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Abstract  

Background  

Tau neurofibrillary tangle pathology characterizes Alzheimer’s disease and other neurodegenerative 

tauopathies. Brain gene expression profiles can reveal mechanisms; however, few studies have 

systematically examined both the transcriptome and proteome or differentiated Tau- versus age-

dependent changes.  

 

Methods  

Paired, longitudinal RNA-sequencing and mass-spectrometry were performed in a Drosophila model of 

tauopathy, based on pan-neuronal expression of human wildtype Tau (TauWT) or a mutation causing 

frontotemporal dementia (TauR406W). Tau-induced, differentially expressed transcripts and proteins were 

examined cross-sectionally or using linear regression and adjusting for age. Hierarchical clustering was 

performed to highlight network perturbations, and we examined overlaps with human brain gene 

expression profiles in tauopathy. 

 

Results  

TauWT induced 1,514 and 213 differentially expressed transcripts and proteins, respectively. TauR406W had 

a substantially greater impact, causing changes in 5,494 transcripts and 697 proteins. There was a ~70% 

overlap between age- and Tau-induced changes and our analyses reveal pervasive bi-directional 

interactions. Strikingly, 42% of Tau-induced transcripts were discordant in the proteome, showing 

opposite direction of change. Tau-responsive gene expression networks strongly implicate innate immune 

activation, despite the absence of microglia in flies. Cross-species analyses pinpoint human brain gene 

perturbations specifically triggered by Tau pathology and/or aging, and further differentiate between 

disease amplifying and protective changes. 

 

Conclusions 

Our results comprise a powerful, cross-species functional genomics resource for tauopathy, revealing 

Tau-mediated disruption of gene expression, including dynamic, age-dependent interactions between the 

brain transcriptome and proteome. 
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Background 

The Microtubule Associated Protein Tau (MAPT/Tau) aggregates to form neurofibrillary tangle 

pathology in Alzheimer’s disease (AD) and other neurodegenerative tauopathies characterized by 

progressive cognitive and/or motor disability, including progressive supranuclear palsy (PSP), 

corticobasal degeneration, chronic traumatic encephalopathy, and certain forms of frontotemporal 

dementia (FTD) [1,2]. Rare mutations in the MAPT gene cause familial FTD, which is also characterized 

by prominent neurofibrillary tangle deposition [3-5]. Based on this genetic evidence, along with results 

from cellular and animal models [6, 7], Tau is a critical mediator of age-related neurodegeneration and a 

causal link among this diverse group of neurologic disorders. While the precise mechanisms of Tau-

induced neuronal injury remain incompletely defined, progressive synaptic dysfunction and neuronal loss 

likely arises from a cascade of cellular derangements, including oxidative- and immune-mediated injury, 

altered proteostasis, and aberrant transcription and translation [6, 8].  

RNA-sequencing (RNA-seq) makes possible comprehensive gene expression profiling of 

postmortem human brain tissue in AD and other tauopathies, providing a systems-level view of 

transcriptome perturbations accompanying neurodegeneration [9-13]. However, interpretation of 

differential gene expression analysis is hindered by a number of potential limitations. One major 

challenge arises from the recognition that the pathologic cascade in AD and related disorders initiates 

decades prior to onset of clinical manifestations [14, 15], whereas human brain expression profiles can 

only be generated cross-sectionally at the time of death. Indeed, it is essential to reconstruct the 

longitudinal, aging-dependent time-course of molecular derangements in order to pinpoint the earliest 

opportunities for intervention and to develop more effective biomarkers. Second, most brains from older 

persons with dementia show mixed pathologies at autopsy [16]. Therefore, it can be difficult to 

differentiate Tau-induced specific expression changes from those caused by other lesions (e.g. amyloid 

plaques, infarcts, etc.) or brain aging more generally. Third, among associated gene expression changes, it 

is important to identify those perturbations that are truly primary and therefore causal, rather than simply 

a consequence of disease. Lastly, emerging evidence suggests that transcription and translation are 

frequently discordant [17], making it important to consider both mRNA and protein changes to resolve 

many disease-associated expression signatures. While recent advances in mass-spectrometry permit deep 

surveys of protein expression, few studies have systematically profiled both the brain transcriptome and 

proteome in AD and related tauopathies [18,19]. 

 By contrast with studies of human postmortem tissue, transgenic animal models of tauopathy 

readily permit controlled experimental manipulations to (i) define age-dependent changes, (ii) isolate the 

specific impact of Tau, and (iii) definitively establish causation. For example, RNA-seq in mouse 

transgenic models of tauopathy have highlighted early upregulation of inflammatory processes and 
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downregulation of synaptic function genes preceding behavioral phenotypes, and suggest Tau-specific 

impact on microglial and neuronal function [20-23]. Expression of human MAPT in the nervous system of 

the fruit fly, Drosophila melanogaster, recapitulates many key features of tauopathies, including 

misfolded/hyperphosphorylated Tau, age-dependent synaptic dysfunction and neuronal loss, and reduced 

survival [6, 24]. Importantly, Drosophila permits high-throughput genetic manipulation, and these models 

have been successfully deployed for enhancer-suppressor screens [25-27]. The results highlight many 

promising modifiers of Tau-mediated neurodegeneration, including genes that overlap with human AD 

susceptibility loci [28-30]. Prior gene expression studies in fly tauopathy models have been limited by 

incomplete coverage [31] or cross-sectional design [32], and none have coupled analyses of both 

transcripts and proteins. We have analyzed longitudinal, paired transcriptome and proteomes from control 

flies and following pan-neuronal expression of either wildtype or mutant forms of human Tau. We 

identify Tau-induced patterns of differential expression that are robust to adjustment for aging, and we 

integrate our results with complementary expression profiles from human brains affected by tauopathy 

and known genetic modifiers of Tau neurotoxicity.   

 

Results 

Paired Tau transcriptomes and proteomes in Drosophila  

Longitudinal, parallel RNA-seq and mass-spectrometry proteomics were performed in controls (elav-

GAL4) and in flies with pan-neuronal expression of human wildtype (elav>TauWT) or mutant Tau 

(elav>TauR406W). The transgenic genotypes and age timepoints (1-, 10-, and 20-days) selected for this 

analysis have been extensively characterized in prior published work [6, 24], and we confirmed that 

TauWT and TauR406W are expressed at similar levels (Additional file 1: Figure S1). Overall, 17,104 

transcripts and 2,723 proteins were detected. We first analyzed our results cross-sectionally, highlighting 

those transcripts or proteins significantly differentially expressed (FDR < 0.05) at each timepoint (Table 

1; Additional File 2: Table S1). Overall, TauWT altered expression of 1,514 transcripts and 213 proteins. 

