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Abstract 
Constantly decreasing costs of high-throughput profiling on many molecular levels generate          
vast amounts of so-called multi-omics data. Studying one biomedical question on two or more              
omic levels provides deeper insights into underlying molecular processes or disease           
pathophysiology. For the majority of multi-omics data projects, the data analysis is performed             
level-wise, followed by a combined interpretation of results. Few exceptions exist, for example             
the pairwise integration for quantitative trait analysis. However, the full potential of integrated             
data analysis is not leveraged yet, presumably due to the complexity of the data and the lacking                 
toolsets. Here we propose a versatile approach, to perform a multi-level integrated analysis: The              
Knowledge guIded Multi-Omics Network inference approach, KiMONo. KiMONo performs         
network inference using statistical modeling on top of a powerful knowledge-guided strategy            
exploiting prior information from biological sources. Within the resulting network, nodes           
represent features of all input types and edges refer to associations between them, e.g.              
underlying a disease. Our method infers the network by combining sparse grouped-LASSO            
regression with a genomic position-confined Biogrid protein-protein interaction prior. In a           
comprehensive evaluation, we demonstrate that our method is robust to noise and still performs              
on low-sample size data. Applied to the five-level data set of the publicly available Pan-cancer               
collection, KiMONO integrated mutation, epigenetics, transcriptomics, proteomics and clinical         
information, detecting cancer specific omic features. Moreover, we analysed a four-level data            
set from a major depressive disorder cohort, including genetic, epigenetic, transcriptional and            
clinical data. Here we demonstrated KiMONo’s analytical power to identify expression           
quantitative trait methylation sites and loci and show it’s advantage to state-of-the-art methods.             
Our results show the general applicability to the full spectrum multi-omics data and             
demonstrating that KiMONo is a powerful approach towards leveraging the full potential of data              
sets. The method is freely available as an R package (​https://github.com/cellmapslab/kimono​). 
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Introduction 
Over the past decade, high throughput techniques enabled the possibility to study biological             
mechanisms on a large scale and in a cost-efficient manner. The resulting tremendous increase              
of omic data has the potential to provide deep insights into complex biological processes being               
orchestrated by the interplay of a diverse network of biomolecules. The number of bi- or               
multi-omics data sets increase, yet combined analysis is not yet well explored. Several reviews              
(Pinu et al. 2019; Hasin, Seldin, and Lusis 2017; Huang, Chaudhary, and Garmire 2017)              
discuss the potentials of multi-omics data algorithms directly pointing out the methodological            
gap of identifying and analyzing cross omic relations. One exception is the field quantitative trait               
(QT) analysis ​(Heinig et al. 2017; Zhernakova et al. 2017)​. Here two types of information are                
linked, for instance, the genetic or methylation site with gene expression, in order to explain               
variation in complex traits. However, integrating multiple levels simultaneously is still an ongoing             
challenge. 
 
The most common integration approach so far is to explore available omic levels independently             
and search for common significant features afterwards ​(Sinkala, Mulder, and Martin 2020)​. This             
level-by-level analysis not only misses features with low signal but also ignores the complex             
‘cross-omic’ interplay and might subsequently cause misinterpretation of the data (Domenico et            
al 2015, Schmitt et al 2013).  
 
Recently, sophisticated latent factor-based omic integration approaches have been introduced         
(Ronen, Hayat, and Akalin 2019; Argelaguet et al., n.d.)​. These methods infer            
lower-dimensional representations, latent factors, of the original high dimensional multi-omic          
data space. Even though these can represent certain patterns of the data, it is still unclear how                 
many latent factors are needed to completely describe the complex data structures            
(​Rares-Darius Buhai et al. 2019). There seem to be many advantages of using these methods               
for reducing dimensionality. However, it is often difficult to infer the biological meaning from              
latent factors ​(Argelaguet et al., n.d.)​. Moreover, it is not possible to identify inter- and               
intra-associations between latent factors or the features within different omic levels. 
 
These issues are accounted for by network inference approaches, reconstructing the           
interactome in the form of a network describing the interplay of all features within the data. The                
assembled network structure can then be used to identify key features, like modules and              
pathways, underlying a disease. The most common straightforward network inference approach           
is to use pairwise correlations, linking all features which are significantly correlated. These             
networks are often hard to interpret since they tend to be too densely connected ​(Krumsiek et                
al. 2011)​. This can be accounted for by using machine learning approaches like graphical              
random forests ​(Lee and Hastie 2015; Zierer et al. 2016)​. But, these methods are in need of                 
large amounts of samples. To overcome this, we developed miRlastic ​(Sass et al. 2015) which               
facilitates prior knowledge to increase the performance for high dimensional and low sample             
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size data analysis. MiRlastic creates a regression model for each mRNA with, previously as             
target reported, miRNA species. Next, aggregating miRNA and mRNA species from all            
regression models assembling an mRNA-miRNA interaction network. Based on this network, we            
were able to identify, yet undiscovered, functional miRNA target clusters.  
 
