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ABSTRACT

We evaluated whether the brain organises value and confidence signals in a systematic fashion
that reflects the overall desirability of decision options. If so, regions that respond positively to
increases in value should also respond positively to increases in confidence. Likewise, regions that
respond negatively to both value and confidence should be widespread. We strongly confirmed these
predictions through a model-based fMRI analysis of a mixed gambles task that assessed subjective
value (SV) and inverse decision entropy (iDE), which is related to confidence. Purported value
areas more strongly signalled iDE than SV, underscoring how intertwined value and confidence are.
Smooth maps tied to the desirability of actions transitioned from positive SV and iDE in ventromedial
prefrontal cortex to negative SV and iDE in dorsal medial prefrontal cortex. This non-accidental
organisation of SV and iDE signals was found across the brain and was strongest in purported value
areas.

Keywords Decision entropy · Decision making · Risk · Confidence · Subjective value · fMRI

1 Introduction

Subjective value (SV) and inverse decision entropy (iDE) are closely linked concepts. For instance, people tend to be
highly confident (i.e., high iDE) in accepting a high-value option (e.g., their dream job). Similarly, they are confident
when rejecting a low-value option (e.g., spoiled milk). For middling-values, people will be uncertain of what choice to
make and confidence will be low (i.e., low iDE).

∗corresponding author

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2020. ; https://doi.org/10.1101/2020.02.18.954362doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.18.954362
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - FEBRUARY 18, 2020

The relationship between SV and iDE can be described by a simple mathematical function that transforms SV into the
probability of accepting an option (Figure 1b; Domenech et al., 2017; Duverne & Koechlin, 2017; Lebreton et al., 2015;
Rouault et al., 2019) and this probability in turn can be transformed into iDE. Although closely related conceptually,
SV and iDE need not correlate [1b]. Indeed, all combinations of low and high values are possible for SV and iDE (see
Figure 1c).

Although value and confidence are interlinked, until recently research has heavily focused on value. At its inception,
neuroeconomics emphasized the study of expected decision utility (i.e., subjective value, Camerer et al., 2005; Glimcher,
2008; Padoa-Schioppa, 2007; Platt & Glimcher, 1999; Sanfey et al., 2003; Shizgal, 1997; Shizgal & Conover, 1996).
Likewise, early single-cell recordings in monkeys (Padoa-Schioppa & Assad, 2006) and functional magnetic resonance
imaging (fMRI) studies in humans (e.g., Tom et al., 2007) focused on value. Value also plays the leading role in
motivation research on approach-avoidance (Cain & LeDoux, 2008; Elliot & Church, 1997; Hull, 1952; Vroom, 1964).

Subsequent research in value-based decision considered measures related to confidence, such as risk and decision
uncertainty (i.e., confidence, De Martino et al., 2013; Huettel et al., 2006; Lebreton et al., 2015). For example, decision
confidence can be operationalized as a quadratic transform of subjective value (i.e., with an inverted-U relation to value,
Domenech et al., 2017; Duverne & Koechlin, 2017; Lebreton et al., 2015; Rouault et al., 2019) and a sigmoidal relation
with choice probability (see Figure 1b), estimated from a cognitive model (De Martino et al., 2013; Meyniel et al., 2015;
Rouault et al., 2018), or elicited as a subjective rating (Fleming et al., 2012; De Martino et al., 2013, 2017). Algorithmic
proposals link confidence to evidence accumulation in value-based decision making (De Martino et al., 2013; Kepecs et
al., 2008; Kiani et al., 2014);

