATCTTATTTAATCTT	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA TCTTATTTAATCTTATTTAATCTTATTTAATCTT	indel	intergenic		HP1243/HPG27_298	
555	548957	c	T	SNP	intergenic		jhp1163	HPG27_298
555	548965	c	T T	SNP	intergenic		jhp1163	HPG27_298
555	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
555	626404	c	T	SNP	synonymous	HP1175		
555	627243	G	A	SNP	nonsynonymous	HP1174		
555	701041	G	A	SNP	nonsynonymous	HP0499		
555	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhp0540	

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

555	839999	T	C	SNP	nonsynonymous	HPB8_818		
555	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
555	1043704	GTTTTTTTTTTTTT	GTтTTTTTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
555	1187376	ATтTтTT	АттדтTTT	indel	intergenic		HP0947	
555	1192576	G	T	SNP	intergenic		HP0953	
555	1319683	G	c	SNP	nonsynonymous	jhp1032		
S55	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
S55	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
555	1669898	c	T	SNP	synonymous	HP1450		
556	658	c	T	SNP	synonymous	HP1529		
556	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
556	315327	Acccccccccc	Accccccccccc	indel	intergenic		HP0103	
556	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
556	431032	c ${ }^{\text {a }}$	T	SNP	synonymous	HP0194		
556	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
556	443932	АстстстстсттттстстС	АСТСтСтТтТСтСТСтС	indel	frameshift deletion	HPPC_01040		
556	450628	G A	A	SNP	synonymous	HP0213		
556	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
556	546115	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA TCTTATTTAATCTTATTTAATCTT	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA TCTTATTTAATCTTATTTAATCTTATTTAATCTT	indel	intergenic		HP1243/HPG27_298	
556	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
556	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
556	548986	СтттттT	сттттттT	indel	intergenic		jhp1163	HPG27_298
556	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
556	626404	c	T	SNP	synonymous	HP1175		
556	627243	G	A	SNP	nonsynonymous	HP1174		
556	701041	G	A	SNP	nonsynonymous	HP0499		
556	801836	GAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
556	1043704	GтттדттTтTтTT	GтттттדтттттTтTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
556	1124346	Cgagagagagagagagagag	Cgagagagagagagagag	indel	intergenic		HPG27_1187	
556	1302389	G	A	SNP	synonymous	HP0364		
556	1319683	G	c	SNP	nonsynonymous	jhp1032		
556	1410493	G	A	SNP	nonsynonymous	jhpo373		
556	1592785	TGTGG	TG	indel	frameshift deletion	HP1354		
556	1669898	c	T	SNP	synonymous	HP1450		
557	658	c	T	SNP	synonymous	HP1529		
557	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HP627_8	
557	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0051		
557	431032	c	T	SNP	synonymous	HP0194		
557	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
557	450628	G	A	SNP	synonymous	HP0213		
557	546524	C	A	SNP	intergenic		HP1243/HPG27_298	
557	607390	G	A	SNP	synonymous	jhp1115		
557	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
557	626404	c	T	SNP	synonymous	HP1175		
557	627243	G	A	SNP	nonsynonymous	HP1174		
557	701041	G	A	SNP	nonsynonymous	HP0499		
557	748416	T A	A	SNP	intergenic		HP0514	
557	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
557	958575	GAGA	GAGAAAGA	indel	intergenic		HPG27_680	
557	1124346	CGAGAGAGAGAGAGAGAGAG	cgagagagagagagagagagag	indel	intergenic		HPG27_1187	
557	1187376	ATtTTTT	ATтTTTTT	indel	intergenic		HP0947	
557	1272391	G	A	SNP	nonsynonymous			
557	1284699	AGGGGGGGGGG	AGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
557	1555634	T	c	SNP	nonsynonymous	HELPY_0259		
557	1582072	ATT	ATTTTT	indel	intergenic		HELPY_1317	HP0228
557	1592786	GT	G	indel	frameshift deletion	HP1354		
557	1592801	T ${ }^{\text {a }}$	6	SNP	synonymous	HP1354		
557	1593602	TGGGGGGGGGGG	6	indel	frameshift insertion	HP1354		
557	1669898	c	T	SNP	synonymous	HP1450		
558	658	c	T	SNP	synonymous	HP1529		
558	961	G	A	SNP	nonsynonymous	HP1529		
558	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
558	232963	A	c	SNP	intergenic		HPPC_00115	
558	232964	C	A	SNP	intergenic		HPPC_00115	
558	315327	Accccccccce	Accccccccccc	indel	intergenic		HP0103	
558	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
558	431032	c	T	SNP	synonymous	HP0194		
558	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
558	450628	6	A	SNP	synonymous	HP0213		
558	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
558	546115	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA TCTTATTTAATCTTATTTAATCTT	AATTTAATCTTATTTAATCTTATTTAATCTTATTTAA TCTTATTTAATCTTATTTAATCTTATTTAATCTTATT TAATCTT	indel	intergenic		HP1243/HPG27_298	
558	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
558	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
558	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
558	626404	c	T	SNP	synonymous	HP1175		
558	627243	G	A	SNP	nonsynonymous	HP1174		
558	701041	6	A	SNP	nonsynonymous	HP0499		
558	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
558	805851	A	T	SNP	intergenic		HPG27_556	
558	958574	CGAGAGAGAGAGAG	CGAGAGAGAGAGAGAG	indel	intergenic		HPG27_680	
558	958702	CAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
558	1043704	GттттттTтTTTT	бттттттттттTтTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
558	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
558	1284699	AGGGGGGGGGG	AGGGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
558	1555634	T	c	SNP	nonsynonymous	HELPY_0259		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

558	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
558	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift deletion	HP1354		
558	1669898	c	T	SNP	synonymous	HP1450		
559	658	c	T	SNP	synonymous	HP1529		
559	27485	AGGGGGG	AGGGGGGG	indel	intergenic		HP1506	jhp1400
559	431032	c	T	SNP	synonymous	HP0194		
559	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
559	450628	G	A	SNP	synonymous	HP0213		
559	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
559	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
559	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
559	626404	c	T	SNP	synonymous	HP1175		
559	627243	G	A	SNP	nonsynonymous	HP1174		
559	701041	G	A	SNP	nonsynonymous	HP0499		
559	757302	G	A	SNP	synonymous	HPATCC43504_00741		
559	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
559	854528	c	T	SNP	nonsynonymous	HP0632		
559	958574	cGAGAGAGAGAGAG	CGAGAGAGAGAGAGAG	indel	intergenic		HPG27_680	
559	1043704	GттTттדтדTтTT	GтттттTтTтTтTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
559	1124346	CGAGAGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_1187	
559	1187376	ATтTTTT	ATtTTTTTT	indel	intergenic		HP0947	
559	1284699	AGGGGGGGGGG	AGGGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
559	1555634	T	c	SNP	nonsynonymous	HELPY_0259		
559	1582224	АСтстстстстсттстС	АСтСтСтстстстетС	indel	intergenic		HELPY_1317	HP0228
559	1592800	G	GGGT	indel	frameshift insertion	HP1354		
559	1669898	c	T	SNP	synonymous	HP1450		
560	658	c	T	SNP	synonymous	HP1529		
560	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
560	232963	A	c	SNP	intergenic		HPPC_00115	
560	232964	c	A	SNP	intergenic		HPPC_00115	
560	315327	Accccccccce	Acccccccccce	indel	intergenic		HP0103	
560	345517	c	T	SNP	synonymous	HP0132		
560	374756	CGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
560	431032	c	T	SNP	synonymous	HP0194		
560	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
560	450628	G	A	SNP	synonymous	HP0213		
560	488821	c	T	SNP	nonsynonymous	jhp1233		
S60	546511	CAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
560	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
560	626404	c	T	SNP	synonymous	HP1175		
560	627243	G	A	SNP	nonsynonymous	HP1174		
560	701041	G	A	SNP	nonsynonymous	HP0499		
560	801836	GAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
560	958574	cgagagagagagag	Cgagagagagagagag	indel	intergenic		HPG27_680	
560	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
560	1043704	Gттттттттттtit	GттттттттттттттT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
560	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
560	1284699	AGGGGGGGGGG	AGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
560	1318527	c	A	SNP	intergenic	jhp1031		
560	1555634	T	c	SNP	nonsynonymous	HELPY_0259		
560	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
S60	1592801	T	6	SNP	synonymous	HP1354		
560	1669898	c	T	SNP	synonymous	HP1450		
561	658	c	T	SNP	synonymous	HP1529		
561	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
561	249555	G	A	SNP	nonsynonymous	HP0044		
561	315327	Accccccccce	Acccccccccec	indel	intergenic		HP0103	
561	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
561	413866	A	6	SNP	synonymous	HP1535		
561	413887	A	6	SNP	synonymous	HP1535		
561	413983	c	T	SNP	synonymous	HP1535		
561	431032	c	T	SNP	synonymous	HP0194		
561	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
561	450628	G	A	SNP	synonymous	HP0213		
561	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
561	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
561	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
561	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
561	626404	c	T	SNP	synonymous	HP1175		
561	627243	G	A	SNP	nonsynonymous	HP1174		
561	701041	G	A	SNP	nonsynonymous	HP0499		
561	801836	GAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
561	839999	T	c	SNP	nonsynonymous	HP88_818		
561	1043704	GттттTтTтTTTT	GTтTтTтTтTтTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
561	1122223	c	T	SNP	intergenic		HP0895	
561	1122228	TAAAAA	TAAAAAA	indel	intergenic		HP0895	
561	1187376	АтTтTTT	АтттTTTT	indel	intergenic		HP0947	
561	1483092	G	A	SNP	nonsynonymous	HPG27_298		
561	1483202	G	A	SNP	nonsynonymous	HPG27_298		
561	1483269	A	G	SNP	nonsynonymous	HPG27_298		
561	1640915	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion			
561	1669898	c	T	SNP	synonymous	HP1450		
562	658	c	T	SNP	synonymous	HP1529		
562	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
S62	232964	c	A	SNP	intergenic		HPPC_00115	
562	249555	G	A	SNP	nonsynonymous	HP0044		
562	315327	Accccccccce	Acccccccccce	indel	intergenic		HP0103	