Our novel multi-omic network inference approach, named KiMONo, vastly expands our           
miRNA-mRNA integration idea ​(Sass et al. 2015) now allowing a simultaneous integration of             
multiple omics levels, for example, variants, methylation, gene expression, proteomics,          
biological information. KiMONo uses a regularized regression model for each gene and            
leverages various prior information to reduce the high dimensional input space. KiMONo uses,             
per default, a sparse group lasso as a penalty model. This allows for a bi-level selection,                
penalizing each information level as a group but also penalizing within each level. Aggregating              
these models, all non-zero features are linked to their gene and overall assemble the              
heterogeneous multi-level network., hence it does not restrict K to any specific omic types. 

Materials & Methods 
Figure 1: Workflow: First,    
KiMONo can integrate  
measurements of any   
number of different data    
types. Samples need to be     
matched, indicated by the    
same number of columns of     
the matrices. The method    
also requires a prior in form      
of binarized mappings   
between the data types.    
Second, based on these    
mapping the algorithm   
creates an input matrix for      
each gene loading required    
measurements that defines   
the gene-based initial feature    

space. Third, by using the genes expression as , the algorithm further runs a regression model based                
on Sparse Group LASSO penalization. Fourth, all gene-based models are merged to compile a multi-level               
network containing features from all input sources as nodes and links for all non-negative regression               
coefficients between them define the data specific relation. 

Network inference with KiMONo 

Our novel method KiMONo infers heterogeneous/multi-level networks to identify key features           
and better understand the interplay of various omic levels in a biomedical setting where              
matched multi-level omics data is available. For efficient and biologically reasonable inference,            
KiMONo makes use of prior knowledge to link available data to the transcriptomic level, thereby               

3 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.953679doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.953679
http://creativecommons.org/licenses/by-nc/4.0/


4 

generating a network representation of prior knowledge (Figure 1). Within this prior network,             
each node represents a feature of the multi-omic input data, connected to a gene. Links               
between nodes indicate prior-defined associations. Such an association can range from an            
experimentally validated genetic or predicted gene-protein interaction up to simple annotations           
between genes coding for proteins. On top of using only these first-order links, KiMONo can               
also process second-order links as prior. These can be generated by interconnecting the             
transcriptome and linking features of associated neighbours to a gene. 
Once the prior network is established, KiMONo optimizes an individual penalized regression            
model for each node within the transcriptomic level. Here the gene expression represents the              
criterion variable while the input matrix is assembled by the standardized feature vectors               
of connected nodes within the prior network. KiMONo uses the sparse group LASSO (Simon et               
al. 2013) regression approach which penalizes within and between predefined groups of           
features. By performing this ‘bi-level’ selection, we can account for different underlying            
distributions between the features which originate from using multiple data types. Within sparse             
group LASSO, the parameters denotes the intergroup penalization while defines the             
group-wise penalization. KiMONo approximate an optimal parameter setting via using the          
Frobenius norm (Sass et al. 2015). To be more specific, is approximated by the mean                
Frobenius norm of all groups while is estimated by the frobenius norm within each group. The                 
global LASSO parameter was estimated via 5-fold cross-validation, using the mean squared             
error as loss function.  
KiMONo further uses the fitted models, of all nodes within the priors transcriptome level, to               
assemble a multi-level omic network. Within this network, nodes represent features of the input              
data, like genes, and connections between them are defined by the optimized coefficient.             

Furthermore we assign each gene node a confidence score by its modeled .  

