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Abstract 

Major Histocompatibility Complex II (MHC II) molecules play a vital role in the onset and control of 

cellular immunity. In a highly selective process, MHC II presents peptides derived from exogenous 

antigens on the surface of antigen-presenting cells for T cell scrutiny. Understanding the rules 

defining this presentation holds critical insights into the regulation and potential manipulation of 

the cellular immune system. Here, we apply the NNAlign_MA machine learning framework to 

analyse and integrate large-scale eluted MHC II ligand mass spectrometry (MS) data sets to 

advance prediction of CD4+ epitopes. NNAlign_MA allows integration of mixed data types, 

handling ligands with multiple potential allele annotations, encoding of ligand context, leveraging 

information between data sets, and has pan-specific power allowing accurate predictions outside 

the set of molecules included in the training data. Applying this framework, we identified accurate 

binding motifs of more than 50 MHC class II molecules described by MS data, particularly 

expanding coverage for DP and DQ beyond that obtained using current MS motif deconvolution 

techniques. Further, in large-scale benchmarking, the final model termed NetMHCIIpan-4.0, 

demonstrated improved performance beyond current state-of-the-art predictors for ligand and 
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CD4+ T cell epitope prediction. These results suggest NNAlign_MA and NetMHCIIpan-4.0 are 

powerful tools for analysis of immunopeptidome MS data, prediction of T cell epitopes and 

development of personalized immunotherapies. 

 
Keywords: Machine Learning, Bioinformatics, Immunoinformatics, Immunology, MHC II, Antigen 

Presentation, Mass Spectrometry, Immunopeptidomics, Neoepitopes 

Introduction 

Major Histocompatibility Complex class II (MHC II) molecules play a pivotal role in the adaptive 

immune system. Antigen-Presenting Cells (APCs) display MHC II molecules in complex with 

peptides1 on their surface. These peptides are products of extracellular proteins internalized by 

APCs and proteolytically digested in endocytic compartments. During protein degradation, the 

MHC II binding cleft is loaded with peptide fragments of the antigen and peptides that bind stably 

(forming a pMHCII complex) are shuttled to the cell surface for presentation to T-helper (Th) cells 

of the immune system2. Th cells scrutinize the surface of APCs and if the T cell receptor (TCR) 

recognizes a pMHCII complex, Th cells can become activated. Peptides that cause T cell 

activation are termed T cell epitopes. Regulation of Th cell activation is critical since they 

coordinate the activation of effector cells. Peptide-MHC presentation is a necessary and highly 

selective step in the process of T cell activation and characterizing the rules defining this 

presentation is pivotal for our understanding of cellular immunity. 

 
Given this, characterizing the rules of MHC II peptide presentation has been the focus of 

considerable research efforts. MHC II is a heterodimer, the alpha and beta chains of which 

together form the peptide-binding cleft. In humans, the Human Leukocyte Antigen (HLA) of MHC 

class II is encoded by three different loci (HLA-DR, -DQ and -DP)3. The corresponding HLA genes 

have numerous allelic variants with polymorphisms that are mostly clustered around the residue 

locations forming the peptide binding cleft, resulting in a wide range of distinct peptide binding 
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specificities. MHC II has an open binding cleft, allowing it to interact with peptides of a broad 

length range, most commonly of 13-25 amino acids4. The binding cleft of MHC II interacts 

predominantly with a 9-mer register of the interacting peptide, termed the binding core5. The 

placement of this binding core varies between peptides, resulting in peptide flanking residues 

(PFRs) of differing length protruding out from the binding cleft of the MHC II molecule. PFRs 

influence both the interaction with MHC II and the activation of T cells6. These facts together 

makes the study and prediction of MHC II peptide interaction highly challenging. 

 
Traditionally, in vitro peptide-MHC Binding Affinity (BA) assays have been used to generate data 

to characterize the specificity of MHC II molecules7, and a range of machine-learning prediction 

models have been developed from this data to identify the rules of peptide-MHC binding 

(reviewed in8,9). However, evidence suggests peptide-MHCII binding affinity to be a relatively weak 

correlate of MHC antigen presentation10 and peptide immunogenicity11. Likewise, several studies 

have demonstrated that MHC-II peptide binding prediction models can benefit from being trained 

on so-called immunopeptidome data obtained by liquid chromatography coupled mass 

spectrometry(LC-MS/MS) (reviewed in12,8). In a typical MHC II immunopeptidome Eluted Ligand 

(EL) assay, MHC molecules are immunopurified from lysed antigen-presenting cells. The bound 

peptide ligands are next chromatographically eluted from MHC molecules and sequenced via 

MS/MS13,14. The result of such an assay is a list of peptide sequences restricted to at least one of 

the MHC II molecules expressed by the interrogated cell line. 

 
The biological relevance of EL data is a major advantage over BA data. EL data implicitly contains 

signals from steps of MHC II antigen presentation, such as antigen digestion, MHC loading of 

ligands and cell surface transport. Amino acid preferences in termini of immunopeptidome ligands 

show clear evidence of proteolytic digestion and ligand prediction has been improved by explicitly 

encoding this signal in prediction models15,16,17. Models trained on EL data can learn the ligand 
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length preference of MHC molecules, since this preference is inherent to EL data, but not to BA 

data (examples include15,17,18). 

 
While most prediction methods are trained either on binding affinity (BA) or MHC MS eluted ligand 

(EL) data, the work by Jurtz et al.19 proposed an architecture where the two data types were 

effectively integrated into one machine learning framework. This framework has later with high 

success been applied to train models with state-of-the-art performance for prediction of MHC 

class I antigen presentation and CD8 T cell epitopes19,20. Recent framework refinements also 

cover MHC class II data, and demonstrate how integration of antigen processing signals 

contained within and flanking the MS EL data boosts predictive power15. 