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

562	413866	A	G	SNP	synonymous	HP1535		
562	413887	A	G	SNP	synonymous	HP1535		
562	413983	c	T	SNP	synonymous	HP1535		
562	431032	c	T	SNP	synonymous	HP0194		
S62	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
562	450628	G	A	SNP	synonymous	HP0213		
562	549238	AGATTTCTTTTTTAAAGGGATTTCTTTTTTAAAGG GATTTCTTTTTTAAAGGGATTTCTTTTTTAAAGGG ATTTCTTTTTT	AGATTTCTTTTTTAAAGTGATTTCTTTTTTAAAGG GATTTCTTTTTTAAAGGGATTTCTTTTTTAAAGGG ATTTCTTTTTTAAAGGGATTTCTTTTTT	indel	intergenic		jhp1163	HPG27_298
562	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
562	626404	c	T	SNP	synonymous	HP1175		
562	627243	6	A	SNP	nonsynonymous	HP1174		
562	701041	G	A	SNP	nonsynonymous	HP0499		
562	801836	GAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
562	952187	G	c	SNP	synonymous	HPG27_677		
562	952196	c	T	SNP	synonymous	HPG27_677		
562	952955	A	c	SNP	nonsynonymous	HPG27_677		
562	953191	A	6	SNP	nonsynonymous	HPG27_677		
562	958485	A	G	SNP	synonymous	HPG27_680		
562	958494	G	c	SNP	synonymous	HPG27_680		
562	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
562	1043704	GTтTтTTTTTTTTT	GтTтTTTTTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
S62	1122223	c	T	SNP	intergenic		HP0895	
562	1122228	TAAAAA	TAAAAAA	indel	intergenic		HP0895	
562	1187376	ATTTTTT	ATTTTTTTT	indel	intergenic		HP0947	
562	1192843	T	G	SNP	nonsynonymous	HPP12_0950		
562	1483092	G	A	SNP	nonsynonymous	HPG27_298		
562	1483202	G	A	SNP	nonsynonymous	HPG27_298		
562	1483269	A	6	SNP	nonsynonymous	HPG27_298		
562	1640915	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion			
562	1663529	GTTTTT	GTTT	indel	1 bp deletion			
562	1669898	c	T	SNP	synonymous	HP1450		
563	658	c	T	SNP	synonymous	HP1529		
563	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
563	232964	c	A	SNP	intergenic		HPPC_00115	
563	249268	c	T	SNP	nonsynonymous	jhp0037_1		
563	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0051		
563	431032	c	T	SNP	synonymous	HP0194		
563	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
563	450628	6	A	SNP	synonymous	HP0213		
563	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
563	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
563	548994	A	T	SNP	intergenic		jhp1163	HPG27_298
563	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
563	626404	c	T	SNP	synonymous	HP1175		
563	627243	6	A	SNP	nonsynonymous	HP1174		
563	701041	6	A	SNP	nonsynonymous	HP0499		
S63	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
563	805851	A	T	SNP	intergenic		HPG27_556	
563	839999	T	c	SNP	nonsynonymous	HPB8_818		
563	958574	CGAGAGAGAGAGAG	CGAGAGAGAGAGAGAG	indel	intergenic		HPG27_680	
563	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
563	984279	c	T	SNP	nonsynonymous	HP0751		
563	1043704	GттттттTтTтTT	GттттттTтTтTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
563	1187376	ATтTтTT	АтттTтTT	indel	intergenic		HP0947	
563	1608139	GT	G	indel	frameshift deletion	HP1369m		
563	1669898	c	T	SNP	synonymous	HP1450		
564	658	c	T	SNP	synonymous	HP1529		
564	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
564	249268	c	T	SNP	nonsynonymous	jhp0037_1		
564	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
564	431032	c	T	SNP	synonymous	HP0194		
564	437765	6	c	SNP	intergenic		HP0204	HELPY_0206
564	450628	G	A	SNP	synonymous	HP0213		
564	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
564	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
564	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
564	626404	c	T	SNP	synonymous	HP1175		
564	627243	G	A	SNP	nonsynonymous	HP1174		
564	701041	G	A	SNP	nonsynonymous	HP0499		
564	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
564	839999	T	c	SNP	nonsynonymous	HPB8_818		
564	840205	GCAAAATACGATGATCTCACCACAAAATACGATGA TCTCACCACAAAATACGATGATCTCACCACAAAATA CGATGATCTCACCACAAAATACGATGATCTCA	GCAAAATACGATGATCTCACCACAAAATACGATGA TCTCACCACAAAATACGATGATCTCACCACAAAATA cGATGATCTCACCACAAAATACGATGATCTCACCA CAAAATACGATGATCTCA		frameshift deletion	jhp0563		
564	843969	c	T	SNP	nonsynonymous	HELPY_0749		
564	958574	CGAGAGAGAGAGAG	cGAGAGAGAGAGAGAG	indel	intergenic		HPG27_680	
564	1122223	c	T	SNP	intergenic		HP0895	
564	1122228	TAAAAA	TAAAAAA	indel	intergenic		HP0895	
564	1187376	ATтTTTT	ATTTTTTT	indel	intergenic		HP0947	
564	1192576	G	T	SNP	intergenic		HP0953	
564	1482848	G	T	SNP	nonsynonymous	HPG27_298		
564	1482850	T	6	SNP	nonsynonymous	HPG27_298		
564	1482859	T	c	SNP	synonymous	HPG27_298		
564	1482860	c	A	SNP	nonsynonymous	HPG27_298		
564	1482861	G	A	SNP	nonsynonymous	HPG27_298		
564	1482872	T	c	SNP	synonymous	HPG27_298		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

564	1482879	A	G	SNP	nonsynonymous	HPG27_298	
S64	1483092	G	A	SNP	nonsynonymous	HPG27_298	
564	1483269	A	G	SNP	nonsynonymous	HPG27_298	
564	1484872	T	c	SNP	synonymous	HPG27_298	
564	1484881	G	A	SNP	synonymous	HPG27_298	
564	1484897	c	A	SNP	nonsynonymous	HPG27_298	
564	1484899	c	A	SNP	synonymous	HPG27_298	
S64	1669898	c	T	SNP	synonymous	HP1450	
S65	232964	c	A	SNP	intergenic		HPPC_00115
S65	315327	Асссссccccc	Accccccccccc	indel	intergenic		HP0103
565	332580	T	A	SNP	synonymous	HP0119	
S65	332598	c	T	SNP	synonymous	HP0119	
565	332632	G	A	SNP	nonsynonymous	HP0119	
S65	332653	c	T	SNP	nonsynonymous	HP0119	
S65	332689	G	A	SNP	nonsynonymous	HP0119	
S65	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151	
S65	701037	TGGGGGGGG	TGGGGGGG	indel	frameshift deletion	HP0499	
565	734196	G	A	SNP	synonymous	HPP12_0534	
565	734198	A	G	SNP	nonsynonymous	HPP12_0534	
S65	734200	c	A	SNP	nonsynonymous	HPP12_0534	
S65	734220	c	T	SNP	synonymous	HPP12_0534	
S65	734234	A	G	SNP	nonsynonymous	HPP12_0534	
S65	734241	T	A	SNP	synonymous	HPP12_0534	
565	734256	c	T	SNP	synonymous	HPP12_0534	
565	734260	G	A	SNP	nonsynonymous	HPP12_0534	
565	734271	G	A	SNP	synonymous	HPP12_0534	
565	734277	c	T	SNP	synonymous	HPP12_0534	
S65	734283	c	T	SNP	synonymous	HPP12_0534	
S65	734286	T	c	SNP	synonymous	HPP12_0534	
565	734309	A	c	SNP	nonsynonymous	HPP12_0534	
565	734313	G	A	SNP	synonymous	HPP12_0534	
565	734317	A	c	SNP	nonsynonymous	HPP12_0534	
S65	735228	A	T	SNP	synonymous	HPP12_0534	
565	735324	c	G	SNP	synonymous	HPP12_0534	
S65	735333	A	G	SNP	synonymous	HPP12_0534	
565	735336	G	A	SNP	synonymous	HPP12_0534	
S65	735343	c	T	SNP	synonymous	HPP12_0534	
565	735356	T	c	SNP	nonsynonymous	HPP12_0534	
565	735363	G	A	SNP	synonymous	HPP12_0534	
565	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540
S65	805851	A	T	SNP	intergenic		HPG27_556
565	839999	T	c	SNP	nonsynonymous	HP88_818	
S65	958702	CAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680
565	1043704	GTтTTTTTTTTTT	GTтTтTTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811 HPnc4160
565	1122208	${ }_{\text {AG }}$	A	SNP	intergenic		HP0895
565	1122232	A	AG	indel	intergenic		HP0895
565	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947
565	1198606	A	c	SNP	nonsynonymous	HP0961	
565	1284699	AGGGGGGGGGG	AGGGGGGGGG	indel	frameshift deletion	HPG27_1018	
S65	1306585	c	T	SNP	nonsynonymous	HP0360	
565	1318527	c	A	SNP	intergenic	jh1031	
S65	1483720	G	A	SNP	synonymous	HPG27_298	
565	1484872	T	c	SNP	synonymous	HPG27_298	
565	1484881	G	A	SNP	synonymous	HPG27_298	
S65	1484897	c	A	SNP	nonsynonymous	HPG27_298	
S65	1484899	c	A	SNP	synonymous	HPG27_298	
S65	1640915	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion		
565	1663529	GTTTT	GTTT	indel	1 bp deletion		
S66	143981	TGA	T	indel	intergenic		HP1400
566	193201	G	A	SNP	synonymous	jhp1480	
566	332580	T	A	SNP	synonymous	HP0119	
566	332598	c	T	SNP	synonymous	HP0119	
566	332632	G	A	SNP	nonsynonymous	HP0119	
S66	332653	c	T	SNP	nonsynonymous	HP0119	
S66	332689	G	A	SNP	nonsynonymous	HP0119	
566	374767	GGT	GGGG,GGGTG	indel	frameshift insertion	jhp0151	
566	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217	
566	546511	CaAAAAAAAAAA	A	indel	intergenic		HP1243/HPG27_298
566	701037	TGGGGGGGG	TGGGGGGG	indel	frameshift deletion	HP0499	
566	734196	G	A	SNP	synonymous	HPP12_0534	
566	734198	A	G	SNP	nonsynonymous	HPP12_0534	
566	734200	c	A	SNP	nonsynonymous	HPP12_0534	
566	734220	c	T	SNP	synonymous	HPP12_0534	
566	734234	A	G	SNP	nonsynonymous	HPP12_0534	
566	732241	T	A	SNP	synonymous	HPP12_0534	
566	734256	c	T	SNP	synonymous	HPP12_0534	
566	734260	G	A	SNP	nonsynonymous	HPP12_0534	
566	734271	G	A	SNP	synonymous	HPP12_0534	
S66	734277	c	T	SNP	synonymous	HPP12_0534	
566	734283	c	T	SNP	synonymous	HPP12_0534	
566	734286	T	c	SNP	synonymous	HPP12_0534	
566	734309	A	c	SNP	nonsynonymous	HPP12_0534	
566	734317	A	c	SNP	nonsynonymous	HPP12_0534	
566	735228	A	T	SNP	synonymous	HPP12_0534	
566	735324	c	G	SNP	synonymous	HPP12_0534	
S66	735333	A	G	SNP	synonymous	HPP12_0534	
566	735336	G	A	SNP	synonymous	HPP12_0534	

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

566	735343	c	T	SNP	symonymous	HPP12_0534		
566	735356	T	c	SNP	nonsynonymous	HPP12_0534		
566	735363	G	A	SNP	synonymous	HPP12_0534		
S66	805851	A	T	SNP	intergenic		HPG27_556	
566	1122208	${ }^{\text {AG }}$	A	SNP	intergenic		HP0895	
566	1122235	G	A	SNP	intergenic		HP0895	
566	1187376	ATtтttit	AтTтTTTT	indel	intergenic		HP0947	
566	1198606	A	c	SNP	nonsynonymous	HP0961		
S66	1284699	AGGGGGGGGGG	AGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
566	1306585	c	T	SNP	nonsynonymous	HP0360		
566	1319853	c	A	SNP	intergenic		HELPY_1075	jhp1032
566	1483720	6	A	SNP	synonymous	HPG27_298		
566	1484872	T	c	SNP	synonymous	HPG27_298		
566	1484881	G	A	SNP	synonymous	HPG27_298		
566	1484897	c	A	SNP	nonsynonymous	HPG27_298		
S66	1484899	c	A	SNP	synonymous	HPG27_298		
566	1592801	T	6	SNP	synonymous	HP1354		
566	1640915	cgagagagagagagag	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion			
567	92562	T	c	SNP	intergenic		HP0993	
567	232964	c	A	SNP	intergenic		HPPC_00115	
567	315327	Acccccccccc	Acccccccccce	indel	intergenic		HP0103	
567	332580	T	A	SNP	synonymous	HP0119		
567	332598	c	T	SNP	synonymous	HP0119		
567	332632	G	A	SNP	nonsynonymous	HP0119		
567	332653	c	T	SNP	nonsynonymous	HP0119		
567	332689	6	A	SNP	nonsynonymous	HP0119		
567	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
567	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
567	548865	c	T	SNP	intergenic		jhp1163	HPG27_298
567	548868	T	c	SNP	intergenic		jhp1163	HPG27_298
567	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
567	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
567	701037	TGGGGGGGG	TGGGGGGG	indel	frameshift deletion	HP0499		
567	734196	G	A	SNP	synonymous	HPP12_0534		
567	734198	A	G	SNP	nonsynonymous	HPP12_0534		
567	734200	c	A	SNP	nonsynonymous	HPP12_0534		
567	734220	c	T	SNP	synonymous	HPP12_0534		
567	734234	A	G	SNP	nonsynonymous	HPP12_0534		
567	734241	T	A	SNP	synonymous	HPP12_0534		
567	734256	c	${ }^{\text {T }}$	SNP	synonymous	HPP12_0534		
567	734260	G	A	SNP	nonsynonymous	HPP12_0534		
567	734271	G	A	SNP	synonymous	HPP12_0534		
567	734277	c	T	SNP	synonymous	HPP12_0534		
567	734283	c	T	SNP	synonymous	HPP12_0534		
567	734286	T	c	SNP	synonymous	HPP12_0534		
567	734309	A	c	SNP	nonsynonymous	HPP12_0534		
567	734317	A	c	SNP	nonsynonymous	HPP12_0534		
567	734661	c	G	SNP	synonymous	HPP12_0534		
567	734733	c	T	SNP	synonymous	HPP12_0534		
567	735228	A	T	SNP	synonymous	HPP12_0534		
567	735239	c	A	SNP	nonsynonymous	HPP12_0534		
567	735324	c	6	SNP	synonymous	HPP12_0534		
567	735333	A	G	SNP	synonymous	HPP12_0534		
567	735336	G	A	SNP	synonymous	HPP12_0534		
567	735343	c	T	SNP	synonymous	HPP12_0534		
567	735356	T	c	SNP	nonsynonymous	HPP12_0534		
567	735363	G	A	SNP	synonymous	HPP12_0534		
567	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
567	839999	T	c	SNP	nonsynonymous	HP88_818		
567	952086	ттстсттстстстсте	ттстстстстстстС	indel	intergenic		HPG27_677	
567	1043704	GттTтTтTTTTTT	GтттттттTTтTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
567	1122208	${ }_{\text {AG }}$	A	SNP	intergenic		HP0895	
567	1122232	A	AG	indel	intergenic		HP0895	
567	1187376	ATTTTTT	ATтTTTTT	indel	intergenic		HP0947	
567	1198606	A	c	SNP	nonsynonymous	HP0961		
567	1284699	AGGGGGGGGGG	AGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
567	1306585	c	T	SNP	nonsynonymous	HP0360		
567	1483720	G	A	SNP	synonymous	HPG27_298		
567	1484872	T	c	SNP	synonymous	HPG27_298		
567	1484881	G	A	SNP	synonymous	HPG27_298		
567	1484897	c	A	SNP	nonsynonymous	HPG27_298		
567	1484899	c	A	SNP	synonymous	HPG27_298		
567	1640915	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion			
568	232964	c	A	SNP	intergenic		HPPC_00115	
568	315327	Accccccccce	Acccccccccec	indel	intergenic		HP0103	
568	332580	T	A	SNP	synonymous	HP0119		
568	332598	c	${ }^{\top}$	SNP	synonymous	HP0119		
568	332632	G	A	SNP	nonsynonymous	HP0119		
568	332653	c	T	SNP	nonsynonymous	HP0119		
568	332689	G	A	SNP	nonsynonymous	HP0119		
568	374767	GGT	GGGCGT	indel	frameshift insertion	jhp0151		
568	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
568	548937	c	T	SNP	intergenic		jhp1163	HPG27_298
568	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
568	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
568	548994	A	T	SNP	intergenic		jhp1163	HPG27_298
568	701037	TGGGGGGGG	TGGGGGGG	indel	frameshift deletion	HP0499		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