The Cancer Genome Atlas data and prior 

The cancer cohort data was obtained via one of the most comprehensive multi-omic data              
sources, The Cancer Genome Atlas (​TCGA ​) data portal ​(Weinstein et al. 2013)​. We here              
focused on ​TCGA ​’s well described ​PanCancer data. This collection contains multi-omic data            
sets of 4926 samples describing 12 different cancer types - ​acute myeloid leukemia (191              
samples​)​, ​bladder urothelial carcinoma (135 ​samples​), breast invasive carcinoma (871          
samples​), colon adenocarcinoma (421 ​samples​), glioblastoma multiforme (580 ​samples​), head          
& neck squamous cell carcinoma (309 ​samples​), kidney clear cell carcinoma (496 ​samples​),             
lung adenocarcinoma, lung squamous cell carcinoma (344 ​samples​), ovarian serous          
cystadenocarcinoma (563 ​samples​), rectum adenocarcinoma (164 ​samples​) ​and uterine corpus          
endometrioid carcinoma (495 ​samples​). ​The portal provides open access to highly           
preprocessed ‘​level 3’ data of five omic characterizations, ​Proteome (~130 proteins) ​,           
Transcriptome (~ 16115 transcripts) ​, ​Copy Number Variation (~​84 CNV ​), ​Mutation (~39675           
positions) ​, ​Methylation (~2043 sites) but also phenotype information in the form of ​Clinical data              
(​4 variables ​). In our analysis we only included samples which were measured across all 5 omic                
levels, restricting the data sets to 2036 patients across 11 cancer types (see Sup Fig 1). Beside                 
binarizeing the ​Clinical ​feature ‘sex’ we also standardized all input features.  
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In order to assemble the prior knowledge networks for the ​panCancer cohort, we used both first-                
and second-order links to connect the ​Transcriptome to all information levels. First-order links to              
the ​Proteome were generated via the ​bioMart annotation resource. First-order links to ​CNV and              
Methylation were generated via a genomic position-confined prior. Here we used Bioconductor’s            
R packages ​Homo.sapiens ​, ​GenomicRanges ​(Lawrence et al. 2013) and         
FDb.InfiniumMethylation.hg19 ( ​Triche et al 2014​) to link copy numbers and methylation sites            
within a 500kb range to genes of interest. The ​Mutation data type was already projected to gene                 
identifiers, hence there were no additional preprocessing steps needed. Furthermore, we used            
experimentally validated associations from ​BioGrid ​(Oughtred et al. 2019) to create links within             
the ​Transcriptome ​. Additionally, we added second-order links to increase the coverage of            
individual gene models. This was done by connecting genes to first-order linked features of              
gene neighbours. In a final step, we also connected all features within the ​Transcriptome to the                
Clinical ​ features. 

Major Depressive Disorder data and prior 

The Major Depressive Disorder (​MDD ​) cohort consists of 289 caucasian individuals, 160 healthy             
controls and 129 patients diagnosed with major depressive disorder. Recruitment strategies and            
further characterization of the ​MDD cohort have been described previously in ​(Arloth, Bogdan,             
et al. 2015) and ​(Zannas et al. 2015)​. Three levels of omic information, comprising of the                
transcriptome, methylome and genotype, as well as biological information, were measured for            
107 out of 289 individuals, consisting of 33 females and 74 males, distributed over 64 controls                
and 43 patients. Details on the omic preprocessing can be found in ​(Arloth, Bogdan, et al. 2015)                 
and ​(Zannas et al. 2015)​.  
 
For generating the prior knowledge first-order links, we annotated gene expression probes and             
gene symbols using the Re-Annotator pipeline ​(Arloth, Bader, et al. 2015) based on GRCh37              
(hg19) RefSeq. Additionally, we annotated methylome, the CpG site probe, and the            
transcriptomes gene symbol to sequences positions by performing a re-alignment using Bismark            
(Felix Krueger 2011)​. Furthermore, we connected the genes to SNPs and methylation sites             
within a distance of 10 kbp and 500 kbp, respectively. Second-order links were created between               
genes via a ‘guilt-by-association’ approach using the BioGrid database. Furthermore, we           
connected genes with their associated genes methylation site generating, introducing          
second-order linked methylation sites.  

Performance test  

To assess goodness of fits on every gene-level model, we use the r-squared metric measuring               
how much of the variance of the expression can be explained by the model. We calculate for                 

each model the explained sum of squares , defined as , and total sum of               

squares . Here, represents the true and the predicted gene            

expression. The amount of variance explained is then given by .  
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In order to approximate each information level contribution to the , we dissect the and                

calculate a for each information level. This is done by calculating the via                

and . Here defines all features within level and denotes all other               

features. and were further used to estimate a which approximates the sole               

performance of . Finally, , which sets the performance of levels            
without selected features to 0. 

Prior expansion by 2nd order links  

Overall, we compared two different prior strategies. On the one hand, a prior solely based on                
the genomic location and annotation databases. Here we annotated protein, methylation,           
mutation and clinical information to the transcriptome level. On the other hand we generated a               
prior also including second-order links using the BioGrid​(Oughtred et al. 2019) resource. We not              
only interconnected the transcriptome but also all other layers. 
We used the ​panCancer breast invasive carcinoma network models as test scenarios,            
investigating the impact of the different prior strategies. To evaluate how well each strategy              
performed, we compared the performance of the models which explained at least 10% of the               
variance within the data and the coverage of the inferred networks. 

Robustness to measurement noise & low sample sizes 

To benchmark the performance on small data, we simulate data sets with shrinking sample size.               
Therefore we used the ​TCGA breast invasive carcinoma ​data and randomly reduced the             
amount of samples. We repeated each simulation 20 times (except for the 100%). The final test                
cases included 10%, 30%, 50%, 70% and 100% of the data. For each generated dataset, we               
excluded features with . 
 
