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Abstract 

 

Understanding metabolic function requires knowledge of the dynamics, interdependence, and 

regulation of biochemical networks. However, current approaches are not optimal to develop the 

needed mechanistic understanding, and misconceptions about biological processes persist even 

after graduation. To address these issues, we developed a computational modeling and 

simulation approach that employs scaffolded learning to teach biochemistry students about the 

regulation of metabolism. The power of the approach lies in students’ abilities to alter any 

component or connection in a modeled system and instantly observe the effects of their changes. 
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We find that students who use our approach perform better on biochemistry metabolism 

questions compared to students in a course that did not use this approach. We also investigated 

performance by gender and found that our modules may have the potential to increase equity in 

education. We noted that students are generally positive about the approach and appreciate its 

benefits. Our modules provide life science instructors with a dynamic and systems-driven 

approach to teach metabolic regulation and control that improves learning and also equips 

students with important technical skills.  

 

Introduction 

 

To ensure that the United States continues to be globally competitive, in science, technology, 

engineering and math (STEM), students entering the workforce must be adequately prepared to 

meet emerging challenges. The education community is working to address this need as 

evidenced by various calls to action developed by national organizations such as the American 

Association for the Advancement of Science and the National Research Council (1–3). These 

calls have prompted many educators to re-evaluate the ways in which they approach science 

education and find ways to identify and develop innovative and evidence-based solutions to 

educational problems (4–7). The field of biochemistry is no exception, and the American Society 

for Biochemistry and Molecular Biology (ASBMB) has identified five threshold concepts in 

biochemistry (8). These threshold concepts are defined as “concepts and skills that, when 

mastered, represent a transformed understanding of a discipline, without which the learner 

cannot progress,” and includes the concept of “biochemical pathway dynamics and regulation” 

(9). Furthermore, ASBMB and others detail the need for improving students’ technical skills. This 

need, coupled with the inadequacy of traditional methods to teach dynamics and regulation and a 

shift in life sciences research to incorporate computation, make it increasingly important for life 

sciences education to equip students with skills to reason mechanistically and quantitatively (10). 

An important step toward meeting this need has been the broad establishment of computational 

modeling and simulations as a core competency for undergraduate students (2,3). In this work, 

we develop and implement a method that increases learning about metabolic pathways as 

dynamic processes and interconnected networks. Students explore regulation, connectivity, and 

cellular context by incorporating computational modeling and simulation learning modules in the 

biochemistry classroom.  

 

Knowledge of metabolism is fundamental to the study of biochemistry. To master metabolism, 

students have to understand the fundamental concepts, the interrelationship between concepts, 

and additional “linking ideas” that underlie the interrelationships (11). Schultz (12) highlighted the 

“learning demand” on students who study metabolic pathways as follows: 1) knowing the 

particular chemical transformation involved, 2) evaluating the thermodynamics of each step, and 

3) comprehending the biological context. The amount of information contained in a single 

pathway of a metabolic network can quickly overwhelm students, making it difficult to interpret the 

function and regulation of larger networks or organisms (12–15). Consequently, despite repeated 

exposure to the same biological system, the difficulties that students face when learning about 

biochemical pathways ultimately lead to the persistence of misconceptions about metabolism 

(13,15–18).  

 

A deep understanding of how biological systems function relies on appreciating the dynamic 

nature of the system. Ultimately, students’ struggles with complex biological processes may be 
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partly attributed to their inability to understand and predict the behavior of systems (i.e. to adopt a 

systems-thinking perspective). This perspective does not rely on conceptual knowledge and 

instead requires an analytical approach (19,20). Critical thinking and problem-solving are needed 

to explain how components interact to support the function of the system. When students adopt a 

systems-thinking perspective, they must conceptualize systems as interconnected processes, 

that are themselves nested within larger systems, and whose functions can be mechanistically 

explained (21,22). Typical instructor practices and student materials may even hamper the 

adoption of a systems-thinking perspective. For example, most biochemistry textbooks focus on 

the details of individual enzymatic steps of metabolic pathways and discuss the integrated 

regulation of metabolic pathways only broadly without explicitly connecting concepts across 

multiple levels or across multiple chapters.  

 

Computational models of complex biological and biochemical processes and simulations can 

actively engage students in an experiment-like learning environment (23–25). Computational 

model-based learning is leveraged in many fields (e.g., chemistry, physics, engineering, biology) 

and encourages students to make their thinking explicit, which can help students simultaneously 

hone practical skills, increase content knowledge, and overcome scientific misconceptions 

(13,23,26–34). Moreover, the need to develop students’ science process skills in general, and 

modeling abilities specifically, extends beyond the classroom, and the use of models to predict 

experimental outcomes is a recognized learning goal for biochemistry students (2,3,5). 

 

We hypothesized that teaching metabolism by using computational learning modules with explicit 

systems-thinking prompts would increase students’ mechanistic understanding of complex 

biological systems. To target specific learning objectives that were aligned with the ASBMB 

learning goals, we designed and tested two computational learning modules across a series of 

upper-level biochemistry courses across two semesters: (1) Regulation of Cellular Respiration 

during Semester 1 and (2) Regulation of Purine Biosynthesis during Semester 2 (Tables 1 and 2). 