At each age examined, TauR406W induced a ~4- to 7-fold greater number of differentially expressed genes 

than TauWT, highlighting 5,494 transcripts and 697 proteins. There was substantial overlap between the 

TauWT and TauR406W gene expression profiles, with 70% of TauWT-associated transcripts showing 

consistent changes in TauR406W flies (65% of proteins) (Additional File 1: Figure S2). Overall, nearly 

equal numbers of up- or down-regulated, differentially expressed genes were detected in the Tau 

transcriptome; whereas in the proteome, Tau-induced gene up-regulation was more common by a factor 

of 2, which may reflect reduced assay sensitivity for proteins with low expression levels. 

As in human tauopathy, the neurodegenerative phenotypes manifested by Tau transgenic flies are 

progressive with aging [24]. Consistent with this, we observed age-dependent differences in the number 
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and identity of differentially expressed genes across the timepoints examined (Additional File 1: Figure 

S2). For example, only a minority (~9%) of transcripts from TauWT flies were consistently, differentially 

expressed at all 3 timepoints. The profound impact of aging on the Drosophila brain transcriptome and 

proteome is readily apparent in transcriptome-wide heatmaps (Fig. 1a,b) and unsupervised clustering 

analysis further highlights age as a major driver of gene expression differences among samples 

(Additional File 1: Figure S3). Indeed, among control animals, we documented age-related, differential 

expression of 6,742 transcripts and 1,155 proteins (Table 2 and Additional File 2: Tables S2, S3), and 

similar changes were seen in analyses of aged Tau animals (within genotype comparisons of data from 

different timepoints). Strikingly, approximately 70% of Tau-triggered transcripts overlap aging-associated 

gene expression changes. These data highlight an intimate connection between aging and Tau-mediated 

perturbations in gene expression.  

 

Integrated longitudinal analysis of differentially expressed transcripts and proteins 

In order to identify the most robust, Tau-induced expression changes independent of aging, we used linear 

regression and considered all longitudinal data in a joint model, including a covariate to adjust for age. In 

separate analyses of TauWT and TauR406W, we identify 1,653 and 4,992 significant differentially expressed 

transcripts, respectively (Table 1 and Additional File 2: Table S4). The same approach was applied to the 

longitudinal proteomic data. To better understand the joint impact of Tau on the transcriptome and 

proteome, we next examined those genes detected by both the RNA-seq and mass-spectrometry assays 

(n=2,395 and 2,423 for TauWT and TauR406W, respectively). For this and subsequent analyses, we focus on 

the TauR406W dataset given the more substantial number of differential expression changes (analyses of 

TauWT are included as supplemental data and show consistent results). Remarkably, among 1,309 

TauR406W-triggered, differentially expressed transcripts with corresponding proteome measurement, only 

58% show concordant changes in the proteome (same direction of change, regardless of significance) 

(Fig. 1c and Additional File 1: Figure S4). These data indicate that for a substantial proportion of 

transcriptional changes (42%), the behavior of corresponding proteins is discordant. Consistent with this, 

out of 503 significant, differentially expressed proteins induced by TauR406W, 272 (48%) are unique to the 

proteome (e.g. either non-significantly changed or not detected in the transcriptome).  

Tau-mediated perturbations of the transcriptome and proteome are readily appreciated in an 

integrated plot (Fig. 1c) including all significant, differentially expressed transcripts and/or proteins, and 

representative examples discussed below are highlighted in Fig. 2 (see also Additional File 1: Figure S5). 

Concordant activation or suppression of gene activation, respectively, is represented in the upper right (I) 

and lower left quadrants (III) of the plot. Many Tau-responsive genes show highly consistent and 

concordant expression changes in transcripts and proteins. Transferrin 1 (Tsf1) encoding an iron-binding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.954578doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.954578
http://creativecommons.org/licenses/by-nc-nd/4.0/


protein induced during the Drosophila innate immune response [33] is strongly activated by TauR406W, 

showing similar ~2-fold increase in both the transcriptome and proteome, and these changes are largely 

consistent in 1-, 10-, and 20-day-old animals. Reciprocally, Synaptotagmin-1 (Syt1), encoding the 

essential calcium sensor for synaptic vesicle release and neurotransmission [34], is decreased 10% at the 

transcript level and 40% at the protein level, and this result agrees with prior targeted studies of synaptic 

proteins in TauR406W flies [35]. By contrast, Tau-triggered gene expression changes that are discordant 

between the transcriptome and proteome occupy the upper left (II) and lower right (IV) quadrants of the 

plot (Fig. 1c). For example, Synaptobrevin (nSyb), which participates in synaptic vesicle fusion and 

release [36], is increased in Tau flies, whereas nSyb transcripts are reciprocally decreased.  Alternatively, 

in the case of Sar1, encoding a GTPase involved in endocytic trafficking [37], we detect a Tau-associated 

increase in transcripts, whereas Sar1 protein is decreased. Such discordant changes may suggest the 

possibility of feedback regulation between the transcriptome and proteome. In other cases, we detect 

significant Tau-induced changes in the proteome without a corresponding change in transcript levels. One 

such example is CCT1, encoding a cytosolic chaperone implicated in cytoskeletal regulation and nerve 

injury response [38]. 

As suggested above, aging has a profound impact on brain gene expression and frequently 

modifies the impact of Tau, sometimes with divergent consequences in the transcriptome and proteome. 

For example, aging is associated with a substantial increase in Tsf1 transcript expression in both Tau and 

control animals (~3- and 6-fold, respectively), whereas protein expression appears stable over the same 

timecourse. The immune response gene, Attacin-A (AttA), encoding an antimicrobial peptide, provides 

another striking example. RNA-seq reveals a consistent aging- and Tau-associated increase in AttA 

transcripts. However, the substantial Tau-associated increase observed in the proteome of 1-day-old flies 

is attenuated during aging and no longer detected by 20-days (genotype x age interaction, p=3.78x10-3). 

The sharp increase of AttA in wildtype flies with aging was previously reported and linked to neuronal 

maintenance [39]. Notably, in our age-adjusted joint model, only 35% of Tau-triggered differentially 

expressed transcripts were fully independent of aging. By contrast, the majority (65%) were both Tau- 

and aging-associated gene expression changes (Additional File 1: Figure S6). Given the pervasive impact 

of aging, we again carefully considered all aging-associated changes, focusing on relative changes across 

the transcriptome and proteome, as well as a potential interaction with Tau-mediated toxicity (Table 2 and 

Additional File 2: Table S2, S3). Interestingly, in TauR406W flies we note an ~18% increase in aging-

associated transcripts, with 7,970 genes affected (versus 6,742 in controls). However, within the 

proteome, the reverse pattern is seen with only 258 age-associated protein changes detected (versus 1,155 

in controls), representing a 78% reduction, and potentially consistent with reports of Tau-induced 

translational dysregulation [40-42]. A similar trend for the proteome is observed in TauWT animals; 
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although, the magnitude of changes was more modest (Additional File 2: Table S3). In sum, these data 

reveal unexpected and dynamic interactions between Tau and aging and their divergent impact on the 

transcriptome and proteome.  

