RECEPTOR MODELING

AMPA/Kainate Receptors

The simplest model that approximates the kinetics of the fast AMPA/kainate type of glutamate receptors can be represented by the two-state diagram:

$$C + T \stackrel{(\alpha/\beta)}{\longleftrightarrow} 0 \tag{1}$$

where, α and β are voltage-independent forward and backward rate constants, *C* is the closed state of the receptor, *O* is the open state of the receptor, and *T* is the neurotransmitter. If *r* is defined as the fraction of the receptors in the open state, it is then described by the following first-order kinetic equation:

$$\frac{d(r)}{dt} = \alpha * [T] * (1-r) - \beta * r$$
⁽²⁾

and the postsynaptic current (I_{AMPA}) is given by,

$$I_{AMPA} = \bar{g}_{AMPA} * r * (V - E_{AMPA}) \tag{3}$$

where, \bar{g}_{AMPA} is the maximal conductance, E_{AMPA} is the reversal potential, V is the postsynaptic membrane potential, [T] is the neurotransmitter, and r is the fraction of the receptors in the open state.

NMDA Receptors

The slower NMDA type of glutamate receptors can be represented with a two-state model similar to AMPA/kainate receptors, with a voltage-dependent term representing magnesium block. Using the scheme in Eqs. 1 and 2, the postsynaptic current is given by

$$I_{NMDA} = \bar{g}_{NMDA} * r * B(V) * (V - E_{NMDA})$$

$$\tag{4}$$

where, \bar{g}_{NMDA} is the maximal conductance, E_{NMDA} is the reversal potential, B(V) is the magnesium block, V is the postsynaptic membrane potential, and r is the fraction of the receptors in the open state.

$$B(V) = \frac{1}{1 + \left(\frac{[Mg^{2+}]}{3.57} * e^{-0.062 * V}\right)}$$
(5)

where, $[Mg^{2+}]$ is the external magnesium concentration, and *V* is the postsynaptic membrane potential.

GABAA Receptors

 $GABA_A$ receptors can also be represented by the scheme in Eqs. 1 and 2, with the postsynaptic current given by

$$I_{GABA_A} = \bar{g}_{GABA_A} * r * \left(V - E_{GABA_A} \right) \tag{6}$$

where, \bar{g}_{GABA_A} is the maximal conductance, E_{GABA_A} is the reversal potential, V is the postsynaptic membrane potential, and r is the fraction of the receptors in the open state.

GABAB Receptors

The stimulus dependency of GABA_B responses, unfortunately, cannot be handled correctly by a two-state model. The simplest model of GABA_B-mediated currents has two variables:

$$\frac{d(r)}{dt} = K_1 * [T] * (1 - r) - K_2 * r$$
(7)

$$\frac{d(s)}{dt} = K_3 * r - K_4 * s$$
(8)

and the postsynaptic current (I_{GABA_B}) is given by,

$$I_{GABA_B} = \bar{g}_{GABA_B} * \frac{s^n}{s^n + K_d} * \left(V - E_{GABA_B}\right)$$
(9)

where, \bar{g}_{GABA_B} is the maximal conductance, E_{GABA_B} (= V_K) is the reversal potential, V is the postsynaptic membrane potential, r is the fraction of the receptors in the open state, s is the fraction of activated G-proteins, K_d is the dissociation constant of the binding of s on the K⁺ channels, K_1 and K_2 are voltage-independent forward and backward rate constants for r, K_3

and K_4 are voltage-independent forward and backward rate constants for s, and [T] is the neurotransmitter.

Overall Synaptic Current

The overall synaptic input current flux (J_{syn}) to SNc neuron is given by,

$$J_{syn} = -\frac{1}{F * v_{cyt}} * \left(I_{AMPA} + I_{NMDA} + I_{GABA_A} + I_{GABA_B} \right)$$
(10)

where, I_{AMPA} is the excitatory AMPA synaptic current, I_{NMDA} is the excitatory NMDA synaptic current, I_{GABA_A} is the inhibitory GABA_A synaptic current, I_{GABA_B} is the inhibitory GABA_B synaptic current, F is the Faraday's constant, and v_{cyt} is the cytosolic volume.

Constant	Symbol	Value	Units
Faraday's constant	F	96485	$coulomb * mole^{-1}$
Cytosolic volume	v_{cyt}	$\phi_{cyt} * v_{pmu}$	pl
Fraction of cytosolic volume	ϕ_{cyt}	0.5	dimensionless
Pacemaking unit (PMU) volume	v_{pmu}	5	pl
Maximal conductance of AMPA receptor	$ar{g}_{AMPA}$	0.35 – 1	nS
Maximal conductance of NMDA receptor	$ar{g}_{ m NMDA}$	0.01 - 0.6	nS
Concentration of Magnesium	$[Mg^{2+}]$	1 – 2	mM
Maximal conductance of GABA _A receptor	$ar{g}_{GABA_A}$	0.25 – 1.2	nS
Maximal conductance of GABA _B receptor	$ar{g}_{GABA_B}$	0.06	nS
Dissociation constant of the binding of s on the K ⁺ channels	K _d	100	μM^4
Voltage-independent forward rate constant for r of GABA _B	<i>K</i> ₁	9 x 10 ⁴	$M^{-1} * sec^{-1}$

Voltage-independent backwardrate constant for r of GABAB	<i>K</i> ₂	1.2	sec ⁻¹
Voltage-independent forward rate constant for <i>s</i> of GABA _B	<i>K</i> ₃	180	sec ⁻¹
Voltage-independent backward rate constant for <i>s</i> of GABA _B	K_4	34	sec ⁻¹
Cooperativity constant (binding sites)	n	4	dimensionless
Reversal potential of AMPA	E _{AMPA}	0	mV
Reversal potential of NMDA	E _{NMDA}	0	mV
Reversal potential of GABA _A	E_{GABA_A}	-80	mV
Reversal potential of GABA _B	E _{GABAB}	-95	mV
Voltage-independent forward rate constant for $r(\alpha)$	AMPA	$1.1 \ x \ 10^6$	$M^{-1} * sec^{-1}$
	NMDA	$7.2 \ x \ 10^4$	$M^{-1} * sec^{-1}$
	GABAA	$5 x 10^6$	$M^{-1} * sec^{-1}$
Voltage-independent backward rate constant for $r(\beta)$	AMPA	190	sec ⁻¹
	NMDA	6.6	sec ⁻¹
	GABAA	180	sec ⁻¹