During each computational learning module, we used the Predict-Observe-Explain (POE) model 

of instruction to explicitly ask students to take a systems-thinking perspective (35). We also 

aligned each learning objective with students’ previously identified difficulties in understanding 

metabolic processes as systems (Tables 1 and 2). In the first semester, we compared 

assessment results from each sub-part of the module to those from a course which received 

typical classroom instruction only (“No module”). Overall, our results indicate that both modules 

facilitated students’ mechanistic understanding of complex biological systems. 

 

Results 

 

Computational learning modules improve student performance on conceptual 

assessments. 

 

To improve students’ abilities to visualize metabolism as a connected network of processes, we 

used computational model-based learning experiences suitable for students taking an upper-level 

biochemistry or molecular biology course (Figure 1). The computational learning models and all 

associated activities (“Module”) were designed using the Cell Collective software and we asked 

students to predict, observe, and then explain the model’s behavior (36,37). We prompted students 
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to discuss and reflect on their reasoning about the system when they added components or 

connections to the model.  

 

We designed and tested two modules in two consecutive courses (Figure 2A and B). The first 

module, Regulation of Cellular Respiration, was integrated in Biochemistry I (Semester 1). It 

consisted of three sub-parts: Glycolysis, the Tricarboxylic Acid Cycle (TCA), and the Electron 

Transport Chain (ETC). The second module, Regulation of Purine Biosynthesis, was integrated in 

Biochemistry II (Semester 2). Approximately half of the students in Biochemistry II took the module-

integrated Biochemistry I course the previous semester, while the other half were not exposed to 

the module during Biochemistry I (Figure 2C “Module” vs “No module”). 

  

To determine whether students achieved learning gains after module completion, we analyzed 

class average scores from pre- to post-assessment. Our data show that integration of the 

Regulation of Cellular Respiration module in Biochemistry I resulted in increased student 

performance with statistically significant raw learning gains of 9%, 7%, and 9%, for Glycolysis, TCA, 

and ETC respectively (Figure 2D, Supporting Table S1, “Module”). Conversely, in the “No module” 

course, gains were statistically indistinguishable at 0% and -4% for TCA and ETC (Figure 2D, 

Supporting Table S1, “No module”). To verify the reproducibility of these results, we repeated this 

experiment in the following academic year (Supporting Figure S1A). Results for the Year 2 replicate 

were consistent with the first experiment with learning gains of 7%, 6%, and 9% in the “Module” 

course compared to learning gains of -3%, 0% and 4% in the “No module” course (Supporting 

Figure S1B, Supporting Table S2).  

 

To determine if this approach of computational module integration could be applied to metabolic 

pathways that are generally less familiar to students, we integrated a module about the Regulation 

of Purine Biosynthesis in the Biochemistry II course. Student learning gains were similarly 

measured by evaluating their pre- to post-assessment scores. In addition, we tested whether prior 

exposure to the Biochemistry I modules impacted student learning gains by taking advantage of 

the fact that only half of the students in Biochemistry II experienced modules in Biochemistry I. We 

found that students who were exposed to the modules in Biochemistry I (Figure 2E, “Consecutive”) 

achieved a significant raw learning gain of 7%, compared to a non-significant gain of 2% for 

students who were not exposed to modules in Biochemistry I (Figure 2E, “Non-consecutive”). 

Analysis of pooled Biochemistry II student performance resulted in a 4% learning gain (Figure 2E, 

“All”, Supporting Table S3). 

 

To account for other factors that could influence these results, we used ANCOVAs that included 

pre-assessment scores and demographic variables as predictor variables (comparisons of student 

demographic variables are available in Supporting Tables S4 and S5). When we compared the 

post-assessment test scores for Regulation of Cellular Respiration, we found a significant 

difference between students in the “Module” and “No module” courses for TCA (F(1, 116) = 7.443, 

p<0.01, partial η2 = .060, Supporting Table S6) and ETC (F(1, 108) = 7.112, p<0.01, partial η2 = 

.062, Supporting Table S6). When we compared student performance between students who 

previously completed the module (“Consecutive” group) and students who did not (“Non-

consecutive” group) for Regulation of Purine Biosynthesis in Biochemistry II, we also found a 

significant difference in the ANCOVA analysis (F(1, 79) = 8.135, p<0.01, partial η2 = .093, 

Supporting Table S7). Taken together, our results indicate that the modules increase students’ 

understanding of metabolism. Our results also indicate that previous exposure to modules may 
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support students’ subsequent learning with modules, especially when introducing unfamiliar topics 

or content.   

 

Computational learning modules improve student performance on specific learning 

objectives.  

 

To evaluate the effect of the modules on specific learning objectives for Regulation of Cellular 

Respiration in Biochemistry I, we measured the learning gains for each learning objective listed in 

Table 1 (Figure 3, Supporting Table S8). Similar results were seen in our reproducibility study 

during Year 2 (Supporting Figure S2, Supporting Table S9). We found that students in the “Module” 

course often had significant learning gains for those objectives for which the associated concepts 

were most recently introduced (Figure 3, Table 1). For example, when we introduced the “Energy 

charge” concept during Glycolysis, students achieved a significant learning gain on the associated 

learning objective, whereas the “Energy charge” concept in the TCA and ETC assessments did not 

show the same level of gain. Similarly, when we introduced the “Redox state” concept during TCA, 

students achieved a significant learning gain, yet the same level of gain was not achieved later. 