Although some believe that neural confidence signals have few consequences for downstream processing (Barron et
al., 2015; FitzGerald et al., 2009; Hunt et al., 2012), others suggest that confidence signals can serve metacognitive
functions (Fleming & Daw, 2017; Yeung & Summerfield, 2012) or as an assessment of choice accuracy (De Martino
et al., 2013; Fleming et al., 2012). Monitoring one’s confidence can lead one to change course (Folke et al., 2017;
Resulaj et al., 2009) and can help guide future decisions (Lau & Rosenthal, 2011). Communicating one’s confidence to
others could be useful in group decision making (Bahrami et al., 2012; Bang et al., 2014). More generally, notions of
uncertainty, which are related to confidence, play key roles in a number of cognitive acts, such as in information-seeking
(Bromberg-Martin & Hikosaka, 2009; Charpentier et al., 2018), active sampling (Gottlieb & Oudeyer, 2018), evidence
accumulation (Ratcliff & Rouder, 1998; Usher & McClelland, 2001), risk aversion (Hayden & Platt, 2007; Huettel et
al., 2006; Kacelnik & Bateson, 1996), and in Bayesian models of cognition generally.

Although commonly associated with vmPFC (Basten et al., 2010; Behrens et al., 2008; Levy & Glimcher, 2012;
Plassmann et al., 2007), value and confidence signals can be found throughout the brain, such as in ventral striatum
(Boorman et al., 2009), anterior cingulate cortex (Rushworth & Behrens, 2008; Tom et al., 2007), amygdala (De Martino
et al., 2010), certain parietal (Sugrue et al., 2004) and insular areas (Bartra et al., 2013).

One interesting question is how these value and confidence signals relate. One idea is that the evidence accumulation
with respect to a value comparison process is performed in vmPFC and the confidence in this decision is explicitly
represented in rostrolateral PFC, enabling verbal reports of confidence (De Martino et al., 2013; Fleming et al., 2012).
In line with the notion that subjective value and confidence are interlinked, confidence signals have been found more
dorsally than subjective value on the medial surface of prefrontal cortex (De Martino et al., 2013, 2017; Lebreton et
al., 2015). Although confidence or decision entropy can accompany subjective value computations for many of the
mentioned regions (De Martino et al., 2013; Kepecs et al., 2008; Rolls et al., 2010), it is not yet clear whether areas that
encode value also encode confidence and vice versa. At this juncture, rather than focusing on their localization, we
suggest mapping the relationship between confidence and value throughout the brain.

Lebreton et al. (2015) suggested that representations of value and confidence are combined into a single quantity.
Intuitively, confidence can be seen as having value in-and-of-itself that inflates the basic value signal. We find this
basic account appealing, but incomplete. Lebreton et al. (2015) focused on the case of positive value and high (i.e.,
positive) confidence in vmPFC. If value and confidence signals are truly intertwined, then there should also also be
regions that code the converse, negative value and low confidence. Evaluating uncertainty negatively is consistent with
studies of risk aversion both in humans (Huettel et al., 2006) and non-human primates (Hayden & Platt, 2007; Kacelnik
& Bateson, 1996).

Moreover, one might expect cortical maps that smoothly vary from positive options (high value, high confidence) to
negative options (low value, low confidence). According to this account, the distribution of voxels across the brain
that code for value and confidence will be highly non-accidental: (1) voxels that code for value should also code for
confidence; and vice versa, (2) most voxels sensitive to value and confidence should either code for negative value and
low confidence or positive value and high confidence.
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Figure 1: Behavioral analysis and voxel distribution. Three equations a) describe the behavioral model in which
subjective value (SV) is a weighted combination of gains and losses, paccept is the probability of accepting a gamble,
and inverse decision entropy (iDE) is the (negative) Shannon entropy of paccept and its complement preject. b) paccept
is a function of SV. High values of iDE arise from extreme values of SV, whereas iDE is low for middling values of SV
in which paccept is close to 0.5. c) The 2x2 table shows all positive and negative combinations of SV and iDE. In each
cell, the percentage of voxels (whole brain) that show that specific combination of SV and iDE effects is shown along
with the expected percentage in parantheses according to the null hypothesis that SV value and iDE are independent.
The results indicate SV and iDE tend to both be either positive or negative. The marginals for the rows and columns are
also shown.