 

Tau-induced gene expression networks implicate aging and innate immune pathways  

In order to reveal the broader biological processes disrupted by Tau, we next performed 

overrepresentation analysis using gene ontology (GO) annotations (Additional File 2: Table S5). We 

again focused on the TauR406W age-adjusted dataset, given the greater number of differential expression 

changes, and we initially examined the transcriptome. Complementary analyses of TauWT are included in 

the supplemental data. Among all differentially expressed transcripts, we detected significant enrichment 

for genes implicated in the cytoskeleton (p<1x10-20), endocytosis (p=8.9x10-10), synaptic function 

(p=1.7x10-6), innate immunity (p=8.9x10-6), and translation (p=8.4x10-4). One potential limitation of this 

approach is that it considers the entire transcriptome as a single regulatory unit and may therefore be 

underpowered to detect more restricted network modules. Therefore, in order to partition the 

transcriptomic data into coregulated gene sets, we implemented unsupervised hierarchical clustering and 

defined 6 discrete gene sets (n=33-1,863 genes; Additional File 2: Table S6), equally divided between 

Tau-associated up- and down-regulated groups (Fig. 3). As expected, each cluster was significantly 

enriched for genes corresponding to the biological pathways outlined above (Additional File 2: Table S7), 

consistent with identification of discrete transcriptional regulatory networks. Four gene clusters revealed 

strong age-dependent changes in both control and Tau flies, including both age-dependent decreases 

(clusters 1 & 3) or increases (clusters 2 & 4). As expected, these clusters (1-4) strongly overlap with age-

associated gene expression changes obtained from controls (mean=78%, range 66-85% overlap). 

Interestingly however, we observe 2 distinct patterns for the relationship between Tau- and aging-

associated transcriptome changes. First, in gene sets enriched for innate immune (cluster 2, increasing 

with age) or synaptic biology (cluster 1, decreasing with age), Tau amplifies the “aging expression 

signature”. Conversely, in clusters 3 and 4—enriched for endocytic and chromatin biology, 

respectively—Tau opposes the age-associated changes. Thus, these 2 alternate patterns conform to 

accelerated versus delayed brain aging, based on the transcriptome responses. In contrast, neither of the 

remaining clusters reveal strong age-dependent changes in control flies, with Tau triggering decreased 

(cluster 5) or increased (cluster 6) gene expression. Interestingly, in cluster 5, enriched for mitochondrial 

and epithelial gene sets, the Tau-induced downregulation in the transcriptome appears to be attenuated by 

aging. As a complementary strategy to define Tau-associated gene regulatory networks, we also 

implemented weighted gene correlation network analysis (WGCNA), identifying 15 mutually exclusive 

transcriptional modules (Additional File 2: Table S6). Among these, we found 7 modules significantly 
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associated with Tau genotype in TauR406W flies (Additional File 1: Figure S7). Moreover, these modules 

substantially overlap with the gene sets defined using hierarchical clustering, resulting in similar 

functional enrichment profiles and recapitulating consistent interrelationships with aging (Additional File 

2: Tables S6, S7). 

In parallel analyses of the TauR406W proteome dataset, we detected enrichment among 

differentially expressed proteins for translation (p=1.2x10-7) and amino acid biosynthesis (p=7x10-3), 

including a preponderance of ribosomal proteins (p<1x10-20) (Additional File 2: Table S5). We next 

integrated the transcriptome derived clusters with complementary data from proteomics. Consistent with 

our analyses described above, we found variable concordance among the clusters, based on the direction 

of differential expression detected in the proteome (Additional File 1: Figure S8). For example, clusters 

enriched for immune and synaptic function were reciprocally up- or down-regulated in Tau animals, but 

both gene sets were predominantly (~60%) concordant in the proteome—differentially expressed proteins 

show consistent direction of change in TauR406W flies. By contrast, cluster 5, implicated in mitochondrial 

and epithelial biology, showed only 39% concordance, suggesting opposing regulatory interactions 

between the transcriptome and proteome.  

 

Cross-species annotation of Tau-specific changes from human brain gene expression profiles 

Gene expression analysis from human postmortem brain tissue is confounded by mixed pathologies, 

making it difficult to identify those changes that are specifically triggered by Tau versus aging or other 

brain lesions. In contrast, our transcriptomic and proteomic analyses in flies benefit from matched 

experimental controls and longitudinal sampling, allowing definitive identification of Tau-triggered 

changes. We therefore leveraged our Drosophila results to annotate potential Tau-specific transcriptional 

changes from human brain gene expression profiles. We focused on 3 published analyses of differential 

gene expression, in relation to (i) AD clinical-pathologic diagnosis (n=478 cases / 300 controls; [10]), (ii) 

PSP clinical-pathologic diagnosis (n=82 cases / 76 controls; [9]), or (iii) neurofibrillary tangle pathologic 

burden (n=478 brains; [11]). As expected, following homology mapping using the Drosophila Integrated 

Ortholog Prediction Tool [43]; 57-66% of human genes had well-conserved fly homologs. The results of 

lookups are summarized in Table 3, and detailed results are included in Additional File 2: Table S8. In all 

3 datasets, roughly half of conserved, differentially expressed changes are nominated as directly triggered 

by Tau pathology, based on cross-species annotation. Importantly, the observed human-fly overlaps 

appear more likely than that expected due to chance (hypergeometric test: AD, p=1.36x10-63; PSP, 

p=8.63x10-19; tangle burden, p=1.81x10-48). Moreover, ~50-60% of overlapping differentially expressed 

genes were concordant across species (i.e. gene up-regulation in both human AD and Drosophila Tau 

transcriptomes) (Additional File 2: Table S8). In a complementary analysis, we also examined the 
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differentially expressed gene sets from human postmortem brains for overlaps with Drosophila aging-

induced gene expression changes (Table 3 and Additional File 2: Table S8). An even greater proportion 

(~70%) of human genes altered in human tauopathy showed conserved changes during brain aging in 

flies. In fact, few human genes specifically overlapped with the Tau dataset, with 90% overlapping both 

the Tau- and aging differentially expressed gene sets. Lastly, we leveraged our fly proteomic data to 

annotate a recently reported mass-spectrometry dataset of differentially expressed proteins from 453 

human brains, including 196 AD clinical-pathologic cases and 257 controls [19]. Despite the reduced 

depth of coverage for proteomics, this additional analysis highlights 63 proteins differentially expressed 

in human AD for which fly protein homologs are similarly dysregulated in response to Tau; 471 proteins 

overlapped with the complementary fly aging-dysregulated proteins. 

 

Resolving amplifying versus protective expression changes using genetic modifiers 

Tau-associated gene expression changes are excellent candidates for causal mechanisms in tauopathies—

those with the potential to alter disease onset, progression, and/or neurodegeneration (Fig. 4). 