The same was true when “Fermentation” was explicitly introduced during the ETC portion of the 

module. This trend was not observed for the “No module” course.  

 

We also analyzed learning gains for each learning objective listed in Table 2 for Regulation of 

Purine Biosynthesis in Biochemistry II (Figure 4, Supporting Table S10). We found that students in 

the “Consecutive” group achieved significant learning gains on the concept of mutations and 

disease (the focal concept of the last part of the module); however, students in the “Non-

consecutive” group did not achieve significant increases on any learning objectives (Figure 4, 

Supporting Table S10). Taken together, our results indicate that the modules increase 

understanding of specific learning objectives, especially when introducing or focusing on important 

concepts of metabolism. 

 

Repeated computational module interaction may increase learning outcome equity. 

 

It has previously been shown that technology use in the classroom can increase gender-based 

differences in technology-based learning outcomes by impacting students’ attitudes, feelings of 

inclusion, and learning experiences (38,39). To determine whether there was a difference in the 

learning gains between male and female students, and to ensure that our modules were not 

causing a gender gap, we analyzed our results by dividing students in the Regulation of Cellular 

Respiration “Module” and “No module” courses by self-reported gender. We found that male 

students in the “Module” course achieved a significant pre-post learning gain across the first two 

module assessments, while female students in the “Module” course only achieved a significant pre-

post learning gain for the final assessment in the series (Figure 5A). Notably, neither male nor 

female students in the “No module” course achieved significant pre-post learning gains (Figure 5B). 

Interestingly, we noticed a negative trend in learning gains across the semester for male students 

compared to a positive trend for female students in the “Module” course. This same trend was 

repeated in the “Module” course for Biochemistry I during our reproducibility study in Year 2 

(Supporting Figure S3A). For the “No module” course, we observed that male and female students 
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appeared to trend in the same direction over the course of the semester for both semesters (Figure 

5B and Supporting Figure S3B).  

 

To understand whether the modules differentially impacted performance between the four groups 

(“Module and male,” “Module and female,” “No module and male,” “No module and female”), we 

used ANCOVA to compare the test scores after controlling for pre-assessment and other 

demographic variables. For TCA, we detected a significant difference between the groups (F(3,115) 

= 3.021, p<0.05, partial η2 = .073, Supporting Table S11). Specifically, the “Module and male” group 

was significantly different than the “No module and female” group, indicating that individuals in the 

“No module and female” group had significantly lower learning gains. For ETC, we detected a trend 

toward a significant difference between the groups (F(3,107) = 2.462, p<0.1, partial η2 = .065, 

Supporting Table S11). Specifically, the “Module and female” group was trending toward a 

significant difference compared to the “No module and female” group, again indicating that the 

individuals in the “No module and female” group had significantly lower learning gains. Taken 

together, the results indicate that females in the “No module” course consistently scored lowest on 

topics related to metabolism. However, our data also support the idea that, although the modules 

benefit both male and female students, the benefit to female students increases with repeated 

exposure.  

 

Students value the computational learning modules. 

  

We used a short survey to determine whether students perceived a learning benefit after 

completing the modules (Figure 6). In the closed-ended portion of the survey for the Regulation of 

Cellular Respiration module, 54% of students who completed this survey agreed that the module 

assisted their learning of the material, 45% of the students agreed that they understood what they 

learned and 48% thought they would remember what they learned (Figure 6A). Sixty percent of 

students reported that the module reminded them to use a systems-thinking approach that 

simultaneously considers individual components and the larger system. Likewise, 60% of students 

reported that the module helped them to understand the effect of feedback loops and environmental 

conditions, while 58% agreed that the module helped them to understand how the regulation of 

glycolysis, TCA and ETC are integrated to function as a coherent whole (Figure 6A). The results 

were similar for Year 2 of Biochemistry I (Supporting Figure S4). For the Regulation of Purine 

Biosynthesis module, we saw a similar, though less dramatic, trend. In addition, students’ perceived 

learning benefit was comparable between students who were exposed to the module in 

Biochemistry I and those who were not (Figure 6B and C).  

 

In the open-ended section of the survey, we asked students to reflect on which aspects of the 

modules they found to be most beneficial and also the most challenging. Students who completed 

the Regulation of Purine Biosynthesis module had similar responses to the open-ended section of 

the survey compared to students who completed the Regulation of Cellular Respiration module. 

Benefits included being able to manipulate individual components of the model and directly 

visualize the effect on the entire system using simulations, seeing the relationships between 

individual components and multiple processes, and experiencing how the modules foster active 

learning. One student summarized the importance of simulating the model’s behavior, “The running 

of the simulations is the most important aspect of the module, at least in my case. It is the only time 

you are fully able to see what is happening to the levels of different products in the cell and how it 

affects activity.” Another noted that the module aided their learning by “[seeing how] changing the 
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amount of glucose, LDH, O2, and physical exercise alters the production of glycolysis, fermentation, 

TCA, and ETC and how all of the individual components/metabolites are affected”. A third student 

noted that the module helped them to “[think] about why the enzymes were connected the way they 

were and why my predictions were or were not correct”.  