We followed a similar strategy for benchmarking the robustness of the method with respect to               
noise. Here we simulated test sets by decreasing the signal to noise ratio. All simulated sets                
were created using a subset of the ​panCancer breast invasive carcinoma ​data. Random noise             

was generated using Gaussian noise, with increasing . Here we simulated noise             

with .  
 

For both, we used the above described and metric to evaluate the models'               

performances, excluding all models . 

Quantitative trait analysis 

We compared the quantitative trait analysis results of KiMONo to the state-of-the-art pairwise             
analysis tool, matrixEQTL. Here we used both methods to detect expression quantitative trait            
loci (eQTL) and expression quantitative trait methylation sites (eQTM) genes within the MDD             
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data set. For the matrixEQTL calculation, we focused on cis-eQTL and cis-eQTM windows of 10               
kbp and 500 kbp distance, respectively. Further, we corrected the expressed genes for the              
covariates, BMI, age, sex and status of the diagnosis, with significance threshold set to              

. 
In the case of KiMONo, eQTL and eQTM genes are identified via the inferred cross-layer               
interactions between genes and methylation sites and SNP’s . Here, robustly inferred results             

were defined as models with  and the respective cross-layer association of .  
 

Network statistics 

We transformed the directed links to undirected associations, generalizing the multi-layer           
directed network to a simpler single-layer association network representation. To show that the             
generalized network structure is, like most biological networks, scale-free, we used goodness of             
fit test to evaluate if the node degree follows a gamma distribution ​(X. Wang, Gulbahce, and Yu                
2011)​. Furthermore, we used the ​betweenness centrality ​to estimate the importance of nodes             

within the single-layer network. The ​betweenness centrality ​is defined as .           

Here  defines the shortest path between node  to node  , passing node .  

Data access 

The ​panCancer data is publicly available via the ​TCGA data portal (downloaded May, 2017). A               
list of the sampleIDs and cancer types which contained all 5 omic levels can be found in Sup                  
Data 1. The transcriptomic and epigenomic information layer of the MDD cohort can be found at                
GEO ​GSE64930 and ​GSE74414 , while the snp data cannot be provided due to patient privacy                
regulations. 

Used software 

KiMONo is freely available via the R package ​https://github.com/cellmapslab/KiMONo . We used            
the Bioconductor’s R packages ​Homo.sapiens ​, ​GenomicRanges and       
FDb.InfiniumMethylation.hg19 to generate the annotation between various omic types within the           
TCGA data. Furthermore we used Re-Annotator pipeline ​(Arloth, Bader, et al. 2015) based on              
GRCh37 (hg19) RefSeq and Bismark ​(Felix Krueger 2011) to annotate the MDD data. For              
state-of-the art eQTL analysis we applied matrixEQTL (version 2.3). Pathway annotations were            
performed via pathwaX ​(Ogris, Helleday, and Sonnhammer 2016)​.  
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Results 
With the versatile tool KiMONo at hand, we seek to investigate its capabilities and limitations               
first on one of the largest and most comprehensive multi-omics dataset collections available             
today. The panCancer dataset of ​TCGA was downloaded and processed before data of every             
cancer type was subjected to KiMONo network inference with default parameter. Subsequently            
we have been using the ​panCancer ​breast invasive carcinoma ​dataset for in depth analysis, as               
it is one of The subset of TCGA’s ​breast invasive carcinoma ​data contains 604 patients with in                 
sum 57 966 features measured across 5 data types. Secondly, we used multi-omic dataset for a                
common complex disorder, MDD. It consists of 289 individuals with in sum X features measured               
across 4 data types in peripheral blood cells. 

Improved performance using second-order links  

First, we asked whether combining first- with second-order links increase performance of            
gene-based models. We also evaluated the performance using all features at once without any              
prior knowledge, however, the algorithms inferred only empty networks due to the high             
dimensionality of the data. 
Evaluation of KiMONo, using only first-order prior resulted in 5349 inferred gene models with              

. Only 96 gene models were evaluated with an and had an average              

. Adding second-order associated features, we were able to learn models for 9480             

genes having an average performance of and 3150 gene models were created with             

and . Furthermore, we had a closer look at all models with and                
evaluated the impact of the amount of different information layers within a model (see Figure               
2.A). One can observe that a diverse set of data types increases the model performance.               
Moreover, we can see that there is no model relying on a single information layer alone. Models                 

based on features of two information layers show an average while five information              

layers increase the variation explained to . This is also directly mirrored by the              
number of features used, see Figure 2.B. Here the majority of two-leveled models are based on                
an average number of 3.6 related features while models using five layers detected on average               
77.5 associations.  
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Figure 2: A) Boxplots of performances of models relying on 2, 3, 4, and 5 different data types/omic levels.                   
The last boxplot denotes the overall performance. B) Number of features used if a model includes                
different data types. Here the last box refers to the general number of features used. C) Barplots                 
visualizing the amount of omic types included in models. Here orange-red refers to 1st order linked                
features while green and blue visualize 2nd order features. 