 
The immense polymorphism of MHC combined with the high experimental cost burden 

associated with characterizing the specificity of individual MHC molecules makes specificity 

characterization of all MHC molecules a prohibitively expensive undertaking. Given this, a 

proposed solution is pan-specific prediction models, which are trained on peptide interaction data 

covering large and diverse sets of MHCs with the purpose of and learning the associations 

between the MHC protein sequence and its peptide specificity21,22. The value of these models lies 

in their ability to predict peptide-MHC binding for all alleles of known sequence, including those 

characterized by limited or even no peptide-binding data23. 

 
Ligands eluted from cell lines expressing only one MHC molecule can be unambiguously 

annotated to that allele and are termed single allele (SA) ligands. Such data is generated from 

genetically engineered cell lines24,25 or careful experimental design, i.e. matching an 

immunopurification antibody specific to an MHC loci with a cell line homozygous to said loci (as 

done most often when conducting an HLA-DR specific LC-MS/MS experiment). However, this 

scenario is the exception in immunopeptidomics studies. EL data from patient samples will more 

often be composed of peptides of mixed specificities corresponding to the different MHC 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 19, 2020. ; https://doi.org/10.1101/799882doi: bioRxiv preprint 

https://doi.org/10.1101/799882
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

molecules expressed in the given antigen-presenting cell. Such data is termed multi allele (MA) 

ligands and annotating MA ligands to their respective MHC in such data is not a trivial task. 

Ligands from MA data can be deconvoluted into separate motifs in an unsupervised manner with 

tools like GibbsCluster26 and MixMHCp27, but this still leaves the task of assigning motifs to their 

respective alleles12.  

 
We recently proposed a solution to this critical challenge of MA data by an extension of the 

NNAlign algorithm termed NNAlign_MA28. NNAlign_MA handles MA data naturally by annotating 

MA data during training in a semi-supervised manner based on MHC co-occurrence, MHC 

exclusion, and pan-specific binding prediction. This algorithm is building on similar principles as 

the MixMHCp27 and MoDec17 methods described earlier however, with the important difference 

that NNAlign_MA allows to leverage information between data sets enabling accurate motif 

deconvolution also for data sets and alleles with limited ligand coverage (such as HLA-C for class 

I28). In the work by Alvarez et al., the ability of NNAlign_MA to automatically deconvolute and learn 

binding motifs from complex EL MA data was showcased in several scenarios, and the algorithm 

was demonstrated to have a high potential for deconvoluting MA data and to construct accurate 

pan-specific predictors for MHC antigen presentation. For MHC II, this early work was conducted 

on a small MA data set covering mainly HLA-DR alleles, and also the NNAlign_MA modelling 

framework used did not incorporate signals of MHC II antigen processing. Here, we extend this 

work adapting NNAlign_MA to allow explicit encoding of ligand context to learn signals of antigen 

processing. Next, we apply the method to perform motif deconvolution and train a pan-specific 

prediction model of MHC II antigen presentation directly from an extensive data set of MA data 

covering HLA-DR, DQ and DP. Benefitting from the unique abilities of NNAlign_MA to integrate 

mixed data types, handling ligands with multiple potential allele annotation, encode signals of 

antigen processing, leverage information between data sets, we investigate its power for motif 

deconvolution in particular for DQ and DP molecules covered with few ligands in individual MA 
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data sets. Also, the resulting pan-specific predictor, termed NetMHCIIpan-4.0, is benchmarked 

against current state-of-the-art methods in terms of performance for ligand and CD4+ T cell 

epitope prediction. 

 
Materials and Methods 

Binding affinity data 

Binding affinity data was gathered from the NetMHCIIpan-3.2 publication29. In line with the EL 

data set, only BA peptides of length 13-21 were included in the analysis. After filtering, the data 

set contained 131,077 peptides covering 59 HLA-II molecules. Peptide binding affinity data is 

quantitative and the measured binding affinity was transformed to fall in the range [0,1] as 

described in30. 

 
Eluted ligand data - Extraction 

All MHC ligands in the IEDB31 were downloaded (January 28th 2019th) and this table served as a 

guide to identify publications with MHC II EL data. Publications with full HLA class II typing and 

more than 1000 ligands were selected for data extraction. Ligand data was subsequently 

extracted from the individual publications32,33,34,35,36,37,38,39,40,41. Supplementary materials of the 

publications were processed and ligands extracted along with their source proteins and 

associated MHC molecules. Some additional data sets were found via literature search 

25,17,42,43,44,45 and a small in-house database of HLA-DR EL data obtained from homozygous cell 

lines. Only cell lines with more than 250 measured ligands were included in the final data set. 

 
The resulting data sets consist of tables of ligands, their source proteins and a list of potential 

interacting MHC II molecules (the MHC molecules expressed in the given cell line). In cases of DQ 

or DP heterozygosity, all possible alpha and beta chain combinations were included in the list of 

possible MHC II molecules. All post-translationally modified peptides were excluded and only 

ligands of length 13-21 were included in the analysis (excluding 16.4% of the total extracted EL 
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data), resulting in a total of 133 data sets, covering 372,639 MHC measurements, and 74 distinct 

MHC II alleles (3 DPA, 12 DPB, DQA 12, DQB 12, 32 DRB and 3 H-2). For a complete overview of 

the data, refer to Supplementary Table 1. 

 
Eluted ligand data - Negative peptide generation 

Eluted ligand data contain only positive examples of MHC ligands. Negative data were defined as 

described earlier15,20 by randomly sampling peptides from the UniProt database46. Negatives were 

generated per data set and follow a uniform length distribution in the range 13-21. For each 

length, the number of negatives was equal to 5 times the number of ligands at the maximum of 

the ligand length distribution. 