Alternatively, differentially expressed genes may define non-causal perturbations—such changes may 

represent candidates as biomarkers for the neuronal injury accompanying neurofibrillary tangle 

pathology. In order to identify potential causal gene expression changes, we integrated our findings with 

available results from 3 published, unbiased Drosophila screens, together defining 84 genetic modifiers of 

Tau-mediated neurotoxicity [25-27]. Among these, 37 genes were differentially expressed in the 

transcriptome and/or proteome (either TauWT or TauR406W) (Table 4 and Additional File 2: Table S9). 

Next, for each of these 37 genes, we examined the direction of modifier tests from the literature to resolve 

whether the Tau-induced gene expression changes (up- or down-regulation) represent “amplifying” 

versus “protective” responses—that is, whether the observed perturbation in expression likely mediates or 

rather compensates for Tau-induced neuronal injury (Fig. 4). Up-regulated genes were defined as 

“amplifying” if genetic knockdown suppressed Tau toxicity and/or if overexpression reciprocally 

enhanced Tau phenotypes. For example, expression of Ubiquitin activating enzyme 1 (Uba1), a regulator 

of axon pruning, autophagy, and apoptosis [44-46], is significantly increased in TauR406W flies. In 

published work [26], overexpression of Uba1 enhanced Tau-induced retinal degeneration, suggesting that 

the observed up-regulation likely promotes (amplifies) Tau toxicity. Conversely, expression of Mi-2, 

encoding a CHD-family, chromatin-remodeling enzyme, is significantly decreased in TauR406W flies; 

however, since Mi-2 is a loss-of-function suppressor of Tau neurotoxicity [27], we annotate this as a 

compensatory (protective) change. Interestingly, Uba1 and Mi-2 are members of expression clusters 2 & 

4, respectively (Fig. 3 and Additional File 2: Table S6), which are similarly characterized by age-

associated up-regulation but reveal opposing Tau-associated perturbations. Overall, we identify 18 
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amplifying (A) and 19 protective (P) gene expression changes induced by Tau. Thus, our transcriptome 

and proteome data can be integrated with genetic modifier studies to reconstruct a causal chain linking 

Tau, specific gene expression perturbations, and neurodegeneration. Moreover, 21 out of the 37 genes 

with published modifiers are also differentially expressed in one of the human datasets (Table 4 and 

Additional File 2: Table S8). For example, CHD5 (homolog of Mi-2) is decreased in human brains with 

AD pathology. Based on the complementary studies of fly Mi-2, we can infer a potential Tau-triggered 

protective perturbation. These results demonstrate how Drosophila gene expression and genetic 

manipulation can be integrated to annotate human data for potential causal changes. 

 

Discussion 

We present an integrated, longitudinal analysis of the aging brain in Drosophila tauopathy models. Our 

results identify perturbations affecting thousands of transcripts and hundreds of proteins triggered by 

expression of human Tau and highlight many promising biological pathways that likely contribute to 

neurodegeneration in tauopathy. Among these, regulators of innate immunity, the cytoskeleton, 

endocytosis, and synaptic transmission, have independent support from genome-wide association studies 

of AD [47, 48], neurofibrillary tangle burden [49], and PSP [50], consistent with causal roles. Although 

expressed at similar levels, TauR406W, which causes familial FTD, was associated with a stronger impact 

on gene expression than TauWT, inducing up to 7-fold increased response in gene expression. This result is 

consistent with the enhanced neurotoxicity of TauR406W in Drosophila [24, 51], as well as the more 

aggressive clinical profile of familial FTD compared to late-onset AD [1, 2]. Nevertheless, we observed 

strong overlap in the differential expression signatures of wildtype and mutant Tau, suggesting shared 

mechanisms. 

Prior studies have profiled brain gene expression in Tau transgenic animals, including in flies [31, 

32, 52] and mouse models [21, 23, 41]; however, none to our knowledge have longitudinally assessed 

both transcripts and proteins in parallel. Our analyses provide a glimpse of the dynamic regulatory 

crosstalk between the brain transcriptome and proteome that respond to brain injury, as in tauopathy. 

Remarkably, 42% of Tau-induced expression changes were discordant, with transcript and protein 

changing in opposite directions. This result is largely consistent with other emerging findings of 

surprisingly poor correlation between mRNA and protein levels among a variety of experimental systems 

[13, 17, 53-55], including analyses of human postmortem brain tissue [18, 19, 56]. In one notable study 

relevant to AD, a similar fraction (40%) of differentially expressed transcripts in the 5XFAD amyloid 

precursor protein transgenic mouse showed discordant changes in the proteome [57]. Many discordant 

changes likely reflect regulatory feedback interactions that maintain protein homeostasis. Consistent with 

this, we found that transcript-protein concordance varied among coexpressed, and therefore likely 
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coregulated, gene sets. Our longitudinal data also provides clues to primary perturbations in selected cases 

(e.g. Sar1 in Figure 2); however, additional studies will be needed to confirm. Ultimately, successful 

translation from expression profiling studies requires unambiguous determination of whether a gene of 

interest is up- or down-regulated, but interpretation is currently limited by transcriptome-only analyses in 

most cases. Indeed, whether for nomination of potential therapeutic targets or development of diagnostic 

biomarkers, it will be essential to understand consequences at the protein level. We note that, among all 

differentially expressed transcripts, only a minority (~4%) were significantly and concordantly 

differentially expressed proteins--the remainder were either non-significantly differentially expressed, 

significant but discordant, or not detected at all by proteomics. Nevertheless, despite the comparatively 

reduced coverage of proteomics (~2,800 proteins vs. ~17,000 transcripts), many differentially expressed 

genes would not have been detected at all based on isolated transcriptional profiling. Thus, our results 

reinforce the value of proteomics for future investigations. 

Age is the strongest known risk factor for AD, and aging-dependent progression is a defining 

feature of AD and other neurodegenerative tauopathies. As in studies of human postmortem tissue, most 

gene expression analyses of tauopathy models have been cross-sectional, partially obscuring the impact of 

aging and potential interactions with Tau-mediated changes. In our analyses, the majority (~70%) of Tau-

triggered transcripts or proteins overlapped with those changes observed in aged control animals. 

Importantly, our longitudinal experimental design permitted identification of Tau-associated expression 

changes robust to aging adjustment. Remarkably however, even after adjustment, most Tau-mediated 

perturbations overlap with those seen in aging, and our cross-species analysis suggests consistent results 

for human tauopathy expression signatures. In short, our findings suggest that Tau pathology primarily 

modulates the endogenous gene expression programs of brain aging. Indeed, following hierarchical 

clustering, 4 out of 6 differentially expressed gene sets mirrored aging expression patterns, consistent with 

either Tau-accelerated or delayed aging. These complementary patterns may represent disease amplifying 

or protective responses, respectively, as shown for Uba1 and Mi-2. Interestingly, aging was associated 

with a quantitatively enhanced transcriptional signature in the Tau transgenic animals, characterized by an 

18% increase in differentially-expressed genes. Reciprocally, Tau expression was accompanied by a 78% 

reduction in age-associated changes in the proteome. Though further investigation is warranted to confirm 

these observations, our analyses define Tau expression signatures in the both transcriptome and proteome 

enriched for genes implicated in translation, including numerous ribosomal proteins. Consistent with this, 

pathologic forms of Tau have been shown to avidly bind ribosomal proteins and disrupt their function 

[40-42]. 