569	1483092	G	A	SNP	nonsynonymous	HPG27_298		
569	1483202	G	A	SNP	nonsynonymous	HPG27_298		
569	1483269	A	6	SNP	nonsynonymous	HPG27_298		
569	1592786	GT	6	indel	frameshift deletion	HP1354		
569	1663529	GTTTT	GTTT	indel	1 bp deletion			
570	99327	c	T	SNP	synonymous	jhpo935		
570	168379	c	T	SNP	synonymous	HP1547		
570	199597	c	T	SNP	intergenic		HP1582	jhp1488
570	232964	c	A	SNP	intergenic		HPPC_00115	
570	276989	G	A	SNP	nonsynonymous	HPP12_0070		
570	315327	Accccccccce	Acccccccccce	indel	intergenic		HP0103	
570	374756	cGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
570	430922	G	A	SNP	nonsynonymous	HP0194		
570	464722	T	6	SNP	synonymous	HP0227		
570	464740	c	A	SNP	synonymous	HP0227		
570	464743	A	6	SNP	synonymous	HP0227		
570	464764	A	6	SNP	synonymous	HP0227		
570	464765	T	c	SNP	nonsynonymous	HP0227		
570	464767	G	A	SNP	synonymous	HP0227		
570	464773	6	A	SNP	synonymous	HP0227		
570	464779	c	T	SNP	synonymous	HP0227		
570	464788	G	A	SNP	synonymous	HP0227		
570	464797	A	G	SNP	synonymous	HP0227		
570	464800	G	A	SNP	synonymous	HP0227		
570	464803	G	A	SNP	synonymous	HP0227		
570	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
570	548957	c	T	SNP	intergenic		jhp1163	HPG27_298
570	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
570	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
570	548986	сттттtт	СттттTTT	indel	intergenic		jhp1163	HPG27-298
570	691071	G	A	SNP	synonymous	HP0489		
570	691074	A	c	SNP	synonymous	HP0489		
570	691077	G	A	SNP	nonsynonymous	HP0489		
570	691089	A	6	SNP	synonymous	HP0489		
570	691091	c	A	SNP	nonsynonymous	HP0489		
570	691101	T	c	SNP	synonymous	HP0489		
570	691113	G	T	SNP	nonsynonymous	HP0489		
570	691157	c	A	SNP	nonsynonymous	HP0489		
570	691173	c	A	SNP	synonymous	HP0489		
570	691175	A	6	SNP	nonsynonymous	HP0489		
570	691179	c	6	SNP	synonymous	HP0489		
570	691185	A	6	SNP	nonsynonymous	HP0489		
570	691189	c	6	SNP	nonsynonymous	HP0489		
570	691190	A	c	SNP	nonsynonymous	HP0489		
570	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
570	830053	c	T	SNP	nonsynonymous	HPP12_0617		
570	839999	T	c	SNP	nonsynonymous	HP8_818		
570	879985	c	T	SNP	nonsynonymous	HP0656		
570	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
570	1043704			indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
570	1187376	ATTTTTT	AтTTTTTT	indel	intergenic		HP0947	
570	1192157	T	c	SNP	nonsynonymous	HP0953		
570	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
570	1332870	c	T	SNP	synonymous	HPATCC43504_01275		
570	1332888	T	G	SNP	synonymous	HPATCC43504_01275		
570	1332893	T	6	SNP	nonsynonymous	HPATCC43504_01275		
570	1332897	A	6	SNP	synonymous	HPATCC43504_01275		
570	1332900	G	T	SNP	synonymous	HPATCC43504_01275		
570	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
570	1332954	T	6	SNP	synonymous	HPATCC43504_01275		
570	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
570	1332996	T	6	SNP	synonymous	HPATCC43504_01275		
570	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
570	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
570	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
570	1592801	T	G	SNP	synonymous	HP1354		
571	99327	c	T	SNP	synonymous	jhpo935		
571	168379	c	T	SNP	synonymous	HP1547		
571	199597	c	T	SNP	intergenic		HP1582	jhp1488
571	276989	G	A	SNP	nonsynonymous	HPP12_0070		
571	315337	c	CA	indel	intergenic		HP0103	
571	430922	6	A	SNP	nonsynonymous	HP0194		
571	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
571	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
571	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
571	548986	СтттттT	СтттттTT	indel	intergenic		jhp1163	HPG27_298
571	691071	G	A	SNP	synonymous	HP0489		
571	691074	A	c	SNP	synonymous	HP0489		
571	691077	G	A	SNP	nonsynonymous	HP0489		
571	691089	A	G	SNP	synonymous	HP0489		
571	691091	c	A	SNP	nonsynonymous	HP0489		
571	691101	T	c	SNP	synonymous	HP0489		
571	691113	G	T	SNP	nonsynonymous	HP0489		
571	691173	c	A	SNP	synonymous	HP0489		
571	691175	A	6	SNP	nonsynonymous	HP0489		
571	691179	c	6	SNP	synonymous	HP0489		
571	691185	A	6	SNP	nonsynonymous	HP0489		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

571	69189	c	6	SNP	nonsynonymous	HP0489		
571	691190	A	c	SNP	nonsynonymous	HP0489		
571	830053	c	T	SNP	nonsynonymous	HPP12_0617		
571	839999	T	c	SNP	nonsynonymous	HP88_818		
571	879985	c	T	SNP	nonsynonymous	HP0656		
571	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
571	1043704	Gтtтtтtтtтtit	GттттTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
571	1187376	АттTтTT	Аттדtitit	indel	intergenic		HP0947	
571	1192157	T	c	SNP	nonsynonymous	HP0953		
571	1318502	c	T	SNP	intergenic	jhp1031		
571	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
571	1332900	G	GT	indel	frameshift deletion	HPATCC43504_01275		
571	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
571	1332954	T	G	SNP	synonymous	HPATCC43504_01275		
571	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
571	1332996	T	G	SNP	synonymous	HPATCC43504_01275		
571	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
571	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
571	1592135	G	A	SNP	nonsynonymous	HP1350		
571	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
572	99327	c	T	SNP	synonymous	jhpo935		
572	168379	c	T	SNP	synonymous	HP1547		
572	199597	c	T	SNP	intergenic		HP1582	jhp1488
572	276989	G	A	SNP	nonsynonymous	HPP12_0070		
572	315327	Accccccccce	Accccccccccc	indel	intergenic		HP0103	
572	430922	G	A	SNP	nonsynonymous	HP0194		
572	466390	G	A	SNP	intergenic		HP0227	
572	466443	G	A	SNP	intergenic		HP0227	
572	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
572	691071	G	A	SNP	synonymous	HP0489		
572	691074	A	c	SNP	synonymous	HP0489		
572	691077	G	A	SNP	nonsynonymous	HP0489		
572	691089	A	G	SNP	synonymous	HP0489		
572	691091	c	A	SNP	nonsynonymous	HP0489		
572	691101	T	c	SNP	synonymous	HP0489		
572	691113	G	T	SNP	nonsynonymous	HP0489		
572	691157	c	A	SNP	nonsynonymous	HP0489		
572	691173	c	A	SNP	synonymous	HP0489		
572	691175	A	G	SNP	nonsynonymous	HP0489		
572	691179	c	6	SNP	synonymous	HP0489		
572	691185	A	6	SNP	nonsynonymous	HP0489		
572	691189	c	6	SNP	nonsynonymous	HP0489		
572	691190	A	c	SNP	nonsynonymous	HP0489		
572	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
572	830053	c	T	SNP	nonsynonymous	HPP12_0617		
572	836443	c	T	SNP	synonymous	HP0617		
572	839999	T	c	SNP	nonsynonymous	HP88_818		
572	879985	c	T	SNP	nonsynonymous	HP0656		
572	1043704			indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
572	1187376	ATтTтTT	АтттттTT	indel	intergenic		HP0947	
572	1192157	T	c	SNP	nonsynonymous	HP0953		
572	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
572	1332900	G	T	SNP	synonymous	HPATCC43504_01275		
572	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
572	1332954	T	6	SNP	synonymous	HPATCC43504_01275		
572	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
572	1332996	T	G	SNP	synonymous	HPATCC43504_01275		
572	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
572	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
573	99327	c	T	SNP	synonymous	jhpo935		
573	168379	c	T	SNP	synonymous	HP1547		
573	199597	c	T	SNP	intergenic		HP1582	jhp1488
573	226261	G	A	SNP	nonsynonymous	HP0019_1		
573	276989	G	A	SNP	nonsynonymous	HPP12_0070		
573	430922	G	A	SNP	nonsynonymous	HP0194		
573	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
573	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
573	548986	СттттTT	СтттттTT	indel	intergenic		jhp1163	HPG27_298
573	691071	G	A	SNP	synonymous	HP0489		
573	691074	A	c	SNP	synonymous	HP0489		
573	691077	G	A	SNP	nonsynonymous	HP0489		
573	691089	A	G	SNP	synonymous	HP0489		
573	691091	c	A	SNP	nonsynonymous	HP0489		
573	691101	T	c	SNP	synonymous	HP0489		
573	691113	G	T	SNP	nonsynonymous	HP0489		
573	691173	c	A	SNP	synonymous	HP0489		
573	691175	A	G	SNP	nonsynonymous	HP0489		
573	691179	c	6	SNP	synonymous	HP0489		
573	691185	A	G	SNP	nonsynonymous	HP0489		
573	691189	c	G	SNP	nonsynonymous	HP0489		
573	691190	A	c	SNP	nonsynonymous	HP0489		
573	830053	c	T	SNP	nonsynonymous	HPP12_0617		
573	839999	T	c	SNP	nonsynonymous	HP88_818		
573	958719	G	A	SNP	intergenic		HPG27_680	
573	984348	G	A	SNP	nonsynonymous	HP0751		
573	1043704	ятттттттттtit	GттттттттттттTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
573	1187376	ATTTTTT	АтттTTTT	indel	intergenic		HP0947	