 
Eluted ligand data - Context 

Terminal regions inside and outside of ligands were encoded to capture signals of proteolytic 

digestion, as described previously15. A total of 12 residues were encoded for each ligand: six 

PFRs (three residues from the N-terminal and three from the C-terminal) and six ligand context 

residues from the source protein sequence (three residues upstream the ligand N-terminus and 

three residues downstream the C-terminus). Roughly 1% of ligands could not be mapped to a 

source protein, resulting in a context encoding of X’s. BA data also received a context of X’s. 

Negative EL data in training sets were also assigned context from their sampled source protein. 

 
Data set partitioning 

NNAlign_MA was trained in a 5-fold Cross-Validation manner. Data was partitioned via common 

motif clustering47 to ensure that no partition shared 9-mer subsequences. BA and EL data were 

clustered simultaneously and next separated, resulting in a total of 10 partitions, 5 for EL data and 

5 for BA data. 

 
Epitopes 
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T Cell epitopes were downloaded from the IEDB (downloaded: July 1st 2019), and filtered to 

include only positive MHC II peptide epitopes of length 13-21. Furthermore, epitopes measured 

by intracellular cytokine staining (ICS) or Tetramer/Multimer assays were included in the 

benchmark, resulting in a total of 1469 epitopes. 

 
The F-rank evaluates the ability of prediction methods to prioritise epitope discovery. In short, 

epitopes are ranked by prediction scores amongst their length matched peptides from the 

antigen, and the F-rank score is the percentage of false positives, i.e. peptides with prediction 

scores higher than measured epitopes. An alternative F-rank scoring scheme incorporates the 

effects of antigen processing. Here, each antigen was in silico digested into k-mers (peptides of 

length 13-17 amino acids) and scores predicted for each. Next, epitope length matched peptides 

from an antigen were assigned a score by summing prediction scores of all k-mers whose 

predicted binding core overlap completely with the given peptide. To remove noise in the data 

set, and filter out potential false positive epitopes, the data set was filtered to only include epitope 

with an F-rank values 10.0 for at least one of the methods benchmarked. 

 
NNAlign_MA training 

The complete model consisted of an ensemble of 150 networks with 20, 40 and 60 hidden 

neurons with 10 random weight initializations for each of the 5 cross-validation folds (3 

architectures, 10 seeds and 5 folds). All models were trained using backpropagation with 

stochastic gradient descent, for 400 epochs, without early stopping, and a constant learning rate 

of 0.05. Only SA data was included in training for a burn-in period of 20 epochs. Subsequent 

training cycles included MA data. 

 
Sequence logos 

Sequence Logos were generated with Seq2Logo48. The amino acid background frequency for all 

logos was constructed from the set of ligand source proteins. MHC II binding motifs detected in 
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EL data sets were generated from ligand binding registers as predicted by NNAlign_MA, using the 

default Seq2Logo settings. For context, separate logos were made for the N- and C-terminal 

using weighted Kullback-Leibler, excluding sequence weighting. Logos from GibbsCluster 

deconvolution of context were generated with default settings of Seq2Logo. Note, that a 

condition for inclusion in context motif visualization was that the PFR of the ligand be 3 residues 

or longer, in agreement with earlier work15. 

 
Allele sequence distance measure 

Sequence distance between alleles is calculated based on the alignment score of their pseudo 

sequences with the following relation: 𝑑 = 𝑠(𝐴, 𝐵)/*𝑠(𝐴, 𝐴) ∗ 𝑠(𝐵, 𝐵), where 𝑠(𝐴, 𝐵) represents the 

BLOSUM50 alignment score of the two pseudo sequences49. 

 
Deconvolution consistency score 

As a measure of NNAlign_MA's consistency in MHC motif deconvolution, the motifs for a given 

MHC as obtained from different MA data sets were compared in terms of the Pearson correlation 

coefficient of their PSSMs. We defined the consistency score for an allele's deconvolution as the 

average Pearson correlation coefficient for non-self comparison. 

 
Results 

The goal of this project is to build a pan-specific predictor of MHC II antigen presentation trained 

on EL data. Our approach is to train a model with NNAlign_MA28 adapted to MHC II EL data by 

allowing for explicit encoding of ligand context. In large-scale benchmarks, we investigate the 

ability of NNAlign_MA to consistently deconvolute motifs from data sets of mixed DR, DP and DQ 

peptide specificities. Furthermore, investigating the ligand context, we validate earlier findings 

demonstrating an improved predictive performance for ligand discovery empowered by the signal 

of antigen processing, and investigate this signal’s consistency across MHC loci. Finally, 
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independent CD4+ epitope benchmarks compare the developed model to recent, competing 

models. 

 
NNAlign_MA algorithm 

MA data are numerous and diverse, ~73% of ligands gathered for this project stem from MA data 

sets (see Supplementary Table 1 for a summary of EL data sets). When dealing with EL data from 

MHC II heterozygous cell lines, the ligands are of mixed specificities and it is not trivial to assign 

ligands to their respective restricting MHC II molecule. We have earlier proposed a simple 

machine learning framework, NNAlign_MA, to resolve this task28. Using semi-supervised learning, 

NNAlign_MA leverages information from SA data to annotate MA data. This is achieved with a 

burn-in period in which only SA data is used for training, after which MA data is introduced, 

annotated and used for training. The annotation is achieved by predicting in every training 

iteration binding to all MHC molecules assigned to the given MA data set and assigning the 

restriction from the highest prediction value. With the allele assignment in place, the MA data 

becomes equivalent to SA data and can be used for training.  
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Figure 1) Multi-allele (MA) data motif deconvolution of 3 cell lines containing pairwise allele overlap compared to 

logos from 3 Single-Allele (SA) data sets. The figure shows the ability of NNAlign_MA to implicitly leverage allele 

overlap and the exclusion principle to annotate ligands from MA data and learn their binding motifs. The logos were 

generated with Seq2Logo, excluding ligands with a prediction score less than 0.01. Each logo is labelled with the allele, 

the number of ligands used to generate the logo and the identifier to the source data set. 