 

Student challenges included keeping track of the number of components and connections involved 

in the processes as well as feeling concerned about whether the simulations were set up correctly 

and thus, whether the simulation results were correct. Some students reported frustration about 

being asked to conceptually evaluate the simulation results. Paradoxically, some students reported 

positive responses to being asked many conceptual questions about the system components and 

simulation results.  

 

Discussion  

 

We responded to national calls for instruction on the dynamics and regulation of biochemical 

pathways and the use of models to predict experimental outcomes by designing and integrating 

two interactive computational learning modules in the biochemistry classroom (1–3). We aimed to 

develop students’ mechanistic understanding of complex biochemical systems and increase their 

ability to interpret and evaluate them using computational learning modules. We designed the 

modules to focus on conceptual challenges that undergraduate students face when learning 

about metabolic pathways. 

 

We found that using the computational learning modules supported students’ learning of concepts 

and content of metabolism (Figure 2, Supporting Figure S1). Students who learned about the 

Regulation of Cellular Respiration in a “Module” course for Biochemistry I had increased learning 

gains compared to students who learned about this topic in a “No module” course (Figure 2D, 

Supporting Figure S1). We also found that students who learned about the unfamiliar topic of 

Regulation of Purine Biosynthesis in a “Module” course for Biochemistry II showed significant 

learning gains (Figure 2E). Student performance on individual learning objectives revealed that 

the modules aided students in mastering the mechanistic details of the Regulation of Cellular 

Respiration and Regulation of Purine Biosynthesis (Figures 3 and 4, Supporting Figure S2). Our 

effect sizes derived from statistical models were also consistent with other technology-based 

learning interventions (24,40). We believe that these results reflect our efforts to make the Cell 

Collective software and computational learning modules accessible to users of all technical 

backgrounds through proper user-centric design and scaffolding.  

 

Because our approach hinges on making the systems-thinking perspective explicit, we matched 

our learning objectives to Assaraf and Orion’s System Thinking Hierarchical (STH) model (41) 

(Tables 1 and 2). We observed that students achieved significant learning gains more frequently 

for learning objectives at STH level 5 (5 out of 10 for both modules) compared to objectives as 

STH level 6 (1 out of 4 for both modules) (Tables 1 and 2, Figures 3 and 4). This could indicate 

that students may require additional support, exposure, and time investment to achieve 

understanding at higher STH levels, and instructors may wish to consider adjusting their 

curriculum to allow as much scaffolding, time and practice as is practical to move student learning 

to higher STH levels.  
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We investigated potential differences between male and female participants for two reasons: 1) a 

large study of thousands of biochemistry students showed that females generally perform worse 

than males in biochemistry courses (42), and 2) when using technology in the classroom, 

differences in learning based on gender have been reported (38,39). Consistent with these 

observations, we found initial differences in learning gains between male and female students 

learning with the modules (Figure 5A, Supporting Figure 3A). Interestingly, our results indicate 

that repeated exposures to the modules have the potential to make learning gains more similar 

for male and female students (Figure 5A, Supporting Figure 3A). Further studies are necessary to 

identify the specific elements responsible for the observed differences in learning gains trends. To 

this end, we are designing additional versions of our modules that test each module element 

separately, and we are expanding our post-module surveys to evaluate the role of students’ 

confidence and motivation when using technology to learn. 

 

Overall, students self-reported that the modules were valuable learning tools because they 1) 

reminded them to think about the individual components and the role they play in the larger 

system, 2) helped them understand the effect of feedback loops and environmental conditions, 

and 3) helped them appreciate the role of each interaction in the overall regulation of metabolism. 

During a small focus group conducted by an external evaluator, two students discussed their 

experience. When asked about the top two most memorable concepts learned during the entire 

course, one student reported remembering “doing glycolysis, doing the online skills and going 

through that and learning the up and down regulations...helped me learn how to do the TCA 

cycle.” When asked how the modules supported student learning, one student noted that “having 

the [models] as a backup to look at whenever you’re learning such a dense topic is a good way to 

relearn it besides what’s in the class... It’s a different...hands-on way to look at it, than just having 

it in front of you and looking at it.” Another student commented on the fact that the systems were 

so complex that it would be difficult to make predictions about them without first creating a 

model.  

 

Although students generally valued the computational learning modules, some students were less 

open to the presented learning approach. These students noted that they would have preferred 

having lectures or studying the material from the textbook over interacting with the computational 

models. Our results are consistent with previous findings that classroom interactions and student 

confidence in the results obtained with models can affect the success of computer model-based 

instructional approaches (29,34). Some students reported usability issues and commented on 

their lack of prior knowledge as being challenges to their learning with the modules. To better 

understand this feedback, we attempted to identify a test group that interacted with an inquiry-

based learning environment with high frequency. A small-enrollment course version of 

biochemistry at a nearby private liberal arts college which emphasizes inquiry-based learning 

tried the module in the classroom and found similar learning gains. Interestingly, these students 

rated their learning experience more positively than our students. Our observations are in 

agreement with findings that students’ curricular exposure shapes their learning profile 

development, which may determine their readiness for self-directed learning (43). On the usability 

issues reported, we recognize that technological challenges may be unavoidable with computer-

based learning, and we propose that instructors use in-class messaging to encourage students to 

leave enough time for assistance. Instructors may also increase student buy-in by ensuring close 

alignment between the modules, class lectures, and exam questions (44,45). Finally, we suggest 

introducing students to modeling using a familiar system before transitioning to an unfamiliar 
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system, because perceived learning may be lower with unfamiliar systems (Figure 2C-E, Figure 

6). Instructors can refer to Supporting File S1 for detailed instructions and incorporation 

recommendations for a variety of teaching strategies to meet individual course needs.   