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

574	1362531	A	T	SNP	nonsynonymous	HPB8_1119		
574	1456630	G	A	SNP	nonsynonymous	HP0354		
574	1482848	G	T	SNP	nonsynonymous	HPG27_298		
574	1482850	T	6	SNP	nonsynonymous	HPG27_298		
574	1483092	G	A	SNP	nonsynonymous	HPG27_298		
574	1483202	G	A	SNP	nonsynonymous	HP627_298		
574	1592801	T	G	SNP	synonymous	HP1354		
S75	99327	c	T	SNP	synonymous	jhpo935		
575	122766	TTTTTTAATGAAGTT	TTT	indel	frameshift deletion	HP1003		
575	168379	c	T	SNP	synonymous	HP1547		
S75	199597	c	T	SNP	intergenic		HP1582	jhp1488
575	214663	cgagagagagagagag	Cgagagagagagagagag	indel	intergenic		HP627_8	
S75	226261	G	A	SNP	nonsynonymous	HP0019_1		
575	276989	6	A	SNP	nonsynonymous	HPP12_0070		
S75	430922	G	A	SNP	nonsynonymous	HP0194		
575	546511	CAAAAAAAAAAAA	A	indel	intergenic		HP1243/HPG27_298	
575	547618	A	6	SNP	nonsynonymous	HPG27_298		
S75	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
575	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
S75	691071	G	A	SNP	synonymous	HP0489		
575	691074	A	c	SNP	synonymous	HP0489		
575	691077	G	A	SNP	nonsynonymous	HP0489		
575	691089	A	G	SNP	synonymous	HP0489		
S75	691091	c	A	SNP	nonsynonymous	HP0489		
S75	691101	T	c	SNP	synonymous	HP0489		
575	691113	G	T	SNP	nonsynonymous	HP0489		
S75	691155	c	6	SNP	synonymous	HP0489		
S75	691157	c	A	SNP	nonsynonymous	HP0489		
575	691173	c	A	SNP	synonymous	HP0489		
S75	691175	A	G	SNP	nonsynonymous	HP0489		
S75	691179	c	6	SNP	synonymous	HP0489		
S75	691185	A	G	SNP	nonsynonymous	HP0489		
575	69189	c	6	SNP	nonsynonymous	HP0489		
575	691190	A	c	SNP	nonsynonymous	HP0489		
575	734658	c	T	SNP	synonymous	HPP12_0534		
575	734661	c	6	SNP	synonymous	HPP12_0534		
575	734672	G	A	SNP	nonsynonymous	HPP12_0534		
575	734695	A	6	SNP	nonsynonymous	HPP12_0534		
575	734697	A	6	SNP	synonymous	HPP12_0534		
575	734703	T	c	SNP	synonymous	HPP12_0534		
S75	734722	G	c	SNP	nonsynonymous	HPP12_0534		
575	735067	T	6	SNP	nonsynonymous	HPP12_0534		
575	735072	G	T	SNP	nonsynonymous	HPP12_0534		
575	735126	T	c	SNP	synonymous	HPP12_0534		
575	735140	A	6	SNP	nonsynonymous	HPP12_0534		
575	735143	c	T	SNP	nonsynonymous	HPP12_0534		
575	735162	T	A	SNP	synonymous	HPP12_0534		
575	735163	c	A	SNP	nonsynonymous	HPP12_0534		
575	735164	A	G	SNP	nonsynonymous	HPP12_0534		
575	735173	c	A	SNP	nonsynonymous	HPP12_0534		
575	735174	T	c	SNP	synonymous	HPP12_0534		
575	735192	G	A	SNP	synonymous	HPP12_0534		
575	735195	T	c	SNP	synonymous	HPP12_0534		
575	805851	A	T	SNP	intergenic		HPG27_556	
575	830053	c	T	SNP	nonsynonymous	HPP12_0617		
S75	960744	T	6	SNP	intergenic		HP0727	
575	1043666	G	A	SNP	intergenic	HPnc4170	HP0811	HPnc4160
575	1122223	c	T	SNP	intergenic		HP0895	
575	1122228	TAAAAA	TAAAAAA	indel	intergenic		HP0895	
S75	1124346	cGAGAGAGAGAGAGAGAGAG	Cgatagagagagagagag	indel	intergenic		HPG27_187	
575	1187376	ATTTTTT	АтттTtTT	indel	intergenic		HP9947	
S75	1284699	AGGGGGGGGGG	AGGGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
575	1318527	c	A	SNP	intergenic	jhp1031		
S75	1332593	A	c	SNP	nonsynonymous	HPATCC43504_01275		
575	1332595	T	A	SNP	nonsynonymous	HPATCC43504_01275		
575	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
S75	1332900	G	T	SNP	synonymous	HPATCC43504_01275		
575	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
575	1332954	T	G	SNP	synonymous	HPATCC43504_01275		
575	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
S75	1332996	T	6	SNP	synonymous	HPATCC43504_01275		
575	1332997	6	c	SNP	nonsynonymous	HPATCC43504_01275		
575	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
575	1482848	G	T	SNP	nonsynonymous	HPG27_298		
575	1482850	T	6	SNP	nonsynonymous	HPG27_298		
575	1483092	G	A	SNP	nonsynonymous	HPG27_298		
575	1592784	ATGTG	ATG	indel	frameshift deletion	HP1354		
575	1592801	T	G	SNP	synonymous	HP1354		
576	99327	c	T	SNP	synonymous	jhpo935		
576	119015	A	c	SNP	nonsynonymous	HP1534		
576	168379	c	T	SNP	synonymous	HP1547		
576	199597	c	T	SNP	intergenic		HP1582	jhp1488
576	226261	G	A	SNP	nonsynonymous	HP0019_1		
576	276989	G	A	SNP	nonsynonymous	HPP12_0070		
576	315327	Accccccccce	Acccccccccce	indel	intergenic		HP0103	
576	413866	A	6	SNP	synonymous	HP1535		
576	413887	A	6	SNP	synonymous	HP1535		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

576	430922	G	A	SNP	nonsynonymous	HP0194		
576	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
576	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
576	548978	6	T	SNP	intergenic		jhp1163	HPG27_298
576	691071	G	A	SNP	synonymous	HP0489		
576	691074	A	c	SNP	synonymous	HP0489		
576	691077	G	A	SNP	nonsynonymous	HP0489		
576	691089	A	G	SNP	synonymous	HP0489		
576	691091	c	A	SNP	nonsynonymous	HP0489		
576	691101	T	c	SNP	synonymous	HP0489		
576	691113	G	T	SNP	nonsynonymous	HP0489		
576	691173	c	A	SNP	synonymous	HP0489		
576	691175	A	6	SNP	nonsynonymous	HP0489		
576	691179	c	6	SNP	synonymous	HP0489		
576	691185	A	G	SNP	nonsynonymous	HP0489		
576	691189	c	G	SNP	nonsynonymous	HP0489		
576	691190	A	c	SNP	nonsynonymous	HP0489		
576	830053	c	T	SNP	nonsynonymous	HPP12_0617		
576	839999	T	c	SNP	nonsynonymous	HPB8_818		
576	952086	ттстстсттттстсте	ттсттстстстстс	indel	intergenic		HPG27_677	
576	984348	G	A	SNP	nonsynonymous	HP0751		
576	1043704	GттTтттTTTTTT	GттттттттттTтTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
576	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
576	1284699	AGGGGGGGGGG	AGGGGGGGGGGG	indel	frameshift deletion	HPG27_1018		
576	1318525	AAC	A	indel	frameshift deletion	jhp1031		
576	1332690	c	A	SNP	synonymous	HPATCC43504_01275		
576	1332906	c	T	SNP	synonymous	HPATCC43504_01275		
576	1332954	T	6	SNP	synonymous	HPATCC43504_01275		
576	1332987	T	c	SNP	synonymous	HPATCC43504_01275		
576	1332996	T	6	SNP	synonymous	HPATCC43504_01275		
576	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
576	1332999	T	c	SNP	synonymous	HPATCC43504_01275		
576	1592801	T	6	SNP	synonymous	HP1354		
576	1640915	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion			
577	658	c	T^{\top}	SNP	synonymous	HP1529		
577	248956	c	T	SNP	nonsynonymous	jhp0037_1		
577	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0966		
577	315327	Асссссccccc	А 1 cccccccccc	indel	intergenic		HP0103	
577	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
577	412566	T	c	SNP	nonsynonymous	HP1534		
577	413983	c	T	SNP	synonymous	HP1535		
577	431032	c	T	SNP	synonymous	HP0194		
577	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
577	450628	G	A	SNP	synonymous	HP0213		
577	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
577	548957	c	T	SNP	intergenic		jhp1163	HPG27_298
577	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
577	548978	6	T	SNP	intergenic		jhp1163	HPG27_298
577	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
577	626404	c	T	SNP	synonymous	HP1175		
577	627243	G	A	SNP	nonsynonymous	HP1174		
577	701041	G	A	SNP	nonsynonymous	HP0499		
577	820046	c	T	SNP	nonsynonymous	HP0607		
577	839999	T	c	SNP	nonsynonymous	HPB8_818		
577	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
577	1124346	CGAGAGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_1187	
577	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
577	1192612	c	A	SNP	intergenic		HP0953	
577	1192627	A	6	SNP	intergenic		HP0953	
577	1192634	A	6	SNP	intergenic		HP0953	
577	1192636	G	A	SNP	intergenic		HPO953	
577	1192650	T	c	SNP	intergenic		HP0953	
577	1192686	T	G	SNP	intergenic		HP0953	
577	1192742	c	T	SNP	intergenic		HP0953	
577	1192744	T	c	SNP	intergenic		HP0953	
577	1192752	A	6	SNP	intergenic		HP0953	
577	1192763	A	6	SNP	intergenic		HP0953	
577	1192773	A	6	SNP	intergenic		HP0953	
577	1192779	T	G	SNP	intergenic		HP0953	
577	1192784	T	c	SNP	intergenic		HP0953	
577	1192786	c	T	SNP	intergenic		HP0953	
577	1192787	A	6	SNP	intergenic		HP0953	
577	1192792	A	G	SNP	intergenic		HP0953	
577	1192794	c	T	SNP	intergenic		HP0953	
577	1192820	G	A	SNP	nonsynonymous	HPP12_0950		
577	1461824	G	T	SNP	intergenic		HP0349	HP0350
577	1640915	cGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion			
577	1663529	GTTTT	GTTT	indel	1 bp deletion			
577	1669898	c	T	SNP	synonymous	HP1450		
578	658	c	T	SNP	synonymous	HP1529		
578	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
578	300860	A	6	SNP	nonsynonymous	HP0090		
578	315327	Acccccccccc	Accccccccccc	indel	intergenic		HP0103	
578	431032	c	T	SNP	synonymous	HP0194		
578	437765	6	c	SNP	intergenic		HPO204	HELPY_0206
578	450628	6	A	SNP	synonymous	HP0213		
578	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

578	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
578	548994	A	T	SNP	intergenic		jhp1163	HPG27_298
578	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
578	626404	c	T	SNP	synonymous	HP1175		
578	627243	G	A	SNP	nonsynonymous	HP1174		
578	701041	G	A	SNP	nonsynonymous	HP0499		
578	838963	G	,	SNP	nonsynonymous	jhp0562		
578	839999	T	c	SNP	nonsynonymous	HPB8_818		
578	1043704	GTтTTTTTTTTTTT	GттTтדTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
578	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
578	1192612	c	A	SNP	intergenic		HP0953	
578	1192627	A	6	SNP	intergenic		HP0953	
578	1192634	A	6	SNP	intergenic		HP0953	
578	1192636	G	A	SNP	intergenic		HP0953	
578	1192650	T	c	SNP	intergenic		HP0953	
578	1192686	T	G	SNP	intergenic		HP0953	
578	1192742	c	T	SNP	intergenic		HP0953	
578	119274	T	c	SNP	intergenic		HP0953	
578	1192752	A	6	SNP	intergenic		HP0953	
578	1192763	A	6	SNP	intergenic		HP0953	
578	1192773	A	G	SNP	intergenic		HP0953	
578	1192779	T	G	SNP	intergenic		HP0953	
578	1192784	T	c	SNP	intergenic		HP0953	
578	1192786	c	T	SNP	intergenic		HP0953	
578	1192787	A	G	SNP	intergenic		HP0953	
578	1192792	A	6	SNP	intergenic		HP0953	
578	1192794	c	T	SNP	intergenic		HP0953	
578	1192820	G	A	SNP	nonsynonymous	HPP12_0950		
578	1230615	A	T	SNP	nonsynonymous	HP0427		
578	1362543	A	c	SNP	nonsynonymous	HPB8_1119		
578	1608139	GT	6	indel	frameshift deletion	HP1369m		
578	1640915	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion			
578	1669898	c	T	SNP	synonymous	HP1450		
579	658	c	T	SNP	synonymous	HP1529		
579	214663	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_8	
579	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
579	431032	c	T	SNP	synonymous	HP0194		
579	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
579	450628	G	A	SNP	synonymous	HP0213		
579	548965	c	T	SNP	intergenic		jhp1163	HPG27_298
579	548978	6	T	SNP	intergenic		jhp1163	HPG27_298
579	548994	A	T	SNP	intergenic		jhp1163	HPG27_298
579	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
579	626404	c	T	SNP	synonymous	HP1175		
579	627243	6	A	SNP	nonsynonymous	HP1174		
579	701041	G	A	SNP	nonsynonymous	HP0499		
579	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
579	953366	6	A	SNP	nonsynonymous	HPG27_677		
579	958702	CAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
579	1043704	Gтttittittiti	¢ттттттTтTтTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
579	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
579	1192612	c	A	SNP	intergenic		HP0953	
579	1192627	A	6	SNP	intergenic		HP0953	
579	1192634	A	6	SNP	intergenic		HP0953	
579	1192636	G	A	SNP	intergenic		HP0953	
579	1192650	T	c	SNP	intergenic		HP0953	
579	1192686	T	6	SNP	intergenic		HP0953	
579	1192742	C	T	SNP	intergenic		HP0953	
579	1192744	T	c	SNP	intergenic		HP0953	
579	1192752	A	6	SNP	intergenic		HP0953	
579	1192763	A	6	SNP	intergenic		HP0953	
579	1192773	A	6	SNP	intergenic		HP0953	
579	1192779	T	G	SNP	intergenic		HP0953	
579	1192784	T	c	SNP	intergenic		HP0953	
579	1192786	c	T	SNP	intergenic		HP0953	
579	1192787	A	6	SNP	intergenic		HP0953	
579	1192792	A	6	SNP	intergenic		HP0953	
579	1192794	c	T	SNP	intergenic		HP0953	
579	1192820	6	A	SNP	nonsynonymous	HPP12_0950		
579	1295885	Gatatatatatatatatat	Gatatatatatatatat	indel	intergenic		HPATCC43504_01238	
579	1362557	G	c	SNP	synonymous	HPB8_1119		
579	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
579	1640915	cGAgAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion			
579	1669898	c	T	SNP	symonymous	HP1450		
580	658	c	T	SNP	synonymous	HP1529		
580	232964	c	A	SNP	intergenic		HPPC_00115	
580	248956	c	T	SNP	nonsynonymous	jhp0037_1		
580	267811	A	6	SNP	nonsynonymous	HP0057		
580	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
580	315327	Accccccccce	Accccccccccc	indel	intergenic		HP0103	
580	374756	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	jhp0151		
580	431032	C	T	SNP	synonymous	HP0194		
580	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
580	450628	G	A	SNP	synonymous	HP0213		
580	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
580	620169	c	T	SNP	nonsynonymous	HPAG1_1119		
580	626404	c	T	SNP	synonymous	HP1175		