 
An important strength of NNAlign_MA is that the MA data annotation is integral to the training 

process, circumventing the need for offline motif deconvolution and annotation. The fully 

automated process implicitly leverages data set allele overlap and exclusion principles to learn 

motifs and annotate ligands. An example of this functionality is shown in Figure 1, displaying the 

motifs identified from three MA EL data sets that pairwise share one MHC allele. This figure 

illustrates how the model achieves allele annotation by comparing motifs and alleles shared 

between multiple data sets.  

 
Comparison of models trained on SA and MA data 
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NNalign_MA extends the training data by its ability to annotate MA data automatically. To assess 

if NNAlign_MA can learn specificities uniquely covered by MA data without diluting learning from 

SA data, we compared three models in terms of cross-validation performance. One model, SA-

model, is trained exclusively on SA data (SA EL data and BA data) and another, MA-model, is 

trained on all data (SA EL, MA EL and BA data). The third model, NetMHCIIpan-3.2, is included as 

a representative model trained only on BA data. Figure 2 displays the performance of the different 

models on the two EL SA and MA data subsets (the performance of the SA and MA models 

evaluated using cross-validation).  

 

Figure 2) Cross-validation benchmark performance comparison of models with increasing complexity in terms 

of training data and encoding. SA-model and MA-model are trained on SA-data and MA data, respectively. MAC-

Model is trained on MA-data, including ligand context encoding. SA-, MA- and MAC-models were evaluated on the 

complete data set by predicting each of the 5 test sets in a cross-validation setup, concatenating each test set result 

and calculating data set wise AUC scores. The four models are compared separately for SA (blue dots, n=44) and MA 

(red dots, n=79) EL data sets. Every point in the figure represents an AUC value for a single ligand data set. Results of 

binomial statistical tests, excluding ties: SA-Data comparing MA-Model and SA-Model, p-value=1.00. MA-Data 
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comparing MA-Model and SA-Model, p-value<<0.001. All data comparing MA-Model to NetMHCIIpan-3.2, p-

value<<0.001. All data comparing MA-Model and MAC-Model, p-value<<0.001. 

 
These results demonstrate that the SA and MA models shared comparable predictive 

performance when evaluated on SA data (p=1.000, binomial test excluding ties), supporting that 

NNAlign_MA maintains performance on SA data when including MA data in training. Moreover, 

the MA-model significantly outperformed the SA-model when evaluated on MA-data (p-value < 

10-24 , binomial test excluding ties ). This gain in performance of the MA over the SA-model 

correlated strongly with the average allele distance of the MA data sets to the alleles covered by 

SA-data (PCC: 0.732, Supplementary Figure 2). For details on this distance measure, refer to 

materials and methods. That is, the performance gain of the MA-model is - as expected - most 

pronounced for MA data sets with alleles distant to the SA data. Finally, are both the SA and the 

MA models demonstrated to significantly outperform NetMNHCpan-3.2 on both EL data sets 

(p<0.001 in all cases). Taken together, these results demonstrate that NNAlign_MA can 

successfully deconvolute motifs from MA data and use this to boost the predictive power beyond 

that of methods trained on SA data. Likewise, these results confirm the earlier finding that 

methods trained on EL data outperform methods trained on BA data for the task of predicting 

MHC eluted ligands15. 

 
Source protein context boosts ligand prediction 

Immunopeptidome data inherently contains signals from steps leading to antigen presentation 

and patterns of proteolytic digestion have been described in the terminal and context regions of 

ligands15. Earlier work has suggested that models encoding this context information have superior 

performance when predicting ligand data15,16,17. Here, we set out to validate this observation on an 

extensive data set. 
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The encoding of context data was performed as previously described15 (for details refer to 

Materials and Methods), and models with and without encoding of ligand context were trained 

and evaluated using cross-validation. The results of the benchmark are shown in Figure 2 and 

demonstrate a significantly improved performance of the model, MAC-Model, trained including 

the ligand context (p<0.001 for both SA- and MA-data, binomial test excluding ties). This result 

thus confirms the earlier finding conducted on a data set covering only a limited set of HLA-DR 

alleles15.  

 
Consistent motif deconvolution from MA data 

The posterior analyses, demonstrated the high predictive power of NNAlign_MA and suggested 

that accurate deconvolution of binding motifs in MA data is driving this performance. To further 

support this claim, we show in Supplementary Figure 1 binding motifs generated from the 

predicted binding cores of ligands in each MA data set when deconvoluted by NNAlign_MA. By 

visual inspection, this figure confirmed that for a vast majority of cases, NNAlign_MA was able to 

successfully and consistently deconvolute motifs from MA data. For most data sets, motifs 

captured sharp information enrichment at well-defined anchor positions (P1, P4, P6 and P9 most 

molecules).  

 
A more quantitative analysis of deconvolution consistency was achieved by calculating pairwise 

correlations between PSSMs representing the motifs for MHC molecules shared between multiple 

data sets. That is, for every MHC molecule shared between 2 or more data sets, PSSMs were 

generated from the binding cores of ligands assigned to said allele for each data set, and the 

PSSMs pairwise compared by Pearson correlation. Supplementary Figure 3. visualizes this 

analysis in the form of heatmaps. From these heatmaps, a consistency score was calculated for a 

given allele from the average of these inter data set correlation values. The result of this 

(Supplementary Figure 4) demonstrated very high consistency values for most DR, DP and H-2 

alleles (median for each locus over 0.887), and overall lower values for DQ (median 0.800). 
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To further quantify the accuracy of individual motif deconvolutions obtained by NNAlign_MA, the 

positive predictive value (PPV0.9) was calculated for each set of positive peptides assigned to the 

given MHC molecule within each data set in the context of a set of random natural negatives. In 

short, the PPV0.9 is calculated from the proportion of true positives within the top N predictions in 

the context of negative decoy peptides. Here N was defined as 90% (to account for noise in the 

EL data) of the number of ligands assigned to the given allele in a given data set, and the negative 

decoy peptides outnumbered positives 99 to 1. The result of this analysis is presented in 

Supplementary Table 2 and Supplementary Figure 5, and overall confirmed a high performance 

with median PPV0.9 values for DR, DP and H-2 alleles over 0.604. However, also here the 

performance for DQ was found to be reduced (median PPV0.9=0.372). 