To foreshadow our results, these predictions were confirmed. We observed a smooth map (on the medial surface of
PFC) that tracked both value and iDE (i.e., confidence) in a principled way. Thus, what we find are representations
geared towards action; a decision map that is smoothly activated from low confidence (low iDE) and low value in
dorsomedial prefrontal cortex (dmPFC) to high value and high confidence (high iDE) in vmPFC. We also found that
positive/positive and negative/negative relationship between value and confidence held in voxels throughout the brain.

To specify this neural link between decision entropy and subjective value, we used fMRI data from the Neuroimaging
Analysis Replication and Prediction Study (NARPS; Botvinik-Nezer, Iwanir, et al., 2019; Botvinik-Nezer, Holzmeister,
et al., 2019). With a considerably large sample size (N = 104, after exclusion), we tested the different contributions of
subjective value and decision entropy to the blood oxygen level dependent (BOLD) signal. Sample sizes as large as
these are uncommon for neuroeconomic experiments, which makes this data set well-suited to answering how value and
confidence are related in the brain at large. We pitted inverse decision entropy and subjective value against each other
with a focus on a whole-brain corrected analysis of three canonical value areas: nucleus accumbens (NA), vmPFC,
and the amygdala. These regions of interest (ROI) were pre-selected in the original NARPS study (see Supplemental
Information, SI) which focused on the analysis of gains and losses but not confidence. The task was a mixed gambling
task where participants either accepted or rejected each gamble (Figure 1c).

2 Results

The results are based on data collected by the NARPS team (Botvinik-Nezer, Iwanir, et al., 2019; Botvinik-Nezer,
Holzmeister, et al., 2019). After applying exclusion criteria (see Methods), data from 104 participants from the
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mixed-gambles task were analyzed. In the scanner, they were asked to accept or reject prospects with a 50% chance of
gaining or losing a certain amount of money (Figure 1c).

Decision weights for gains and losses were estimated for each participant by logistic regression on the decision to
accept or reject the gamble. The logistic regression models the participants’ probability, paccept, of accepting a gamble
on a given trial (see Figure 1a) is

paccept = logit(βgains × gains + βlosses × losses + intercept). (1)
Using our model we computed the subjective value, which is how much a participant values the current gamble, and
the inverse decision entropy, which is how certain a participant is about accepting or rejecting the current gamble.
Subjective value for a specific trial was computed using the estimated beta coefficients β for gains (βgains) and losses
(βlosses) as:

SV = βgains × gains + βlosses × losses. (2)

From paccept, we calculate decision (Shannon) entropy as

DE = −[paccept × log2(paccept) + preject × log2(preject)], (3)

where preject is 1− paccept. Finally, inverse decision entropy (iDE) is simply negative DE.

Although simple, this model captures individual differences in both behaviour and brain response. For example,
estimated behavioural loss aversion for a participant, βlosses/βgains, tracked the ratio of negative and positive SV voxels.

Both SV and iDE, estimated from behavior, were used as parametric modulators in a general linear model (GLM) of the
fMRI data. This model-based fMRI analysis answers three key questions: 1) How widespread are the effects (either
positive or negative) of SV and iDE? 2) Which areas differentially respond to either iDE or SV? and 3) How do SV and
iDE effects interrelate?

2.1 Main effects of subjective value and inverse decision entropy

The answer to the first question is shown in the left side of Figure 2. Overall, it is striking how widespread SV and iDE
effects (both positive and negative) are. To foreshadow the results, although both SV and iDE signals are widespread,
iDE is more pervasive. Areas that signal both SV and iDE tend to respond either positively and negatively for both
measures with a positive cluster in vmPFC and a negative cluster occurring more dorsally.