Performance on small sample-sized data 

One of the biggest challenges for data analysis methods is to be applied to data that has a lot of                    
features and only a small amount of samples. This is, in particular, relevant for multi-omic data                
sets which often comes with thousands of features but just a few samples. Our data simulations                
of small sample sizes resulted in 140 test sets, based on the ​breast invasive carcinoma data                
provided by ​TCGA ​. Each set is a representative subset of samples of the original set. Using                
KiMONo we assembled a network for each of these test cases (see Figure 3.A). Applying               
KiMONo on all ​breast invasive carcinoma data samples resulted in an inferred network             

coverage of 7223 gene models (of 11530) with (see Sup. Figure 3.A). While              
reducing the sample size to 30 we were able to retain 5338 of the initial genes, losing only 1885                   

models. In the case of higher-performing models ( ) we were able to find 80% of the                
initial models for 5% of the initial samples. 
To evaluate the overall performance we excluded genes models which explained less than 1%              

of the gene expression variance ( ) and restricted the benchmark set further to 932              
genes which have been also present in the 30 sample size test cases (an unrestricted view can                 
be found in Sup. Figure 3). Removing samples also decreased the variance of many features               
which indirectly decreased the overall dimensionality. Using 30 (5%), of the 604 samples,             
reduced the number of features from  57 966 to 15 632 features.  
Comparing the overall results we can show that KiMONos performance is stable for small as               
well as large sample size data. This reduction of complexity is reflected by a slight increase in                 
performance between the 35% and 5% test cases, from 0.24 to 0.29. 

Following our approach of dissecting the overall , see Materials and Methods, we were able               
to estimate the importance of the individual levels as well. The most informative sole information              

layer is the ​Protein information with and average of 0.23 followed by the second-order linked                

Transcriptome information with an average of 0.18. The sparse ​Mutation ​data seems to              
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improve its performance with smaller sample sizes whereas ​Clinical ​, ​Methylation and           
second-order linked ​Protein information seems to contribute the least. When comparing the            
results between the different sample sizes, one can observe that the mutation layer constantly              

improves the performance by an of 0.7 for reduced sample sizes with lower dimensionality               
while all other information layers slightly decrease in performance.  
 
 

 
Figure 3: Robustness benchmark for A) different sample sizes and B) noise levels. First set of box plots                  

(purple) shows the performance, (log scaled x axis) of inferred gene models using all available                

information layers. All following sets describe the stand-alone performances of Proteome, Methylation,            
Mutation, Clinical and Transcriptomic information layers. 1st order links (green) and 2nd order links              
(orange) are benchmarked separately. Note, Clinical and Transcriptome information consists of only 1st             
and 2nd order links. A) Data sets with different sample sizes were generated using 10% - 100% of the                   
604 breast invasive carcinoma samples. B) Different test data sets were simulated by adding Gaussian               
noise with increasing variance. Here, the noise level reflects the  for six intensities. 

Performance on noisy data sets 

To simulate noisy data set we used the ​breast invasive carcinoma data set as a blueprint.               
Following the simulation approach described in Materials and Methods, we generated 100            
different data sets across five noise levels. Using KiMONo we inferred networks for all test               
cases. In terms of network coverage, we can see a more reduced coverage in noisy data than                 
compared to the reduced sample sizes (see Sup Figure 2.B). KiMONo is able to retrieve more                

than half (4071) of the initial models with . Looking at higher-performing models (             

) we can see that the gene coverage of 3147 models drops to 463. 
This performance drop can also be observed by evaluating the overall gene model             
performance. Here we only evaluated models explaining at least 1% of the variance within the               
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gene expression. The most drastic impact of noise can be observed at the 1st order linked                 
Proteome ​and 2nd order ​Transcriptome ​data. In the ​Proteome data, the performance drops from              
0.21 to 0.05 while the ​Transcriptome ​decreases from 0.17 to 0.6.  

The overall average is decreased to 0.05. after adding Gaussian noise with .              
Similar to the previous performance test, we can again observe that all other information layers               

have similar overall trend. Information layers that already start with a relatively low like               
Methylation (0.03) and ​Clinical (0.02) layer. Here the performance was reduced to 0.02 for              
Methylation ​ and 0.01 for ​Clinical ​data respectively. 