 
Combined, these results support the claim that NNAlign_MA can accurately and consistently 

deconvolute binding motifs in EL MA data. We further in Figure 3. quantify the number of MHC-II 

molecules identified with a PPV0.9 above the conservative value of 0.3 (30% of the predicted 

positives are ligands, compared to the performance of 1% of a random predictor). Here 

NNAlign_MA could identify accurate motifs for 31 HLA-DR (one molecule, DRB1*03:05, was not 

captured due to only being characterized with 90 ligands falling below the threshold of 100 

imposed for accurate motif characterization (see supplementary figure 1), 7 HLA-DP, 12 HLA-DQ, 

and 2 H-2 molecules (see Supplementary Figure 6 for an overview of the motifs for these 

molecules identified between different data sets). In particular for DR these numbers are 

impressive, with a coverage of 97% of the alleles in the training data, and these numbers largely 

surpass the set of molecules described in the recent Racle17 and Abelin25 publications suggesting 

a superior capacity for motif deconvolution of NNAlign_MA compared to the MoDec method 

proposed by Racle et al. in particular for molecules characterized by limited ligand annotations in 

individual MA data sets. The number of MHC molecules covered by accurate motif 

characterization however is in general lower for DQ (and DP) compared to DR reflecting the 
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overall low number of ligands annotated to MHCs from these loci (on average less than 23% of 

ligands from pan-class II MA data sets are annotated to DP and DQ molecules) and the 

associated challenge this imposes when identifying accurate binding motifs. 

 

Figure 3) Number of MHC II molecules covered at different thresholds of PPV0.9. Each molecule is represented by 

the average PPV0.9, across data sets. For PPV calculations, the ligand/decoy ratio is 1/99 for a set of decoy peptides 

independent of training data. 

 

Pan-specific prediction power 

A central power of the NNAlign_MA modelling framework is its ability to leverage information 

between data sets, boosting performance for molecules with limited ligand coverage combined 

with its pan-specificity allowing to make accurate predictions outside the set of molecules 

included in the training data. The first part was illustrated above with the expanded number of 

molecules characterized by accurate motifs in comparison to the method by Racle et al. While the 

pan-specific prediction power of the original NNAlign model has been documented previously 

using different kinds of leave-one-allele-out experiments18,21, this is only the case to a minimal 

extent for NNAlign_MA28. The reason for this is that leave-one-out experiments cannot readily be 

conducted on MA data sets since molecules in this situation in general are shared between 

multiple data sets making it non-trivial to define what to leave-out. As an alternative, we identified 
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3 molecules characterized only with SA-EL data in our training data set (DRB1*04:02, H2-IAb and 

DQA1*01:02-DQB1*06:04). Leaving out all (both BA and SA) data for these molecules from the 

training data, the predictive model was retrained and the predictive performance for each 

molecule evaluated, resulting in an average AUC performance of 0.896 (compared with the cross-

validation performance values of these data sets of 0.950). To further assess the quality of the 

pan-specific predictions, we in Figure 4 show the binding motifs for the three molecules as 

obtained from the SA data themselves, the motifs predicted by this leave-molecules-out (LMO) 

model, and the motifs for the corresponding nearest neighbor alleles contained within the training 

data set (identified using the distance measure defined in material and methods). This latter motif 

would mimic the performance of a the strategy of training allele specific models and using nearest 

neighbor inference to make predictions for alleles outside the training set. Overall, these results 

show a high agreement with only minor differences (including the “missed” P3 anchor for 

DQA1*01:02-DQB1*06:04) between the “true” motifs of the three molecules and the motifs 

predicted by the leave-out model, and a likewise poorer predictive power of the nearest neighbor 

approach in particular for the molecules with more distant nearest neighbors (nearest neighbor 

distances to training set: DRB1*04:02, 0.08; DQA1*01:02-DQB1*06:04, 0.11; H-2-IAb, 0.33). 
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Figure 4) Motifs for three alleles only covered by EL SA data. a. Logos generated from binding cores of a model 

trained only on the available EL data using NNAlign50. b. The learned motifs of a model trained leaving out the three 

alleles in question, generated from the predicted binding cores of the top 0.1% of a set of 1,000,000 random natural 

15-mer peptides. c. The learned motifs of the same model as in b. but for nearest neighbor alleles in the training set for 

the left out alleles, generated from the predicted binding cores of the top 0.1 % of a set 1,000,000 random natural 15-

mer peptides. 

 
Signal of proteolytic antigen processing 

We have previously demonstrated how incorporation of ligand source protein context boosts the 

predictive power of NNAlign_MA (Figure 2). To further investigate the source of this, and seek to 

relate the findings to specific proteolytic signals of antigen processing, we in Figure 5, show 

sequence logos representing the N and C terminal context signal contained within the EL data 

set. Here, all ligands were mapped to their antigen source protein to extract the ligand context of 

6 residues (3 upstream and 3 downstream of the ligand). Along with the context, 3 residues at 

each terminus were extracted. A few observations can be made from this figure: firstly, the ligand 

contains more signal than the context (Figure 5a). Secondly, the data shows a pronounced 
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enrichment of Proline in positions N+2 and C-2 in agreement with earlier findings15. Finally, both 

termini are enriched for charged amino acids. An unsupervised deconvolution of the context motif 

(using GibbsCluster26) supports the two latter observations (Figure 5b). The enrichment for P at 

positions N+2 and C-2 is accentuated in the deconvolution, along with other well-defined motifs. 