 

In summary, students in the life sciences continue to struggle to learn about complex biochemical 

networks and their regulation (13). At the same time, computational modeling and simulations 

have emerged as a core component of national education standards in undergraduate life 

science education (3). The modules described here are provided as a resource for life science 

instructors to teach metabolic networks using a dynamic, systems-driven approach. Our 

accompanying assessments also allow instructors to provide formative feedback to their students. 

Each module asks students to learn by constructing, simulating, and interpreting computational 

models (37). Students can alter any component or pathway of the process and instantly observe 

the effect on the modeled system, an approach that closely resembles authentic science practice. 

Our focus on accessibility has enabled us to make modeling an efficient teaching and learning 

tool for instructors and students with a broad range of technology or modeling skills. Our modules 

can be adapted for in-class use, distance-learning, homework and laboratory formats. 

 

Materials and Methods 

 

Technology 

 

The modeling and simulation-based learning is facilitated through Cell Collective, a web-based, 

research-grade software that makes computational modeling accessible to any student and 

teacher regardless of modeling experience (36,46). Students can alter any network or component 

of the process and instantly observe the effects of the changes made to the modeled system. In 

the background, computational models in Cell Collective are mathematically described as 

probabilistic Boolean control networks (47–49). These models consist of components connected 

with directed edges. Each component can represent a variety of elements ranging from a single 

enzyme or metabolite to an entire process, depending on the scope of the model and the level of 

abstraction. The directed edges correspond to biochemical interactions (direct or indirect) among 

the components (e.g., Glucose-6-phosphate activates Glucose-6-phosphate dehydrogenase 

IF/WHEN NAD+ is active) (50). The activity of a component is determined by its regulatory 

mechanism, reflecting the activity of other directly interacting components. The components’ 

simulation output provides a semi-quantitative measure to describe the relative level of activity, 

rather than a specific biological measure such as abundance or concentration. This allows 

students to observe the effects of their changes to the model. Cell Collective can be accessed 

directly via a web-browser (i.e., no installation is needed) by visiting https://cellcollective.org and 

selecting “Learning - Get started” on the home page. Users can access all content without 

registration and users who create free accounts can save their work. 

 

Module design 

 

To encourage students to take a systems perspective and develop their mechanistic 

understanding of complex biological systems, we designed computational learning modules 

suitable for upper-level biochemistry or molecular biology courses. The first module, Regulation of 

Cellular Respiration, consisted of three sub-parts: Glycolysis (Assessment 1.1), TCA 

(Assessment 1.2), and ETC (Assessment 1.3), and addressed 1) how the energy charge- and 
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redox-status of the cell regulate glycolysis and the TCA cycle, 2) how the ETC is integrated into 

this system, and 3) how the system maintains homeostasis despite changes to the environment 

(e.g. oxygen availability) (Supporting Files S2-S4). The second module, Regulation of Purine 

Biosynthesis (Assessment 2.1) addressed 1) how the regulatory mechanisms of the purine 

biosynthesis pathway allows the cell to maintain homeostasis despite changes to the 

environment, and 2) how mutations disrupt the cell’s ability to maintain homeostasis (Supporting 

Files S5-S7). 

 

Instructional scientists and researchers typically emphasize the benefits of having students build, 

evaluate, and revise their own models as opposed to simply using expert constructed models 

(30,51). However, due to the complexity of the systems under study, and the time that would be 

required to fully model and troubleshoot the behavior of the systems, we elected to use an 

intermediate “model elaboration” approach, in which we provided students with key components, 

asked them to add in known regulatory relationships, and reason through the effects of these 

individual relationships on the function of the entire system (32). Using the learning objectives as 

a guide, we developed computational models up to three months before the planned class to 

allow sufficient time to adjust the module and optimize the models to fit the module design. We 

used textbook sources to identify critical components to be included in each computational model, 

and manually curated published evidence for regulation. When available, we also used published 

literature to confirm model outputs. The fully annotated models including literature references are 

available in the Cell Collective software.  

 

Incorporated into each model, we created a series of interactive activities that provide students 

with informational prompts, instructions, and questions as they interact with the model building 

and simulation components of the software (Figure 1). For example, in Regulation of Cellular 

Respiration: Glycolysis, students are provided with a partially built model that is missing important 

allosteric feedback relationships (Figure 1-1). Students can edit the model, evaluate and predict 

what effect their edits will have, and simulate the model’s behavior to test whether their 

predictions were accurate (Figure 1-2 to 1-4).  