While aging has myriad systemic and cellular targets, one key emerging theme is the 

dysregulation of innate immune mechanisms leading to a systemic pro-inflammatory state, which has 
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been termed “immunosenescence” or “inflamm-ageing” [58, 59]. In our analysis, innate immune 

pathways were strongly enriched among both aging- and Tau-associated, differentially expressed genes, 

and this result is consistent with brain gene expression profiling in mouse models of healthy aging [23, 

60] and tauopathy [61, 62]. Similarly, multiple transcriptome- and proteome-wide analyses of human 

postmortem brain from AD or other tauopathies, such as PSP, have identified evidence of dysregulated 

immune pathways [9-11, 18], and similar signatures have been implicated in brains from aged individuals 

without known neurodegenerative disease [63, 64]. Importantly, genome-wide association studies in AD 

highlight an abundance of susceptibility gene candidates implicated in immune regulation (e.g. TREM2, 

CD33, CR1), strongly suggesting a causal role in disease pathogenesis [48]. Further, polygenic modeling 

[65] and analyses of human cortical transcriptomes [66] converge to implicate activated microglia in the 

development of Tau pathology and susceptibility for AD. Numerous follow-up studies, including in 

mouse and cellular models, implicate microglia and astroglia with potential roles in propagating a 

pathogenic inflammatory cascade [67]. However, the prevailing mechanistic models of 

neuroinflammation in AD have largely focused on amyloid-beta as an upstream trigger and tau pathology 

as a downstream consequence, and the role of aging per se is often minimized. Nevertheless, primary 

tauopathies lacking amyloid pathology, such as PSP, and corresponding mouse models manifest 

prominent neuroinflammatory brain expression signatures. By contrast with mammals, neurons 

significantly outnumber glia in the Drosophila brain, and true microglial cells are not present in 

invertebrates [68]. Nevertheless, innate immune pathways are evolutionarily ancient, and toll-like 

receptor signaling components are not only expressed in fly neurons and glia, but they are required for 

brain maintenance in aging [39, 69]. In the future, single-cell RNA-seq in Drosophila models of 

tauopathy may permit dissection of which cell types generate immune expression signatures along with 

complementary cell-type specific manipulations to confirm potential causal roles. 

Gene expression profiling has emerged as a promising tool for functional genomic dissection of 

AD and other tauopathies; however, interpretation of these data can be powerfully enhanced by 

integration with complementary studies in model organisms. We have performed several cross-species 

analyses to highlight applications of our Drosophila tauopathy resource. One important challenge is to 

differentiate those gene expression changes specifically provoked by Tau-mediated mechanisms. Besides 

the influence of aging and life experiences, human brains commonly accumulate mixed pathologies [16]. 

By contrast, experimental models permit precisely-controlled manipulations that can isolate the 

responsible causal triggers. Roughly half of all conserved, differentially-expressed genes from the largest 

available analyses of human AD or PSP brain tissue were annotated as Tau-induced perturbations based 

on our Drosophila experiment. Remarkably, an even larger proportion of expression changes (70%) were 

triggered by aging and we observed virtually complete overlap between Tau- and aging-associated 
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changes. This result reinforces the intimate connection between the impact of neurodegenerative 

pathologies and aging on brain gene expression. Another major challenge following human gene 

expression analyses is to differentiate proximal causal pathways from more downstream, non-causal 

consequences of neurodegeneration. Experimental models permit controlled manipulations that mimic 

observed expression changes along with assessments to define potential impact on neurodegenerative 

phenotypes. In particular, Drosophila offers high-throughput genetics enabling unbiased, large-scale 

genetic screens for modifiers of Tau-mediated neurotoxicity [25-27]. By integrating these results with our 

RNA-seq findings, and cross-referencing with human gene expression profiles, we successfully highlight 

genes altered in human tauopathy that are strong candidates for further investigation as either amplifying 

or protective causal modifiers. In the future, targeted genetic manipulations of other conserved, 

differentially-expressed transcripts and/or proteins will significantly extend the value of our cross-species 

resource. 

 

Methods 

Drosophila stocks and husbandry 

UAS-TauWT and UAS-TauR406W transgenic flies, as previously described in Wittmann et. al. 2001, were 

crossed with the pan-neuronal expression driver elav-GAL4 to generate experimental animals with the 

genotype elav-GAL4/+;UAS-TauWT/+ or elav-GAL4/Y;UAS-TauWT/+ (elav > TauWT) and elav-

GAL4/+;UAS-TauR406W/+ or elav-GAL4/Y;UAS-TauR406W/+ (elav > TauR406W), respectively. These flies 

express the human Tau 0N4R isoform (383 amino acids). For control animals, we used the genotypes: 

elav-GAL4/+ and elav-GAL4/Y. All flies were raised on standard molasses-based Drosophila media at 

25°C with ambient light conditions, and aged to 1-, 10-, or 20-days following eclosion. We confirmed 

expression of Tau at similar levels in elav > TauWT and elav > TauR406W flies using western blot analysis, 

as previously described [40] using the following antibodies: rabbit anti-Tau (1:5000, Dako); rabbit anti-

GAPDH (1:5000, GeneTex) and HRP-conjugated anti-rabbit (1:10000, Santa Cruz). 

 

Drosophila RNA-sequencing data 

The Drosophila RNA-sequencing (RNA-seq) dataset analyzed for this work was generated as part of 

another study, where it is described in detail [40]. Briefly, for elav>Tau and elav controls, animals were 

evaluated at 1-, 10-, or 20-days. To avoid possible batch effects, experimental and control genotypes used 

for each comparison (TauWT and TauR406W) were sequenced together, such that 2 separate control datasets 

were generated (control 1 and control 2, respectively) for the TauWT and TauR406W RNA-seq analyses. 

Triplicate samples (n=3) were used for all genotypes and time points, except for the elav control genotype 

used for the comparison with TauR406W(control 2), for which duplicate samples were used (n=2): 
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Exp Replicates (n) Ctrl Replicates (n) Age (d) 

TauWT 3 elav 3 1, 10, 20 

TauR406W 3 elav 2 1,10, 20 

 

Total RNA was extracted from approximately 100 adult fly heads (for each genotype/age/sample), 

equally divided between males and females. Sequencing was performed on the Illumina HiSeq with 

100bp paired-end reads. Gene expression values from each sample were quantified as the number of reads 

mapped (to a specific gene) by setting --quantMode to GeneCounts in STAR 2.5.3a [70]. Unsupervised 

clustering of samples was assessed by UMAP using DESeq2 depth normalized read counts as described 

in [71]. 