This supports the notion that proteolytic enzymes of more than one specificity are at play in the 

degradation of MHC II antigens, in agreement with earlier findings16,17. Further, evaluating the 

predictive power for ligands assigned to each of the different clusters revealed a consistent high 

predictive performance across all clusters (median values above 0.975 in all cases) and a slightly 

improved performance for the clusters with P at position N+2 and C-2 both for N- and C-termini 

(AUCs computed data set wise for each cluster, with negatives assigned to clusters proportionally 

to ligand cluster assignment). Analyzing the data separately for DP, DQ, DR and H2 molecules 

revealed very similar results (see Supplementary Figures 7 and 8), again suggesting that the 

observed signal and identified motifs are related to antigen processing and not MHC binding. 

 
 

 

Figure 5) Sequence logos for N- (top left) and C-terminal (top right) and context sequences. a. Logos for the N- 

and C-terminus of all ligands (with PFRs of length >2). The diagram indicates the placement of residues relative to the 

N- and C-terminus of ligands. b. Upper and lower panel show, unsupervised GibbsCluster deconvolution of N- and C-
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terminal contexts, respectively. Cluster motifs have been ordered manually to align similar motifs for the N- and C-

terminus, with the Proline motif having highest information content in both cases. 

 
CD4+ epitope evaluation  

Prediction of CD4+ epitopes is the ultimate benchmark of peptide-MHC II binding predictors. 

Earlier work has suggested that prediction methods trained including EL data share improved 

predictive performance for this task compared to method trained on BA data, but also that the 

gained performance for prediction of MS ligands observed when including context information 

only to a minor degree - if at all - is transferred to epitope identification15,16. Here, we set out to 

test if the models developed here align with these findings. That is, we benchmarked the 

predictive performance of models trained with (MAC-model) and without (MA-Model) context 

encoding on a large set epitopes from the IEDB and compared performance to the state of the art 

methods NetMHCIIpan-3.229 (trained on BA data only), MHCnuggets51 (trained on BA and EL 

data), and MixMHCIIpred17 (trained on EL data). Note that other methods for predicting MHC II 

binding trained on EL data have been proposed, including NeonMHC225 and MARIA52. However, 

the NeonMHC2 only allows one to run max 20 predictions per day, and MARIA only 5000 

predictions per submission making it impractical to include in a benchmark covering more than 

700,000 peptide-MHC combinations. Benchmark performance was evaluated using the F-rank 

score. In short, F-rank is the proportion of false-positive predictions within a given epitope source 

protein, i.e. percentage of peptides with a prediction score higher than that of the epitope. An F-

rank value of 0 corresponds to a perfect prediction (the known epitope is identified with the 

highest predicted binding value among all peptides found within the source protein) and a value 

of 50.0 to random prediction. Figure 6 gives the results of this experiment showing F-rank values 

obtained by in silico digesting the epitope source protein into overlapping peptides of the length 

of the epitopes. The benchmark is split into two subsets, one with (843 epitopes covering 20 

MHC II molecules) and one without the HLA-II molecules covered by MixMHC2pred (149 epitopes 
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covering 16 MHC II molecules). This benchmark demonstrated a significantly improved 

performance of the MA-model compared to NetMHCIIpan-3.2, MixMHC2pred, MHCnuggets and 

the MAC-Model (p<0.028, p<<0.0001, p<<0.0001 and p<<0.0001, respectively for a binomial test 

excluding ties). Inspecting further epitopes of alleles covered by MixMHC2pred showed that 

NNAlign_MA’s gain in performance was not only driven by epitopes of a limited set of restrictions, 

but hold generally across the vast majority of HLA molecule included in the benchmark (improved 

median F-rank for 16 out of 20 restrictions, 1 tie, p-value<0.005 in binomial test, Supplementary 

Figure 9). Likewise, the MA-model showed significant improvement compared to NetMHCIIpan-

3.2 and MHCnuggets for the subset of epitopes with MHC restriction covered by the training data 

(p<0.012 and p<<0.0001, respectively, binomial test excluding ties). This gain in performance is 

further maintained when analyzing the subset of epitope restricted to MHC molecules not 

included in the training data, again highlighting the pan-specific prediction power of the 

NNAlign_MA modelling framework. 

 
The results however also confirm the earlier finding that signals of antigen processing contained 

within peptide context did not benefit the predictive power for epitope discovery. As discussed 

earlier15,16, this observation might not come as a surprise, since peptides tested for T cell 

immunogenicity most commonly are generated as overlapping peptides spanning a source 

protein, and hence are not expected to follow any rules of antigen processing. However, even 

attempting to account for this bias applying a scoring scheme where the score of a given peptide 

was assigned from the sum of the individual prediction values from all 13-17-mer peptides with 

predicted binding core overlapping the given peptide (for details see Materials and Methods) 

maintained the improved predictive performance of the MA-model and hence did not alter this 

conclusion. 
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Figure 6) F-rank evaluation of NNAlign_MA, NetMHCIIpan-3.2 and MixMHC2pred models on ICS+Tetramer 

epitopes from the IEDB. a. MA-Model (blue) F-rank is compared to NetMHCIIpan-3.2 (red), MixMHC2pred (green) and 

MHCnuggets (orange) for epitopes of alleles covered by the MixMHC2pred method (843 epitopes). b. Epitope F-rank of 

MA-Model, NetMHCIIpan-3.2 and MHCnuggets are compared for epitopes of alleles covered by the MA EL training 

data (blue) (127 epitopes) and epitopes of alleles outside the training data (red) (22 epitopes). a and b: Each point in the 

plot represents the F-rank of one epitope, the F-rank being the percentage of false-positive length matched peptides 

from the epitope source protein, as described in methods. Only results for epitopes for which at least one prediction 

method had F-rank below 10.0 are presented. For visualization, F-rank values of 0 are presented as 0.1005. 