 

We used an iterative approach to test and refine the module activities and assessment. For each 

module, we conducted a think-aloud exercise with one to four senior biochemistry or graduate 

students focused on usability testing. During the sessions we noted what participants were saying 

and doing to ensure that we were achieving the desired interaction with the module. When it was 

obvious that participants were struggling, we engaged them directly to understand the source of 

their difficulties. This process helped us to develop activities that could be used as stand-alone 

assignments to reduce instructor burden and increase benefits for distance learning students.  

 

Implementation 

 

For each module, we followed the same general format of 1) pre-assessment, 2) instruction and 

module activities, 3) post-assessment (Supporting Files S2-S7). To prepare for class, the 

instructor and teaching assistants completed the module. Approximately a week before the 

simulation module was started in-class, students individually completed the closed-ended online 

pre-assessment (Figures 2A and B, Supporting Files S4 and S7). For our assessments, we used 

multiple-true-false (MTF) questions that consist of a question stem that is presented together with 

a series of statements that are evaluated by students as being true or false. We selected MTF 
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questions because they can reveal student misconceptions that remain undetected in free-

response and multiple-choice question formats (53–55). The number of statements for each 

question is listed in Tables 1 and 2.  

 

Before class, students were asked to complete a Cell Collective training module to familiarize 

themselves with the technology and modeling concepts and to complete the pre-assessment 

questions online. Students were introduced to computational modeling as it relates to the topic 

through a mini-lecture. Students worked in groups of two to four, and we used whole-class clicker 

questions and peer instruction to ensure that students were on target with major concepts and to 

identify and resolve student misunderstandings and technology issues (52). We required students 

to complete any unfinished activities as homework. In the case of Regulation of Cellular 

Respiration, students only started the Glycolysis part of the module during class and completed 

all remaining activities as homework (i.e., TCA and ETC were completed entirely as homework 

assignments over the course of six weeks). Introduction of the modules did not appreciably alter 

the instructional schedule, and diagrams of the timing of module activities and assessments 

during the course of the semester are shown (Figures 2A and B).  

 

After completing the modules as homework, students answered the same post-assessment 

questions online to evaluate their learning gains. Students also completed a short survey about 

their experiences with the models (Supporting Files S4, S7-S9).  

 

The Supporting Information contains additional materials and information necessary to implement 

the modules, including slides for mini-lectures (Supporting Files S2 and S5), instructor guides 

(Supporting Files S3 and S6), assessment questions (Supporting Files S4 and S7), and student 

experience survey questions (Supporting Files S8 and S9).  

 

 

Data Collection, Participants and Data Analysis 

 

We implemented the computational learning modules in two large-enrollment senior-level 

undergraduate biochemistry courses. The aforementioned courses comprise a two-part series 

(here called Biochemistry I and Biochemistry II) that are typically taken in sequence. Both classes 

are required for biochemistry majors and contain a large pre-health population at a research-

intensive university.  

 

The Regulation of Cellular Respiration module was implemented in Biochemistry I (N = 107) and 

the Regulation of Purine Biosynthesis module was implemented in Biochemistry II (N = 142). 

Here, we report only the results using data from consenting students for whom we had 

demographic information and who completed both the pre- and post-assessments. For 

Regulation of Cellular Respiration, N = 64, 64, 57 for Glycolysis, TCA, and ETC assessments and 

for Regulation of Purine Biosynthesis, N = 87. Each component of the module (pre-assessment, 

module activities, and post-assessment) was graded based on completion in both “Module” 

courses. For the Regulation of Cellular Respiration, we compared the learning gains from each 

class to those of students in another section of the same course (Biochemistry I) taught by a 

different instructor at the same university that did not complete the modules (the “No module” 

course). The “No module” course was taught in a large-enrollment class during the same 

semester as the “Module” course. Logistically, the “No module” course was unable to complete 
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an equivalent Glycolysis assessment and took the pre-assessment slightly later in the semester 

compared to the module course. For the “No module” course, N = 64 and 63 for the TCA and 

ETC assessments.  

 

Approximately equal numbers of students from the “Module” and “No module” courses for 

Biochemistry I were subsequently exposed to modules in Biochemistry II. Students who were 

exposed to the module in Biochemistry I were designated as “Consecutive” students, while 

students who were not exposed to the module in Biochemistry I were designated as “Non-

consecutive” students (Figure 2C).  

 

Supporting Table S4 contains participant’s demographic profiles for the “Module” and “No 

module” courses in Biochemistry I. We noted a significant difference (p < 0.01) between the 

cumulative GPA in the “Module” course (3.74, SD = 0.28) and “No module” course (3.41, SD = 

0.85). Supporting Table S5 contains participant’s demographic profiles for the “Consecutive” and 

“Non-consecutive” groups in Biochemistry II. Again, we noted a significant difference (p < 0.05) 

between the cumulative GPA in the “Consecutive” (3.64, SD = 0.39) and “Non-consecutive” 

groups (3.81, SD = 0.18). 

 

We used item analysis to evaluate the quality of our assessments. We combined student 

responses from the “Module” and “No module” courses to determine item difficulty and 

discrimination for the pre- and post-assessment scores. We excluded items with negative 

discrimination on the post-assessment score from our analysis and removed them from our future 

assessments.    