 

Protein extraction and mass-spectrometry 

For proteomics, the identical genotypes (elav>TauWT, elav>TauR406W, and elav), time points (1-, 10-, or 

20-days), and conditions were evaluated as for the RNA-seq analyses. Triplicate samples (n=3) were used 

for all genotypes and timepoints, and a single control series (control 3) was used since all samples were 

processed together. Drosophila proteomics was performed according to previously published protocols 

[18]. Each replicate (40 fly heads of 1:1 male/female ratio per sample) was homogenized in 500 uL of 

urea lysis buffer (8M urea, 100 mM NaHPO4, pH 8.5), including 5 μL (100x stock) HALT protease and 

phosphatase inhibitor cocktail (Pierce). Protein supernatants were transferred to 1.5 mL Eppendorf tubes 

and sonicated (Sonic Dismembrator, Fisher Scientific) 3 times for 5 s with 15 s intervals of rest at 30% 

amplitude to disrupt nucleic acids and subsequently vortexed. Protein concentration was determined by 

the bicinchoninic acid (BCA) method, and samples were frozen in aliquots at −80°C. Each brain 

homogenate was analyzed by SDS-PAGE to assess for protein integrity. Protein homogenates (150 μg) 

were diluted with 50 mM NH4HCO3 to a final concentration of less than 2M urea and then treated with 1 

mM dithiothreitol (DTT) at 25°C for 30 minutes, followed by 5 mM iodoacetimide (IAA) at 25°C for 30 

minutes in the dark. Protein was digested with 1:100 (w/w) lysyl endopeptidase (Wako) at 25°C for 2 

hours and further digested overnight with 1:50 (w/w) trypsin (Promega) at 25°C. Resulting peptides were 

desalted with a Sep-Pak C18 column (Waters), dried under vacuum, and 2 μg was resuspended in peptide 

loading buffer (0.1% formic acid, 0.03% trifluoroacetic acid, 1% acetonitrile). Peptide mixtures were 

separated on a self-packed C18 (1.9 μm Dr. Maisch, Germany) fused silica column (25 cm x 75 μM 

internal diameter (ID); New Objective, Woburn, MA) by a NanoAcquity UHPLC (Waters, Milford, FA) 

and monitored on a Q-Exactive Plus mass spectrometer (ThermoFisher Scientific , San Jose, CA). Elution 

was performed over a 120-minute gradient at a rate of 400nL/min with buffer B ranging from 3% to 80% 

(buffer A: 0.1% formic acid and 5% DMSO in water, buffer B: 0.1% formic and 5% DMSO in 
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acetonitrile). The mass spectrometer cycle was programmed to collect one full MS scan followed by 10 

data dependent MS/MS scans. The MS scans (300-1800 m/z range,1,000,000 AGC, 150 ms maximum ion 

time) were collected at a resolution of 70,000 at m/z 200 in profile mode and the MS/MS spectra (2 m/z 

isolation width, 25% collision energy, 100,000 AGC target, 50 ms maximum ion time) were acquired at a 

resolution of 17,500 at m/z 200. Dynamic exclusion was set to exclude previous sequenced precursor ions 

for 30 seconds within a 10 ppm window. Precursor ions with +1, and +6 or higher charge states were 

excluded from sequencing. 

Raw data for all samples was analyzed using MaxQuant v1.5.2.8 with Thermo Foundation 2.0 for file 

reading capability. The search engine Andromeda, integrated into MaxQuant, was used to build and 

search a Uniprot fly database consisting of 13704 target sequences, plus 245 contaminant proteins from 

the common repository of adventitious proteins (cRAP) built into MaxQuant. Methionine oxidation 

(+15.9949 Da), asparagine and glutamine deamidation (+0.9840 Da), and protein N-terminal acetylation 

(+42.0106 Da) were variable modifications (up to 5 allowed per peptide); cysteine was assigned a fixed 

carbamidomethyl modification (+57.0215 Da). Only fully tryptic peptides were considered with up to 2 

miscleavages in the database search. A precursor mass tolerance of ±20 ppm was applied prior to mass 

accuracy calibration and ±4.5 ppm after internal MaxQuant calibration. Other search settings included a 

maximum peptide mass of 6,000 Da, a minimum peptide length of 6 residues, 0.05 Da tolerance for high 

resolution MS/MS scans. Co-fragmented peptide search was enabled to deconvolute multiplex spectra. 

The false discovery rate (FDR) for peptide spectral matches, proteins, and site decoy fraction were all set 

to 1 percent. Quantification settings were as follows: re-quantify with a second peak finding attempt after 

protein identification has completed; match MS1 peaks between runs; a 0.7 min retention time match 

window was used after an alignment function was found with a 20-minute RT search space. The 

quantitation method only considered razor plus unique peptides for protein level quantitation. 

Quantitation of proteins was performed using LFQ (label-free quantification) intensities given by 

MaxQuant. The full list of parameters used for MaxQuant are available as parameters.txt accompanying 

the public release (see Data Availability). Unsupervised clustering of samples with UMAP was performed 

using DEseq2 depth normalized LFQ values (Additional File 1: Figure S3). Missing proteomic LFQ 

values were imputed on a per sample basis as previously described in [72]. Missing values were imputed 

by drawing from a Gaussian distribution simulating expression near the LFQ detection limit, a down-shift 

of 1.8 standard deviations from the median sample expression. For quality assurance, we tabulated for 

each protein the number of replicate samples with complete data (non-imputed), broken down by 

genotype and age (Additional File 2: Table S10). For subsequent differential expression analyses, LFQs 

for the minority of proteins with multiple detected isoforms (n=83) were collapsed to a single value by 
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taking the per sample mean. Abundance data for UniProt peptide IDs that did not map to a fly gene 

symbol were excluded from analysis. 

 

Analysis of differentially expressed transcripts and proteins 

Differential-expression analysis of transcripts and proteins was performed using DESeq2 [73]. As 

detailed above, for transcriptome analyses, elav>TauWT or elav>TauR406W were compared with the batch-

matched elav control data (control set 1 or 2, respectively). Genes with an average read count <50 across 

all samples in the comparison were excluded. For proteomic analyses, the single elav control set (control 

3) was compared to either elav>TauWT or elav>TauR406W, and absolute peptide counts (LFQ) were used as 

the input for DESeq2 (which only accepts integers). Raw transcript or peptide counts were normalized for 

library depth using DESeq2 median of ratios, and tested for differential expression using a generalized 

linear model. We initially determined Tau-induced differentially expressed transcripts or proteins cross-

sectionally, examining Tau and control data separately at each time point (expression ~ genotype, 

stratified by age for either 1-, 10-, or 20-day old animals). Subsequently, we performed joint regression 

analyses incorporating all longitudinal data, and including a covariate for age (expression ~ genotype + 

age); the genotype term coefficient was used for significance testing. Genes and proteins in Figure 2 and 

Additional File 1: Figure S5 were plotted using log-transformed and depth-normalized expression or LFQ 

values. For determination of age-related changes in transcripts or proteins, our data was stratified by 

genotype, evaluating elav controls or elav>Tau flies separately, and age was used as the predictor 

variable. Differential expression was computed for either (i.) day 1 vs. day 10, (ii.) day 10 vs. day 20, or 

(iii.) day 1 vs. day 20. Significance testing was performed using the Wald test, implemented within 

DESeq2. In order to account for multiple-comparisons, the Benjamini-Hochberg procedure was applied, 

and a false discovery rate (FDR) < 0.05 was considered significant.  