Multi-layer pancancer networks 

To exemplify the data analysis power of KiMONo on multi-layer data we inferred networks for 11                

cancer types. As a post-processing step, we excluded all models for which and also               

excluded links within the network with a weight smaller than .  

A

 

B C 

Figure 4: A) Performance on all gene models ( ) inferred by KiMONo followed by amount of gene                 

models and amount of features selected in the proteomics, mutation, epigenetic and clinical data layer. B)                
Subnetwork of top 20 features (highest betweenness of centrality) within the inferred breast invasive              

carcinoma network ( ). Within the network, we can find nodes originating from mRNA (blue),              

mutation (green) and clinical (red) feature space. The edges denote first order edges (grey), first and                
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second-order combined (black) and las only second-order connections (dashed orange). C) Subnetwork            

of the top 20 features in Glioblastoma Multiforme ( ).  

 

The final networks have on average 26.343 links and 3158.2 nodes (see Figure 3.A). Test of fit                 
for the degree distribution being gamma distribution resulted in a . For each             
network, we ranked the nodes based on the node betweenness of centrality and selected the               
top 100 features. Comparing these sets shows that 88% of the top 100 features are occurring in                 
at least two of the cancer types. All genes which are identified as important across all 11 cancer                  
networks have been previously linked to cancer by several studies (see Sup. Table 1). We               
further used all those genes for pathway annotation using the tool pathwaX ​(Ogris, Helleday,              
and Sonnhammer 2016)​. Here the top enriched KEGG pathway is the cancer-related ​Chronic             
myeloid leukemia ​(FDR=1.45e-37) pathway followed by ​Pathways in cancer (FDR=6.3e-35).          
Furthermore, we were also able to identify 345 features which were uniquely identified to each               
cancer type. For instance, the methylation site cg00103783 (chr17:7.583.931), mapping to           
MPDU1 gene, was only detected as important within the ​head & neck squamous cell carcinoma               
network. Here ​(Ceder et al. 2012) introduced MPDU1 as a potential biomarker for HNSC.              
Within the breast invasive carcinoma network, all three genes are among the top 20 features,               
lead by ​age and ​UBC ​which has been identified as an oncogene by ​(Ohta and Fukuda 2004)                 
(see Figure 4)​. ​Using these top 20 genes for pathway annotation gives a clear picture of                
cancer-related KEGG pathways, i.e.: KEGG ​Pathways in Cancer ​(FDR = 2.94e-44) is the top             
enriched pathway, followed by ​Hepatitis B (FDR=2.51e-39) and ​Cell cycle ​(FDR=2.3e-38).           
Both, ​Cell cycle ​and ​Hepatitis B, are known breast cancer-related pathways ​(Yeo et al. 2003)​,               
(Catzavelos et al. 1997)​. However the ​Breast Cancer-specific KEGG pathway ranks on place 14              
(FDR = 5.0395e-33) ​among all enriched pathways. Another interesting result is the inferred            
Glioblastoma ​multiforme (GBM) network. Even though ​GBM ​is one of the rarest cancer types it               
is also one of the most lethal ones having a survival time of 14-15 months after diagnosis ​(Hanif                  
et al. 2017)​. The ​GBM data set is relatively small including only paired data for 61 patients with                  
58051 features across 5 omic layers. Nevertheless KiMONo inferred 112945 links between            
9341 nodes. Even though the top 20 features are not as densely connected as in the previous                 
example we were able to link ​CTNNB1, HIF1A ​, HDAC1 and ​EWSR1 to ​survival time. ​Beside                
EWSR1 ​all have been reported as survival time related in GBM (​(McCord et al. 2017)​, ​(Liu et al.                  
2015)​. Interestingly ​(Bridge et al. 2019) show that in GBM, EWSR1 is often fused with ​PATZ1                
which was in the past related to worse survival rates ​(McCord et al. 2017; Guadagno et al.                 
2017)​.  
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Multi-layer MDD network

Even though the TCGA is one of the most comprehensive multi-omic datasets available, we              

wanted to evaluate our method on a more complex type of disease, like MDD. While progress               
has been made in understanding the pathomechanisms involved in MDD, success in translating             
findings into clinical practice has been limited ​(Kapur, Phillips, and Insel 2012)​. To this end,               
studies have been largely focused on single-level omics, like GWAS ​(Howard et al. 2019)​) and               
multi-level omics are relatively new ​(Anderson et al. 2020; Arloth, Bogdan, et al. 2015)​.              
Therefore, making successful inference of a multi-omic cross-talk regulatory network is of            
importance to  better understand the depression phenotype. 

For this purpose, we applied KiMONo on a patient cohort, consisting of 107 healthy individuals               

and patients. There were 4,247,909 imputed SNPs, 12,418 transcripts and 320,481 methylation            
sites available for the evaluation of our method, after filtering for the 25 % of methylation sites                 
with the least variance. Biological information such as BMI, age, sex and status of the diagnosis                
and cell type composition were always taken into account for network inference. 