 
These findings thus align with earlier results15,16 demonstrating an improved performance for 

CD4+ epitope identification of models trained including EL data compared to methods trained on 

binding affinity data only (NetMHCIIpan-3.2), and that adding context information to such 

predictors does not boost performance for prediction of epitopes despite this being observed for 

prediction of MHC ligands. 

 
Neoepitope evaluation 

A final benchmark compared the performance of NNAlign_MA and MixMHC2pred for prediction 

of CD4+ neoepitopes. A recent study17 compiled CD4+ neoepitope immunogenicity measures 

from patients with full DP, DQ and DR typing, including both positive and negative results. Here, 
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we present a comparison of prediction performance on this epitope set in terms of AUC and 

AUC0.1 (Figure 7). Excluding peptides with a length less that 13 amino acids resulted in a 

benchmark of 928 peptides. For predictions, to make a fair comparison between the two 

methods, only HLA molecule covered by MixMHC2pred were included. MixMHC2pred prediction 

were performed as described in17 by assigning a prediction value to each peptides as the high 

prediction score of all overlapping 15-mers to all HLA molecules of the patient covered by 

MixMHC2pred. For NNAlign_MA, the sub-kmer approach described earlier16 was applied. Here 

predictions were made for all 13-21-mers subsequences contained within a given peptide to all 

HLA molecules of the patient covered by MixMHC2pred. Next, prediction scores were 

transformed into percentile ranks by reference to a prediction score distribution generated from 

100,000 random natural peptides and a score was assigned to each kmer as the lowest percentile 

rank across all HLAs. Finally, a score to each peptides was assigned as the average over all k-

mers. The result of this analysis demonstrated a slightly higher AUC of NNAlign_MA compared to 

MixMHC2pred. However, focusing on the earlier part of the ROC curve, the difference becomes 

more substantial with AUC0.1 values of 0.273 (NNAlign_MA) and 0.182 (MixMHC2pred), 

suggesting that NNAlign_MA reliably can identify a larger proportion the of the neoepitopes. By 

way of example, the two methods identify 44% (NNAlign_MA) and 37% (MixMHC2pred) of the 

neoepitopes at a false positive rate of 10%. 
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Figure 7) Neoepitope benchmark comparing NNAlign_MA and MixMHC2pred. The receiver operator curve for the 

prediction of a CD4+ neoepitope benchmark data set (n=928). 

 
NetMHCIIpan-4.0  
A web server implementation of the NNAlign_MA and NNAlign_MAC models is available at 

http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/index_v0.php 

 
Discussion 

In this work, we have trained and evaluated a pan-specific MHC II binding predictor. This 

predictor integrates recent advances towards full utilization of EL data for prediction of MHC 

antigen presentation: two output neuron architecture allowing integration of multiple data types, 

the encoding of proteolytic ligand context, and use of the NNAlign_MA machine learning 

framework allowing training on multi-allele (MA) EL data. Training on an extensive EL data set, we 

have in a stepwise manner shown how these features come together to construct a prediction 

model that significantly improves upon current state-of-the-art methods, including its 

predecessor NetMHCIIpan-3.2 when it comes to predicting both ligands and CD4+ epitopes. 
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Firstly, we provided examples of how NNAlign_MA consistently deconvolutes MHC binding motifs 

from separate MA data sets confirming that NNAlign_MA provides accurate solutions to the 

challenge of annotating binding motifs and learning from MA data.  

 
Secondly, MA-models outperformed both SA-models and NetMHCIIpan in cross-validation 

evaluation of MA data, and MA models and SA models had comparable performance on SA data 

supporting the claim that MA data did not dilute the learning and performance of NNAlign_MA. 

Relatedly, the largest gain of MA over SA models was for data sets that contained alleles distant 

to alleles covered by SA data. This result underlines how NNAlign_MA successfully increases the 

coverage of predictable alleles by deconvoluting binding motifs in and training on MA data. This 

observation is critical for our goal of training a pan-specific MHC II predictor on EL data, as the 

success of pan-specific predictors is contingent on training data with broad allelic coverage21,53.  

 
Thirdly and in line with earlier work15,17, encoding proteolytic context in models improved 

performance for prediction of ligands significantly. We found that proteolytic context of ligands is 

a general feature that holds across MHC II loci and species. Clustering context information 

resulted in motifs with a strong signal of amino acid enrichment/depletion in the peptide flanking 

regions. These motifs are likely a signature of proteolytic cleavage processes taking place in the 

MHC II antigen presentation pathway16. Across loci and species, we observed a motif of Proline 

enrichment in the N+2 and C-2 positions of ligands. This is consistent with the hypothesis of 

blocked endopeptidase digestion by the secondary α-amine of Proline. This Proline enrichment 

has been associated with peptides processed in the endo-lysosomal pathway of MHC II antigen 

presentation54. Likewise, we consistently observed motifs with enrichment for aspartic and 

glutamic acid. We suggest this enrichment reflects Cathepsin disfavoring negatively charged 

amino acids near cleavage sites55, leading to decreased digestion of ligands with said signature. 