 

For data analysis we first calculated the raw learning gain (post-assessment score – pre-

assessment score) for each student. Then, for each assessment, we calculated the mean raw 

learning gain for the entire class. For all courses (“Module” and “No module”), we determined 

whether students significantly improved from pre- to post-assessment by performing a two-tailed 

paired t-tests on individual student performance. We used a similar approach to analyze student 

learning gains for each learning objective.  

 

Next, we used IBM SPSS 23.0 to conduct a one-way ANCOVA to determine whether a 

statistically significant difference existed on the post-assessment score for each assessment 

between the “Module” and “No module” courses in Biochemistry I when controlling for the 

covariates (pre-test score and cumulative GPA) and the demographic variables (i.e., gender, 

native English speaker, parents’ college education, and the extent of education self-funding). Post 

hoc analyses for pairwise comparisons were performed with a Bonferroni adjustment. We 

followed the same approach to evaluate the significance of differences between “Consecutive” 

and “Non-consecutive” groups in Biochemistry II. When analyzing differences between males and 

females, we followed the same approach after also dividing the groups based on self-reported 

gender (“Module and male”, “Module and female”, “No module and male”, and “No module and 

female”). 
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Figures and Tables 
 

 
 
Figure 1.  Computational learning modules allow students to take a systems-thinking perspective 
when using computational models to understand the regulation of metabolic pathways. The Cell 
Collective web-based software allows students to have an interactive model-based learning 
experience. Students can (1) edit the computational model by adding components (grey dots) 
and/or positive or negative relationships (green, red or grey arrows). Students can (2a, b, c) set 
the simulation parameters, (3) simulate the model’s behavior, and (4) evaluate the effect of 
changing the model or simulation parameters. For example, to determine the effect of negative 
allosteric regulation of pyruvate kinase (PK) by ATP, students add a negative relationship 
between PK and ATP (*) and observe that pyruvate production decreases. In this example, 
students could also change the level of glucose by adjusting the slider and select additional 
components to view in the model by checking the box next to them.   
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Figure 2. Computational learning modules improve student performance on content assessments 
for metabolism. A) Diagram of the semester for the “Module” (top) and “No module” (bottom) 
courses of Biochemistry I. Assessment and instructional timing for Regulation of Cellular 
Respiration is shown. B) Diagram of the semester for the “Module” course of Biochemistry II. 
Assessment and instructional timing for Regulation of Purine Biosynthesis is shown. C) For the 
purposes of data analysis, students who entered from the Biochemistry I course that used a 
module were designated to be in the “Consecutive” group (46% of students), while students from 
the “No module” Biochemistry I course were designated to be in the “Non-consecutive” group 
(54% of students). D) Course average values of the pre-assessment scores (green) and post-
assessment scores (grey) were compared between “Module” and “No module” courses for 
Cellular Respiration (Assessment 1.1: Glycolysis, Assessment 1.2: TCA, Assessment 1.3: ETC). 
Students in the “No module” course did not complete the Glycolysis assessment. Each course 
was taught by a different instructor. E) Course average values of the pre- and post-assessment 
scores were compared between “Module” and “No module” courses for Purine Biosynthesis 
(Assessment 2.1). Two-tailed paired t-tests (D: Supporting Table S1 and E: Supporting Table S3) 
were used to measure significance for pre- versus post-assessment scores: † indicates p<0.05. A 
green and white striped pattern indicates that the overall post-assessment score was lower than 
the pre-assessment score.  
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Figure 3. Computational learning modules improve class performance on learning objectives for 
Cellular Respiration. Average class scores of the pre-assessment scores (green) and post-
assessment scores (grey) for each stated learning objective in the Regulation of Cellular 
Respiration module A) Assessment 1.1: Glycolysis, B) Assessment 1.2: TCA, and C) Assessment 
1.3: ETC were compared for the “Module” and “No module” courses. Students in the “No module” 
course did not complete the Glycolysis assessment. Each learning objective is numbered, and 
keywords are provided (refer to Table 1 for detailed objective and corresponding STH level). Two-
tailed paired t-tests (Supporting Table S8) were used to measure significance for pre- versus 
post-assessment scores: † indicates p<0.05  
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Figure 4. Computational learning modules improve class performance on learning objectives for 
Purine Biosynthesis. Average class scores of the pre-assessment scores (green) and post-
assessment scores (grey) for each stated learning objective in the Regulation of Purine 
Biosynthesis “Module” course (to the left of the dashed line). Assessment results were also 
compared for the “Consecutive” and “Non-consecutive” groups (to the right of the dashed line). 
Each learning objective is numbered, and keywords are provided (refer to Table 2 for detailed 
objective and corresponding STH level). Two-tailed paired t-tests (Supporting Table S9) were 
used to measure significance for pre- versus post-assessment scores: † indicates p<0.05.  
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Figure 5. Repeated learning with the computational learning modules may lead to equitable 
outcomes. Course average values of raw learning gains (grey) for students in the A) Biochemistry 
I “Module” course, and B) Biochemistry I “No module” course. Learning gains were measured for 
the topic of Regulation of Cellular Respiration using three assessments (Assessment 1.1 = 
Glycolysis, Assessment 1.2 = TCA, and Assessment 1.3 = ETC). Two-tailed paired t-tests were 
used to measure significance for pre- versus post-assessment scores: † indicates p<0.05.  
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Figure 6. Students valued the modules and report benefits in specific concepts related to 
systems-thinking. Students in the “Module” courses for A) Biochemistry I Regulation of Cellular 
Respiration, and B) Biochemistry II Regulation of Purine Biosynthesis with previous exposure to a 
module (“Consecutive” group), and C) Biochemistry II Regulation of Purine Biosynthesis without 
previous exposure to a module (“Non-consecutive” group), completed a brief survey about their 
experiences with the module. Results were reported on a five-point Likert scale. 
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Table 1. Alignment of the Regulation of Cellular Respiration module learning goals and assessment items 
with student difficulties, ASBMB learning goals and STH level. 
 