Negative effects of SV and iDE were not observed in NA, amygdala or vmPFC. Though SV (purple colors, top row in
Figure 2) indeed presented a strong cluster of deactivation (150923 voxels, p < 0.001) with a peak Z statistic of 8.39
(coordinates in MNI152 space in millimeters: x = -44, y = -27, z = 61) in the left postcentral gyrus. Also in Figure
2 (left column), iDE (dark pink colors) presents a cluster of negative activation in the cingulate gyrus (3438 voxels,
p < 0.001, peak Z = 5.86). However, the largest cluster of negative activation for iDE (300573 voxels, p < 0.001)
shows a peak Z statistic in the right supramarginal gyrus of 10.2 (coordinates in MNI152 space in millimeters: x =
50, y = -39, z = 53). For the conjunction analysis of negative effects, the top left brain in Figure 2 (light pink colors)
presents clusters with peak activation in left postcentral gyrus (25820 voxels, p < 0.001, peak Z = 5.76) and cingulate
gyrus (14195 voxels, p < 0.001, peak Z = 4.93), among others (see SI).

As for positive effects, SV (purple colors, bottom left of Figure 2) presents a strong cluster of positive activation (17326
voxels, p < 0.001) in the right NA with a peak Z statistic of 5.44 (coordinates in MNI152 space in millimeters: x =
13, y = 15, z = -10). Notably, activation of vmPFC was strong and part of the same cluster as right NA, extending
towards the frontal pole with Z statistics ranging from ∼2.5 to ∼4. No positive activations of SV were observed in
bilateral amygdala. Also in Figure 2 (dark pink colors, middle column), inverse decision entropy presents an enormous
cluster of positive activation (515033 voxels, p < 0.001) with a peak Z statistic in right vmPFC of 8.75 (coordinates in
MNI152 space in millimeters: x = 6, y = 56, z = -20). This cluster extends towards bilateral NA and bilateral amygdala
and is bigger than any cluster of activation found for subjective value, by far. For the conjunction analysis of positive
effects (Figure 2, light pink colors, middle brain in the bottom row), we found only one significant cluster with peak
activation in vmPFC with activation extending into bilateral NA (14732 voxels, p < 0.001, peak Z = 5.02, coordinates
in MNI152: x = 7, y = 51, z = -20).

How widespread SV and iDE related activity is noteworthy. Furthermore, the alignment of negative effects (Figure 2,
top left) and positive effects (Figure 2, middle column, bottom row) of both variables suggests a principled organization
for a decision-oriented map in mPFC.

Accordingly, SV and iDE effects were not as widespread with positive/negative or negative/positive pairings. Indeed,
we found no cluster activations for the conjunction of positive SV with negative iDE (Figure 2, light pink colors, bottom
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Figure 2: Main effects and contrasts in medial prefrontal cortex. Presents significant activations of subjective value
(purple), inverse decision entropy (dark pink), and their conjunction (light pink) for a whole-brain corrected analysis
conducted with FSL FEAT’s FLAME 1 for different combinations of positive and negative main effects (2x2). The
column on the right hand side (i.e., contrasts) shows areas with stronger negative effects (top right) or stronger positive
effects (lower right).

left). However, for the conjunction of negative subjective value and positive inverse decision entropy (Figure 2, light
pink colors, middle column, top row), we found clusters with peak activation in the left and right supramarginal gyrus
(respectively: 15390 voxels, p < 0.001, peak Z = 5.06, and 8805 voxels, p < 0.001, peak Z = 4.55) as well as in the
left postcentral gyrus, right lateral occipital cortex (LOC), and cingulate gyrus (see SI for more details on all clusters).

2.2 Contrast of subjective value and inverse decision entropy

Our second question about preferential coding of SV or iDE is answered through the direct comparison of the effects of
iDE and SV (Figure 2, contrasts on the rightmost column). To avoid detecting stronger effects of one variable due to
negative effects of the other, we performed a conjunction analysis of main effects with each contrast (see Methods).
The main result is that iDE effects, both positive and negative, were stronger even in purported value areas.