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

580	627243	G	A	SNP	nonsynonymous	HP1174	
S80	701041	G	A	SNP	nonsynonymous	HP0499	
580	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhp0540
S80	820046	C	T	SNP	nonsynonymous	HP0607	
S80	958719	G	A	SNP	intergenic		HPG27_680
580	1043704	GTTTTTTTTTTTTTT	GTtTtTTTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811 HPnc4160
S80	1124346	CGAGAGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	intergenic		HPG27_1187
S80	1187376	ATtTTTTT	ATtTtTTTT	indel	intergenic		HP0947
S80	1192612	C	A	SNP	intergenic		HP0953
S80	1192627	A	G	SNP	intergenic		HP0953
S80	1192634	A	G	SNP	intergenic		HP0953
S80	1192636	G	A	SNP	intergenic		HP0953
580	1192650	T	C	SNP	intergenic		HP0953
580	1192686	T	G	SNP	intergenic		HP0953
580	1192742	C	T	SNP	intergenic		HP0953
S80	1192744	T	C	SNP	intergenic		HP0953
580	1192752	A	G	SNP	intergenic		HP0953
580	1192763	A	G	SNP	intergenic		HP0953
S80	1192773	A	G	SNP	intergenic		HP0953
580	1192779	T	G	SNP	intergenic		HP0953
580	1192784	T	C	SNP	intergenic		HP0953
S80	1192786	C	T	SNP	intergenic		HP0953
S80	1192787	A	G	SNP	intergenic		HP0953
580	1192792	A	G	SNP	intergenic		HP0953
580	1192794	C	T	SNP	intergenic		HP0953
580	1192820	G	A	SNP	nonsynonymous	HPP12_0950	
S80	1640915	CGAGAGAGAGAGAGAG	CGAGAGAGAGAGAGAGAG	indel	frameshift insertion		
S80	1669898	C	T	SNP	synonymous	HP1450	

Supplementary Information 3 | Summary of mutations in the isolates recovered from H. pylori-infected C57BL/6 mice.
Number of mutations in the isolates of 10 strains recovered from H. pylori-infected mice stomachs 8 weeks after post infection were listed.

Animal No.	Strain Name	Total No. of mutations	SNPs (single nucleotide polymorphysms)				indel (insertion/deletion)			SNPs rate per base per year	indel rate per base per year
				nonsynon ymous	synonymo us	intergenic	Total	genic	intergenic		
\#1	Hp1	37	13	5	7	1	24	8	16	5.04E-05	$9.31 \mathrm{E}-05$
	Hp2	36	16	5	9	2	20	7	13	$6.20 \mathrm{E}-05$	$7.76 \mathrm{E}-05$
\#2	Hp3	38	16	6	8	2	22	8	14	$6.20 \mathrm{E}-05$	$8.53 \mathrm{E}-05$
	Hp4	38	18	6	9	3	20	7	13	$6.98 \mathrm{E}-05$	$7.76 \mathrm{E}-05$
\#3	Hp5	34	15	6	7	2	19	6	13	5.82E-05	$7.37 \mathrm{E}-05$
	Hp6	33	10	4	5	1	23	7	16	3.88E-05	$8.92 \mathrm{E}-05$
\#4	Hp7	45	25	11	12	2	20	10	10	$9.69 \mathrm{E}-05$	$7.76 \mathrm{E}-05$
	Hp8	42	19	7	10	2	23	8	15	7.37E-05	8.92E-05
\#5	Hp9	46	30	11	17	2	16	5	11	$1.16 \mathrm{E}-04$	$6.20 \mathrm{E}-05$
	Hp10	36	13	5	7	1	23	8	15	$5.04 \mathrm{E}-05$	8.92E-05
									Average	6.79E-05	$8.14 \mathrm{E}-05$
									SD	$2.32 \mathrm{E}-05$	$9.50 \mathrm{E}-06$

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Strain name	Position in ATCC43504	ATCC43504	Sequence in Reisolate		Type of difference	Annotation	Gene nearby the intergenic region (\#1)	Gene nearby the intergenic region (\#2)
Hp1	658	c	T	SNP	synonymous	HP1529		
Hp1	146525	CAAAAAAAAAAAA	CAAAAAAAAAAAAAAA	indel	intergenic		HP1397	
Hp1	214663	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	HPG27_8		
Hp1	249268	c	T	SNP	nonsynonymous	HPB8_1582		
Hp1	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
Hp1	315327	Асссссccccc	АсСсссcccccc	indel	intergenic		HP0103	
Hp1	431032	c	T	SNP	synonymous	HP0194		
Hp1	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
Hp1	450628	G	A	SNP	synonymous	HP0213		
Hp1	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
Hp1	488804	T	tTAAATACA	indel	intergenic		HPATCC43504_00472	
Hp1	546124	TATTTAATCTT	T	indel	intergenic		HP1243/HPG27_298	
Hp1	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Hp1	581837	ATCAAATACTCAAATAC	A	indel	intergenic		HPATCC43504_00587	
Hp1	620169	c	T	SNP	nonsynonymous	HP1180		
Hp1	626404	c	T	SNP	synonymous	HP1175		
Hp1	627243	G	A	SNP	nonsynonymous	HP1174		
Hp1	649248	TG	tGg	indel	frameshift insertion	HP1156		
Hp1	701041	G	A	SNP	nonsynonymous	HP0499		
Hp1	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp1	840225	GCAAAATACGATGATCTCACCA	G	indel	nonframeshift deletion	jhp0563		
Hp1	945518	c	T	SNP	synonymous	jhp0853		
Hp1	958574	CGAGAGAGAGAGA	CGAGAGAGAGAGAGA	indel	intergenic		HPG27_680	
Hp1	958702	CAAAAAAAAAAAAAAAA	CAAAAGAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Hp1	1043704	GTтTTTTTTTTTT	GTтTттTтTTтTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Hp1	1102157	GтTтTтTTTTTT	GтTтTTTTTTT	indel	intergenic		HP0876	HP0875
Hp1	1124346	CGAGAGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	intergenic		HPG27_1187	
Hp1	1124501	GтттדтדтדтTT	GттттттттT	indel	intergenic		HPG27_1187	
Hp1	1187376	АтттTTT	АттттTTT	indel	intergenic		HP0947	
Hp1	1230599	tTCAAGCAA	T	indel	frameshift deletion	HP0427		
Hp1	1319839	CAAAAAAAAAAAAA	CCAAAAAAAAAAAAAAA	indel	intergenic		HELPY_1075	jhp1032
Hp1	1331327	6	T	SNP	nonsynonymous	HPATCC43504_01275		
Hp1	1331328	G	A	SNP	synonymous	HPATCC43504_01275		
Hp1	1592784	ATG	A	indel	frameshift deletion	HP1354		
Hp1	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp1	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp1	1669898	c	T	SNP	synonymous	HP1450		
Hp2	658	c	T	SNP	synonymous	HP1529		
Hp2	146525	CaAAAAAAAAAAA	CAAAAAAAAAAAAAAA	indel	intergenic		HP1397	
Hp2	214663	CGAGAGAGAGAGAGA	cGAGAGAGAGAGAGAGA	indel	frameshift insertion	HPG27_8		
Hp2	232964	CAAAAAAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPPC_00115	
Hp2	249268	c	T	SNP	nonsynonymous	HPB8_1582		
Hp2	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0996		
Hp2	315327	Accccccccce	Ассссccccecc	indel	intergenic		HP0103	
Hp2	431032	c	T	SNP	synonymous	HP0194		
Hp2	437765	6	c	SNP	intergenic		HP0204	HELPY_0206
Hp2	450628	6	A	SNP	synonymous	HP0213		
Hp2	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
Hp2	464722	T	G	SNP	synonymous	HP0227		
Hp2	464740	c	A	SNP	synonymous	HP0227		
Hp2	464743	A	G	SNP	synonymous	HP0227		
Hp2	546511	CaAAAAAAAAAA	CaAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Hp2	548978	G	T	SNP	intergenic		jhp1163	HPG27_298
Hp2	581837	ATCAAATACTCAAATACTCAAATAC	A	indel	intergenic		HPATCC43504_00587	
Hp2	620169	c	T	SNP	nonsynonymous	HP1180		
Hp2	626404	c	T	SNP	synonymous	HP1175		
Hp2	627243	G	A	SNP	nonsynonymous	HP1174		
Hp2	649248	TG	TGG	indel	frameshift insertion	HP1156		
Hp2	701041	G	A	SNP	nonsynonymous	HP0499		
Hp2	801836	GAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp2	945518	c	T	SNP	synonymous	jhp0853		
Hp2	958574	CGAGAGAGAGAGA	CGAGAGAGAGAGAGA	indel	intergenic		HPG27_680	
Hp2	958702	CAAAAAAAAAAAAAAAA	CAATAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Hp2	1043704	GттттттттттTT	GттттттттттттTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Hp2	1102157	GттттттדтTT	GтттттттTT	indel	intergenic		HP0876	HP0875
Hp2	1124501	GтттттTтTTT	GтттттTтTT	indel	intergenic		HPG27_1187	
Hp2	1187376	ATтTтTT	АтттттTT	indel	intergenic		HP0947	
Hp2	1423237	G	A	SNP	nonsynonymous	HP1068		
Hp2	1592784	ATG	A	indel	frameshift deletion	HP1354		
Hp2	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp2	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp2	1640915	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	jhp1312		
Hp2	1669898	c	T	SNP	synonymous	HP1450		
Hp3	658	c	T	SNP	synonymous	HP1529		
Hp3	214663	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	HPG27_8		
Hp3	249555	G	A	SNP	nonsynonymous	HP0044		
Hp3	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
Hp3	315327	Aсcccccccce	Ассссссccccc	indel	intergenic		HP0103	
Hp3	413866	A	G	SNP	synonymous	HP1535		
Hp3	413983	c	T	SNP	synonymous	HP1535		
Hp3	431032	c	T	SNP	synonymous	HP0194		
Hp3	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
Hp3	450628	G	A	SNP	synonymous	HP0213		
Hp3	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
нp3	483804	tTAAATACA	T	indel	intergenic		HPATCC43504_00472	