For analysis of concordance between transcriptome and proteome, we examined the sign (positive or 

negative) of the genotype coefficient from the longitudinal (joint) regression model. Concordant 

transcripts were defined as having consistent direction of change (e.g. either positive or negative fold-

change). Functional enrichment for differentially expressed transcripts or proteins (joint regression 

model) was evaluated using the over-representation analysis (ORA) function of the WEB-based GEne 

SeT AnaLysis Toolkit [74]. All ORA analyses were conducted using the R implementation of 

WEBGESTALT. The minimum number of genes per category was set to 5. We employed the following 

databases: GO biological processes, GO molecular functions, GO cellular component, KEGG, and 

Panther. Enrichment significance was defined using Fisher’s exact test, followed by the Benjamini-

Hochberg procedure; significance was set at FDR < 0.05.   
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Hierarchical Clustering and WGCNA analysis 

Hierarchical clustering was performed to evaluate TauR406W-associated, differentially-expressed 

transcripts (n = 4,992 genes), based on the joint regression model (Fig. 1b). Normalized expression counts 

for differentially-expressed genes were used as input. Pearson correlation was used as the distance metric 

and the complete linkage was used for distance calculation. Heatmaps of hierarchically clustered 

transcripts were generated using the heatmap.2 function from the gplots package in R. Based on a non-

negative matrix factorization (NMF) rank survey using the NMF package in R [75], the optimal number 

of clusters was determined to be 6, maximizing cophenetic scores while minimizing residuals (Additional 

File 1: Figure S9). This was applied to the clustering as a manual tree cut to yield 6 final clusters. 

Functional enrichment for cluster gene set was performed as described above. Concordance between 

transcripts in each cluster with corresponding proteins detected in the TauR406W proteomic data was further 

evaluated by comparing the directions of log2 fold-changes. Median expression counts of genes 

belonging to each cluster were calculated from normalized expression values from all replicates in each 

genotype (TauR406W or control set 2) and age.  

Weighted gene coexpression network analysis (WGCNA) [76] was performed on expression counts 

from all TauR406W transcripts (n = 10,217 genes) after normalization in DESeq2 (median-of-ratios depth 

normalization). The soft threshold parameter was set at 5, deepSplit = 4, and minimum module size = 23. 

Expression behavior of WGCNA modules were summarized by calculating module “eigengenes”. 

Module eigengene is defined by PC1 loadings of a given module. Closely related modules were merged 

based on module eigengenes at a distance threshold of MEDissThres = 0.1. The cluster dendrogram and 

module membership of transcripts are displayed in Additional File 1: Figure S10.  Module eigengenes of 

each of the 15 resulting modules was examined for correlation with the TauR406W genotype via Pearson 

correlation (Additional File 1: Figure S7). Normalized expression of genes in modules with module 

eigengenes that have significant correlation to the TauR406W genotype were further evaluated in TauR406W 

animals and controls (control set 2). 

 

Drosophila and human gene set overlaps 

In order to evaluate human-fly gene set overlaps, we first determined the fly homologs for all human AD, 

tangle, or PSP differentially-expressed genes using the DRSC Integrated Ortholog Prediction Tool 

(DIOPT; [43]), applying a minimum DIOPT score threshold of 5 (Additional File 2: Table S8). Where 

more than one fly homolog had a DIOPT score > 5, all were included. We then computed enrichments of 

each human-derived data set (fly homologs) for either (i) Tau- or (ii) age-induced differentially expressed 

gene sets, based on our experimental analyses in Drosophila models, using the phyper base function of R 

to conduct a hypergeometric test. For Tau-induced fly genes, we include significant, differentially 
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expressed genes from either the TauR406W or TauWT joint regression model (age-adjusted). For aging-

induced fly genes, we considered all unique differentially expressed genes based on our analyses of elav 

control flies from multiple timepoints (1 vs. 10 days, 10 vs. 20 days, and 1 vs. 20 days), including from 

control sets 1 & 2 for transcriptome studies or the complementary proteomic control set. Input values for 

human-to-fly hypergeometric tests were: 

 

Human Data Set Sample Size Sample Successes Population Size Population Successes 
AD Transcriptome 2426 1181 17104 5716 

PSP Transcriptome 447 239 17104 5716 

Tangle Transcriptome 1639 820 17104 5716 

AD Proteome 524 63 2742 548 
 

For the analyses integrating Drosophila RNA-seq and published modifiers, we again used DIOPT to 

determine the human homologs of relevant fly genes (DIOPT score > 5). 
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TABLES 

Table 1 

    Total 
 Day 1 Day 10 Day 20 cross-sectional age-adjusted* 

TauWT  491 (54) 431 (143) 1,096 (76) 1,514 (213) 1,653 (123) 
TauR406W  3,179 (97) 1,616 (173) 4,087 (581) 5,494 (697) 4,992 (503) 

 

Table 1: Tau-triggered differentially expressed genes. Differentially-expressed transcripts (and 

proteins, in parentheses) are indicated based on cross-sectional comparisons in 1-, 10-, or 20-day-old 

elav>TauWT or elav>TauR406W animals and controls. Based on PCA analysis [40], the decrease in 

differentially expressed transcripts at day 10 in TauR406W flies is likely due to sample heterogeneity. The 

total number of unique differentially expressed transcripts/proteins from the cross-sectional analyses are 

also indicated, along with complementary results from the joint regression model including all 

longitudinal data and adjusting for age. Statistical analysis was based on a Wald test (FDR<0.05). See 

Additional File 2: Tables S1 and S4 for complete results.  

 

Table 2 

 

 Control TauR406W Change 
Transcripts 6742 7970 +18% 

Proteins 1155 258 -78% 
 

Table 2: Aging-triggered differentially expressed genes. In TauR406W animals, aging is associated with 

an increased number of differentially-expressed transcripts but a decreased number of proteins. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.19.954578doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.19.954578
http://creativecommons.org/licenses/by-nc-nd/4.0/


Differentially-expressed transcripts and proteins were determined by comparing aged animals, stratified 

by genotype, analyzing elav (control) or elav>TauR406W animals separately. The total number of unique, 

differentially-expressed transcripts or proteins are shown based on the union of 3 comparisons (1- vs. 10-

days, 10- vs. 20-days, and 1- vs. 20-days). Statistical analysis was based on a Wald test (FDR<0.05). See 

Additional File 2: Tables S2 and S3 for complete results. 