As seen on the right hand side of Figure 2 (contrasts, bottom right), iDE has a larger overall positive effect when
compared to SV. In accordance with the biggest iDE cluster observed in Figure 2 (middle column), here we observe
a cluster of 311318 voxels (p < 0.001) with a mean Z statistic of 3.2. Both vmPFC and bilateral amygdala are part
of this cluster with Z statistics close to the mean effect (within a tolerance of plus ~0.3 or minus ~0.7). For cerebral
clusters where iDE shows a stronger negative effect than SV (Figure 2, top right), these include: left and right frontal
pole (respectively: 154059 voxels, p < 0.001, peak Z = 3.54, and 106855 voxels, p < 0.001, peak Z = 3.54), left and
right LOC (respectively: 7920 voxels, p < 0.001, peak Z = 3.54, and 10039 voxels, p < 0.001, peak Z = 3.54). The
results did not show any clusters where SV had a significantly larger positive effect than iDE, which is striking for
purported value areas. On the other hand, by far the biggest cluster where SV had a stronger negative effect than iDE
(Figure 2, top right) displays peak activation in the left cingulate gyrus (29900 voxels, p < 0.001, peak Z = 3.54). The
low variance in the peak Z statistics reported in this section is due to the nature of the test (see Methods).

To summarize these results, iDE had a stronger effect in the amygdala bilaterally and vmPFC. No significant difference
between sSV and iDE was found in either left or right NA. Indeed, the contrast plots (Figure 2, rightmost column) show
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that many traditional value areas are more responsive to entropy. More details on all clusters contrasting SV and iDE
can be found in the SI.

2.3 Interdependence of subjective value and inverse decision entropy

Our final question concerns the relationship between SV and iDE. We predicted that these quantities would be
intertwined in a particular way, namely that SV and iDE would collocate and match in terms of positivity and negativity.
We confirmed these predictions in three ways.

First, in Figure 1c, we present the different contingencies for the intersection of voxels where both variables have an
effect in the whole brain (masked with task-active voxels), χ2 = 25.59, p < 0.001. This analysis shows that voxels tend
to either be both positive for SV and iDE or both negative. Figure 1c shows the expected and observed cell frequencies
underlying this analysis. One observation is that there is also a strong effect for voxels to code negative values for both
iDE and SV, which might relate to risk aversion (see SI). The relationship between iDE and SV was even stronger in
three regions of interest (right NA, right amygdala, and frontal medial cortex - which includes vmPFC). Right NA had a
98% overlap of positive SV and iDE, whereas frontal medial cortex and right amygdala had 100% overlap.

Second, rather than dichotomise the data, we present the correlations of beta weights between SV and iDE for these same
areas (Figure 3). Frontal medial cortex shows the strongest correlation for these variables (Figure 3e), r = 0.823, p <
0.001, and that the correlation remains positive at the whole brain level (Figure 3f), r = 0.379, p < 0.001. Both left NA
(Figure 3a), r = 0.506, p < 0.001, and right NA (Figure 3b), r = 0.488, p < 0.001, show strong correlations between
SV and iDE as well, followed by the right amygdala (Figure 3d), r = 0.281, p < 0.001. The left amygdala (Figure 3c)
also shows an association but the effect is relatively small when compared to the other regions, r = 0.141, p < 0.001.
The generalized interdependence between SV and iDE further supports the notion of a principled alignment between
both measures.

Third, there appear to be relatively smooth maps that span large regions that are either positive or negative for both SV
and iDE. For illustrative purposes, we present the beta weights (z-scored independently) for both variables viewed from
a sagittal perspective of the medial cortex (Figure 4). Notice that the areas that are positive or negative for SV (Figure
4a) and iDE (Figure 4b) tend to overlap such that the summation (Figure 4c) reveals relatively smooth and uniform
gradients of positivity and negativity for both SV and iDE.