After filtering out coefficients between -0.02 and 0.02 as well as values, the final                
MDD network, comprised of 5,791 gene models whose gene expression was explained up to              

over 0.8 with the median at 0.256. As predictors, we uncovered 6,894 methylation sites and                
3,404 SNPs as first-order links, as well as 5,041 gene transcripts and 4,201 methylation sites as                
second-order links. In addition, all of the biological covariates were found across the whole              
network. (Figure 5.A and B) 

 
Figure 5: A) MDD network     
Performance on all gene models     
n=5,791 inferred by KiMONo after     

filtering for -0.02 < < 0.02       

coefficient and > 0.1 B)      

Composition of retained features    
deriving from omic levels of first-      
methylation and SNPs, as well as      
and second-order methylation,   
SNPs, gene expression and    
biological clinical features; 
Comparison of C) number of eQTL      
genes and D) eQTMs gene derived     
from KiMONo and matrixEQTL. 
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To compare with state-of-the-art methods, we identified eQTL and eQTM genes using pairwise             
models and set them into context to the findings of KiMONo. Using the same proximity               
restrictions for the MatrixEQTL and KiMONo, we found 873 and 660 eQTL-genes, respectively,             
overlapping in 301. Further, we found an overlap of 695 eQTM genes, with 1210, more than                
double found with KiMONo. Nearly all genes found in the overlap or only by KiMONo were                
further explained multivariate models by information from other omic-layers of methylations,           
SNPs and gene expression. 
 
The top 20 genes were identified with the highest betweenness measure with the performance              

found to be higher than the average models across the whole data set. ranged from 0.202 to                  
0.798 with a median of over 0.491, while the average across all models was 0.256 (Figure 6.A).                 
Further, features selected by the penalty model represented information from many different            
omic-information levels, across methylation, SNP, gene expression as well as biological clinical            
information. Methylation sites possessing long-distance effects, gene expression associated         
over indirect links, and biological data were consistently present for the top 20 hits (Figure 6B). 
 
The potential of our method becomes apparent while looking at connections found through             
KiMONo but not pairwise models of MatrixEQTL. After correcting for residual effects of all other               
features in multilevel models, the connection between the expression of SLC39A11 (Solute            
Carrier Family 39 Member 11, chromosome 17) and SNP rs1493550 and methylation site             
cg26124719 located both in an intron became clearly resolved (Figure 6.C and D).  

 
Figure 6: A) Performance of n=20      
genes with the highest    
betweenness and B) its    
composition of retained features    
deriving from omic levels for each      
gene. Gene expression with    
possible influence by C) SNP and      
D) methylation site found with     
KiMONo but not with MatrixEQTL;     
the dotted line represents a     
correlation of 1. 
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Half of the top 10 hits have been previously linked to depression or pathways involved in the                 
pathogenesis of the disease (see Table 1) . Here the top enriched KEGG pathway is               
endocytosis (FDR=4.832e-8) which play a major role in synaptic plasticity, which is an important              
component in disease development of stress-related disorders, like MDD ​(Hua et al. 2013)​,             
(Duman et al. 2016)​. The second important pathway is autophagy (FDR=2.606e-6) an essential             
pathway for the central nervous system and studies have shown the effects of antidepressant              
treatments on autophagy ​(Gassen and Rein 2019)​. Interestingly, among the top 10 pathways             
is Axon guidance (FDR=1.054e-3), which has been shown to be a strong risk factor for               
depression, as stress may affect brain structure and function (​(Breen et al. 2018)​, ​(Engle 2010)​. 
 
 

 Gene 
Symbol 

 Location MDD BP Reference 

1 FHL1 Four And A Half LIM Domains 
1  

chrX:136,146,702-136,211,359 no   

2 NCK2 NCK Adaptor Protein 2 chr2:105,744,912-105,894,274 no   

3 MTOR Mechanistic Target Of 
Rapamycin Kinase 

chr1:11,106,531-11,262,557 yes  (Ignácio et al. 2016; 
Abelaira et al. 2014) 

4 CEP170 Centrosomal Protein 170 chr1:243,124,428-243,255,406 no   

5 PRKCZ Protein Kinase C Zeta chr1:2,050,411-2,185,395 no yes (Kandaswamy et al. 
2012; Hapak, 
Rothlin, and Ghosh 
2019) 

6 EIF3M Eukaryotic Translation 
Initiation Factor 3 Subunit M  

chr11:32,583,767-32,606,2 yes  (Varinthra and Liu 
2019; Terracciano et 
al. 2010) 

7 EIF6 Eukaryotic Translation 
Initiation Factor 6 

chr20:35,278,906-35,284,985 no   

8 VPS35 Vacuolar Protein 
Sorting-Associated Protein 35 

chr16:46,656,132-46,689,518 yes  (C.-L. Wang et al. 
2012) 

9 SAP130 Spliceosome-associated 
protein 130  

chr2:127,941,217-128,028,120 may
be 

 (Relja, Mörs, and 
Marzi 2018) 

1
0 

KLHDC4 Kelch Domain Containing 4  chr16:87,696,485-87,765,997 yes  (Relja, Mörs, and 
Marzi 2018; 
Roberson-Nay et al., 
n.d.) 