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Strain name	Position in ATCC43504	ATCC43504 Sequen	Reisolate		Type of difference	Annotation	Gene nearby the intergenic region (\#1)	Gene nearby the intergenic region (\#2)
Нр3	546511	CAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Нр3	548979	TA	TTGA	indel	intergenic		jhp1163	HPG27_298
Нр3	581837	ATCAAATACTCAAATACTCAAATAC	A	indel	intergenic		HPATCC43504_00587	
Hp3	620169	C	T	SNP	nonsynonymous	HP1180		
нр3	626404	c	T	SNP	synonymous	HP1175		
Нр3	627243	G	A	SNP	nonsynonymous	HP1174		
Hp3	701041	G	A	SNP	nonsynonymous	HP0499		
Нр3	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp3	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Hp3	1043704	GTtTTTTTTTTTTT	GттTтTTTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Нр3	1102157	GттדтדTדTTT	GттדтדידTTT	indel	intergenic		HP0876	HP0875
нр3	1122223	c	T	SNP	intergenic		HP0895	HPnc4510
Нр3	1122228	taAAAA	TAAAAAA	indel	intergenic		HP0895	HPnc4510
Нр3	1124501	GтTтTTTTTTTT	GтTTTTTTTTT	indel	intergenic		HPG27_1187	
Hp3	1187376	ATTTTTT	ATTTTTTT	indel	intergenic		HP0947	
Нр3	1331327	G	,	SNP	nonsynonymous	HPATCC43504_01275		
нр3	1331328	G	A	SNP	synonymous	HPATCC43504_01275		
Нр3	1362543	Acccccccccccce	AcGccccccccccccccccc	indel	nonframeshift insertion	HPB8_1119		
Нр3	1482699	GAAAAAA	GAAAAAAAA	indel	intergenic		HPG27_298	
Нр3	1483269	A	G	SNP	nonsynonymous	HPG27_298		
Нр3	1592787	TGGGGGGGGGGGGG		indel	nonframeshift substitution	HP1354		
Нр3	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Нр3	1608140	TGA	TGGA	indel	frameshift substitution	HP1369m		
Нр3	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp3	1640915	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	jhp1312		
Нр3	1669898	c	T	SNP	synonymous	HP1450		
Hp4	658	c	T	SNP	synonymous	HP1529		
Hp4	214663	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	HPG27_8		
Hp4	232964	c	A	SNP	intergenic		HPPC_00115	
Hp4	249555	G	A	SNP	nonsynonymous	HP0044		
Hp4	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
Hp4	315327	ACcccccccce	Acccccccccc	indel	intergenic		HP0103	
Hp4	413866	A	G	SNP	synonymous	HP1535		
Hp4	413887	A	G	SNP	synonymous	HP1535		
Hp4	413983	c	T	SNP	synonymous	HP1535		
Hp4	431032	c	T	SNP	synonymous	HP0194		
Hp4	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
Hp4	450628	G	A	SNP	synonymous	HP0213		
Hp4	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
Hp4	483804	ttaAtaca	T	indel	intergenic		HPATCC43504_00472	
Hp4	546511	CAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Hp4	548979	TA	TTGA	indel	intergenic		jhp1163	HPG27_298
Hp4	581837	ATCAAATACTCAAATACTCAAATACTCAAATACTCA AATAC	A	indel	intergenic		HPATCC43504_00587	
Hp4	620169	c	T	SNP	nonsynonymous	HP1180		
Hp4	626404	c	T	SNP	synonymous	HP1175		
Hp4	627243	6	A	SNP	nonsynonymous	HP1174		
Hp4	701041	G	A	SNP	nonsynonymous	HP0499		
Hp4	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp4	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Hp4	1043704	GтTтדтדTTTTTTT	GтттттTтTTтTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Hp4	1102157	GттттттTтTT	GтттттTтTT	indel	intergenic		HP0876	HP0875
Hp4	1122223	C	T	SNP	intergenic		HP0895	HPnc4510
Hp4	1122228	TAAAAA	TAAAAAA	indel	intergenic		HP0895	HPnc4510
Hp4	1124501	GтTтTTTTTTTT	GттTтTтTTT	indel	intergenic		HPG27_1187	
Hp4	1187376	ATtTTTT	ATTTTTTT	indel	intergenic		HP0947	
Hp4	1331327	G	T	SNP	nonsynonymous	HPATCC43504_01275		
Hp4	1331328	6	A	SNP	synonymous	HPATCC43504_01275		
Hp4	1362543	Accccccccccccc	AAccccccccccccccc	indel	frameshift substitution	HP88_1119		
Hp4	1483269	A	6	SNP	nonsynonymous	HPG27_298		
Hp4	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp4	1608140	TGA	TGGA	indel	frameshift substitution	HP1369m		
Hp4	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp4	1640915	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	jhp1312		
Hp4	1669898	c	T	SNP	synonymous	HP1450		
Hp5	658	c	T	SNP	synonymous	HP1529		
Hp5	60246	G	A	SNP	synonymous	jhp1371		
Hp5	119015	A	c	SNP	nonsynonymous	HP1534		
Hp5	214663	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	HPG27_8		
Hp5	232964	CaAAAAAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPPC_00115	
Hp5	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
Hp5	315327	Acccccccccc	Accccccccccc	indel	intergenic		HP0103	
Hp5	431032	c	T	SNP	synonymous	HP0194		
Hp5	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
Hp5	450628	G	A	SNP	synonymous	HP0213		
Hp5	455599	TGGGGGGGGGG	TTGGGGGGGGGGGG	indel	nonframeshift insertion	HP0217		
Hp5	483804	ttaAataca	T	indel	intergenic		HPATCC43504_00472	
Hp5	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Hp5	581837	ATCAAATACTCAAATACTCAAATACTCAAATAC	A	indel	intergenic		HPATCC43504_00587	
Hp5	620169	c	T	SNP	nonsynonymous	HP1180		
Hp5	626404	c	T	SNP	synonymous	HP1175		
Hp5	627243	G	A	SNP	nonsynonymous	HP1174		
Hp5	701041	G	A	SNP	nonsynonymous	HP0499		
Hp5	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp5	958574	CGAGAGAGAGAGA	CGAGAGAGAGAGAGA	indel	intergenic		HPG27_680	

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Strain name	Position in ATCC43504	ATCC43504 Se	Sequence in Reisolate		Type of difference	Annotation	Gene nearby the intergenic region (\#1)	Gene nearby the intergenic region (\#2)
Hp5	958702	CAAAAAAAAAAAAAAAA	CCAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Hp5	984279	c	T	SNP	nonsynonymous	HP0751		
Hp5	1043704	GTтTTTTTTTTTT	GттTтדтדTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Hp5	1102157	яттттттדтTT	ятттттTтTT	indel	intergenic		HP0876	HP0875
Hp5	1124501	яттттттттTT	ятттттттTT	indel	intergenic		HPG27_1187	
Hp5	1187376	ATтTтTT	АттттדTT	indel	intergenic		HP0947	
Hp5	1192576	G	T	SNP	intergenic		HP0953	
Hp5	1284699	AGGGGGGGGGG	AGGGGGGGGGGG	indel	stopgain	HPG27_1018		
Hp5	1331327	G	T	SNP	nonsynonymous	HPATCC43504_01275		
Hp5	1331328	G	A	SNP	synonymous	HPATCC43504_01275		
Hp5	1362543	Acccccccccccce	Acccccccccccccce	indel	frameshift insertion	HPB8_1119		
Hp5	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp5	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp5	1669898	c	T	SNP	synonymous	HP1450		
Hp6	658	c	T	SNP	synonymous	HP1529		
Hp6	146525	CAAAAAAAAAAA	CAAAAAAAAAAAAAAA	indel	intergenic		HP1397	
Hp6	214663	CGAGAGAGAGAGAGA	cgatagagagagagaga	indel	frameshift insertion	HPG27_8		
Hp6	232959	стт'	СтTTCAA	indel	intergenic		HPPC_00115	
Hp6	249268	c	T	SNP	nonsynonymous	HPB8_1582		
Hp6	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
Hp6	315327	Accccccccce	Aсcccccccccc	indel	intergenic		HP0103	
Hp6	431032	c	T	SNP	synonymous	HP0194		
Hp6	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
Hp6	450628	G	A	SNP	synonymous	HP0213		
Hp6	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
Hp6	483804	T	tTAAATACA	indel	intergenic		HPATCC43504_00472	
Hp6	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Hp6	581837	ATCAAATACTCAAATACTCAAATACTCAAATAC	C A	indel	intergenic		HPATCC43504_00587	
Hp6	620169	c	T	SNP	nonsynonymous	HP1180		
Hp6	626404	c	T	SNP	synonymous	HP1175		
Hp6	627243	G	A	SNP	nonsynonymous	HP1174		
Hp6	701041	6	A	SNP	nonsynonymous	HP0499		
Hp6	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp6	808851	AT	AATT	indel	intergenic		HPG27_556	
Hp6	958574	CGAGAGAGAGAGA	CGAGAGAGAGAGAGA	indel	intergenic		HPG27_680	
Hp6	958702	CaAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Hp6	984287	GA	G	indel	frameshift deletion	HP0751		
Hp6	1043704	GттTтTтTTTTTTT	6ттттттттттттTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Hp6	1102157	GTтTTTTTTTT	GттדтTTTTT	indel	intergenic		HP0876	HP0875
Hp6	1124346	cgagagagagagagagaga	CGAGAGAGAGAGAGAGA	indel	intergenic		HPG27_1187	
Hp6	1124501	GтттדтדтTTTT	बтттттттTT	indel	intergenic		HPG27_1187	
Hp6	1187376	ATтTтTT	АтттттTT	indel	intergenic		HP0947	
Hp6	1362543	Acccccccccccc	ACGCGCccccccccccce	indel	frameshift substitution	HPB8_1119		
Hp6	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp6	1608125	TGGGGGGGGGGGGGG	TTGGGGGGGGGGGGGG	indel	nonframeshift substitution	HP1369m		
Hp6	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp6	1669898	c	T	SNP	synonymous	HP1450		
Hp7	8299	AGGGGGGGGGGG	AGGGGGGGGGGGG	indel	frameshift insertion	HPAG1_1393		
Hp7	99327	c	T	SNP	synonymous	jhpo935		
Hp7	168379	c	T	SNP	synonymous	HP1547		
Hp7	199597	c	T	SNP	intergenic		HP1582	jhp1488
Hp7	232964	c	A	SNP	intergenic		HPPC_00115	
Hp7	251374	G	A	SNP	nonsynonymous	HP0045		
Hp7	276989	G	A	SNP	nonsynonymous	HPP12_070		
Hp7	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGGG	indel	nonframeshift insertion	HPP12_0096		
Hp7	315327	Accccccccce	Асссcccccecc	indel	intergenic		HP0103	
Hp7	332924	TGGTCTTTGTTTTTCTGTTC	T	indel	nonframeshift deletion	HP0119		
Hp7	424517	CGGGG	CGGGGG	indel	intergenic		HP0189	HP0188
Hp7	430922	G	A	SNP	nonsynonymous	HP0194		
Hp7	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
Hp7	483804	tTaAATACA	T	indel	intergenic		HPATCC43504_00472	
Hp7	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Hp7	581837	ATCAAATACTCAAATACTCAAATACTCAAATAC	C A	indel	intergenic		HPATCC43504_00587	
Hp7	691071	G	A	SNP	synonymous	HP0489		
Hp7	691074	A	c	SNP	synonymous	HP0489		
Hp7	691077	G	A	SNP	synonymous	HP0489		
Hp7	691088	c	cG	indel	frameshift insertion	HP0489		
Hp7	691101	T	c	SNP	synonymous	HP0489		
Hp7	691113	G	T	SNP	nonsynonymous	HP0489		
Hp7	691157	c	A	SNP	nonsynonymous	HP0489		
Hp7	691173	c	A	SNP	synonymous	HP0489		
Hp7	691175	A	G	SNP	nonsynonymous	HP0489		
Hp7	691179	c	G	SNP	synonymous	HP0489		
Hp7	69185	A	6	SNP	synonymous	HP0489		
Hp7	691189	c	G	SNP	nonsynonymous	HP0489		
Hp7	691190	A	c	SNP	nonsynonymous	HP0489		
Hp7	801836	GAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp7	830053	c	T	SNP	nonsynonymous	HPP12_0617		
Hp7	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Hp7	1043704	GтттттттTтTтTT	GттттттттттттTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Hp7	1187376	ATTTTTT	АттTтTTT	indel	intergenic		HP0947	
Hp7	1262251	c	A	SNP	nonsynonymous	jhpo981		
Hp7	1295885	GATATATATATATATATAT	GATATATATATATATATGTATAT	indel	frameshift insertion	gene_1054		
Hp7	1295885	Gatatatatatatatatat	GGtatatatatatatatatatat	indel	frameshift insertion	gene_1054		
Hp7	1332987	T	c	SNP	synonymous	HPATCC43504_01275		