3 Discussion

The large-scale dataset from the NARPS team afforded us the opportunity to clarify the relationship between subjective
value (SV) and a quantity related to confidence, inverse decision entropy (iDE). Previous work by Lebreton et al. (2015)
suggested that value and confidence combine into a single quantity such that confidence effectively adds to a basic value
signal to yield a combined signal. This view is supported by data and is intuitive in that being confident in an option
should make it more attractive. In addition to the metacognitive roles confidence can play (Fleming & Daw, 2017;
Yeung & Summerfield, 2012) in decision making, a combined signal provides an avenue for confidence to directly
impact the immediate choice. Although appealing, this view seems incomplete in that it neglects situations in which
confidence is low.

We evaluated the possibility that the brain organises value and confidence representations in a systematic fashion that
reflects the overall desirability of choice options. This view holds that regions that respond positively to increases in
value should also respond positively to increases in confidence. Conversely, there should also be regions that respond
negatively to both value and confidence. If the brain represents options in terms of a general notion of desirability that
combines value and confidence signals, signals reflecting purely positive and purely negative pairings should be more
prevalent than mixed pairings of SV and iDE.

Our view was overwhelmingly supported by the data. As shown in Figure 2, regions that coded for both SV and iDE
tended to code both quantities either positively (e.g., vmPFC) or negatively (e.g., dmPFC). Across the whole brain at
the individual voxel level (Figure 1c), voxels were over-represented that responded positively or negatively to both iDE
and SV. This pattern was almost perfectly followed in purported value areas, such as right NA, right amygdala, and
frontal medial cortex. Likewise, across voxels, beta weights for SV and iDE positively correlated across the whole
brain and in purported value areas, particularly in frontal medial cortex (Figure 3e).

The organisation of positive and negative SV and iDE spans regions. There appeared to be large, smooth maps in the
brain that transition from positive SV and iDE to negative SV and iDE (Figure 4). Traditional value areas, such as
vmPFC, exhibit the positive pairing whereas more dorsal areas display the negative pairing of SV and iDE. In effect,
these results complete the satisfying story begun by Lebreton and colleagues Lebreton et al. (2015).
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Figure 3: Links between subjective value (SV) and inverse decision entropy (iDE) across Regions of Interest (ROI).
SV and iDE positively correlate across voxels (a) left NA, b) right NA, c) left amygdala, d) right amygdala, e) frontal
medial cortex (FMC)) or for f) task-active voxels across the whole brain.
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Figure 4: Beta weights for subjective value and inverse decision entropy. For illustration purposes only, we show the
gradients that go from dorsal (negative effects in red) to ventral (positive effects in green) in medial prefrontal cortex
for a) subjective value, b) inverse decision entropy, and c) summation of inverse decision entropy and subjective value
(after z-scoring each variable). Colorless areas in c) represent brain areas where the effects cancel each other out (i.e.,
close to zero). Lighter areas in c) represent larger absolute values.

Our model-based analyses suggests a reinterpretation of purported value areas. Although it was known that confidence
signals can appear in purported value areas (De Martino et al., 2013), our results indicate that these confidence signals
are stronger and more pervasive in these areas than value signals. This result is striking because these areas were
selected because they are understood to be value areas.

When comparing positive main effects, the biggest inverse decision entropy cluster (Figure 2, middle column, dark
pink colors) is more than seventeen times the size of the biggest subjective value cluster (Figure 2, bottom left, purple
colors) and more than ten times the size of all subjective value clusters combined. Similarly, when directly comparing
the effects of inverse decision entropy and subjective value (Figure 2, rightmost column), the biggest cluster is the one
where inverse decision entropy is larger than subjective value — when comparing their positive effects (bottom right
of Figure 2). Such a cluster is also bigger than all the clusters where subjective value is larger than inverse decision
entropy combined.