Table 1: Top 10 genes of most important nodes within Major Depressive Disorder (MDD) data. Ranking                
was derived via the nodes betweenness of centrality. 
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Discussion & Conclusion 

 
We presented KiMONo –- a novel prior Knowledge guided Multi-Omics Network inference            
method. By leveraging prior knowledge, the algorithm builds a statistical model for each gene,              
selects the most predictive features and uses these to assemble a heterogeneous network.             
Within this network nodes represent features of the input sources and links define disease- or               
context-specific relation between them. KiMONo was specifically designed to work on low            
sample size sets with high-dimensional data originating from a variety of information sources.  
 
We used TCGA data, one of the biggest collections of multi-omic data, as the main evaluation                
set. However, the publicly accessible data was lacking quality and information depth. For             
instance, mutation and methylation data were only available in a sparse binarized form. We              
reasoned that KiMONo enhances the signal by combining various data sources and is therefore             
well suited for the analysis for this data format. Nevertheless, we also performed our tests on                
less preprocessed data describing MDD. Even though this data set has a higher dimension, we               
were also able to reproduce the performance insights we gained from the TCGA data (see Sup                
Figure 5). 
 
In our robustness tests, we showed that, reducing the number of samples barely affected the               
overall performance of KiMONo. When investigating the performance contribution of the           
mutation features alone, there was even a slight performance increase for low sample sizes.              
Even though it might be the sole effect of overfitting, we showed that it only occured for sparse                  
binarized data. Hence, removing samples from this sparse matrix directly resulted in setting             
some features . Therefore, we not only removed samples but also shrank the feature              
space. which in turn resulted in less predictive models having slightly better regression             
performances.  
 
In contrast, we found that the method was more sensitive to noise in the data than performing                 
on small sample sized data sets. When increasing the simulated noise, it resulted in a rapid                
decrease in correctly predicting the gene expression level, as opposed to a moderate decrease              
when reducing the amount of samples. This finding highlights the importance of high-quality             
sequencing of omic data for robust inference of regulatory networks. 
 
Next, we showed that KiMONo was able to find many of the eQTL and eQTM genes (34.5 and                  
26.7%) that were uncovered by MatrixEQTL using pair and level-wise tests. In addition we              
found further associations, complementing MatrixEQTL, when deriving regulatory networks in          
context with all features from all omic levels. It is possible that these features can only be                 
detected when taken into account the context of the underlying omic-crosstalk. Across all top              
hits in the MDD dataset (Table 1), we observed that relationships from 2nd-order linked genes               
and methylation sites play an important role. For example, gene SLC39A11 beeing identified as              
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eQTL and eQTM gene to SNP rs1493550 and methylation site cg26124719. Our results             
indicate that KiMONO is a powerful method to discover these long-distance and indirect             
relationships while establishing regulatory networks. 
 
In addition to incorporating second-order links, we also showed the advantage of multivariate             
models derived from various omic-layers by uncovering relationships that were not found in             
pairwise models. After correcting for residual effects of every feature except for the one of               
interest, the connection became clear (Figure 6C and D). Our approach allows the uncovering              
of many more effectors by accounting not only for the covariates but also all other features in a                  
complex multi-omic context. 
 
Applying KiMONo on both TCGA cancer types and MDD, we were able to find previously               
reported genes that matched well with the underlying disease setting (see Figure 6.B /Table 1).               
This provided a good evaluation of our method. Among the top hits we also identified genes that                 
have not yet been reported in relation to the studied phenotypes. These genes could be               
essential for further exploration of the disease mechanisms for better understanding of the             
underlying molecular interplay. 
 
In summary, KiMONo is a versatile method to derive fully integrated and holistic multi-level              
networks capturing the data-supported interplay between omics levels. Comprehensive         
benchmarks demonstrated that KiMONo is more sensitive to noise than to the reduction of              
samples. Further, application to two human disease settings showed that key nodes of the              
inferred multi-omics disease networks, also play key roles in disease pathophysiologies.           
Ultimately, the holistic networks inferred using KiMONo may serve as tools to easily uncover key               
regulatory features. 
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