Topic and 
associated 
assessment 

Learning objective 
Student difficulty 
(Brown & 
Schwartz) 

Assessment 
Item 

ASBMB 
learning 
goal1 

STH 
level2 

Glycolysis 
(Assessment 1.1) 

1. Mechanistically explain why and how 
energy charge affects glycolytic 
intermediates. 

Interconnectedness 
of processes  

1a, 1d, 1g, 
1h, 1i 

1,2,3,4 5 

2. Mechanistically explain the role of 
glucokinase and hexokinase in glucose 
absorption. 

Scales/nested 
systems 

1e, 1f, 1,2,3,4 5 

3. Contrast mechanisms of regulating 
glucose absorption to those regulating 
pyruvate production.  

Scales/nested 
systems 

1b, 1c 1,2,3 6 

TCA 
(Assessment 1.2) 

4. Mechanistically explain why and how 
energy charge regulates TCA cycle 
intermediates. 

Interconnectedness 
of processes  

2a, 2c, 2e  1,2,3,4 5 

5. Mechanistically explain why and how 
NAD+/NADH redox state regulates TCA 
cycle intermediates. 

Interconnectedness 
of processes  

2d, 2e, 2f 1,2,3,4 5 

6. Describe the effect of anaplerotic 
reactions. 

Interconnectedness 
of processes  

2b, 2g, 2h 1,2 6 

ETC    
(Assessment 1.3) 

7. Mechanistically explain the 
importance of O2 in cellular respiration. 

Scales/nested 
systems 

3a, 3b, 3j 1,2,3,4 5 

8. Mechanistically explain the effect of 
NAD+/NADH redox state on ATP 
production.  

Interconnectedness 
of processes  

3e, 3f3, 3g, 
3h 

1,2,3,4 5 

9. Mechanistically explain the effect 
energy charge on ATP production. 

Interconnectedness 
of processes  

3c, 3d,  1,2,3,4 5 

10. Describe how lactate 
dehydrogenase maintains glycolysis in 
the absence of O2. 

Interconnectedness 
of processes 

3i 1,2,3,4 6 
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Table 2. Alignment of the Regulation of Purine Biosynthesis module learning goals and assessment items 
with student difficulties, ASBMB learning goals and STH level  
 

Topic and 
associated 
assessment 

Learning objective 
Student difficulty 
(Brown & 
Schwartz) 

Assessment 
Item 

ASBMB 
learning 
goal1 

STH 
level2 

Purine 
biosynthesis 
(Assessment 2.1) 

1. Identify and describe individual 
interactions that contribute to regulation 
of the de novo purine biosynthesis 
pathway. 

Interconnectedness 
of processes  

1a3, 1b, 1c, 
1d, 1e3, 1f, 
1g, 1h, 1i 

3 5 

2. Mechanistically explain how 
homeostasis of de novo purine 
biosynthesis is maintained. 

Scales/nested 
systems 

2a, 2b, 2c 1,2,3,4 5 

3. Describe how changes in cellular 
conditions affect the metabolic 
intermediates of purine biosynthesis. 

Scales/nested 
systems 

3a, 3b, 3c, 
3d 

1,2,3,4 6 

4. Mechanistically explain how 
mutations in purine biosynthetic 
enzymes result in metabolic disease. 

Scales/nested 
systems 

4a, 4b, 4c, 
4d, 4e, 4f 

1,2,3,4 6 

1ASBMB learning goals (8): 1) Relate concentrations of key metabolites to steps of metabolic pathways and describe the 
roles they play in homeostasis; 2) discuss how chemical processes are compartmentalized in the organism, organ and 
the cell; 3) summarize the different levels of control (including reaction compartmentalization, gene expression, covalent 
modification of key enzymes, allosteric regulation of key enzymes, substrate availability and proteolytic cleavage) and 
relate these different levels of control to homeostasis. 4) Model how perturbations to the steady state can result in 
changes to the homeostatic state. 
2Systems Thinking Hierarchy (STH) (41): 1) identify the parts and processes of the system; 2) identify simple 
relationships; 3) identify dynamic relationships; 4) organize the parts of the system into a framework of relationships; 5) 
identify whole-system cyclic relationships; 6) recognize hidden dimensions of the system; 7) generalize and problem 
solve within the system; and 8) think temporally about the system through prediction and retrospection. 
3Items with negative discrimination were removed from our final analysis 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.953380doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?v2FKxU
https://www.zotero.org/google-docs/?hS3jpn
https://doi.org/10.1101/2020.02.18.953380
http://creativecommons.org/licenses/by-nc/4.0/