One suggestion is that these areas should no longer be referred to as value areas given they are more strongly driven by
uncertainty (e.g., iDE) when making risky decisions. Indeed, in this task, there is no strong evidence of pure value
signals. Of course, even though these areas are strongly driven by iDE, it would also be incorrect to refer to these areas
as uncertainty areas given the intertwined and highly non-accidental relationship between SV and iDE signals. Instead,
it appears that decision areas reflect a combined signal that is topographically organised from jointly positive to jointly
negative measures.

One question is why the brain might organise SV and iDE information in this jointly positive or jointly negative manner.
One explanation is that this representation of choice options is easily tied to action. Such an axis is consistent with
valence-dependent confidence (Lebreton et al., 2019) and with theories on approach-avoidance being the primary
dimension along which behavior is expressed (Cain & LeDoux, 2008; Elliot & Church, 1997; Hull, 1952; Vroom, 1964).
Evaluating uncertainty negatively is consistent with studies of risk aversion both in humans (Huettel et al., 2006) and
non-human primates (Hayden & Platt, 2007; Kacelnik & Bateson, 1996). Thus, our account suggests that confidence
and value are integral computations directed towards action.

Our results support a research strategy of considering how different measures, in this case SV and iDE, relate as opposed
to localising single measures. By considering multiple measures and regions, a clear picture emerges of how the brain
organises SV and iDE signals, which in turn suggests how this information may be used to support decision making.

Another general lesson is that model-based fMRI analyses of individual participants is feasible and useful. The model
we used was incredibly simple, yet provided the means to understand how SV and iDE signals related. Furthermore,
fits to individuals’ behaviour yielded measures of risk aversion that reflect individual differences in brain response
(see SI). In effect, the cognitive model is demonstrating a reality at both the behavioral and neural level for individual
participants, which mirrors recent findings in the concept learning literature on attentional shifts (Braunlich & Love,
2018; Mack et al., 2020). Our results support the claim that cognitive models can reveal intricate facets of behaviour
and brain response.
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4 Methods

4.1 Overview

Our analyses were based on data from the Neuroimaging Analysis Replication and Prediction Study (NARPS; Botvinik-
Nezer, Iwanir, et al., 2019; Botvinik-Nezer, Holzmeister, et al., 2019). Data from 108 participants (60 female, 48 male;
mean age = 25.5 years, s.d. = 3.59) were made available to participating teams. Participants engaged in a mixed-gambles
task in an fMRI scanner (four runs). They were asked to either accept or reject gambles based on a 50/50 chance of
incurring in a certain amount of monetary gain or loss; where losses and gains were orthogonal to each other. Originally,
the available responses were strongly accept, weakly accept, weakly reject, and strongly reject, but these were collapsed
into accept and reject categories for our modelling purposes.

Participants were assigned to one of two conditions; an equal range condition and an equal indifference condition.
Participants in the equal range condition observed an equal range of potential losses and gains as in De Martino et al.
(2010). Participants in the equal indifference condition observed a potential range of losses that was half that of potential
gains as in Tom et al. (2007), consistent with previous estimates of loss aversion (see Supplemental Information, SI,
for full experimental protocol details). Our study did not focus on differences between ranges of gains or losses, thus
participants from both conditions were collapsed into a single group. Some participants were previously excluded by
the NARPS organizers. We further excluded four participants: one participant had too much head movement (above
2.3 standard deviations above group mean in framewise displacement), one participant reversed the response button
mapping, and another two participants were above 2.3 standard deviations from the group mean in either their gain or
loss coefficients from our model (see subsection 4.3). Thus, 104 participants were included in the final analyses.