 

Table 3 

Human  Drosophila 

Expression Dataset Genes (Conserved)  Tau (%) Aging (%) 

AD 3,774 (2,426)  1,181 (48.7%)  1,666 (68.7%) 

PSP 745 (447)  239 (53.5%) 321 (67.3%) 

Tangles 2,485 (1,639)  820 (50.0%) 1,162 (70.9%) 

AD (proteins) 959 (524)*  63 (12.0%)* 471 (89.9%)* 

 

Table 3: Tau- and aging-induced changes from cross-species overlaps. We examined differentially 

expressed transcripts from published RNA-seq analyses of human postmortem brain, including AD 

cases/controls [10], PSP cases/controls [9], or quantitative neurofibrillary tangle burden [11]. We also 

considered complementary mass-spectrometry proteomics from AD brains [19]. The total number of 

unique, differentially expressed human genes are noted along with the subset that are conserved in 

Drosophila. Among conserved genes, we examined the number and percentage with Tau- or aging-

triggered differentially expressed homologs in flies. Given the reduced coverage of proteomics, we only 

consider conserved human proteins in which the homologous fly proteins were also detected in our assay. 

See Additional File 2: Tables S8 for complete results. 
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Table 4 

Drosophila  Human 

Gene Amplifying vs. 
Protective 

 AD Tangles 

up-regulated    
cher A    
Uba1 A    
Myd88 A  MYD88  
CG10889 A  ZC3H12C  
CG7970 A    
Elf A  GSPT1 EIF2S1 
Fs(2)Ket A    
Mekk1 A    
Nrg A  CHL1 NRCAM 
smid A    
Diap1 A  BIRC3  
wun A  PLPP1  
Hop P  STIP1, JAK1, 

JAK2, JAK3 
JAK3, TYK2 

RpS21 P  RPS21  
Past1 P  EHD2  
Tis11 P  ZFP36L1, 

ZFP36L2 
 

w P    
Gbs-70E P  PPP1R3C  
cher P    
dally P    

     

down-regulated    
fry A   FRYL 
Ptp4E A    
Atg6 A    
Fmr1 A    
mub A    
Bacc A    
jing P   AEBP2 
E(bx) P   BPTF 
tou P   BAZ2B 
jar P    
Mi-2 P  CHD5, 

CHD4 
CHD4 

sgg P    
milt P   TRAK2 
stg P  CDC25B CDC25B 
twe P  CDC25B CDC25B 
Atx2 P   ATXN2L 
CG7231 P    
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Table 4: Integration of gene expression with genetic modifiers. All Drosophila genes listed (at left) 

are modifiers of Tau-mediated neurodegeneration based on published unbiased screens [25-27].  

Direction of Tau-induced differential expression is noted, including up- (top) or down-regulation (bottom) 

of transcripts. Based on the results of modifier tests, we can infer whether the observed Tau-induced 

expression perturbation is amplifying (A) or protective (P) for Tau neurotoxicity. See also Figure 4 and 

Additional File 2: Table S8 and S9. For each fly gene, we also note whether human gene homolog(s) are 

differentially expressed in human postmortem brain tissue from published analyses of AD [10] and 

neurofibrillary tangle burden [11]. In cases where the direction of expression was concordant with 

Drosophila, the human gene name is indicated in boldface. In a smaller PSP dataset [9], only 1 fly gene, 

mub, had a differentially-expressed human homolog, PCBP4.  

 

FIGURE LEGENDS 

Figure 1: Tau-triggered differentially expressed genes. a Gene expression heatmap showing replicate 

samples from control flies (elav, n=3) and elav > TauWT (TauWT, n=3) grouped by age (1-, 10-, and 20-

days). Columns denote individual samples. Rows consist of clustered, normalized expression values for 

all differentially-expressed transcripts (n=1653, FDR<0.05) based on the joint regression model adjusting 

for age. Each column represents an individual sample. In both control and TauWT animals, age is the 

dominant driver of gene expression patterns.  b Gene expression heatmap showing replicate samples from 

batch-matched control flies (elav, n=2) and elav > TauR406W (TauR406W, n=3). Rows consist of clustered, 

normalized expression values for all differentially-expressed transcripts (n=4992, FDR < 0.05) based on 

the joint regression model adjusting for age. While age remains a major driver, TauR406W has a more 

substantial and appreciable impact on expression pattern compared with TauWT (a, above).  c Plot (top) 

showing TauR406W-triggered log2 fold-change (LFC) in the transcriptome and proteome. The plot only 

includes those genes detected as both transcripts and proteins and also differentially expressed (n=1477, 

FDR < 0.05), based on the joint regression model including longitudinal data and adjusting for age. 

Colors denote whether the gene was differentially expressed in the transcriptome (unfilled), proteome 

(blue), or both (orange). Quadrants I and III include gene expression changes that are concordant (same 

direction) at the transcript and protein level; whereas quadrants II and IV depict discordant changes. A 

substantial proportion of differentially-expressed transcripts or proteins are discordant (table, bottom). 

See Fig. 2 and Additional File 1: Figure S5 for selected examples (labeled). 

 

Figure 2: Examples of Tau-induced changes in the transcriptome and proteome. log2-transformed 

expression of selected genes in elav>TauR406W (Tau, red) and elav (Control, gray) is shown for 

transcriptome (depth normalized counts) and proteomes (normalized label-free quantification intensity 
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(LFQ)). Genes were selected to be representative within our dataset and are all differentially expressed 

(FDR < 0.05) in both the transcriptome and proteome, based on the joint regression model including all 

longitudinal data and adjusting for age. CCT1 is only differentially-expressed at the protein level. AttA 

and CCT1 transcripts (bottom) are plotted on a different scale than the other examples due to the 

increased dynamic range of changes (for AttA).  Additional example plots can be found in Additional File 

1: Figure S5. 

 

Figure 3: Tau-triggered gene expression clusters. Hierarchical clustering identified 6 gene sets with 

related Tau-induced expression patters (See also heatmap in Fig. 1a). Boxplots show log2-transformed 

median expression of genes within each cluster, including elav>TauR406W (Tau, red) and elav (Control, 

blue). Clusters are annotated based on size and significantly enriched gene ontology terms. See also 

Additional File 1: Figure S7, S8 and Additional File 2: Tables S6, S7.  

 

Figure 4: Model for integrating Tau-induced gene expression changes and modifiers. Schematic 

diagram illustrating the relationship between Tau-induced perturbations in gene expression and potential 

impact on neurodegeneration. Tau may cause up- or down-regulation for a given gene of interest, and 

either change may amplify (red) or protect against (green) neurotoxicity. Recapitulating the observed 

gene expression change through experimental manipulations and observing the consequences for 

neurodegenerative phenotypes permits reconstruction of the causal chain. See Table 4 for specific 

examples. 
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