bioRxiv preprint doi: $\mathrm{https}: / / d o i . o r g / 10.1101 / 2020.02 .15 .950279$; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Strain name	Position in ATCC43504	ATCC43504	Sequence in Reisolate		Type of difference	Annotation	Gene nearby the intergenic region (\#1)	Gene nearby the intergenic region (\#2)
Hp7	1332996	T	6	SNP	synonymous	HPATCC43504_01275		
Hp7	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
Hp7	1332999	T	c	SNP	synonymous SNV	HPATCC43504_01275		
Hp7	1362543	Acccccccccccce	AACCccccccccccccccccc	indel	frameshift substitution	HP88_1119		
Hp7	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp7	1608125	TGGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGG	indel	frameshift insertion	HP1369m		
Hp7	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp8	658	c	T	SNP	synonymous	HP1529		
Hp8	214663	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	HPG27_8		
Hp8	249555	6	A	SNP	nonsynonymous	HP0044		
Hp8	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
Hp8	315327	Aсcccccccce	Асссссссcccc	indel	intergenic		HP0103	
Hp8	413866	A	G	SNP	synonymous	HP1535		
Hp8	413887	A	G	SNP	synonymous	HP1535		
Hp8	41383	c	T	SNP	synonymous	HP1535		
Hp8	431032	c	T	SNP	synonymous	HP0194		
Hp8	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
Hp8	444106	GттTтTTTTTT	GтттттTтTтTT	indel	intergenic		HP0209	HPPC_01040
Hp8	450628	G	A	SNP	synonymous	HP0213		
Hp8	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
Hp8	483804	tTAAATACA	T	indel	intergenic		HPATCC43504_00472	
Hp8	545511	CaAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Hp8	548979	TA	TTGA	indel	intergenic		jhp1163	HPG27_298
Hp8	581837	AtCAAATAC	A	indel	intergenic		HPATCC43504_00587	
Hp8	620169	c	T	SNP	nonsynonymous	HP1180		
Hp8	626404	c	T	SNP	synonymous	HP1175		
Hp8	627243	G	A	SNP	nonsynonymous	HP1174		
Hp8	701041	G	A	SNP	nonsynonymous	HP0499		
Hp8	801836	GAAAAAAAAAAA	GAAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp8	958702	CAAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Hp8	1043704	GттTтTтTTTTT	GтттTтTTTTTTTTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Hp8	1102157	GтTтTтTTTTTT	GтттттTтTT	indel	intergenic		HP0876	HP0875
Hp8	1122223	c	T	SNP	intergenic		HP0895	HPnc4510
Hp8	1122228	TAAAAA	TAAAAAA	indel	intergenic		HP0895	HPnc4510
Hp8	1124501	GттTтTTTTTT	GттттTTTTT	indel	intergenic		HPG27_1187	
Hp8	1187376	АттттTT	Атттттt'	indel	intergenic		HP0947	
Hp8	1331328	G	A	SNP	synonymous	HPATCC43504_01275		
Hp8	1362543	Accccccccccccc	Acccccccccccccce	indel	frameshift insertion	HPB8_1119		
Hp8	1482848	G	T	SNP	nonsynonymous	HPG27_298		
Hp8	1483202	G	A	SNP	nonsynonymous	HPG27_298		
Hp8	1483269	A	6	SNP	nonsynonymous	HPG27_298		
Hp8	1484980	G	A	SNP	synonymous	HPATCC43504_01426		
Hp8	1484991	ATtTTTTT	АстСттtitit	indel	nonframeshift insertion	HPATCC43504_01426		
Hp8	1582075	GтTтדтדTTTTT	GATтттттттTтTTT	indel	intergenic		HELPY_1317	HP0228
Hp8	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp8	1688140	TGA	TGGA	indel	frameshift substitution	HP1369m		
Hp8	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp8	1640915	cgagagagagagaga	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	jhp1312		
Hp8	1669898	c	T	SNP	synonymous	HP1450		
нр9	8299	AGGGGGGGGGGG	AGGGGGGGGGGGG	indel	frameshift insertion	HPAG1_1393		
нр9	99327	c	T	SNP	synonymous	jhpo935		
Hp9	168379	c	T	SNP	synonymous	HP1547		
Нр9	199597	c	T	SNP	intergenic		HP1582	jhp1488
нр9	232964	c	A	SNP	intergenic		HPPC_00115	
Hp9	276989	G	A	SNP	nonsynonymous	HPP12_0070		
Hp9	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
нр9	315327	Acccccccccc	Accccccccccc	indel	intergenic		HP0103	
Нр9	430922	G	A	SNP	nonsynonymous	HP0194		
нр9	444106	GттTTTTTTT	GтттттTтTTTTT	indel	intergenic		HP0209	HPPC_01040
нр9	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
Hp9	464722	T	G	SNP	synonymous	HP0227		
Hp9	464740	c	A	SNP	synonymous	HP0227		
Hp9	464743	A	G	SNP	synonymous	HP0227		
нр9	483804	tTAAATACA	T	indel	intergenic		HPATCC43504_00472	
Нр9	546511	CaAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
нр9	581837	ATCAAATACTCAAATAC	A	indel	intergenic		HPATCC43504_00587	
нр9	691071	G	A	SNP	synonymous	HP0489		
нр9	691074	A	c	SNP	synonymous	HP0489		
нр9	691077	G	A	SNP	synonymous	HP0489		
нр9	691089	A	6	SNP	synonymous	HP0489		
нр9	691091	c	A	SNP	nonsynonymous	HP0489		
Hp9	691101	T	c	SNP	synonymous	HP0489		
Hp9	691113	G	T	SNP	nonsynonymous	HP0489		
нр9	691173	c	A	SNP	synonymous	HP0489		
Hp9	691175	A	G	SNP	nonsynonymous	HP0489		
нр9	691179	c	6	SNP	synonymous	HP0489		
нр9	691185	A	G	SNP	synonymous	HP0489		
нр9	691189	c	G	SNP	nonsynonymous	HP0489		
нр9	691190	A	c	SNP	nonsynonymous	HP0489		
Hp9	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhpo540	
Hp9	830053	c	T	SNP	nonsynonymous	HPP12_0617		
Hp9	879985	c	T	SNP	nonsynonymous	HP0656		
Hp9	958702	CAAAAAAAAAAAAAAA	CAAAAAAAAAAAAAAAAAA	indel	intergenic		HPG27_680	
Нр9	1043704	GттттттттTтT	GттттттттттTтTT	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Нр9	1139646	GтTTTTTTTTTT	GTтттTTTTTT	indel	intergenic		HPP12_0910	

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.15.950279; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Strain name	Position in ATCC43504	ATCC43504	Sequence in Reisolate		Type of difference	Annotation	Gene nearby the intergenic region (\#1)	Gene nearby the intergenic region (\#2)
Hp9	1187376	ATtTTTTT	ATTTTTTTT	indel	intergenic		HP0947	
Hp9	1192157	T	C	SNP	nonsynonymous	HP0953		
Hp9	1331328	G	A	SNP	synonymous	HPATCC43504_01275		
Hp9	1332987	T	C	SNP	synonymous	HPATCC43504_01275		
Hp9	1332996	T	G	SNP	synonymous	HPATCC43504_01275		
Hp9	1332997	G	c	SNP	nonsynonymous	HPATCC43504_01275		
Hp9	1332999	T	c	SNP	synonymous SNV	HPATCC43504_01275		
Hp9	1362543	ACCCCCCCCCCCCC	ACCCCCCCCCCCCCCC	indel	frameshift insertion	HPB8_1119		
Hp9	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp9	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp10	658	C	T	SNP	synonymous	HP1529		
Hp10	8299	AGGGGGGGGGGG	AGGGGGGGGGGGG	indel	frameshift insertion	HPAG1_1393		
Hp10	214663	CGAGAGAGAGAGAGA	CGAGAGAGAGAGAGAGA	indel	frameshift insertion	HPG27_8		
Hp10	232959	CTTTA	CTTTCA	indel	intergenic		HPPC_00115	
Hp10	303827	CGGGGGGGGGGGG	CGGGGGGGGGGGGG	indel	frameshift insertion	HPP12_0096		
Hp10	315327	ACCCCCCCCCC	ACcCccccccce	indel	intergenic		HP0103	
Hp10	431032	C	T	SNP	synonymous	HP0194		
Hp10	437765	G	c	SNP	intergenic		HP0204	HELPY_0206
Hp10	450628	G	A	SNP	synonymous	HP0213		
Hp10	455599	TGGGGGGGGGG	TGGGGGGGGGGG	indel	frameshift insertion	HP0217		
Hp10	483804	TTAAATACATAAATACATAAATACA	T	indel	intergenic		HPATCC43504_00472	
Hp10	546114	TATTTA	T	indel	intergenic		HP1243/HPG27_298	
Hp10	546140	A	AATCTTATTTG	indel	intergenic		HP1243/HPG27_298	
Hp10	546511	CAAAAAAAAAAAA	CAAAAAAAAAAAAA	indel	intergenic		HP1243/HPG27_298	
Hp10	581837	ATCAAATACTCAAATACTCAAATAC	A	indel	intergenic		HPATCC43504_00587	
Hp10	620169	C	T	SNP	nonsynonymous	HP1180		
Hp10	626404	C	T	SNP	synonymous	HP1175		
Hp10	627243	G	A	SNP	nonsynonymous	HP1174		
Hp10	701041	G	A	SNP	nonsynonymous	HP0499		
Hp10	801836	GAAAAAAAAAAAA	GAAAAAAAAAAAAA	indel	intergenic		jhp0540	
Hp10	958702	CAAAAAAAAAAAAAAAA		indel	intergenic		HPG27_680	
Hp10	1043704	GTTTTTTTTTTTTTT	GIttittitititititt	indel	frameshift insertion/intergenic	HPnc4170	HP0811	HPnc4160
Hp10	1102157	GTTTTTTTTTTTT	GTtTTTTTTTTT	indel	intergenic		HP0876	HP0875
Hp10	1124501	GIttittittit	GTtTTTTTTTTT	indel	intergenic		HPG27_1187	
Hp10	1187376	ATtTTTTT	ATtTTTTTT	indel	intergenic		HP0947	
Hp10	1302389	G	A	SNP	synonymous	HP0364		
Hp10	1319683	G	C	SNP	nonsynonymous	jhp1032		
Hp10	1319839	CAAAAAAAAAAAAA	CAAAAAAAAAAAA	indel	intergenic		HELPY_1075	jhp1032
Hp10	1331328	G	A	SNP	synonymous	HPATCC43504_01275		
Hp10	1362543		ACCCCCCCCCCCCCCC	indel	frameshift insertion	HPB8_1119		
Hp10	1410493	G	A	SNP	nonsynonymous	jhp0373		
Hp10	1592785	TGTG	T	indel	nonframeshift deletion	HP1354		
Hp10	1593602	TGGGGGGGGGGG	TGGGGGGGGGGGG	indel	frameshift insertion	HP1354		
Hp10	1608125	TGGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGGG	indel	nonframeshift insertion	HP1369m		
Hp10	1627016	TGGGGGGGGGGGGG	TGGGGGGGGGGGGGGGG	indel	intergenic		HP1406	HELPY_1371
Hp10	1669898	C	T	SNP	synonymous	HP1450		