4.2 MRI scanning protocols and fMRI preprocessing

MRI was performed on a 3T Siemens Prisma scanner at Tel Aviv University. The data were preprocessed by the NARPS
organizers using fMRIPprep 1.1.6 (Esteban, Markiewicz, et al., 2018, RRID:SCR_016216); (Esteban, Blair, et al.,
2018), which is based on Nipype 1.1.2 (Gorgolewski et al., 2011); (Gorgolewski et al., 2018, RRID:SCR_002502).
Brain extraction was performed using the brain mask output from fMRIPrep v1.1.6. (see SI for more information as
well as the information on the NARPS dataset: Botvinik-Nezer, Iwanir, et al., 2019; Botvinik-Nezer, Holzmeister, et al.,
2019).

4.3 Model-based fMRI

We used subjective value and inverse decision entropy as parametric modulators for the general linear model (GLM)
of the fMRI data, along with an intercept. This model included temporal derivatives for the mentioned variables and
seven movement nuisance regressors (framewise displacement and rotations and translations along the X, Y, and Z
coordinates). The nuisance regressors were all provided as output from fMRIPrep v1.1.6.

Variables in the fMRI GLM were modelled with a double-gamma as a basis function and the full trial duration of
four seconds with FSL 5.0.9 (Jenkinson et al., 2012). No orthogonalization was forced between regressors. We used
a spatial smoothing kernel of 5mm FWHM and FSL’s default highpass filter with 100 seconds cutoff (i.e., locally
linear detrending of data and regressors). We also used FSL’s default settings for the locally regularized autocorrelation
function. The four runs per subject were pooled with fixed effects at the second level and modelled with FSL FEAT’s
“FLAME 1” with outlier deweighting at the third level.

For inference on the main effects of subjective value and inverse decision entropy, we ran whole-brain corrected
analyses with FSL’s default thresholds for cluster-wise inference of z = 2.3 and p = 0.05. We looked at both positive
and negative activations. To declare activation, or its absence thereof, we took the left and right amygdala, the left and
right nucleus accumbens, and the frontal medial cortex masks from the Harvard-Oxford cortical and subcortical atlases
provided within FSL. The images were resampled and binarized using FSL’s flirt with a threshold of 50%. A custom
bash script checked if active voxels were found in these areas as well as doing a visual inspection of the thresholded z
maps in the regions of interest.

The Results section focused on four different analyses: 1) the negative main effects of subjective value and inverse
decision entropy, 2) the positive main effects of subjective value and inverse decision entropy, 3) the direct comparison
of effects between these two variables, and 4) the correlation between subjective value and inverse decision entropy
across voxels in the brain. For both negative and positive effects, we also reported the results of a conjunction analysis
(Nichols et al., 2005) which specifies regions where both variables are significantly below zero (for negative effects, top
row in Figure 2) or above zero (for positive effects, bottom row in Figure 2). This conjunction analysis was performed
as described in (Nichols et al., 2005) using Tom Nichol’s easythresh_conj.sh script (Nichols, 2019). The third analysis
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was performed as two one sample t-tests with FSL randomise (5000 permutations, p < 0.01) on the signed differences
(i.e., both inverse decision entropy minus subjective value and subjective value minus inverse decision entropy) between
the Z statistics estimated at the second level GLM after pooling estimates with a fixed effects model across the four runs.
To account for the fact that a variable can show a larger effect simply because the other variable shows a strong negative
effect, we used the conjunction of the contrasts with the corresponding main effects (of either subjective value or inverse
decision entropy, respectively). To facilitate these conjunctions, we converted the p-values from the mentioned FSL
randomise analysis to Z statistics and further masked the output based on voxels that showed differences in absolute
value. Alternatively, testing for differences between absolute values of these variables can be checked in the SI. We also
report the number of voxels in our cluster activations to emphasize their relative size sampled from MNI152 space at a
resolution of 1mm x 1mm x1mm. The fourth analysis focuses on the beta weights - as opposed to the Z statistics - to
compute correlations between SV and iDE across voxels.

4.4 Data and code availability

1) The original NARPS data can be found at: https://openneuro.org/datasets/ds001734/versions/1.0.4
2) The code for our main analyses is at: https://github.com/bobaseb/neural_link_SV_iDE
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