With lesser information content, a motif of the N-terminal context deconvolution displayed 

enrichment of glycine, serine and threonine. A similar enrichment has been observed downstream 
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of the cleavage site for Cathepsin S, a protease known to participate in the MHC II antigen 

presentation pathway56. The identified processing motifs are thus to a high degree associated 

with decreased potential for antigen processing. Given this, we speculate that they could serve as 

novel MHC II agnostic ways for engineering enhanced/reduced peptide and protein 

immunogenicity; that is amino acid mutations away from these motifs would lead to enhanced 

potential for cleavage, leading to a lower level of antigen presentation, and hence a reduction in 

potential immunogenicity. Likewise, could mutations into these motifs, lower the potential for 

antigen processing, inducing increased immunogenicity. 

 
The proposed model improved CD4+ epitope prediction when compared to the state-of-the-art 

predictors NetMHCIIpan-3.2, MHCnuggets and MixMHC2pred. In contrast to the findings for MS 

ligands, in this benchmark, the predictive power of the models did not benefit by integration of 

context encoding. This was observed even when accounting for bias in the data imposed by T 

cell epitope peptides most often being generated synthetically and thus not reflecting rules of 

natural antigen processing. This result is in line with earlier observations15,16 and suggests that the 

cleavage signal, even though present in individual ligands are diluted when analyzing T cell 

epitopes due to the vast volume of possible ligands with binding cores overlapping the epitope. 

 

Finally, the performance of a model for identification of CD4+ cancer neoepitopes was 

benchmarked against MixMHC2pred. Here, the two methods were found to have overall 

comparable predictive performance, with NNAlign_MA demonstrating the highest specificity and 

MixMHC2pred the highest sensitivity. From a clinical and applied perspective, this result suggests 

NNAlign_MA (and the resulting predictor NetMHCIIpan-4.0) to be a useful to tool as a guide also 

for identification of neoepitopes.  

 
A key factor determining the power of a predictive model for MHC antigen presentation is the 

volume and MHC diversity of the training data. Here, we have demonstrated how the ability of 
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NNAlign_MA to deconvolute motifs and integrate MA EL data into the training framework allows 

for an effective increase of the MHC diversity of the training data. By way of example, the training 

data used in the current study is limited to 22 (14 DR, 2 DP, 5 DQ, 1 H2) molecules if focusing 

only on SA EL data. By integrating MA data, this number is expanded to 102 (32 DR, 18 DP, 49 

DQ, 3 H2) (accounting for all possible α and β chain combinations in heterozygous DQ and DP 

data sets). However, this HLA diversity is only relevant if associated with large volumes of peptide 

data. Analyzing the results of the motif deconvolution of NNAlign_MA on the training data for data 

sets revealed a high bias in the EL data with very limited ligands annotated to DQ (and to a lesser 

degree DP) molecules. This bias is more substantial than what was expected from the difference 

in relative expression of MHC II between the different loci and is more likely caused by differences 

in the specificities of the antibodies used for immunoprecipitation (IP) when purifying DR versus 

DQ/DP MHC complexes before running the MS. Recently, Abelin et al.25 have proposed a 

framework to experimentally generate single-allele MHC MS eluted ligand data sets to resolve this 

issue (and the general issues of handling MA data sets) and demonstrated how this approach 

could be used to generate high volumes of SA EL data also for DQ and DP molecules. Alternative 

approaches would include working with antibodies with improved DQ (and DP) specificities and 

with these conduct sequential IPs allowing for identification of larger volumes of ligands for DQ 

and DP. 

 
Another complicating factor for analyzing and interpreting MA EL data for DQ and DP stems from 

the fact that both the alpha and beta chains are polymorphic, making it non-trivial to assess 

which of the four possible combinations of alpha and two beta chains are presented as HLA 

molecules in a given cell. However, carefully selecting homozygous cell lines or cell lines with only 

one expressed alpha chain could help resolve this, and in this context, EL data covering DQ and 

DP can without any further complication be integrated into the NNAlign_MA modelling framework. 
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A fundamental property of NNAlign_MA setting it apart from most other methods for motif 

deconvolution methods and predictors for MHC antigen presentation, is its pan-specific 

prediction power. As illustrated here, the power allows the method to leverage information 

between data sets enabling the method to identify accurate binding motifs also for molecules 

characterized by limited ligand counts in individual data sets. This ability allowed us to expand the 

coverage of MHC molecules in the training data with accurate binding motifs compared to that 

obtained with data set-specific motif deconvolution methods such as MoDec. Beyond identifying 

motifs for a higher number of MHC molecules, this pan-specific power has large impacts on the 

application of the prediction models developed. Here, the allele-specific models, such as 

MixMHC2pred developed using the MoDec deconvolution framework, has predictive power 

limited to the few HLA molecules with accurate motif deconvolution covered in the training data. 

 

In contrast, the pan-specific method proposed here allows accurate predictions also outside this 

limited space of HLA molecules. By way of example, MixMHC2pred covers 33 HLA II molecules 

corresponding to cases where accurate motifs could be identified from the training data. By use 

of NNAlign_MA, the number of molecules with characterized motifs is increased to 52, and by 

expanding using the pan-specific power of the trained prediction model, the coverage is 

extended to 1913 (including HLA-II molecules with a pseudo-sequence distance <0.05 to any of 

the molecules with accurate binding motifs).  

 
Properties other than antigen processing and HLA binding, such as protein expression, and 

differential access to the MHC-II presentation pathway, contribute to the likelihood of antigen 

presentation. In recent papers (including Abelin et al.25 and Chen et al.52) have suggested 

modelling frameworks integrating a panel of such properties, suggesting large improvement for 

prediction of HLA ligandomes. Further work remains to be done to validate the generality of these 

findings and their potential impact on general rational epitope discovery. 
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In conclusion, we have shown how the relatively simple NNAlign_MA machine learning framework 

can be applied to deconvolute binding motifs in MHC class II MA EL data sets, and how this 

deconvolution allows for identification of signals associated with antigen processing, and 

construction of a pan-specific prediction model with significantly improved performance 

compared to state of the art for prediction of both eluted ligands and CD4+ T cell epitopes.  
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