ical Isolites obtained fom gastic cancer pateent									
Strain name	Isolation country	$\begin{gathered} \text { Host } \\ \text { pathology } \end{gathered}$	Source	No. of Trepeat	Strain name	Isolation country	$\begin{gathered} \text { Host } \\ \text { pathology } \end{gathered}$	Source	
CPY6271	Japan	Cancer	GCA_00274665. 11	11	${ }^{1106291}$	Japan	Gastrits	LC997489	${ }^{8}$
${ }_{5} 57$	${ }_{\text {span }}$	Cancer	6CA.000270065. 1	11	1106268	Japan	Gastrits	LC49743	9
HECL13	Sweden	Cancer	SAMM08381257	11	vN0630	Vienam	Gastrits	Repistration in progess	10
E1537	Esaluador	Cancer	\%CA_00225955.1	12	462	Uk	Nomal	Samno8381250	11
vN0664	Vienam	Cancer	Registaion in proges	12	нр_A.9	us	du	SamN00778864	11
x2274	China	Cancer	6CA_00226265. 1	12	1106266	Japan	Gastritis	LC497471	11
HECC52	Sweden	Cancer	SAMM08381260	${ }^{13}$	VN0607	Vienam	Gastrits	Repistration in progess	11
SIM180	Peu	Cancer	GCA_00014885.1	13	3770	France	Gastritis	SamNo8381234	12
vN0232	Vienam	Cancer	Registaion in progess	${ }^{13}$	3824	France	Gastritis	SAMN08381236	${ }^{12}$
vNo246	Vienam	Cancer	Registaion in progers	13	Hencli_2	Sweden	Gastrits	Repistration in progres	12
vNo274	Vienam	Cancer	Registaion in progess	${ }^{13}$	Hencs ${ }^{\text {S }}$	Sweden	${ }^{\text {Gastritis }}$	Reistration in progres	${ }^{12}$
vN0390	Vienam	Cancer	Reistraion in progess	13	нр_A 20	us	ou	SAMN00778862	12
132	Singapore	Cancer	SAMN05771043	14	нр_H16	us	ou	SAMN00778876	12
132 A	Singapore	Cancer	SAMN05804595	14	нp. ${ }^{\text {4, }}$	us	ou	SAMn00778881	${ }^{12}$
${ }_{\text {c }}^{\text {ce64 }}$	${ }^{\text {China }}$	Cancer	SAMN03013094	14	Hp H 44	us	${ }^{\text {du }}$	SAMN00778872	${ }_{12}^{12}$
CPY6261	Japan	Cancer	SAMN00777167	14	vNo530	Vietram	Gastrits	Reistration in progess	${ }^{12}$
CPY6311	Jppan	Cancer	SAMN00777266	14	vno559	Vietram	du	Registration in progess	12
$\mathrm{GCF3O}_{\mathrm{HL}}$	Fance	Cancer	SAMN08381231	14	vno660	Vietram	Gastritis	Registration in progess	12
н9	Singapore	Cancer	SAMN05804593	14	VN1154	Vienam	${ }^{\text {Gastritis }}$	Repistration in progres	${ }^{12}$
ниоз9	China	Cancer	SaMN02597427	14	vN1270	Vietram	du	Registration in progies	12
vN0219	Vietram	Cancer	Reistration in progess	14	456	Uk	Nomal	SAMN08381249	${ }^{13}$
VN0224	Vernam	${ }_{\text {concer }}^{\substack{\text { cancer } \\ \text { Cancer }}}$	Registation in progess Reistraion in progess	14 14 14	${ }_{\text {che }}^{518}$	${ }_{\text {UK }}^{\text {Sueden }}$	${ }_{\text {Nomal }}^{\text {Nomalis }}$	SAMNOB381251 SaMNO8881282	13 13 13
vNo227	Veteram	${ }^{\text {cancer }}$	${ }^{\text {Registraion in in progerss }}$	14	HENC20.5	Sweden	Gxstrits	SAMN08381282	${ }_{13}^{13}$
vNo240	Vienam	Cancer	Registaion in progess	14	${ }^{1106271}$	Japan	gou^{0}	LC497476	${ }^{13}$
vN0352	Vienam	${ }^{\text {cancer }}$	Registaion in progress	14	${ }^{1106273}$	Japan	${ }^{\text {ou }}$	LC497477	${ }^{13}$
vN0355	Vietram	Cancer	Reistation in progess	14	1106292	Japan	${ }^{\text {gou }}$	LC497490	${ }^{13}$
vNo401	Vienam	Cancer	${ }^{\text {Registraion in in progerss }}$	14	VNo510	Vietram	Gastrits	Reistration in progress	${ }^{13}$
vN0403	Vietram	Cancer	Reistraion in progess	14	vwo511	Vietram	ou	Repistration in progres	${ }^{13}$
vN0405	Vienam	Cancer	Registaion in progess	14	vo598	Vietram	Gastitis	Registration in progres	13
vN0448	Vienam	Cancer	Reistraion in progers	14	vno606	Vietram	Gastrits	Reistration in progess	${ }^{13}$
${ }_{22177}^{117}$	Singapore	Cancer	SAMN05791070	15	vN0612	Vietam	${ }^{\text {ou }}$	Reistraion in progres	${ }_{13}^{13}$
22402 26093	${ }_{\text {Colabia }}^{\text {Colombia }}$	Cancer Cancer	SAMNO5405368 SAMNOS394518	15 15	vN0638 vNo647	Vietram	ou du	Repistraion in progres Repistaion in progess	13 13
26100	Colombia	Cancer	SaMNos393257	15	vN0768	Vietram	Gastrits	Repistration in progess	13
${ }_{6} 669$ HL	Fance	Cancer	SAMN08381240	15	vN0899	Vietram	du	Repistration in progess	${ }^{13}$
HEC30	Sweden	Cancer	SAMN08881272	15	VN1249	Vietram	Gastrits	Repistraion in progres	${ }^{13}$
PeCan18	Peru	Cancer	SAMNO2603196	15	vN1250	Vietram	Gastrits	Reistration in progess	${ }^{13}$
Pecan4	Peu	Cancer	SAMNO2603203	15	VN1280	Vietram	du	Repistration in progess	${ }^{13}$
VNo212	Vienam	Cancer	Registaion in progress	15	${ }^{\text {CPY1662 }}$	Japan	du	SAMN01178408	14
vN0220	Vietam	Cancer	Registration in progess	15	Hencl1_s	Sweden	Gastritis	Samno8381281	14
vNo228	Vienam	${ }^{\text {cancer }}$	${ }^{\text {Registraion in in progerss }}$	15	Hencrio_1	Sweden	${ }^{\text {Gastritis }}$	SAMN08381303	14
vNo229	Vietram	${ }^{\text {cancer }}$	Reisitaion in progess	15	${ }^{1106267}$	Japan	${ }^{\text {gu }}$	LC497472	14
vNo272	Vienam	Cancer	Reistraion in progess	15	1106274	Japan	Gastrits	LC997478	14
vN0411	Vietram	Cancer	Registaion in progess	15	1106280	Japan	Gastrits	LC497482	14
vN0472	Vienam	Cancer	Registation in progers	15	${ }^{1106286}$	Japan	${ }^{\text {du }}$	${ }^{\text {LC497485 }}$	14
1106299	${ }_{\text {Jpana }}$	Cancer	LC497495	15	${ }^{1106289}$	Japan	${ }^{\text {ou }}$	LC4977888	14
178	Singapore	Cancer	SAMN05771044	16	${ }^{1106301}$	Japan	${ }^{600}$	LC497497	14
30950	Belium	Cancer	SAMN08381243	16	1106302	Japan	du	LC497498	14
98.10	${ }_{\text {Jpan }}$	Cancer	SAMN02472069	16	1106303	Japan	${ }^{\text {su }}$	Lc497499	14
${ }_{\text {H30 }}$	Singapore	Cancer	SAMN05806843	16	${ }_{\text {cse }} 199$	us	${ }^{\text {ou }}$	SAMN02602990	14
${ }_{54688}$	Singapore	Cancer	SAMN05804677	16	SSR1	${ }^{1}$ reand	${ }^{\text {Gu }}$	SAMN08381226	14
vNo235	Vienam	Cancer	Registaion in progess	16	vwo532	Vietram	Gastrits	Reistration in progess	14
vN0264	Vienam	Cancer	Registaion in progress	16	vno563	Vietram	Gastrits	Repistraion in progres	14
vNo271	Vienam	${ }^{\text {cancer }}$	${ }^{\text {Registrato in in progerss }}$	${ }^{16}$	vNo594	Vietram	Gastrits	Reistration in progress	14
vNo348	Vienam	${ }^{\text {cancer }}$	${ }^{\text {Registraion in in progerss }}$	${ }^{16}$	vN0611	Vietram	Gastrits	Repistration in progress	14
vN0361	Vienam	Cancer	Reisitraion in progers	16	vN0637	Vietram	${ }^{\text {Gastritis }}$	Refistraion in progres	14
26084	Colombia	Cancer	SAMNO5395355	17	vno656	Vietram	Gastrits	Repistration in progess	14
${ }^{3} 32$	Japan	Cancer	Samp00060973	17	vn0670	Vietram	6astrits	Repistration in progess	14
HEC58	Sweden	Cancer	SAMN08381263	17	vN0686	Vietram	Gastrits	Refistraion in progres	14
HEC18	Sweden	${ }^{\text {cancer }}$	SAMN08881270	18	vN0786	Vietram	${ }^{\text {Gastritis }}$	Reisistation in progess	14
vN0484	Vienam	Cancer	Reistraion in progers	18	vN1180	Vienam	du	Refistraion in progres	14
VN0495 H106298		$\xrightarrow{\text { Cancer }}$ Cancer	Reistration in progess LC997944	18 19	VN1193	Vietham	Gaxtrits castrits	Registraion in progerss Reistraion in progess	14 14
1106298 Japan					VN1203	Vietram	Gastritis	Reisistaion in progess	14
					vN1204	Vietram	6astrits	Registration in progess	14
					vN1212	Vienam	Gastritis	Repistration in progess	14
					VN1213	Vietram	Gastritis	Reistration in progess	14
					vN1219	Vienam	Gastrits	Refistraion in progres	14
					\checkmark V1225	Vienam	${ }^{\text {Gastritis }}$	Repistration in progres	14
					${ }^{\text {vN1226 }}$	Vietram	Gastrits	Reisistrion in progress	14
					vN1246	Vietram	ou	Reistration in progres	14
					vN1266	Vietram	ou	Refistraion in progres	14
					${ }^{\text {VN1281 }}$	Vienam	${ }^{\text {ou }}$	${ }^{\text {Reisistaion in progress }}$	14
					51 CPY1313	SouthKorea Japan	ou ou	SAMNO2603300 SAMNOOO77156	15 15
						Japan	ou	Sammooos6972	15
					Henc38_5	Sweden	Gastritis	SAMn08381297	15
					${ }^{1106270}$	Japan	${ }^{\text {Gu }}$	LC497475	15 15
					${ }^{1106275}$	fapan	${ }^{\text {ou }}$	LC497479 LCc97481	15
					1106279	${ }_{\text {Japan }}$	${ }^{\text {Gastritis }}$	LC497481	15
					${ }^{11106285}$	1apan	${ }^{\text {Gastritis }}$	LC497484 LCc97868	15
									15
					1106293 1106294	$\underset{\substack{\text { Japan } \\ \text { fapan }}}{ }$	Castrits Castrits	LC497491 LC497492	15 15
					1106296	Japan	du	LC997493	15
					1106300	Japan	Gastrits	LC497496	15
								SAMN08381237	
					VNosoo vnos26	Vienam	Castrits Castitis	Repistraion in progeres Repistation in progess	15 15
					vN0635	Vienam	${ }^{\text {Gastritis }}$	Repistration in progess	15
					vN0636	Vietram	Gastrits	Repistration in progres	15
						Vietram	${ }^{\text {Gastritis }}$	Reistraion in progeres	15 15
					vN0760	Vietram	Gastrits	Repistration in progess	15
					vN0785	Vienam	${ }^{\text {Gastritis }}$	Reistration in progres	15
					VN1156	Vietam	Gastitis	Reistraion in progres	15
					VN1169 WN1192	Vietram	6astrits Gastits	Repistraion in progress Repistrion in progess	15 15
					WN1202	Vietram		Repistation in progess Reistration in rogeses	15 15
					vN1205	Vietram	du	Refistration in progess	15
					${ }^{\text {VN1221 }}$	Vietram	Gastris	Reistration in progress	15
					vN1224	Vietram	${ }^{\text {Gastritis }}$	Reistration in progess	15
					vN1227	Vienam	Gastrits	Repistraion in progres	15
					WN1237 WN1258				
					VN1258	Viernam	$\begin{aligned} & \text { DU } \\ & \text { DU } \end{aligned}$	Repistraion in progess Repistrion in progess	15 15
					vN1274	Vietram	du	Registration in progess	15
					vN1279	Vietram	ou	Reistration in progess	15
					${ }_{3}^{3699}$	Frace			
						Sweden Sweden	Castrits Castits	SaMNo8381284 SamNos81299	16 16
					HENC89_4	Sweden	Gastritis	Registration in progess	16
					${ }^{1106269}$	Japan	${ }^{\text {Gastrits }}$	LC497774	${ }^{16}$
					${ }^{1106276881}$	${ }_{\substack{\text { Japan } \\ \text { Jpan }}}$	Gastrits Castrits	LCC997480 LC97783	16 16
					11106288	Japan	Gastritis	LC497487	16
					vN0787	Vietram	Gastrits	Repistration in progess	16
					vN158	Vietram	Gastrits	Repistration in progess	16
					VN1184	Vietam	Gastris	Reistration in progress	16
					$\mathrm{VN1241}^{1}$	Vietram	Gastrits	Reisistaion in progres	16
					vN1261	Vietram	du	Repistration in progess	16
					vN0667 HE_NC27_4	$\begin{aligned} & \text { Vietnam } \\ & \text { Sweden } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Gastritis } \\ & \text { Castritis } \end{aligned}$	Registration in progress SAMN08381306	${ }_{18}^{17}$

Supplementary Information 6 Primers used in this study

